linux/kernel/bpf/core.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31
  32#include <asm/unaligned.h>
  33
  34/* Registers */
  35#define BPF_R0  regs[BPF_REG_0]
  36#define BPF_R1  regs[BPF_REG_1]
  37#define BPF_R2  regs[BPF_REG_2]
  38#define BPF_R3  regs[BPF_REG_3]
  39#define BPF_R4  regs[BPF_REG_4]
  40#define BPF_R5  regs[BPF_REG_5]
  41#define BPF_R6  regs[BPF_REG_6]
  42#define BPF_R7  regs[BPF_REG_7]
  43#define BPF_R8  regs[BPF_REG_8]
  44#define BPF_R9  regs[BPF_REG_9]
  45#define BPF_R10 regs[BPF_REG_10]
  46
  47/* Named registers */
  48#define DST     regs[insn->dst_reg]
  49#define SRC     regs[insn->src_reg]
  50#define FP      regs[BPF_REG_FP]
  51#define ARG1    regs[BPF_REG_ARG1]
  52#define CTX     regs[BPF_REG_CTX]
  53#define IMM     insn->imm
  54
  55/* No hurry in this branch
  56 *
  57 * Exported for the bpf jit load helper.
  58 */
  59void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  60{
  61        u8 *ptr = NULL;
  62
  63        if (k >= SKF_NET_OFF)
  64                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  65        else if (k >= SKF_LL_OFF)
  66                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  67
  68        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  69                return ptr;
  70
  71        return NULL;
  72}
  73
  74struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  75{
  76        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  77                          gfp_extra_flags;
  78        struct bpf_prog_aux *aux;
  79        struct bpf_prog *fp;
  80
  81        size = round_up(size, PAGE_SIZE);
  82        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  83        if (fp == NULL)
  84                return NULL;
  85
  86        kmemcheck_annotate_bitfield(fp, meta);
  87
  88        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89        if (aux == NULL) {
  90                vfree(fp);
  91                return NULL;
  92        }
  93
  94        fp->pages = size / PAGE_SIZE;
  95        fp->aux = aux;
  96        fp->aux->prog = fp;
  97
  98        return fp;
  99}
 100EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 101
 102struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 103                                  gfp_t gfp_extra_flags)
 104{
 105        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 106                          gfp_extra_flags;
 107        struct bpf_prog *fp;
 108
 109        BUG_ON(fp_old == NULL);
 110
 111        size = round_up(size, PAGE_SIZE);
 112        if (size <= fp_old->pages * PAGE_SIZE)
 113                return fp_old;
 114
 115        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 116        if (fp != NULL) {
 117                kmemcheck_annotate_bitfield(fp, meta);
 118
 119                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 120                fp->pages = size / PAGE_SIZE;
 121                fp->aux->prog = fp;
 122
 123                /* We keep fp->aux from fp_old around in the new
 124                 * reallocated structure.
 125                 */
 126                fp_old->aux = NULL;
 127                __bpf_prog_free(fp_old);
 128        }
 129
 130        return fp;
 131}
 132EXPORT_SYMBOL_GPL(bpf_prog_realloc);
 133
 134void __bpf_prog_free(struct bpf_prog *fp)
 135{
 136        kfree(fp->aux);
 137        vfree(fp);
 138}
 139EXPORT_SYMBOL_GPL(__bpf_prog_free);
 140
 141#ifdef CONFIG_BPF_JIT
 142struct bpf_binary_header *
 143bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 144                     unsigned int alignment,
 145                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 146{
 147        struct bpf_binary_header *hdr;
 148        unsigned int size, hole, start;
 149
 150        /* Most of BPF filters are really small, but if some of them
 151         * fill a page, allow at least 128 extra bytes to insert a
 152         * random section of illegal instructions.
 153         */
 154        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 155        hdr = module_alloc(size);
 156        if (hdr == NULL)
 157                return NULL;
 158
 159        /* Fill space with illegal/arch-dep instructions. */
 160        bpf_fill_ill_insns(hdr, size);
 161
 162        hdr->pages = size / PAGE_SIZE;
 163        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 164                     PAGE_SIZE - sizeof(*hdr));
 165        start = (prandom_u32() % hole) & ~(alignment - 1);
 166
 167        /* Leave a random number of instructions before BPF code. */
 168        *image_ptr = &hdr->image[start];
 169
 170        return hdr;
 171}
 172
 173void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 174{
 175        module_memfree(hdr);
 176}
 177#endif /* CONFIG_BPF_JIT */
 178
 179/* Base function for offset calculation. Needs to go into .text section,
 180 * therefore keeping it non-static as well; will also be used by JITs
 181 * anyway later on, so do not let the compiler omit it.
 182 */
 183noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 184{
 185        return 0;
 186}
 187EXPORT_SYMBOL_GPL(__bpf_call_base);
 188
 189/**
 190 *      __bpf_prog_run - run eBPF program on a given context
 191 *      @ctx: is the data we are operating on
 192 *      @insn: is the array of eBPF instructions
 193 *
 194 * Decode and execute eBPF instructions.
 195 */
 196static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
 197{
 198        u64 stack[MAX_BPF_STACK / sizeof(u64)];
 199        u64 regs[MAX_BPF_REG], tmp;
 200        static const void *jumptable[256] = {
 201                [0 ... 255] = &&default_label,
 202                /* Now overwrite non-defaults ... */
 203                /* 32 bit ALU operations */
 204                [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 205                [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 206                [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 207                [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 208                [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 209                [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 210                [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 211                [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 212                [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 213                [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 214                [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 215                [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 216                [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 217                [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 218                [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 219                [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 220                [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 221                [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 222                [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 223                [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 224                [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 225                [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 226                [BPF_ALU | BPF_NEG] = &&ALU_NEG,
 227                [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 228                [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 229                /* 64 bit ALU operations */
 230                [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 231                [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 232                [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 233                [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 234                [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 235                [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 236                [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 237                [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 238                [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 239                [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 240                [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 241                [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 242                [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 243                [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 244                [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 245                [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 246                [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 247                [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 248                [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 249                [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 250                [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 251                [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 252                [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 253                [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 254                [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 255                /* Call instruction */
 256                [BPF_JMP | BPF_CALL] = &&JMP_CALL,
 257                [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
 258                /* Jumps */
 259                [BPF_JMP | BPF_JA] = &&JMP_JA,
 260                [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 261                [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 262                [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 263                [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 264                [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 265                [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 266                [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 267                [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 268                [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 269                [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 270                [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 271                [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 272                [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 273                [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 274                /* Program return */
 275                [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 276                /* Store instructions */
 277                [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 278                [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 279                [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 280                [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 281                [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 282                [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 283                [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 284                [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 285                [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 286                [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 287                /* Load instructions */
 288                [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 289                [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 290                [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 291                [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 292                [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 293                [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 294                [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 295                [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 296                [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 297                [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 298                [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 299        };
 300        u32 tail_call_cnt = 0;
 301        void *ptr;
 302        int off;
 303
 304#define CONT     ({ insn++; goto select_insn; })
 305#define CONT_JMP ({ insn++; goto select_insn; })
 306
 307        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
 308        ARG1 = (u64) (unsigned long) ctx;
 309
 310select_insn:
 311        goto *jumptable[insn->code];
 312
 313        /* ALU */
 314#define ALU(OPCODE, OP)                 \
 315        ALU64_##OPCODE##_X:             \
 316                DST = DST OP SRC;       \
 317                CONT;                   \
 318        ALU_##OPCODE##_X:               \
 319                DST = (u32) DST OP (u32) SRC;   \
 320                CONT;                   \
 321        ALU64_##OPCODE##_K:             \
 322                DST = DST OP IMM;               \
 323                CONT;                   \
 324        ALU_##OPCODE##_K:               \
 325                DST = (u32) DST OP (u32) IMM;   \
 326                CONT;
 327
 328        ALU(ADD,  +)
 329        ALU(SUB,  -)
 330        ALU(AND,  &)
 331        ALU(OR,   |)
 332        ALU(LSH, <<)
 333        ALU(RSH, >>)
 334        ALU(XOR,  ^)
 335        ALU(MUL,  *)
 336#undef ALU
 337        ALU_NEG:
 338                DST = (u32) -DST;
 339                CONT;
 340        ALU64_NEG:
 341                DST = -DST;
 342                CONT;
 343        ALU_MOV_X:
 344                DST = (u32) SRC;
 345                CONT;
 346        ALU_MOV_K:
 347                DST = (u32) IMM;
 348                CONT;
 349        ALU64_MOV_X:
 350                DST = SRC;
 351                CONT;
 352        ALU64_MOV_K:
 353                DST = IMM;
 354                CONT;
 355        LD_IMM_DW:
 356                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 357                insn++;
 358                CONT;
 359        ALU64_ARSH_X:
 360                (*(s64 *) &DST) >>= SRC;
 361                CONT;
 362        ALU64_ARSH_K:
 363                (*(s64 *) &DST) >>= IMM;
 364                CONT;
 365        ALU64_MOD_X:
 366                if (unlikely(SRC == 0))
 367                        return 0;
 368                div64_u64_rem(DST, SRC, &tmp);
 369                DST = tmp;
 370                CONT;
 371        ALU_MOD_X:
 372                if (unlikely(SRC == 0))
 373                        return 0;
 374                tmp = (u32) DST;
 375                DST = do_div(tmp, (u32) SRC);
 376                CONT;
 377        ALU64_MOD_K:
 378                div64_u64_rem(DST, IMM, &tmp);
 379                DST = tmp;
 380                CONT;
 381        ALU_MOD_K:
 382                tmp = (u32) DST;
 383                DST = do_div(tmp, (u32) IMM);
 384                CONT;
 385        ALU64_DIV_X:
 386                if (unlikely(SRC == 0))
 387                        return 0;
 388                DST = div64_u64(DST, SRC);
 389                CONT;
 390        ALU_DIV_X:
 391                if (unlikely(SRC == 0))
 392                        return 0;
 393                tmp = (u32) DST;
 394                do_div(tmp, (u32) SRC);
 395                DST = (u32) tmp;
 396                CONT;
 397        ALU64_DIV_K:
 398                DST = div64_u64(DST, IMM);
 399                CONT;
 400        ALU_DIV_K:
 401                tmp = (u32) DST;
 402                do_div(tmp, (u32) IMM);
 403                DST = (u32) tmp;
 404                CONT;
 405        ALU_END_TO_BE:
 406                switch (IMM) {
 407                case 16:
 408                        DST = (__force u16) cpu_to_be16(DST);
 409                        break;
 410                case 32:
 411                        DST = (__force u32) cpu_to_be32(DST);
 412                        break;
 413                case 64:
 414                        DST = (__force u64) cpu_to_be64(DST);
 415                        break;
 416                }
 417                CONT;
 418        ALU_END_TO_LE:
 419                switch (IMM) {
 420                case 16:
 421                        DST = (__force u16) cpu_to_le16(DST);
 422                        break;
 423                case 32:
 424                        DST = (__force u32) cpu_to_le32(DST);
 425                        break;
 426                case 64:
 427                        DST = (__force u64) cpu_to_le64(DST);
 428                        break;
 429                }
 430                CONT;
 431
 432        /* CALL */
 433        JMP_CALL:
 434                /* Function call scratches BPF_R1-BPF_R5 registers,
 435                 * preserves BPF_R6-BPF_R9, and stores return value
 436                 * into BPF_R0.
 437                 */
 438                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
 439                                                       BPF_R4, BPF_R5);
 440                CONT;
 441
 442        JMP_TAIL_CALL: {
 443                struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
 444                struct bpf_array *array = container_of(map, struct bpf_array, map);
 445                struct bpf_prog *prog;
 446                u64 index = BPF_R3;
 447
 448                if (unlikely(index >= array->map.max_entries))
 449                        goto out;
 450
 451                if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 452                        goto out;
 453
 454                tail_call_cnt++;
 455
 456                prog = READ_ONCE(array->ptrs[index]);
 457                if (unlikely(!prog))
 458                        goto out;
 459
 460                /* ARG1 at this point is guaranteed to point to CTX from
 461                 * the verifier side due to the fact that the tail call is
 462                 * handeled like a helper, that is, bpf_tail_call_proto,
 463                 * where arg1_type is ARG_PTR_TO_CTX.
 464                 */
 465                insn = prog->insnsi;
 466                goto select_insn;
 467out:
 468                CONT;
 469        }
 470        /* JMP */
 471        JMP_JA:
 472                insn += insn->off;
 473                CONT;
 474        JMP_JEQ_X:
 475                if (DST == SRC) {
 476                        insn += insn->off;
 477                        CONT_JMP;
 478                }
 479                CONT;
 480        JMP_JEQ_K:
 481                if (DST == IMM) {
 482                        insn += insn->off;
 483                        CONT_JMP;
 484                }
 485                CONT;
 486        JMP_JNE_X:
 487                if (DST != SRC) {
 488                        insn += insn->off;
 489                        CONT_JMP;
 490                }
 491                CONT;
 492        JMP_JNE_K:
 493                if (DST != IMM) {
 494                        insn += insn->off;
 495                        CONT_JMP;
 496                }
 497                CONT;
 498        JMP_JGT_X:
 499                if (DST > SRC) {
 500                        insn += insn->off;
 501                        CONT_JMP;
 502                }
 503                CONT;
 504        JMP_JGT_K:
 505                if (DST > IMM) {
 506                        insn += insn->off;
 507                        CONT_JMP;
 508                }
 509                CONT;
 510        JMP_JGE_X:
 511                if (DST >= SRC) {
 512                        insn += insn->off;
 513                        CONT_JMP;
 514                }
 515                CONT;
 516        JMP_JGE_K:
 517                if (DST >= IMM) {
 518                        insn += insn->off;
 519                        CONT_JMP;
 520                }
 521                CONT;
 522        JMP_JSGT_X:
 523                if (((s64) DST) > ((s64) SRC)) {
 524                        insn += insn->off;
 525                        CONT_JMP;
 526                }
 527                CONT;
 528        JMP_JSGT_K:
 529                if (((s64) DST) > ((s64) IMM)) {
 530                        insn += insn->off;
 531                        CONT_JMP;
 532                }
 533                CONT;
 534        JMP_JSGE_X:
 535                if (((s64) DST) >= ((s64) SRC)) {
 536                        insn += insn->off;
 537                        CONT_JMP;
 538                }
 539                CONT;
 540        JMP_JSGE_K:
 541                if (((s64) DST) >= ((s64) IMM)) {
 542                        insn += insn->off;
 543                        CONT_JMP;
 544                }
 545                CONT;
 546        JMP_JSET_X:
 547                if (DST & SRC) {
 548                        insn += insn->off;
 549                        CONT_JMP;
 550                }
 551                CONT;
 552        JMP_JSET_K:
 553                if (DST & IMM) {
 554                        insn += insn->off;
 555                        CONT_JMP;
 556                }
 557                CONT;
 558        JMP_EXIT:
 559                return BPF_R0;
 560
 561        /* STX and ST and LDX*/
 562#define LDST(SIZEOP, SIZE)                                              \
 563        STX_MEM_##SIZEOP:                                               \
 564                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
 565                CONT;                                                   \
 566        ST_MEM_##SIZEOP:                                                \
 567                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
 568                CONT;                                                   \
 569        LDX_MEM_##SIZEOP:                                               \
 570                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
 571                CONT;
 572
 573        LDST(B,   u8)
 574        LDST(H,  u16)
 575        LDST(W,  u32)
 576        LDST(DW, u64)
 577#undef LDST
 578        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
 579                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
 580                           (DST + insn->off));
 581                CONT;
 582        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
 583                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 584                             (DST + insn->off));
 585                CONT;
 586        LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
 587                off = IMM;
 588load_word:
 589                /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
 590                 * only appearing in the programs where ctx ==
 591                 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
 592                 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
 593                 * internal BPF verifier will check that BPF_R6 ==
 594                 * ctx.
 595                 *
 596                 * BPF_ABS and BPF_IND are wrappers of function calls,
 597                 * so they scratch BPF_R1-BPF_R5 registers, preserve
 598                 * BPF_R6-BPF_R9, and store return value into BPF_R0.
 599                 *
 600                 * Implicit input:
 601                 *   ctx == skb == BPF_R6 == CTX
 602                 *
 603                 * Explicit input:
 604                 *   SRC == any register
 605                 *   IMM == 32-bit immediate
 606                 *
 607                 * Output:
 608                 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
 609                 */
 610
 611                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
 612                if (likely(ptr != NULL)) {
 613                        BPF_R0 = get_unaligned_be32(ptr);
 614                        CONT;
 615                }
 616
 617                return 0;
 618        LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
 619                off = IMM;
 620load_half:
 621                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
 622                if (likely(ptr != NULL)) {
 623                        BPF_R0 = get_unaligned_be16(ptr);
 624                        CONT;
 625                }
 626
 627                return 0;
 628        LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
 629                off = IMM;
 630load_byte:
 631                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
 632                if (likely(ptr != NULL)) {
 633                        BPF_R0 = *(u8 *)ptr;
 634                        CONT;
 635                }
 636
 637                return 0;
 638        LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
 639                off = IMM + SRC;
 640                goto load_word;
 641        LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
 642                off = IMM + SRC;
 643                goto load_half;
 644        LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
 645                off = IMM + SRC;
 646                goto load_byte;
 647
 648        default_label:
 649                /* If we ever reach this, we have a bug somewhere. */
 650                WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
 651                return 0;
 652}
 653STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
 654
 655bool bpf_prog_array_compatible(struct bpf_array *array,
 656                               const struct bpf_prog *fp)
 657{
 658        if (!array->owner_prog_type) {
 659                /* There's no owner yet where we could check for
 660                 * compatibility.
 661                 */
 662                array->owner_prog_type = fp->type;
 663                array->owner_jited = fp->jited;
 664
 665                return true;
 666        }
 667
 668        return array->owner_prog_type == fp->type &&
 669               array->owner_jited == fp->jited;
 670}
 671
 672static int bpf_check_tail_call(const struct bpf_prog *fp)
 673{
 674        struct bpf_prog_aux *aux = fp->aux;
 675        int i;
 676
 677        for (i = 0; i < aux->used_map_cnt; i++) {
 678                struct bpf_map *map = aux->used_maps[i];
 679                struct bpf_array *array;
 680
 681                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 682                        continue;
 683
 684                array = container_of(map, struct bpf_array, map);
 685                if (!bpf_prog_array_compatible(array, fp))
 686                        return -EINVAL;
 687        }
 688
 689        return 0;
 690}
 691
 692/**
 693 *      bpf_prog_select_runtime - select exec runtime for BPF program
 694 *      @fp: bpf_prog populated with internal BPF program
 695 *
 696 * Try to JIT eBPF program, if JIT is not available, use interpreter.
 697 * The BPF program will be executed via BPF_PROG_RUN() macro.
 698 */
 699int bpf_prog_select_runtime(struct bpf_prog *fp)
 700{
 701        fp->bpf_func = (void *) __bpf_prog_run;
 702
 703        bpf_int_jit_compile(fp);
 704        bpf_prog_lock_ro(fp);
 705
 706        /* The tail call compatibility check can only be done at
 707         * this late stage as we need to determine, if we deal
 708         * with JITed or non JITed program concatenations and not
 709         * all eBPF JITs might immediately support all features.
 710         */
 711        return bpf_check_tail_call(fp);
 712}
 713EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
 714
 715static void bpf_prog_free_deferred(struct work_struct *work)
 716{
 717        struct bpf_prog_aux *aux;
 718
 719        aux = container_of(work, struct bpf_prog_aux, work);
 720        bpf_jit_free(aux->prog);
 721}
 722
 723/* Free internal BPF program */
 724void bpf_prog_free(struct bpf_prog *fp)
 725{
 726        struct bpf_prog_aux *aux = fp->aux;
 727
 728        INIT_WORK(&aux->work, bpf_prog_free_deferred);
 729        schedule_work(&aux->work);
 730}
 731EXPORT_SYMBOL_GPL(bpf_prog_free);
 732
 733/* RNG for unpriviledged user space with separated state from prandom_u32(). */
 734static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
 735
 736void bpf_user_rnd_init_once(void)
 737{
 738        prandom_init_once(&bpf_user_rnd_state);
 739}
 740
 741u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 742{
 743        /* Should someone ever have the rather unwise idea to use some
 744         * of the registers passed into this function, then note that
 745         * this function is called from native eBPF and classic-to-eBPF
 746         * transformations. Register assignments from both sides are
 747         * different, f.e. classic always sets fn(ctx, A, X) here.
 748         */
 749        struct rnd_state *state;
 750        u32 res;
 751
 752        state = &get_cpu_var(bpf_user_rnd_state);
 753        res = prandom_u32_state(state);
 754        put_cpu_var(state);
 755
 756        return res;
 757}
 758
 759/* Weak definitions of helper functions in case we don't have bpf syscall. */
 760const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
 761const struct bpf_func_proto bpf_map_update_elem_proto __weak;
 762const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
 763
 764const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
 765const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
 766const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
 767const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
 768const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
 769const struct bpf_func_proto bpf_get_current_comm_proto __weak;
 770const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
 771{
 772        return NULL;
 773}
 774
 775/* Always built-in helper functions. */
 776const struct bpf_func_proto bpf_tail_call_proto = {
 777        .func           = NULL,
 778        .gpl_only       = false,
 779        .ret_type       = RET_VOID,
 780        .arg1_type      = ARG_PTR_TO_CTX,
 781        .arg2_type      = ARG_CONST_MAP_PTR,
 782        .arg3_type      = ARG_ANYTHING,
 783};
 784
 785/* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
 786void __weak bpf_int_jit_compile(struct bpf_prog *prog)
 787{
 788}
 789
 790/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 791 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 792 */
 793int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
 794                         int len)
 795{
 796        return -EFAULT;
 797}
 798