linux/kernel/bpf/verifier.c
<<
>>
Prefs
   1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   2 *
   3 * This program is free software; you can redistribute it and/or
   4 * modify it under the terms of version 2 of the GNU General Public
   5 * License as published by the Free Software Foundation.
   6 *
   7 * This program is distributed in the hope that it will be useful, but
   8 * WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10 * General Public License for more details.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/slab.h>
  15#include <linux/bpf.h>
  16#include <linux/filter.h>
  17#include <net/netlink.h>
  18#include <linux/file.h>
  19#include <linux/vmalloc.h>
  20
  21/* bpf_check() is a static code analyzer that walks eBPF program
  22 * instruction by instruction and updates register/stack state.
  23 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  24 *
  25 * The first pass is depth-first-search to check that the program is a DAG.
  26 * It rejects the following programs:
  27 * - larger than BPF_MAXINSNS insns
  28 * - if loop is present (detected via back-edge)
  29 * - unreachable insns exist (shouldn't be a forest. program = one function)
  30 * - out of bounds or malformed jumps
  31 * The second pass is all possible path descent from the 1st insn.
  32 * Since it's analyzing all pathes through the program, the length of the
  33 * analysis is limited to 32k insn, which may be hit even if total number of
  34 * insn is less then 4K, but there are too many branches that change stack/regs.
  35 * Number of 'branches to be analyzed' is limited to 1k
  36 *
  37 * On entry to each instruction, each register has a type, and the instruction
  38 * changes the types of the registers depending on instruction semantics.
  39 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  40 * copied to R1.
  41 *
  42 * All registers are 64-bit.
  43 * R0 - return register
  44 * R1-R5 argument passing registers
  45 * R6-R9 callee saved registers
  46 * R10 - frame pointer read-only
  47 *
  48 * At the start of BPF program the register R1 contains a pointer to bpf_context
  49 * and has type PTR_TO_CTX.
  50 *
  51 * Verifier tracks arithmetic operations on pointers in case:
  52 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  53 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  54 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  55 * and 2nd arithmetic instruction is pattern matched to recognize
  56 * that it wants to construct a pointer to some element within stack.
  57 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  58 * (and -20 constant is saved for further stack bounds checking).
  59 * Meaning that this reg is a pointer to stack plus known immediate constant.
  60 *
  61 * Most of the time the registers have UNKNOWN_VALUE type, which
  62 * means the register has some value, but it's not a valid pointer.
  63 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  64 *
  65 * When verifier sees load or store instructions the type of base register
  66 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  67 * types recognized by check_mem_access() function.
  68 *
  69 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  70 * and the range of [ptr, ptr + map's value_size) is accessible.
  71 *
  72 * registers used to pass values to function calls are checked against
  73 * function argument constraints.
  74 *
  75 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  76 * It means that the register type passed to this function must be
  77 * PTR_TO_STACK and it will be used inside the function as
  78 * 'pointer to map element key'
  79 *
  80 * For example the argument constraints for bpf_map_lookup_elem():
  81 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  82 *   .arg1_type = ARG_CONST_MAP_PTR,
  83 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
  84 *
  85 * ret_type says that this function returns 'pointer to map elem value or null'
  86 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  87 * 2nd argument should be a pointer to stack, which will be used inside
  88 * the helper function as a pointer to map element key.
  89 *
  90 * On the kernel side the helper function looks like:
  91 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  92 * {
  93 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  94 *    void *key = (void *) (unsigned long) r2;
  95 *    void *value;
  96 *
  97 *    here kernel can access 'key' and 'map' pointers safely, knowing that
  98 *    [key, key + map->key_size) bytes are valid and were initialized on
  99 *    the stack of eBPF program.
 100 * }
 101 *
 102 * Corresponding eBPF program may look like:
 103 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 104 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 105 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 106 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 107 * here verifier looks at prototype of map_lookup_elem() and sees:
 108 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 109 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 110 *
 111 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 112 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 113 * and were initialized prior to this call.
 114 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 115 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 116 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 117 * returns ether pointer to map value or NULL.
 118 *
 119 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 120 * insn, the register holding that pointer in the true branch changes state to
 121 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 122 * branch. See check_cond_jmp_op().
 123 *
 124 * After the call R0 is set to return type of the function and registers R1-R5
 125 * are set to NOT_INIT to indicate that they are no longer readable.
 126 */
 127
 128/* types of values stored in eBPF registers */
 129enum bpf_reg_type {
 130        NOT_INIT = 0,            /* nothing was written into register */
 131        UNKNOWN_VALUE,           /* reg doesn't contain a valid pointer */
 132        PTR_TO_CTX,              /* reg points to bpf_context */
 133        CONST_PTR_TO_MAP,        /* reg points to struct bpf_map */
 134        PTR_TO_MAP_VALUE,        /* reg points to map element value */
 135        PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
 136        FRAME_PTR,               /* reg == frame_pointer */
 137        PTR_TO_STACK,            /* reg == frame_pointer + imm */
 138        CONST_IMM,               /* constant integer value */
 139};
 140
 141struct reg_state {
 142        enum bpf_reg_type type;
 143        union {
 144                /* valid when type == CONST_IMM | PTR_TO_STACK */
 145                int imm;
 146
 147                /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
 148                 *   PTR_TO_MAP_VALUE_OR_NULL
 149                 */
 150                struct bpf_map *map_ptr;
 151        };
 152};
 153
 154enum bpf_stack_slot_type {
 155        STACK_INVALID,    /* nothing was stored in this stack slot */
 156        STACK_SPILL,      /* register spilled into stack */
 157        STACK_MISC        /* BPF program wrote some data into this slot */
 158};
 159
 160#define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 161
 162/* state of the program:
 163 * type of all registers and stack info
 164 */
 165struct verifier_state {
 166        struct reg_state regs[MAX_BPF_REG];
 167        u8 stack_slot_type[MAX_BPF_STACK];
 168        struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
 169};
 170
 171/* linked list of verifier states used to prune search */
 172struct verifier_state_list {
 173        struct verifier_state state;
 174        struct verifier_state_list *next;
 175};
 176
 177/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 178struct verifier_stack_elem {
 179        /* verifer state is 'st'
 180         * before processing instruction 'insn_idx'
 181         * and after processing instruction 'prev_insn_idx'
 182         */
 183        struct verifier_state st;
 184        int insn_idx;
 185        int prev_insn_idx;
 186        struct verifier_stack_elem *next;
 187};
 188
 189#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 190
 191/* single container for all structs
 192 * one verifier_env per bpf_check() call
 193 */
 194struct verifier_env {
 195        struct bpf_prog *prog;          /* eBPF program being verified */
 196        struct verifier_stack_elem *head; /* stack of verifier states to be processed */
 197        int stack_size;                 /* number of states to be processed */
 198        struct verifier_state cur_state; /* current verifier state */
 199        struct verifier_state_list **explored_states; /* search pruning optimization */
 200        struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 201        u32 used_map_cnt;               /* number of used maps */
 202        bool allow_ptr_leaks;
 203};
 204
 205/* verbose verifier prints what it's seeing
 206 * bpf_check() is called under lock, so no race to access these global vars
 207 */
 208static u32 log_level, log_size, log_len;
 209static char *log_buf;
 210
 211static DEFINE_MUTEX(bpf_verifier_lock);
 212
 213/* log_level controls verbosity level of eBPF verifier.
 214 * verbose() is used to dump the verification trace to the log, so the user
 215 * can figure out what's wrong with the program
 216 */
 217static __printf(1, 2) void verbose(const char *fmt, ...)
 218{
 219        va_list args;
 220
 221        if (log_level == 0 || log_len >= log_size - 1)
 222                return;
 223
 224        va_start(args, fmt);
 225        log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
 226        va_end(args);
 227}
 228
 229/* string representation of 'enum bpf_reg_type' */
 230static const char * const reg_type_str[] = {
 231        [NOT_INIT]              = "?",
 232        [UNKNOWN_VALUE]         = "inv",
 233        [PTR_TO_CTX]            = "ctx",
 234        [CONST_PTR_TO_MAP]      = "map_ptr",
 235        [PTR_TO_MAP_VALUE]      = "map_value",
 236        [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 237        [FRAME_PTR]             = "fp",
 238        [PTR_TO_STACK]          = "fp",
 239        [CONST_IMM]             = "imm",
 240};
 241
 242static void print_verifier_state(struct verifier_env *env)
 243{
 244        enum bpf_reg_type t;
 245        int i;
 246
 247        for (i = 0; i < MAX_BPF_REG; i++) {
 248                t = env->cur_state.regs[i].type;
 249                if (t == NOT_INIT)
 250                        continue;
 251                verbose(" R%d=%s", i, reg_type_str[t]);
 252                if (t == CONST_IMM || t == PTR_TO_STACK)
 253                        verbose("%d", env->cur_state.regs[i].imm);
 254                else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
 255                         t == PTR_TO_MAP_VALUE_OR_NULL)
 256                        verbose("(ks=%d,vs=%d)",
 257                                env->cur_state.regs[i].map_ptr->key_size,
 258                                env->cur_state.regs[i].map_ptr->value_size);
 259        }
 260        for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
 261                if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
 262                        verbose(" fp%d=%s", -MAX_BPF_STACK + i,
 263                                reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
 264        }
 265        verbose("\n");
 266}
 267
 268static const char *const bpf_class_string[] = {
 269        [BPF_LD]    = "ld",
 270        [BPF_LDX]   = "ldx",
 271        [BPF_ST]    = "st",
 272        [BPF_STX]   = "stx",
 273        [BPF_ALU]   = "alu",
 274        [BPF_JMP]   = "jmp",
 275        [BPF_RET]   = "BUG",
 276        [BPF_ALU64] = "alu64",
 277};
 278
 279static const char *const bpf_alu_string[16] = {
 280        [BPF_ADD >> 4]  = "+=",
 281        [BPF_SUB >> 4]  = "-=",
 282        [BPF_MUL >> 4]  = "*=",
 283        [BPF_DIV >> 4]  = "/=",
 284        [BPF_OR  >> 4]  = "|=",
 285        [BPF_AND >> 4]  = "&=",
 286        [BPF_LSH >> 4]  = "<<=",
 287        [BPF_RSH >> 4]  = ">>=",
 288        [BPF_NEG >> 4]  = "neg",
 289        [BPF_MOD >> 4]  = "%=",
 290        [BPF_XOR >> 4]  = "^=",
 291        [BPF_MOV >> 4]  = "=",
 292        [BPF_ARSH >> 4] = "s>>=",
 293        [BPF_END >> 4]  = "endian",
 294};
 295
 296static const char *const bpf_ldst_string[] = {
 297        [BPF_W >> 3]  = "u32",
 298        [BPF_H >> 3]  = "u16",
 299        [BPF_B >> 3]  = "u8",
 300        [BPF_DW >> 3] = "u64",
 301};
 302
 303static const char *const bpf_jmp_string[16] = {
 304        [BPF_JA >> 4]   = "jmp",
 305        [BPF_JEQ >> 4]  = "==",
 306        [BPF_JGT >> 4]  = ">",
 307        [BPF_JGE >> 4]  = ">=",
 308        [BPF_JSET >> 4] = "&",
 309        [BPF_JNE >> 4]  = "!=",
 310        [BPF_JSGT >> 4] = "s>",
 311        [BPF_JSGE >> 4] = "s>=",
 312        [BPF_CALL >> 4] = "call",
 313        [BPF_EXIT >> 4] = "exit",
 314};
 315
 316static void print_bpf_insn(struct bpf_insn *insn)
 317{
 318        u8 class = BPF_CLASS(insn->code);
 319
 320        if (class == BPF_ALU || class == BPF_ALU64) {
 321                if (BPF_SRC(insn->code) == BPF_X)
 322                        verbose("(%02x) %sr%d %s %sr%d\n",
 323                                insn->code, class == BPF_ALU ? "(u32) " : "",
 324                                insn->dst_reg,
 325                                bpf_alu_string[BPF_OP(insn->code) >> 4],
 326                                class == BPF_ALU ? "(u32) " : "",
 327                                insn->src_reg);
 328                else
 329                        verbose("(%02x) %sr%d %s %s%d\n",
 330                                insn->code, class == BPF_ALU ? "(u32) " : "",
 331                                insn->dst_reg,
 332                                bpf_alu_string[BPF_OP(insn->code) >> 4],
 333                                class == BPF_ALU ? "(u32) " : "",
 334                                insn->imm);
 335        } else if (class == BPF_STX) {
 336                if (BPF_MODE(insn->code) == BPF_MEM)
 337                        verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
 338                                insn->code,
 339                                bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 340                                insn->dst_reg,
 341                                insn->off, insn->src_reg);
 342                else if (BPF_MODE(insn->code) == BPF_XADD)
 343                        verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
 344                                insn->code,
 345                                bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 346                                insn->dst_reg, insn->off,
 347                                insn->src_reg);
 348                else
 349                        verbose("BUG_%02x\n", insn->code);
 350        } else if (class == BPF_ST) {
 351                if (BPF_MODE(insn->code) != BPF_MEM) {
 352                        verbose("BUG_st_%02x\n", insn->code);
 353                        return;
 354                }
 355                verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
 356                        insn->code,
 357                        bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 358                        insn->dst_reg,
 359                        insn->off, insn->imm);
 360        } else if (class == BPF_LDX) {
 361                if (BPF_MODE(insn->code) != BPF_MEM) {
 362                        verbose("BUG_ldx_%02x\n", insn->code);
 363                        return;
 364                }
 365                verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
 366                        insn->code, insn->dst_reg,
 367                        bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 368                        insn->src_reg, insn->off);
 369        } else if (class == BPF_LD) {
 370                if (BPF_MODE(insn->code) == BPF_ABS) {
 371                        verbose("(%02x) r0 = *(%s *)skb[%d]\n",
 372                                insn->code,
 373                                bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 374                                insn->imm);
 375                } else if (BPF_MODE(insn->code) == BPF_IND) {
 376                        verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
 377                                insn->code,
 378                                bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 379                                insn->src_reg, insn->imm);
 380                } else if (BPF_MODE(insn->code) == BPF_IMM) {
 381                        verbose("(%02x) r%d = 0x%x\n",
 382                                insn->code, insn->dst_reg, insn->imm);
 383                } else {
 384                        verbose("BUG_ld_%02x\n", insn->code);
 385                        return;
 386                }
 387        } else if (class == BPF_JMP) {
 388                u8 opcode = BPF_OP(insn->code);
 389
 390                if (opcode == BPF_CALL) {
 391                        verbose("(%02x) call %d\n", insn->code, insn->imm);
 392                } else if (insn->code == (BPF_JMP | BPF_JA)) {
 393                        verbose("(%02x) goto pc%+d\n",
 394                                insn->code, insn->off);
 395                } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
 396                        verbose("(%02x) exit\n", insn->code);
 397                } else if (BPF_SRC(insn->code) == BPF_X) {
 398                        verbose("(%02x) if r%d %s r%d goto pc%+d\n",
 399                                insn->code, insn->dst_reg,
 400                                bpf_jmp_string[BPF_OP(insn->code) >> 4],
 401                                insn->src_reg, insn->off);
 402                } else {
 403                        verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
 404                                insn->code, insn->dst_reg,
 405                                bpf_jmp_string[BPF_OP(insn->code) >> 4],
 406                                insn->imm, insn->off);
 407                }
 408        } else {
 409                verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
 410        }
 411}
 412
 413static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
 414{
 415        struct verifier_stack_elem *elem;
 416        int insn_idx;
 417
 418        if (env->head == NULL)
 419                return -1;
 420
 421        memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
 422        insn_idx = env->head->insn_idx;
 423        if (prev_insn_idx)
 424                *prev_insn_idx = env->head->prev_insn_idx;
 425        elem = env->head->next;
 426        kfree(env->head);
 427        env->head = elem;
 428        env->stack_size--;
 429        return insn_idx;
 430}
 431
 432static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
 433                                         int prev_insn_idx)
 434{
 435        struct verifier_stack_elem *elem;
 436
 437        elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
 438        if (!elem)
 439                goto err;
 440
 441        memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
 442        elem->insn_idx = insn_idx;
 443        elem->prev_insn_idx = prev_insn_idx;
 444        elem->next = env->head;
 445        env->head = elem;
 446        env->stack_size++;
 447        if (env->stack_size > 1024) {
 448                verbose("BPF program is too complex\n");
 449                goto err;
 450        }
 451        return &elem->st;
 452err:
 453        /* pop all elements and return */
 454        while (pop_stack(env, NULL) >= 0);
 455        return NULL;
 456}
 457
 458#define CALLER_SAVED_REGS 6
 459static const int caller_saved[CALLER_SAVED_REGS] = {
 460        BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 461};
 462
 463static void init_reg_state(struct reg_state *regs)
 464{
 465        int i;
 466
 467        for (i = 0; i < MAX_BPF_REG; i++) {
 468                regs[i].type = NOT_INIT;
 469                regs[i].imm = 0;
 470                regs[i].map_ptr = NULL;
 471        }
 472
 473        /* frame pointer */
 474        regs[BPF_REG_FP].type = FRAME_PTR;
 475
 476        /* 1st arg to a function */
 477        regs[BPF_REG_1].type = PTR_TO_CTX;
 478}
 479
 480static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
 481{
 482        BUG_ON(regno >= MAX_BPF_REG);
 483        regs[regno].type = UNKNOWN_VALUE;
 484        regs[regno].imm = 0;
 485        regs[regno].map_ptr = NULL;
 486}
 487
 488enum reg_arg_type {
 489        SRC_OP,         /* register is used as source operand */
 490        DST_OP,         /* register is used as destination operand */
 491        DST_OP_NO_MARK  /* same as above, check only, don't mark */
 492};
 493
 494static int check_reg_arg(struct reg_state *regs, u32 regno,
 495                         enum reg_arg_type t)
 496{
 497        if (regno >= MAX_BPF_REG) {
 498                verbose("R%d is invalid\n", regno);
 499                return -EINVAL;
 500        }
 501
 502        if (t == SRC_OP) {
 503                /* check whether register used as source operand can be read */
 504                if (regs[regno].type == NOT_INIT) {
 505                        verbose("R%d !read_ok\n", regno);
 506                        return -EACCES;
 507                }
 508        } else {
 509                /* check whether register used as dest operand can be written to */
 510                if (regno == BPF_REG_FP) {
 511                        verbose("frame pointer is read only\n");
 512                        return -EACCES;
 513                }
 514                if (t == DST_OP)
 515                        mark_reg_unknown_value(regs, regno);
 516        }
 517        return 0;
 518}
 519
 520static int bpf_size_to_bytes(int bpf_size)
 521{
 522        if (bpf_size == BPF_W)
 523                return 4;
 524        else if (bpf_size == BPF_H)
 525                return 2;
 526        else if (bpf_size == BPF_B)
 527                return 1;
 528        else if (bpf_size == BPF_DW)
 529                return 8;
 530        else
 531                return -EINVAL;
 532}
 533
 534static bool is_spillable_regtype(enum bpf_reg_type type)
 535{
 536        switch (type) {
 537        case PTR_TO_MAP_VALUE:
 538        case PTR_TO_MAP_VALUE_OR_NULL:
 539        case PTR_TO_STACK:
 540        case PTR_TO_CTX:
 541        case FRAME_PTR:
 542        case CONST_PTR_TO_MAP:
 543                return true;
 544        default:
 545                return false;
 546        }
 547}
 548
 549/* check_stack_read/write functions track spill/fill of registers,
 550 * stack boundary and alignment are checked in check_mem_access()
 551 */
 552static int check_stack_write(struct verifier_state *state, int off, int size,
 553                             int value_regno)
 554{
 555        int i;
 556        /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
 557         * so it's aligned access and [off, off + size) are within stack limits
 558         */
 559
 560        if (value_regno >= 0 &&
 561            is_spillable_regtype(state->regs[value_regno].type)) {
 562
 563                /* register containing pointer is being spilled into stack */
 564                if (size != BPF_REG_SIZE) {
 565                        verbose("invalid size of register spill\n");
 566                        return -EACCES;
 567                }
 568
 569                /* save register state */
 570                state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 571                        state->regs[value_regno];
 572
 573                for (i = 0; i < BPF_REG_SIZE; i++)
 574                        state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
 575        } else {
 576                /* regular write of data into stack */
 577                state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 578                        (struct reg_state) {};
 579
 580                for (i = 0; i < size; i++)
 581                        state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
 582        }
 583        return 0;
 584}
 585
 586static int check_stack_read(struct verifier_state *state, int off, int size,
 587                            int value_regno)
 588{
 589        u8 *slot_type;
 590        int i;
 591
 592        slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
 593
 594        if (slot_type[0] == STACK_SPILL) {
 595                if (size != BPF_REG_SIZE) {
 596                        verbose("invalid size of register spill\n");
 597                        return -EACCES;
 598                }
 599                for (i = 1; i < BPF_REG_SIZE; i++) {
 600                        if (slot_type[i] != STACK_SPILL) {
 601                                verbose("corrupted spill memory\n");
 602                                return -EACCES;
 603                        }
 604                }
 605
 606                if (value_regno >= 0)
 607                        /* restore register state from stack */
 608                        state->regs[value_regno] =
 609                                state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
 610                return 0;
 611        } else {
 612                for (i = 0; i < size; i++) {
 613                        if (slot_type[i] != STACK_MISC) {
 614                                verbose("invalid read from stack off %d+%d size %d\n",
 615                                        off, i, size);
 616                                return -EACCES;
 617                        }
 618                }
 619                if (value_regno >= 0)
 620                        /* have read misc data from the stack */
 621                        mark_reg_unknown_value(state->regs, value_regno);
 622                return 0;
 623        }
 624}
 625
 626/* check read/write into map element returned by bpf_map_lookup_elem() */
 627static int check_map_access(struct verifier_env *env, u32 regno, int off,
 628                            int size)
 629{
 630        struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
 631
 632        if (off < 0 || off + size > map->value_size) {
 633                verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
 634                        map->value_size, off, size);
 635                return -EACCES;
 636        }
 637        return 0;
 638}
 639
 640/* check access to 'struct bpf_context' fields */
 641static int check_ctx_access(struct verifier_env *env, int off, int size,
 642                            enum bpf_access_type t)
 643{
 644        if (env->prog->aux->ops->is_valid_access &&
 645            env->prog->aux->ops->is_valid_access(off, size, t))
 646                return 0;
 647
 648        verbose("invalid bpf_context access off=%d size=%d\n", off, size);
 649        return -EACCES;
 650}
 651
 652static bool is_pointer_value(struct verifier_env *env, int regno)
 653{
 654        if (env->allow_ptr_leaks)
 655                return false;
 656
 657        switch (env->cur_state.regs[regno].type) {
 658        case UNKNOWN_VALUE:
 659        case CONST_IMM:
 660                return false;
 661        default:
 662                return true;
 663        }
 664}
 665
 666/* check whether memory at (regno + off) is accessible for t = (read | write)
 667 * if t==write, value_regno is a register which value is stored into memory
 668 * if t==read, value_regno is a register which will receive the value from memory
 669 * if t==write && value_regno==-1, some unknown value is stored into memory
 670 * if t==read && value_regno==-1, don't care what we read from memory
 671 */
 672static int check_mem_access(struct verifier_env *env, u32 regno, int off,
 673                            int bpf_size, enum bpf_access_type t,
 674                            int value_regno)
 675{
 676        struct verifier_state *state = &env->cur_state;
 677        int size, err = 0;
 678
 679        if (state->regs[regno].type == PTR_TO_STACK)
 680                off += state->regs[regno].imm;
 681
 682        size = bpf_size_to_bytes(bpf_size);
 683        if (size < 0)
 684                return size;
 685
 686        if (off % size != 0) {
 687                verbose("misaligned access off %d size %d\n", off, size);
 688                return -EACCES;
 689        }
 690
 691        if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
 692                if (t == BPF_WRITE && value_regno >= 0 &&
 693                    is_pointer_value(env, value_regno)) {
 694                        verbose("R%d leaks addr into map\n", value_regno);
 695                        return -EACCES;
 696                }
 697                err = check_map_access(env, regno, off, size);
 698                if (!err && t == BPF_READ && value_regno >= 0)
 699                        mark_reg_unknown_value(state->regs, value_regno);
 700
 701        } else if (state->regs[regno].type == PTR_TO_CTX) {
 702                if (t == BPF_WRITE && value_regno >= 0 &&
 703                    is_pointer_value(env, value_regno)) {
 704                        verbose("R%d leaks addr into ctx\n", value_regno);
 705                        return -EACCES;
 706                }
 707                err = check_ctx_access(env, off, size, t);
 708                if (!err && t == BPF_READ && value_regno >= 0)
 709                        mark_reg_unknown_value(state->regs, value_regno);
 710
 711        } else if (state->regs[regno].type == FRAME_PTR ||
 712                   state->regs[regno].type == PTR_TO_STACK) {
 713                if (off >= 0 || off < -MAX_BPF_STACK) {
 714                        verbose("invalid stack off=%d size=%d\n", off, size);
 715                        return -EACCES;
 716                }
 717                if (t == BPF_WRITE) {
 718                        if (!env->allow_ptr_leaks &&
 719                            state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
 720                            size != BPF_REG_SIZE) {
 721                                verbose("attempt to corrupt spilled pointer on stack\n");
 722                                return -EACCES;
 723                        }
 724                        err = check_stack_write(state, off, size, value_regno);
 725                } else {
 726                        err = check_stack_read(state, off, size, value_regno);
 727                }
 728        } else {
 729                verbose("R%d invalid mem access '%s'\n",
 730                        regno, reg_type_str[state->regs[regno].type]);
 731                return -EACCES;
 732        }
 733        return err;
 734}
 735
 736static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
 737{
 738        struct reg_state *regs = env->cur_state.regs;
 739        int err;
 740
 741        if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
 742            insn->imm != 0) {
 743                verbose("BPF_XADD uses reserved fields\n");
 744                return -EINVAL;
 745        }
 746
 747        /* check src1 operand */
 748        err = check_reg_arg(regs, insn->src_reg, SRC_OP);
 749        if (err)
 750                return err;
 751
 752        /* check src2 operand */
 753        err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
 754        if (err)
 755                return err;
 756
 757        /* check whether atomic_add can read the memory */
 758        err = check_mem_access(env, insn->dst_reg, insn->off,
 759                               BPF_SIZE(insn->code), BPF_READ, -1);
 760        if (err)
 761                return err;
 762
 763        /* check whether atomic_add can write into the same memory */
 764        return check_mem_access(env, insn->dst_reg, insn->off,
 765                                BPF_SIZE(insn->code), BPF_WRITE, -1);
 766}
 767
 768/* when register 'regno' is passed into function that will read 'access_size'
 769 * bytes from that pointer, make sure that it's within stack boundary
 770 * and all elements of stack are initialized
 771 */
 772static int check_stack_boundary(struct verifier_env *env, int regno,
 773                                int access_size, bool zero_size_allowed)
 774{
 775        struct verifier_state *state = &env->cur_state;
 776        struct reg_state *regs = state->regs;
 777        int off, i;
 778
 779        if (regs[regno].type != PTR_TO_STACK) {
 780                if (zero_size_allowed && access_size == 0 &&
 781                    regs[regno].type == CONST_IMM &&
 782                    regs[regno].imm  == 0)
 783                        return 0;
 784
 785                verbose("R%d type=%s expected=%s\n", regno,
 786                        reg_type_str[regs[regno].type],
 787                        reg_type_str[PTR_TO_STACK]);
 788                return -EACCES;
 789        }
 790
 791        off = regs[regno].imm;
 792        if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
 793            access_size <= 0) {
 794                verbose("invalid stack type R%d off=%d access_size=%d\n",
 795                        regno, off, access_size);
 796                return -EACCES;
 797        }
 798
 799        for (i = 0; i < access_size; i++) {
 800                if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
 801                        verbose("invalid indirect read from stack off %d+%d size %d\n",
 802                                off, i, access_size);
 803                        return -EACCES;
 804                }
 805        }
 806        return 0;
 807}
 808
 809static int check_func_arg(struct verifier_env *env, u32 regno,
 810                          enum bpf_arg_type arg_type, struct bpf_map **mapp)
 811{
 812        struct reg_state *reg = env->cur_state.regs + regno;
 813        enum bpf_reg_type expected_type;
 814        int err = 0;
 815
 816        if (arg_type == ARG_DONTCARE)
 817                return 0;
 818
 819        if (reg->type == NOT_INIT) {
 820                verbose("R%d !read_ok\n", regno);
 821                return -EACCES;
 822        }
 823
 824        if (arg_type == ARG_ANYTHING) {
 825                if (is_pointer_value(env, regno)) {
 826                        verbose("R%d leaks addr into helper function\n", regno);
 827                        return -EACCES;
 828                }
 829                return 0;
 830        }
 831
 832        if (arg_type == ARG_PTR_TO_MAP_KEY ||
 833            arg_type == ARG_PTR_TO_MAP_VALUE) {
 834                expected_type = PTR_TO_STACK;
 835        } else if (arg_type == ARG_CONST_STACK_SIZE ||
 836                   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
 837                expected_type = CONST_IMM;
 838        } else if (arg_type == ARG_CONST_MAP_PTR) {
 839                expected_type = CONST_PTR_TO_MAP;
 840        } else if (arg_type == ARG_PTR_TO_CTX) {
 841                expected_type = PTR_TO_CTX;
 842        } else if (arg_type == ARG_PTR_TO_STACK) {
 843                expected_type = PTR_TO_STACK;
 844                /* One exception here. In case function allows for NULL to be
 845                 * passed in as argument, it's a CONST_IMM type. Final test
 846                 * happens during stack boundary checking.
 847                 */
 848                if (reg->type == CONST_IMM && reg->imm == 0)
 849                        expected_type = CONST_IMM;
 850        } else {
 851                verbose("unsupported arg_type %d\n", arg_type);
 852                return -EFAULT;
 853        }
 854
 855        if (reg->type != expected_type) {
 856                verbose("R%d type=%s expected=%s\n", regno,
 857                        reg_type_str[reg->type], reg_type_str[expected_type]);
 858                return -EACCES;
 859        }
 860
 861        if (arg_type == ARG_CONST_MAP_PTR) {
 862                /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
 863                *mapp = reg->map_ptr;
 864
 865        } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
 866                /* bpf_map_xxx(..., map_ptr, ..., key) call:
 867                 * check that [key, key + map->key_size) are within
 868                 * stack limits and initialized
 869                 */
 870                if (!*mapp) {
 871                        /* in function declaration map_ptr must come before
 872                         * map_key, so that it's verified and known before
 873                         * we have to check map_key here. Otherwise it means
 874                         * that kernel subsystem misconfigured verifier
 875                         */
 876                        verbose("invalid map_ptr to access map->key\n");
 877                        return -EACCES;
 878                }
 879                err = check_stack_boundary(env, regno, (*mapp)->key_size,
 880                                           false);
 881        } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
 882                /* bpf_map_xxx(..., map_ptr, ..., value) call:
 883                 * check [value, value + map->value_size) validity
 884                 */
 885                if (!*mapp) {
 886                        /* kernel subsystem misconfigured verifier */
 887                        verbose("invalid map_ptr to access map->value\n");
 888                        return -EACCES;
 889                }
 890                err = check_stack_boundary(env, regno, (*mapp)->value_size,
 891                                           false);
 892        } else if (arg_type == ARG_CONST_STACK_SIZE ||
 893                   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
 894                bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
 895
 896                /* bpf_xxx(..., buf, len) call will access 'len' bytes
 897                 * from stack pointer 'buf'. Check it
 898                 * note: regno == len, regno - 1 == buf
 899                 */
 900                if (regno == 0) {
 901                        /* kernel subsystem misconfigured verifier */
 902                        verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
 903                        return -EACCES;
 904                }
 905                err = check_stack_boundary(env, regno - 1, reg->imm,
 906                                           zero_size_allowed);
 907        }
 908
 909        return err;
 910}
 911
 912static int check_map_func_compatibility(struct bpf_map *map, int func_id)
 913{
 914        if (!map)
 915                return 0;
 916
 917        /* We need a two way check, first is from map perspective ... */
 918        switch (map->map_type) {
 919        case BPF_MAP_TYPE_PROG_ARRAY:
 920                if (func_id != BPF_FUNC_tail_call)
 921                        goto error;
 922                break;
 923        case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
 924                if (func_id != BPF_FUNC_perf_event_read &&
 925                    func_id != BPF_FUNC_perf_event_output)
 926                        goto error;
 927                break;
 928        case BPF_MAP_TYPE_STACK_TRACE:
 929                if (func_id != BPF_FUNC_get_stackid)
 930                        goto error;
 931                break;
 932        default:
 933                break;
 934        }
 935
 936        /* ... and second from the function itself. */
 937        switch (func_id) {
 938        case BPF_FUNC_tail_call:
 939                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 940                        goto error;
 941                break;
 942        case BPF_FUNC_perf_event_read:
 943        case BPF_FUNC_perf_event_output:
 944                if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
 945                        goto error;
 946                break;
 947        case BPF_FUNC_get_stackid:
 948                if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
 949                        goto error;
 950                break;
 951        default:
 952                break;
 953        }
 954
 955        return 0;
 956error:
 957        verbose("cannot pass map_type %d into func %d\n",
 958                map->map_type, func_id);
 959        return -EINVAL;
 960}
 961
 962static int check_call(struct verifier_env *env, int func_id)
 963{
 964        struct verifier_state *state = &env->cur_state;
 965        const struct bpf_func_proto *fn = NULL;
 966        struct reg_state *regs = state->regs;
 967        struct bpf_map *map = NULL;
 968        struct reg_state *reg;
 969        int i, err;
 970
 971        /* find function prototype */
 972        if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
 973                verbose("invalid func %d\n", func_id);
 974                return -EINVAL;
 975        }
 976
 977        if (env->prog->aux->ops->get_func_proto)
 978                fn = env->prog->aux->ops->get_func_proto(func_id);
 979
 980        if (!fn) {
 981                verbose("unknown func %d\n", func_id);
 982                return -EINVAL;
 983        }
 984
 985        /* eBPF programs must be GPL compatible to use GPL-ed functions */
 986        if (!env->prog->gpl_compatible && fn->gpl_only) {
 987                verbose("cannot call GPL only function from proprietary program\n");
 988                return -EINVAL;
 989        }
 990
 991        /* check args */
 992        err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
 993        if (err)
 994                return err;
 995        err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
 996        if (err)
 997                return err;
 998        err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
 999        if (err)
1000                return err;
1001        err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
1002        if (err)
1003                return err;
1004        err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
1005        if (err)
1006                return err;
1007
1008        /* reset caller saved regs */
1009        for (i = 0; i < CALLER_SAVED_REGS; i++) {
1010                reg = regs + caller_saved[i];
1011                reg->type = NOT_INIT;
1012                reg->imm = 0;
1013        }
1014
1015        /* update return register */
1016        if (fn->ret_type == RET_INTEGER) {
1017                regs[BPF_REG_0].type = UNKNOWN_VALUE;
1018        } else if (fn->ret_type == RET_VOID) {
1019                regs[BPF_REG_0].type = NOT_INIT;
1020        } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1021                regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1022                /* remember map_ptr, so that check_map_access()
1023                 * can check 'value_size' boundary of memory access
1024                 * to map element returned from bpf_map_lookup_elem()
1025                 */
1026                if (map == NULL) {
1027                        verbose("kernel subsystem misconfigured verifier\n");
1028                        return -EINVAL;
1029                }
1030                regs[BPF_REG_0].map_ptr = map;
1031        } else {
1032                verbose("unknown return type %d of func %d\n",
1033                        fn->ret_type, func_id);
1034                return -EINVAL;
1035        }
1036
1037        err = check_map_func_compatibility(map, func_id);
1038        if (err)
1039                return err;
1040
1041        return 0;
1042}
1043
1044/* check validity of 32-bit and 64-bit arithmetic operations */
1045static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1046{
1047        struct reg_state *regs = env->cur_state.regs;
1048        u8 opcode = BPF_OP(insn->code);
1049        int err;
1050
1051        if (opcode == BPF_END || opcode == BPF_NEG) {
1052                if (opcode == BPF_NEG) {
1053                        if (BPF_SRC(insn->code) != 0 ||
1054                            insn->src_reg != BPF_REG_0 ||
1055                            insn->off != 0 || insn->imm != 0) {
1056                                verbose("BPF_NEG uses reserved fields\n");
1057                                return -EINVAL;
1058                        }
1059                } else {
1060                        if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1061                            (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1062                                verbose("BPF_END uses reserved fields\n");
1063                                return -EINVAL;
1064                        }
1065                }
1066
1067                /* check src operand */
1068                err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1069                if (err)
1070                        return err;
1071
1072                if (is_pointer_value(env, insn->dst_reg)) {
1073                        verbose("R%d pointer arithmetic prohibited\n",
1074                                insn->dst_reg);
1075                        return -EACCES;
1076                }
1077
1078                /* check dest operand */
1079                err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1080                if (err)
1081                        return err;
1082
1083        } else if (opcode == BPF_MOV) {
1084
1085                if (BPF_SRC(insn->code) == BPF_X) {
1086                        if (insn->imm != 0 || insn->off != 0) {
1087                                verbose("BPF_MOV uses reserved fields\n");
1088                                return -EINVAL;
1089                        }
1090
1091                        /* check src operand */
1092                        err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1093                        if (err)
1094                                return err;
1095                } else {
1096                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1097                                verbose("BPF_MOV uses reserved fields\n");
1098                                return -EINVAL;
1099                        }
1100                }
1101
1102                /* check dest operand */
1103                err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1104                if (err)
1105                        return err;
1106
1107                if (BPF_SRC(insn->code) == BPF_X) {
1108                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
1109                                /* case: R1 = R2
1110                                 * copy register state to dest reg
1111                                 */
1112                                regs[insn->dst_reg] = regs[insn->src_reg];
1113                        } else {
1114                                if (is_pointer_value(env, insn->src_reg)) {
1115                                        verbose("R%d partial copy of pointer\n",
1116                                                insn->src_reg);
1117                                        return -EACCES;
1118                                }
1119                                regs[insn->dst_reg].type = UNKNOWN_VALUE;
1120                                regs[insn->dst_reg].map_ptr = NULL;
1121                        }
1122                } else {
1123                        /* case: R = imm
1124                         * remember the value we stored into this reg
1125                         */
1126                        regs[insn->dst_reg].type = CONST_IMM;
1127                        regs[insn->dst_reg].imm = insn->imm;
1128                }
1129
1130        } else if (opcode > BPF_END) {
1131                verbose("invalid BPF_ALU opcode %x\n", opcode);
1132                return -EINVAL;
1133
1134        } else {        /* all other ALU ops: and, sub, xor, add, ... */
1135
1136                bool stack_relative = false;
1137
1138                if (BPF_SRC(insn->code) == BPF_X) {
1139                        if (insn->imm != 0 || insn->off != 0) {
1140                                verbose("BPF_ALU uses reserved fields\n");
1141                                return -EINVAL;
1142                        }
1143                        /* check src1 operand */
1144                        err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1145                        if (err)
1146                                return err;
1147                } else {
1148                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1149                                verbose("BPF_ALU uses reserved fields\n");
1150                                return -EINVAL;
1151                        }
1152                }
1153
1154                /* check src2 operand */
1155                err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1156                if (err)
1157                        return err;
1158
1159                if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1160                    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1161                        verbose("div by zero\n");
1162                        return -EINVAL;
1163                }
1164
1165                if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1166                     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1167                        int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1168
1169                        if (insn->imm < 0 || insn->imm >= size) {
1170                                verbose("invalid shift %d\n", insn->imm);
1171                                return -EINVAL;
1172                        }
1173                }
1174
1175                /* pattern match 'bpf_add Rx, imm' instruction */
1176                if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1177                    regs[insn->dst_reg].type == FRAME_PTR &&
1178                    BPF_SRC(insn->code) == BPF_K) {
1179                        stack_relative = true;
1180                } else if (is_pointer_value(env, insn->dst_reg)) {
1181                        verbose("R%d pointer arithmetic prohibited\n",
1182                                insn->dst_reg);
1183                        return -EACCES;
1184                } else if (BPF_SRC(insn->code) == BPF_X &&
1185                           is_pointer_value(env, insn->src_reg)) {
1186                        verbose("R%d pointer arithmetic prohibited\n",
1187                                insn->src_reg);
1188                        return -EACCES;
1189                }
1190
1191                /* check dest operand */
1192                err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1193                if (err)
1194                        return err;
1195
1196                if (stack_relative) {
1197                        regs[insn->dst_reg].type = PTR_TO_STACK;
1198                        regs[insn->dst_reg].imm = insn->imm;
1199                }
1200        }
1201
1202        return 0;
1203}
1204
1205static int check_cond_jmp_op(struct verifier_env *env,
1206                             struct bpf_insn *insn, int *insn_idx)
1207{
1208        struct reg_state *regs = env->cur_state.regs;
1209        struct verifier_state *other_branch;
1210        u8 opcode = BPF_OP(insn->code);
1211        int err;
1212
1213        if (opcode > BPF_EXIT) {
1214                verbose("invalid BPF_JMP opcode %x\n", opcode);
1215                return -EINVAL;
1216        }
1217
1218        if (BPF_SRC(insn->code) == BPF_X) {
1219                if (insn->imm != 0) {
1220                        verbose("BPF_JMP uses reserved fields\n");
1221                        return -EINVAL;
1222                }
1223
1224                /* check src1 operand */
1225                err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1226                if (err)
1227                        return err;
1228
1229                if (is_pointer_value(env, insn->src_reg)) {
1230                        verbose("R%d pointer comparison prohibited\n",
1231                                insn->src_reg);
1232                        return -EACCES;
1233                }
1234        } else {
1235                if (insn->src_reg != BPF_REG_0) {
1236                        verbose("BPF_JMP uses reserved fields\n");
1237                        return -EINVAL;
1238                }
1239        }
1240
1241        /* check src2 operand */
1242        err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1243        if (err)
1244                return err;
1245
1246        /* detect if R == 0 where R was initialized to zero earlier */
1247        if (BPF_SRC(insn->code) == BPF_K &&
1248            (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1249            regs[insn->dst_reg].type == CONST_IMM &&
1250            regs[insn->dst_reg].imm == insn->imm) {
1251                if (opcode == BPF_JEQ) {
1252                        /* if (imm == imm) goto pc+off;
1253                         * only follow the goto, ignore fall-through
1254                         */
1255                        *insn_idx += insn->off;
1256                        return 0;
1257                } else {
1258                        /* if (imm != imm) goto pc+off;
1259                         * only follow fall-through branch, since
1260                         * that's where the program will go
1261                         */
1262                        return 0;
1263                }
1264        }
1265
1266        other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1267        if (!other_branch)
1268                return -EFAULT;
1269
1270        /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1271        if (BPF_SRC(insn->code) == BPF_K &&
1272            insn->imm == 0 && (opcode == BPF_JEQ ||
1273                               opcode == BPF_JNE) &&
1274            regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1275                if (opcode == BPF_JEQ) {
1276                        /* next fallthrough insn can access memory via
1277                         * this register
1278                         */
1279                        regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1280                        /* branch targer cannot access it, since reg == 0 */
1281                        other_branch->regs[insn->dst_reg].type = CONST_IMM;
1282                        other_branch->regs[insn->dst_reg].imm = 0;
1283                } else {
1284                        other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1285                        regs[insn->dst_reg].type = CONST_IMM;
1286                        regs[insn->dst_reg].imm = 0;
1287                }
1288        } else if (is_pointer_value(env, insn->dst_reg)) {
1289                verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1290                return -EACCES;
1291        } else if (BPF_SRC(insn->code) == BPF_K &&
1292                   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1293
1294                if (opcode == BPF_JEQ) {
1295                        /* detect if (R == imm) goto
1296                         * and in the target state recognize that R = imm
1297                         */
1298                        other_branch->regs[insn->dst_reg].type = CONST_IMM;
1299                        other_branch->regs[insn->dst_reg].imm = insn->imm;
1300                } else {
1301                        /* detect if (R != imm) goto
1302                         * and in the fall-through state recognize that R = imm
1303                         */
1304                        regs[insn->dst_reg].type = CONST_IMM;
1305                        regs[insn->dst_reg].imm = insn->imm;
1306                }
1307        }
1308        if (log_level)
1309                print_verifier_state(env);
1310        return 0;
1311}
1312
1313/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1314static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1315{
1316        u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1317
1318        return (struct bpf_map *) (unsigned long) imm64;
1319}
1320
1321/* verify BPF_LD_IMM64 instruction */
1322static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1323{
1324        struct reg_state *regs = env->cur_state.regs;
1325        int err;
1326
1327        if (BPF_SIZE(insn->code) != BPF_DW) {
1328                verbose("invalid BPF_LD_IMM insn\n");
1329                return -EINVAL;
1330        }
1331        if (insn->off != 0) {
1332                verbose("BPF_LD_IMM64 uses reserved fields\n");
1333                return -EINVAL;
1334        }
1335
1336        err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1337        if (err)
1338                return err;
1339
1340        if (insn->src_reg == 0)
1341                /* generic move 64-bit immediate into a register */
1342                return 0;
1343
1344        /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1345        BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1346
1347        regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1348        regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1349        return 0;
1350}
1351
1352static bool may_access_skb(enum bpf_prog_type type)
1353{
1354        switch (type) {
1355        case BPF_PROG_TYPE_SOCKET_FILTER:
1356        case BPF_PROG_TYPE_SCHED_CLS:
1357        case BPF_PROG_TYPE_SCHED_ACT:
1358                return true;
1359        default:
1360                return false;
1361        }
1362}
1363
1364/* verify safety of LD_ABS|LD_IND instructions:
1365 * - they can only appear in the programs where ctx == skb
1366 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1367 *   preserve R6-R9, and store return value into R0
1368 *
1369 * Implicit input:
1370 *   ctx == skb == R6 == CTX
1371 *
1372 * Explicit input:
1373 *   SRC == any register
1374 *   IMM == 32-bit immediate
1375 *
1376 * Output:
1377 *   R0 - 8/16/32-bit skb data converted to cpu endianness
1378 */
1379static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1380{
1381        struct reg_state *regs = env->cur_state.regs;
1382        u8 mode = BPF_MODE(insn->code);
1383        struct reg_state *reg;
1384        int i, err;
1385
1386        if (!may_access_skb(env->prog->type)) {
1387                verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1388                return -EINVAL;
1389        }
1390
1391        if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1392            BPF_SIZE(insn->code) == BPF_DW ||
1393            (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1394                verbose("BPF_LD_ABS uses reserved fields\n");
1395                return -EINVAL;
1396        }
1397
1398        /* check whether implicit source operand (register R6) is readable */
1399        err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1400        if (err)
1401                return err;
1402
1403        if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1404                verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1405                return -EINVAL;
1406        }
1407
1408        if (mode == BPF_IND) {
1409                /* check explicit source operand */
1410                err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1411                if (err)
1412                        return err;
1413        }
1414
1415        /* reset caller saved regs to unreadable */
1416        for (i = 0; i < CALLER_SAVED_REGS; i++) {
1417                reg = regs + caller_saved[i];
1418                reg->type = NOT_INIT;
1419                reg->imm = 0;
1420        }
1421
1422        /* mark destination R0 register as readable, since it contains
1423         * the value fetched from the packet
1424         */
1425        regs[BPF_REG_0].type = UNKNOWN_VALUE;
1426        return 0;
1427}
1428
1429/* non-recursive DFS pseudo code
1430 * 1  procedure DFS-iterative(G,v):
1431 * 2      label v as discovered
1432 * 3      let S be a stack
1433 * 4      S.push(v)
1434 * 5      while S is not empty
1435 * 6            t <- S.pop()
1436 * 7            if t is what we're looking for:
1437 * 8                return t
1438 * 9            for all edges e in G.adjacentEdges(t) do
1439 * 10               if edge e is already labelled
1440 * 11                   continue with the next edge
1441 * 12               w <- G.adjacentVertex(t,e)
1442 * 13               if vertex w is not discovered and not explored
1443 * 14                   label e as tree-edge
1444 * 15                   label w as discovered
1445 * 16                   S.push(w)
1446 * 17                   continue at 5
1447 * 18               else if vertex w is discovered
1448 * 19                   label e as back-edge
1449 * 20               else
1450 * 21                   // vertex w is explored
1451 * 22                   label e as forward- or cross-edge
1452 * 23           label t as explored
1453 * 24           S.pop()
1454 *
1455 * convention:
1456 * 0x10 - discovered
1457 * 0x11 - discovered and fall-through edge labelled
1458 * 0x12 - discovered and fall-through and branch edges labelled
1459 * 0x20 - explored
1460 */
1461
1462enum {
1463        DISCOVERED = 0x10,
1464        EXPLORED = 0x20,
1465        FALLTHROUGH = 1,
1466        BRANCH = 2,
1467};
1468
1469#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1470
1471static int *insn_stack; /* stack of insns to process */
1472static int cur_stack;   /* current stack index */
1473static int *insn_state;
1474
1475/* t, w, e - match pseudo-code above:
1476 * t - index of current instruction
1477 * w - next instruction
1478 * e - edge
1479 */
1480static int push_insn(int t, int w, int e, struct verifier_env *env)
1481{
1482        if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1483                return 0;
1484
1485        if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1486                return 0;
1487
1488        if (w < 0 || w >= env->prog->len) {
1489                verbose("jump out of range from insn %d to %d\n", t, w);
1490                return -EINVAL;
1491        }
1492
1493        if (e == BRANCH)
1494                /* mark branch target for state pruning */
1495                env->explored_states[w] = STATE_LIST_MARK;
1496
1497        if (insn_state[w] == 0) {
1498                /* tree-edge */
1499                insn_state[t] = DISCOVERED | e;
1500                insn_state[w] = DISCOVERED;
1501                if (cur_stack >= env->prog->len)
1502                        return -E2BIG;
1503                insn_stack[cur_stack++] = w;
1504                return 1;
1505        } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1506                verbose("back-edge from insn %d to %d\n", t, w);
1507                return -EINVAL;
1508        } else if (insn_state[w] == EXPLORED) {
1509                /* forward- or cross-edge */
1510                insn_state[t] = DISCOVERED | e;
1511        } else {
1512                verbose("insn state internal bug\n");
1513                return -EFAULT;
1514        }
1515        return 0;
1516}
1517
1518/* non-recursive depth-first-search to detect loops in BPF program
1519 * loop == back-edge in directed graph
1520 */
1521static int check_cfg(struct verifier_env *env)
1522{
1523        struct bpf_insn *insns = env->prog->insnsi;
1524        int insn_cnt = env->prog->len;
1525        int ret = 0;
1526        int i, t;
1527
1528        insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1529        if (!insn_state)
1530                return -ENOMEM;
1531
1532        insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1533        if (!insn_stack) {
1534                kfree(insn_state);
1535                return -ENOMEM;
1536        }
1537
1538        insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1539        insn_stack[0] = 0; /* 0 is the first instruction */
1540        cur_stack = 1;
1541
1542peek_stack:
1543        if (cur_stack == 0)
1544                goto check_state;
1545        t = insn_stack[cur_stack - 1];
1546
1547        if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1548                u8 opcode = BPF_OP(insns[t].code);
1549
1550                if (opcode == BPF_EXIT) {
1551                        goto mark_explored;
1552                } else if (opcode == BPF_CALL) {
1553                        ret = push_insn(t, t + 1, FALLTHROUGH, env);
1554                        if (ret == 1)
1555                                goto peek_stack;
1556                        else if (ret < 0)
1557                                goto err_free;
1558                } else if (opcode == BPF_JA) {
1559                        if (BPF_SRC(insns[t].code) != BPF_K) {
1560                                ret = -EINVAL;
1561                                goto err_free;
1562                        }
1563                        /* unconditional jump with single edge */
1564                        ret = push_insn(t, t + insns[t].off + 1,
1565                                        FALLTHROUGH, env);
1566                        if (ret == 1)
1567                                goto peek_stack;
1568                        else if (ret < 0)
1569                                goto err_free;
1570                        /* tell verifier to check for equivalent states
1571                         * after every call and jump
1572                         */
1573                        if (t + 1 < insn_cnt)
1574                                env->explored_states[t + 1] = STATE_LIST_MARK;
1575                } else {
1576                        /* conditional jump with two edges */
1577                        ret = push_insn(t, t + 1, FALLTHROUGH, env);
1578                        if (ret == 1)
1579                                goto peek_stack;
1580                        else if (ret < 0)
1581                                goto err_free;
1582
1583                        ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1584                        if (ret == 1)
1585                                goto peek_stack;
1586                        else if (ret < 0)
1587                                goto err_free;
1588                }
1589        } else {
1590                /* all other non-branch instructions with single
1591                 * fall-through edge
1592                 */
1593                ret = push_insn(t, t + 1, FALLTHROUGH, env);
1594                if (ret == 1)
1595                        goto peek_stack;
1596                else if (ret < 0)
1597                        goto err_free;
1598        }
1599
1600mark_explored:
1601        insn_state[t] = EXPLORED;
1602        if (cur_stack-- <= 0) {
1603                verbose("pop stack internal bug\n");
1604                ret = -EFAULT;
1605                goto err_free;
1606        }
1607        goto peek_stack;
1608
1609check_state:
1610        for (i = 0; i < insn_cnt; i++) {
1611                if (insn_state[i] != EXPLORED) {
1612                        verbose("unreachable insn %d\n", i);
1613                        ret = -EINVAL;
1614                        goto err_free;
1615                }
1616        }
1617        ret = 0; /* cfg looks good */
1618
1619err_free:
1620        kfree(insn_state);
1621        kfree(insn_stack);
1622        return ret;
1623}
1624
1625/* compare two verifier states
1626 *
1627 * all states stored in state_list are known to be valid, since
1628 * verifier reached 'bpf_exit' instruction through them
1629 *
1630 * this function is called when verifier exploring different branches of
1631 * execution popped from the state stack. If it sees an old state that has
1632 * more strict register state and more strict stack state then this execution
1633 * branch doesn't need to be explored further, since verifier already
1634 * concluded that more strict state leads to valid finish.
1635 *
1636 * Therefore two states are equivalent if register state is more conservative
1637 * and explored stack state is more conservative than the current one.
1638 * Example:
1639 *       explored                   current
1640 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1641 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1642 *
1643 * In other words if current stack state (one being explored) has more
1644 * valid slots than old one that already passed validation, it means
1645 * the verifier can stop exploring and conclude that current state is valid too
1646 *
1647 * Similarly with registers. If explored state has register type as invalid
1648 * whereas register type in current state is meaningful, it means that
1649 * the current state will reach 'bpf_exit' instruction safely
1650 */
1651static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1652{
1653        int i;
1654
1655        for (i = 0; i < MAX_BPF_REG; i++) {
1656                if (memcmp(&old->regs[i], &cur->regs[i],
1657                           sizeof(old->regs[0])) != 0) {
1658                        if (old->regs[i].type == NOT_INIT ||
1659                            (old->regs[i].type == UNKNOWN_VALUE &&
1660                             cur->regs[i].type != NOT_INIT))
1661                                continue;
1662                        return false;
1663                }
1664        }
1665
1666        for (i = 0; i < MAX_BPF_STACK; i++) {
1667                if (old->stack_slot_type[i] == STACK_INVALID)
1668                        continue;
1669                if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1670                        /* Ex: old explored (safe) state has STACK_SPILL in
1671                         * this stack slot, but current has has STACK_MISC ->
1672                         * this verifier states are not equivalent,
1673                         * return false to continue verification of this path
1674                         */
1675                        return false;
1676                if (i % BPF_REG_SIZE)
1677                        continue;
1678                if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1679                           &cur->spilled_regs[i / BPF_REG_SIZE],
1680                           sizeof(old->spilled_regs[0])))
1681                        /* when explored and current stack slot types are
1682                         * the same, check that stored pointers types
1683                         * are the same as well.
1684                         * Ex: explored safe path could have stored
1685                         * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1686                         * but current path has stored:
1687                         * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1688                         * such verifier states are not equivalent.
1689                         * return false to continue verification of this path
1690                         */
1691                        return false;
1692                else
1693                        continue;
1694        }
1695        return true;
1696}
1697
1698static int is_state_visited(struct verifier_env *env, int insn_idx)
1699{
1700        struct verifier_state_list *new_sl;
1701        struct verifier_state_list *sl;
1702
1703        sl = env->explored_states[insn_idx];
1704        if (!sl)
1705                /* this 'insn_idx' instruction wasn't marked, so we will not
1706                 * be doing state search here
1707                 */
1708                return 0;
1709
1710        while (sl != STATE_LIST_MARK) {
1711                if (states_equal(&sl->state, &env->cur_state))
1712                        /* reached equivalent register/stack state,
1713                         * prune the search
1714                         */
1715                        return 1;
1716                sl = sl->next;
1717        }
1718
1719        /* there were no equivalent states, remember current one.
1720         * technically the current state is not proven to be safe yet,
1721         * but it will either reach bpf_exit (which means it's safe) or
1722         * it will be rejected. Since there are no loops, we won't be
1723         * seeing this 'insn_idx' instruction again on the way to bpf_exit
1724         */
1725        new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1726        if (!new_sl)
1727                return -ENOMEM;
1728
1729        /* add new state to the head of linked list */
1730        memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1731        new_sl->next = env->explored_states[insn_idx];
1732        env->explored_states[insn_idx] = new_sl;
1733        return 0;
1734}
1735
1736static int do_check(struct verifier_env *env)
1737{
1738        struct verifier_state *state = &env->cur_state;
1739        struct bpf_insn *insns = env->prog->insnsi;
1740        struct reg_state *regs = state->regs;
1741        int insn_cnt = env->prog->len;
1742        int insn_idx, prev_insn_idx = 0;
1743        int insn_processed = 0;
1744        bool do_print_state = false;
1745
1746        init_reg_state(regs);
1747        insn_idx = 0;
1748        for (;;) {
1749                struct bpf_insn *insn;
1750                u8 class;
1751                int err;
1752
1753                if (insn_idx >= insn_cnt) {
1754                        verbose("invalid insn idx %d insn_cnt %d\n",
1755                                insn_idx, insn_cnt);
1756                        return -EFAULT;
1757                }
1758
1759                insn = &insns[insn_idx];
1760                class = BPF_CLASS(insn->code);
1761
1762                if (++insn_processed > 32768) {
1763                        verbose("BPF program is too large. Proccessed %d insn\n",
1764                                insn_processed);
1765                        return -E2BIG;
1766                }
1767
1768                err = is_state_visited(env, insn_idx);
1769                if (err < 0)
1770                        return err;
1771                if (err == 1) {
1772                        /* found equivalent state, can prune the search */
1773                        if (log_level) {
1774                                if (do_print_state)
1775                                        verbose("\nfrom %d to %d: safe\n",
1776                                                prev_insn_idx, insn_idx);
1777                                else
1778                                        verbose("%d: safe\n", insn_idx);
1779                        }
1780                        goto process_bpf_exit;
1781                }
1782
1783                if (log_level && do_print_state) {
1784                        verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1785                        print_verifier_state(env);
1786                        do_print_state = false;
1787                }
1788
1789                if (log_level) {
1790                        verbose("%d: ", insn_idx);
1791                        print_bpf_insn(insn);
1792                }
1793
1794                if (class == BPF_ALU || class == BPF_ALU64) {
1795                        err = check_alu_op(env, insn);
1796                        if (err)
1797                                return err;
1798
1799                } else if (class == BPF_LDX) {
1800                        enum bpf_reg_type src_reg_type;
1801
1802                        /* check for reserved fields is already done */
1803
1804                        /* check src operand */
1805                        err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1806                        if (err)
1807                                return err;
1808
1809                        err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1810                        if (err)
1811                                return err;
1812
1813                        src_reg_type = regs[insn->src_reg].type;
1814
1815                        /* check that memory (src_reg + off) is readable,
1816                         * the state of dst_reg will be updated by this func
1817                         */
1818                        err = check_mem_access(env, insn->src_reg, insn->off,
1819                                               BPF_SIZE(insn->code), BPF_READ,
1820                                               insn->dst_reg);
1821                        if (err)
1822                                return err;
1823
1824                        if (BPF_SIZE(insn->code) != BPF_W) {
1825                                insn_idx++;
1826                                continue;
1827                        }
1828
1829                        if (insn->imm == 0) {
1830                                /* saw a valid insn
1831                                 * dst_reg = *(u32 *)(src_reg + off)
1832                                 * use reserved 'imm' field to mark this insn
1833                                 */
1834                                insn->imm = src_reg_type;
1835
1836                        } else if (src_reg_type != insn->imm &&
1837                                   (src_reg_type == PTR_TO_CTX ||
1838                                    insn->imm == PTR_TO_CTX)) {
1839                                /* ABuser program is trying to use the same insn
1840                                 * dst_reg = *(u32*) (src_reg + off)
1841                                 * with different pointer types:
1842                                 * src_reg == ctx in one branch and
1843                                 * src_reg == stack|map in some other branch.
1844                                 * Reject it.
1845                                 */
1846                                verbose("same insn cannot be used with different pointers\n");
1847                                return -EINVAL;
1848                        }
1849
1850                } else if (class == BPF_STX) {
1851                        enum bpf_reg_type dst_reg_type;
1852
1853                        if (BPF_MODE(insn->code) == BPF_XADD) {
1854                                err = check_xadd(env, insn);
1855                                if (err)
1856                                        return err;
1857                                insn_idx++;
1858                                continue;
1859                        }
1860
1861                        /* check src1 operand */
1862                        err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1863                        if (err)
1864                                return err;
1865                        /* check src2 operand */
1866                        err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1867                        if (err)
1868                                return err;
1869
1870                        dst_reg_type = regs[insn->dst_reg].type;
1871
1872                        /* check that memory (dst_reg + off) is writeable */
1873                        err = check_mem_access(env, insn->dst_reg, insn->off,
1874                                               BPF_SIZE(insn->code), BPF_WRITE,
1875                                               insn->src_reg);
1876                        if (err)
1877                                return err;
1878
1879                        if (insn->imm == 0) {
1880                                insn->imm = dst_reg_type;
1881                        } else if (dst_reg_type != insn->imm &&
1882                                   (dst_reg_type == PTR_TO_CTX ||
1883                                    insn->imm == PTR_TO_CTX)) {
1884                                verbose("same insn cannot be used with different pointers\n");
1885                                return -EINVAL;
1886                        }
1887
1888                } else if (class == BPF_ST) {
1889                        if (BPF_MODE(insn->code) != BPF_MEM ||
1890                            insn->src_reg != BPF_REG_0) {
1891                                verbose("BPF_ST uses reserved fields\n");
1892                                return -EINVAL;
1893                        }
1894                        /* check src operand */
1895                        err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1896                        if (err)
1897                                return err;
1898
1899                        /* check that memory (dst_reg + off) is writeable */
1900                        err = check_mem_access(env, insn->dst_reg, insn->off,
1901                                               BPF_SIZE(insn->code), BPF_WRITE,
1902                                               -1);
1903                        if (err)
1904                                return err;
1905
1906                } else if (class == BPF_JMP) {
1907                        u8 opcode = BPF_OP(insn->code);
1908
1909                        if (opcode == BPF_CALL) {
1910                                if (BPF_SRC(insn->code) != BPF_K ||
1911                                    insn->off != 0 ||
1912                                    insn->src_reg != BPF_REG_0 ||
1913                                    insn->dst_reg != BPF_REG_0) {
1914                                        verbose("BPF_CALL uses reserved fields\n");
1915                                        return -EINVAL;
1916                                }
1917
1918                                err = check_call(env, insn->imm);
1919                                if (err)
1920                                        return err;
1921
1922                        } else if (opcode == BPF_JA) {
1923                                if (BPF_SRC(insn->code) != BPF_K ||
1924                                    insn->imm != 0 ||
1925                                    insn->src_reg != BPF_REG_0 ||
1926                                    insn->dst_reg != BPF_REG_0) {
1927                                        verbose("BPF_JA uses reserved fields\n");
1928                                        return -EINVAL;
1929                                }
1930
1931                                insn_idx += insn->off + 1;
1932                                continue;
1933
1934                        } else if (opcode == BPF_EXIT) {
1935                                if (BPF_SRC(insn->code) != BPF_K ||
1936                                    insn->imm != 0 ||
1937                                    insn->src_reg != BPF_REG_0 ||
1938                                    insn->dst_reg != BPF_REG_0) {
1939                                        verbose("BPF_EXIT uses reserved fields\n");
1940                                        return -EINVAL;
1941                                }
1942
1943                                /* eBPF calling convetion is such that R0 is used
1944                                 * to return the value from eBPF program.
1945                                 * Make sure that it's readable at this time
1946                                 * of bpf_exit, which means that program wrote
1947                                 * something into it earlier
1948                                 */
1949                                err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1950                                if (err)
1951                                        return err;
1952
1953                                if (is_pointer_value(env, BPF_REG_0)) {
1954                                        verbose("R0 leaks addr as return value\n");
1955                                        return -EACCES;
1956                                }
1957
1958process_bpf_exit:
1959                                insn_idx = pop_stack(env, &prev_insn_idx);
1960                                if (insn_idx < 0) {
1961                                        break;
1962                                } else {
1963                                        do_print_state = true;
1964                                        continue;
1965                                }
1966                        } else {
1967                                err = check_cond_jmp_op(env, insn, &insn_idx);
1968                                if (err)
1969                                        return err;
1970                        }
1971                } else if (class == BPF_LD) {
1972                        u8 mode = BPF_MODE(insn->code);
1973
1974                        if (mode == BPF_ABS || mode == BPF_IND) {
1975                                err = check_ld_abs(env, insn);
1976                                if (err)
1977                                        return err;
1978
1979                        } else if (mode == BPF_IMM) {
1980                                err = check_ld_imm(env, insn);
1981                                if (err)
1982                                        return err;
1983
1984                                insn_idx++;
1985                        } else {
1986                                verbose("invalid BPF_LD mode\n");
1987                                return -EINVAL;
1988                        }
1989                } else {
1990                        verbose("unknown insn class %d\n", class);
1991                        return -EINVAL;
1992                }
1993
1994                insn_idx++;
1995        }
1996
1997        return 0;
1998}
1999
2000/* look for pseudo eBPF instructions that access map FDs and
2001 * replace them with actual map pointers
2002 */
2003static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2004{
2005        struct bpf_insn *insn = env->prog->insnsi;
2006        int insn_cnt = env->prog->len;
2007        int i, j;
2008
2009        for (i = 0; i < insn_cnt; i++, insn++) {
2010                if (BPF_CLASS(insn->code) == BPF_LDX &&
2011                    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2012                        verbose("BPF_LDX uses reserved fields\n");
2013                        return -EINVAL;
2014                }
2015
2016                if (BPF_CLASS(insn->code) == BPF_STX &&
2017                    ((BPF_MODE(insn->code) != BPF_MEM &&
2018                      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2019                        verbose("BPF_STX uses reserved fields\n");
2020                        return -EINVAL;
2021                }
2022
2023                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2024                        struct bpf_map *map;
2025                        struct fd f;
2026
2027                        if (i == insn_cnt - 1 || insn[1].code != 0 ||
2028                            insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2029                            insn[1].off != 0) {
2030                                verbose("invalid bpf_ld_imm64 insn\n");
2031                                return -EINVAL;
2032                        }
2033
2034                        if (insn->src_reg == 0)
2035                                /* valid generic load 64-bit imm */
2036                                goto next_insn;
2037
2038                        if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2039                                verbose("unrecognized bpf_ld_imm64 insn\n");
2040                                return -EINVAL;
2041                        }
2042
2043                        f = fdget(insn->imm);
2044                        map = __bpf_map_get(f);
2045                        if (IS_ERR(map)) {
2046                                verbose("fd %d is not pointing to valid bpf_map\n",
2047                                        insn->imm);
2048                                return PTR_ERR(map);
2049                        }
2050
2051                        /* store map pointer inside BPF_LD_IMM64 instruction */
2052                        insn[0].imm = (u32) (unsigned long) map;
2053                        insn[1].imm = ((u64) (unsigned long) map) >> 32;
2054
2055                        /* check whether we recorded this map already */
2056                        for (j = 0; j < env->used_map_cnt; j++)
2057                                if (env->used_maps[j] == map) {
2058                                        fdput(f);
2059                                        goto next_insn;
2060                                }
2061
2062                        if (env->used_map_cnt >= MAX_USED_MAPS) {
2063                                fdput(f);
2064                                return -E2BIG;
2065                        }
2066
2067                        /* hold the map. If the program is rejected by verifier,
2068                         * the map will be released by release_maps() or it
2069                         * will be used by the valid program until it's unloaded
2070                         * and all maps are released in free_bpf_prog_info()
2071                         */
2072                        map = bpf_map_inc(map, false);
2073                        if (IS_ERR(map)) {
2074                                fdput(f);
2075                                return PTR_ERR(map);
2076                        }
2077                        env->used_maps[env->used_map_cnt++] = map;
2078
2079                        fdput(f);
2080next_insn:
2081                        insn++;
2082                        i++;
2083                }
2084        }
2085
2086        /* now all pseudo BPF_LD_IMM64 instructions load valid
2087         * 'struct bpf_map *' into a register instead of user map_fd.
2088         * These pointers will be used later by verifier to validate map access.
2089         */
2090        return 0;
2091}
2092
2093/* drop refcnt of maps used by the rejected program */
2094static void release_maps(struct verifier_env *env)
2095{
2096        int i;
2097
2098        for (i = 0; i < env->used_map_cnt; i++)
2099                bpf_map_put(env->used_maps[i]);
2100}
2101
2102/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2103static void convert_pseudo_ld_imm64(struct verifier_env *env)
2104{
2105        struct bpf_insn *insn = env->prog->insnsi;
2106        int insn_cnt = env->prog->len;
2107        int i;
2108
2109        for (i = 0; i < insn_cnt; i++, insn++)
2110                if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2111                        insn->src_reg = 0;
2112}
2113
2114static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2115{
2116        struct bpf_insn *insn = prog->insnsi;
2117        int insn_cnt = prog->len;
2118        int i;
2119
2120        for (i = 0; i < insn_cnt; i++, insn++) {
2121                if (BPF_CLASS(insn->code) != BPF_JMP ||
2122                    BPF_OP(insn->code) == BPF_CALL ||
2123                    BPF_OP(insn->code) == BPF_EXIT)
2124                        continue;
2125
2126                /* adjust offset of jmps if necessary */
2127                if (i < pos && i + insn->off + 1 > pos)
2128                        insn->off += delta;
2129                else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
2130                        insn->off -= delta;
2131        }
2132}
2133
2134/* convert load instructions that access fields of 'struct __sk_buff'
2135 * into sequence of instructions that access fields of 'struct sk_buff'
2136 */
2137static int convert_ctx_accesses(struct verifier_env *env)
2138{
2139        struct bpf_insn *insn = env->prog->insnsi;
2140        int insn_cnt = env->prog->len;
2141        struct bpf_insn insn_buf[16];
2142        struct bpf_prog *new_prog;
2143        u32 cnt;
2144        int i;
2145        enum bpf_access_type type;
2146
2147        if (!env->prog->aux->ops->convert_ctx_access)
2148                return 0;
2149
2150        for (i = 0; i < insn_cnt; i++, insn++) {
2151                if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2152                        type = BPF_READ;
2153                else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2154                        type = BPF_WRITE;
2155                else
2156                        continue;
2157
2158                if (insn->imm != PTR_TO_CTX) {
2159                        /* clear internal mark */
2160                        insn->imm = 0;
2161                        continue;
2162                }
2163
2164                cnt = env->prog->aux->ops->
2165                        convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2166                                           insn->off, insn_buf, env->prog);
2167                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2168                        verbose("bpf verifier is misconfigured\n");
2169                        return -EINVAL;
2170                }
2171
2172                if (cnt == 1) {
2173                        memcpy(insn, insn_buf, sizeof(*insn));
2174                        continue;
2175                }
2176
2177                /* several new insns need to be inserted. Make room for them */
2178                insn_cnt += cnt - 1;
2179                new_prog = bpf_prog_realloc(env->prog,
2180                                            bpf_prog_size(insn_cnt),
2181                                            GFP_USER);
2182                if (!new_prog)
2183                        return -ENOMEM;
2184
2185                new_prog->len = insn_cnt;
2186
2187                memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2188                        sizeof(*insn) * (insn_cnt - i - cnt));
2189
2190                /* copy substitute insns in place of load instruction */
2191                memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2192
2193                /* adjust branches in the whole program */
2194                adjust_branches(new_prog, i, cnt - 1);
2195
2196                /* keep walking new program and skip insns we just inserted */
2197                env->prog = new_prog;
2198                insn = new_prog->insnsi + i + cnt - 1;
2199                i += cnt - 1;
2200        }
2201
2202        return 0;
2203}
2204
2205static void free_states(struct verifier_env *env)
2206{
2207        struct verifier_state_list *sl, *sln;
2208        int i;
2209
2210        if (!env->explored_states)
2211                return;
2212
2213        for (i = 0; i < env->prog->len; i++) {
2214                sl = env->explored_states[i];
2215
2216                if (sl)
2217                        while (sl != STATE_LIST_MARK) {
2218                                sln = sl->next;
2219                                kfree(sl);
2220                                sl = sln;
2221                        }
2222        }
2223
2224        kfree(env->explored_states);
2225}
2226
2227int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2228{
2229        char __user *log_ubuf = NULL;
2230        struct verifier_env *env;
2231        int ret = -EINVAL;
2232
2233        if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2234                return -E2BIG;
2235
2236        /* 'struct verifier_env' can be global, but since it's not small,
2237         * allocate/free it every time bpf_check() is called
2238         */
2239        env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2240        if (!env)
2241                return -ENOMEM;
2242
2243        env->prog = *prog;
2244
2245        /* grab the mutex to protect few globals used by verifier */
2246        mutex_lock(&bpf_verifier_lock);
2247
2248        if (attr->log_level || attr->log_buf || attr->log_size) {
2249                /* user requested verbose verifier output
2250                 * and supplied buffer to store the verification trace
2251                 */
2252                log_level = attr->log_level;
2253                log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2254                log_size = attr->log_size;
2255                log_len = 0;
2256
2257                ret = -EINVAL;
2258                /* log_* values have to be sane */
2259                if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2260                    log_level == 0 || log_ubuf == NULL)
2261                        goto free_env;
2262
2263                ret = -ENOMEM;
2264                log_buf = vmalloc(log_size);
2265                if (!log_buf)
2266                        goto free_env;
2267        } else {
2268                log_level = 0;
2269        }
2270
2271        ret = replace_map_fd_with_map_ptr(env);
2272        if (ret < 0)
2273                goto skip_full_check;
2274
2275        env->explored_states = kcalloc(env->prog->len,
2276                                       sizeof(struct verifier_state_list *),
2277                                       GFP_USER);
2278        ret = -ENOMEM;
2279        if (!env->explored_states)
2280                goto skip_full_check;
2281
2282        ret = check_cfg(env);
2283        if (ret < 0)
2284                goto skip_full_check;
2285
2286        env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2287
2288        ret = do_check(env);
2289
2290skip_full_check:
2291        while (pop_stack(env, NULL) >= 0);
2292        free_states(env);
2293
2294        if (ret == 0)
2295                /* program is valid, convert *(u32*)(ctx + off) accesses */
2296                ret = convert_ctx_accesses(env);
2297
2298        if (log_level && log_len >= log_size - 1) {
2299                BUG_ON(log_len >= log_size);
2300                /* verifier log exceeded user supplied buffer */
2301                ret = -ENOSPC;
2302                /* fall through to return what was recorded */
2303        }
2304
2305        /* copy verifier log back to user space including trailing zero */
2306        if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2307                ret = -EFAULT;
2308                goto free_log_buf;
2309        }
2310
2311        if (ret == 0 && env->used_map_cnt) {
2312                /* if program passed verifier, update used_maps in bpf_prog_info */
2313                env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2314                                                          sizeof(env->used_maps[0]),
2315                                                          GFP_KERNEL);
2316
2317                if (!env->prog->aux->used_maps) {
2318                        ret = -ENOMEM;
2319                        goto free_log_buf;
2320                }
2321
2322                memcpy(env->prog->aux->used_maps, env->used_maps,
2323                       sizeof(env->used_maps[0]) * env->used_map_cnt);
2324                env->prog->aux->used_map_cnt = env->used_map_cnt;
2325
2326                /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2327                 * bpf_ld_imm64 instructions
2328                 */
2329                convert_pseudo_ld_imm64(env);
2330        }
2331
2332free_log_buf:
2333        if (log_level)
2334                vfree(log_buf);
2335free_env:
2336        if (!env->prog->aux->used_maps)
2337                /* if we didn't copy map pointers into bpf_prog_info, release
2338                 * them now. Otherwise free_bpf_prog_info() will release them.
2339                 */
2340                release_maps(env);
2341        *prog = env->prog;
2342        kfree(env);
2343        mutex_unlock(&bpf_verifier_lock);
2344        return ret;
2345}
2346