linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47
  48#include "internal.h"
  49
  50#include <asm/irq_regs.h>
  51
  52typedef int (*remote_function_f)(void *);
  53
  54struct remote_function_call {
  55        struct task_struct      *p;
  56        remote_function_f       func;
  57        void                    *info;
  58        int                     ret;
  59};
  60
  61static void remote_function(void *data)
  62{
  63        struct remote_function_call *tfc = data;
  64        struct task_struct *p = tfc->p;
  65
  66        if (p) {
  67                /* -EAGAIN */
  68                if (task_cpu(p) != smp_processor_id())
  69                        return;
  70
  71                /*
  72                 * Now that we're on right CPU with IRQs disabled, we can test
  73                 * if we hit the right task without races.
  74                 */
  75
  76                tfc->ret = -ESRCH; /* No such (running) process */
  77                if (p != current)
  78                        return;
  79        }
  80
  81        tfc->ret = tfc->func(tfc->info);
  82}
  83
  84/**
  85 * task_function_call - call a function on the cpu on which a task runs
  86 * @p:          the task to evaluate
  87 * @func:       the function to be called
  88 * @info:       the function call argument
  89 *
  90 * Calls the function @func when the task is currently running. This might
  91 * be on the current CPU, which just calls the function directly
  92 *
  93 * returns: @func return value, or
  94 *          -ESRCH  - when the process isn't running
  95 *          -EAGAIN - when the process moved away
  96 */
  97static int
  98task_function_call(struct task_struct *p, remote_function_f func, void *info)
  99{
 100        struct remote_function_call data = {
 101                .p      = p,
 102                .func   = func,
 103                .info   = info,
 104                .ret    = -EAGAIN,
 105        };
 106        int ret;
 107
 108        do {
 109                ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 110                if (!ret)
 111                        ret = data.ret;
 112        } while (ret == -EAGAIN);
 113
 114        return ret;
 115}
 116
 117/**
 118 * cpu_function_call - call a function on the cpu
 119 * @func:       the function to be called
 120 * @info:       the function call argument
 121 *
 122 * Calls the function @func on the remote cpu.
 123 *
 124 * returns: @func return value or -ENXIO when the cpu is offline
 125 */
 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
 127{
 128        struct remote_function_call data = {
 129                .p      = NULL,
 130                .func   = func,
 131                .info   = info,
 132                .ret    = -ENXIO, /* No such CPU */
 133        };
 134
 135        smp_call_function_single(cpu, remote_function, &data, 1);
 136
 137        return data.ret;
 138}
 139
 140static inline struct perf_cpu_context *
 141__get_cpu_context(struct perf_event_context *ctx)
 142{
 143        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 144}
 145
 146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 147                          struct perf_event_context *ctx)
 148{
 149        raw_spin_lock(&cpuctx->ctx.lock);
 150        if (ctx)
 151                raw_spin_lock(&ctx->lock);
 152}
 153
 154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 155                            struct perf_event_context *ctx)
 156{
 157        if (ctx)
 158                raw_spin_unlock(&ctx->lock);
 159        raw_spin_unlock(&cpuctx->ctx.lock);
 160}
 161
 162#define TASK_TOMBSTONE ((void *)-1L)
 163
 164static bool is_kernel_event(struct perf_event *event)
 165{
 166        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 167}
 168
 169/*
 170 * On task ctx scheduling...
 171 *
 172 * When !ctx->nr_events a task context will not be scheduled. This means
 173 * we can disable the scheduler hooks (for performance) without leaving
 174 * pending task ctx state.
 175 *
 176 * This however results in two special cases:
 177 *
 178 *  - removing the last event from a task ctx; this is relatively straight
 179 *    forward and is done in __perf_remove_from_context.
 180 *
 181 *  - adding the first event to a task ctx; this is tricky because we cannot
 182 *    rely on ctx->is_active and therefore cannot use event_function_call().
 183 *    See perf_install_in_context().
 184 *
 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 186 */
 187
 188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 189                        struct perf_event_context *, void *);
 190
 191struct event_function_struct {
 192        struct perf_event *event;
 193        event_f func;
 194        void *data;
 195};
 196
 197static int event_function(void *info)
 198{
 199        struct event_function_struct *efs = info;
 200        struct perf_event *event = efs->event;
 201        struct perf_event_context *ctx = event->ctx;
 202        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 203        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 204        int ret = 0;
 205
 206        WARN_ON_ONCE(!irqs_disabled());
 207
 208        perf_ctx_lock(cpuctx, task_ctx);
 209        /*
 210         * Since we do the IPI call without holding ctx->lock things can have
 211         * changed, double check we hit the task we set out to hit.
 212         */
 213        if (ctx->task) {
 214                if (ctx->task != current) {
 215                        ret = -ESRCH;
 216                        goto unlock;
 217                }
 218
 219                /*
 220                 * We only use event_function_call() on established contexts,
 221                 * and event_function() is only ever called when active (or
 222                 * rather, we'll have bailed in task_function_call() or the
 223                 * above ctx->task != current test), therefore we must have
 224                 * ctx->is_active here.
 225                 */
 226                WARN_ON_ONCE(!ctx->is_active);
 227                /*
 228                 * And since we have ctx->is_active, cpuctx->task_ctx must
 229                 * match.
 230                 */
 231                WARN_ON_ONCE(task_ctx != ctx);
 232        } else {
 233                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 234        }
 235
 236        efs->func(event, cpuctx, ctx, efs->data);
 237unlock:
 238        perf_ctx_unlock(cpuctx, task_ctx);
 239
 240        return ret;
 241}
 242
 243static void event_function_local(struct perf_event *event, event_f func, void *data)
 244{
 245        struct event_function_struct efs = {
 246                .event = event,
 247                .func = func,
 248                .data = data,
 249        };
 250
 251        int ret = event_function(&efs);
 252        WARN_ON_ONCE(ret);
 253}
 254
 255static void event_function_call(struct perf_event *event, event_f func, void *data)
 256{
 257        struct perf_event_context *ctx = event->ctx;
 258        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 259        struct event_function_struct efs = {
 260                .event = event,
 261                .func = func,
 262                .data = data,
 263        };
 264
 265        if (!event->parent) {
 266                /*
 267                 * If this is a !child event, we must hold ctx::mutex to
 268                 * stabilize the the event->ctx relation. See
 269                 * perf_event_ctx_lock().
 270                 */
 271                lockdep_assert_held(&ctx->mutex);
 272        }
 273
 274        if (!task) {
 275                cpu_function_call(event->cpu, event_function, &efs);
 276                return;
 277        }
 278
 279        if (task == TASK_TOMBSTONE)
 280                return;
 281
 282again:
 283        if (!task_function_call(task, event_function, &efs))
 284                return;
 285
 286        raw_spin_lock_irq(&ctx->lock);
 287        /*
 288         * Reload the task pointer, it might have been changed by
 289         * a concurrent perf_event_context_sched_out().
 290         */
 291        task = ctx->task;
 292        if (task == TASK_TOMBSTONE) {
 293                raw_spin_unlock_irq(&ctx->lock);
 294                return;
 295        }
 296        if (ctx->is_active) {
 297                raw_spin_unlock_irq(&ctx->lock);
 298                goto again;
 299        }
 300        func(event, NULL, ctx, data);
 301        raw_spin_unlock_irq(&ctx->lock);
 302}
 303
 304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 305                       PERF_FLAG_FD_OUTPUT  |\
 306                       PERF_FLAG_PID_CGROUP |\
 307                       PERF_FLAG_FD_CLOEXEC)
 308
 309/*
 310 * branch priv levels that need permission checks
 311 */
 312#define PERF_SAMPLE_BRANCH_PERM_PLM \
 313        (PERF_SAMPLE_BRANCH_KERNEL |\
 314         PERF_SAMPLE_BRANCH_HV)
 315
 316enum event_type_t {
 317        EVENT_FLEXIBLE = 0x1,
 318        EVENT_PINNED = 0x2,
 319        EVENT_TIME = 0x4,
 320        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 321};
 322
 323/*
 324 * perf_sched_events : >0 events exist
 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 326 */
 327
 328static void perf_sched_delayed(struct work_struct *work);
 329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 331static DEFINE_MUTEX(perf_sched_mutex);
 332static atomic_t perf_sched_count;
 333
 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 336
 337static atomic_t nr_mmap_events __read_mostly;
 338static atomic_t nr_comm_events __read_mostly;
 339static atomic_t nr_task_events __read_mostly;
 340static atomic_t nr_freq_events __read_mostly;
 341static atomic_t nr_switch_events __read_mostly;
 342
 343static LIST_HEAD(pmus);
 344static DEFINE_MUTEX(pmus_lock);
 345static struct srcu_struct pmus_srcu;
 346
 347/*
 348 * perf event paranoia level:
 349 *  -1 - not paranoid at all
 350 *   0 - disallow raw tracepoint access for unpriv
 351 *   1 - disallow cpu events for unpriv
 352 *   2 - disallow kernel profiling for unpriv
 353 */
 354int sysctl_perf_event_paranoid __read_mostly = 2;
 355
 356/* Minimum for 512 kiB + 1 user control page */
 357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 358
 359/*
 360 * max perf event sample rate
 361 */
 362#define DEFAULT_MAX_SAMPLE_RATE         100000
 363#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 364#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 365
 366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 367
 368static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 369static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 370
 371static int perf_sample_allowed_ns __read_mostly =
 372        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 373
 374static void update_perf_cpu_limits(void)
 375{
 376        u64 tmp = perf_sample_period_ns;
 377
 378        tmp *= sysctl_perf_cpu_time_max_percent;
 379        tmp = div_u64(tmp, 100);
 380        if (!tmp)
 381                tmp = 1;
 382
 383        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 384}
 385
 386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 387
 388int perf_proc_update_handler(struct ctl_table *table, int write,
 389                void __user *buffer, size_t *lenp,
 390                loff_t *ppos)
 391{
 392        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 393
 394        if (ret || !write)
 395                return ret;
 396
 397        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 398        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 399        update_perf_cpu_limits();
 400
 401        return 0;
 402}
 403
 404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 405
 406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 407                                void __user *buffer, size_t *lenp,
 408                                loff_t *ppos)
 409{
 410        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 411
 412        if (ret || !write)
 413                return ret;
 414
 415        if (sysctl_perf_cpu_time_max_percent == 100 ||
 416            sysctl_perf_cpu_time_max_percent == 0) {
 417                printk(KERN_WARNING
 418                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 419                WRITE_ONCE(perf_sample_allowed_ns, 0);
 420        } else {
 421                update_perf_cpu_limits();
 422        }
 423
 424        return 0;
 425}
 426
 427/*
 428 * perf samples are done in some very critical code paths (NMIs).
 429 * If they take too much CPU time, the system can lock up and not
 430 * get any real work done.  This will drop the sample rate when
 431 * we detect that events are taking too long.
 432 */
 433#define NR_ACCUMULATED_SAMPLES 128
 434static DEFINE_PER_CPU(u64, running_sample_length);
 435
 436static u64 __report_avg;
 437static u64 __report_allowed;
 438
 439static void perf_duration_warn(struct irq_work *w)
 440{
 441        printk_ratelimited(KERN_WARNING
 442                "perf: interrupt took too long (%lld > %lld), lowering "
 443                "kernel.perf_event_max_sample_rate to %d\n",
 444                __report_avg, __report_allowed,
 445                sysctl_perf_event_sample_rate);
 446}
 447
 448static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 449
 450void perf_sample_event_took(u64 sample_len_ns)
 451{
 452        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 453        u64 running_len;
 454        u64 avg_len;
 455        u32 max;
 456
 457        if (max_len == 0)
 458                return;
 459
 460        /* Decay the counter by 1 average sample. */
 461        running_len = __this_cpu_read(running_sample_length);
 462        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 463        running_len += sample_len_ns;
 464        __this_cpu_write(running_sample_length, running_len);
 465
 466        /*
 467         * Note: this will be biased artifically low until we have
 468         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 469         * from having to maintain a count.
 470         */
 471        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 472        if (avg_len <= max_len)
 473                return;
 474
 475        __report_avg = avg_len;
 476        __report_allowed = max_len;
 477
 478        /*
 479         * Compute a throttle threshold 25% below the current duration.
 480         */
 481        avg_len += avg_len / 4;
 482        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 483        if (avg_len < max)
 484                max /= (u32)avg_len;
 485        else
 486                max = 1;
 487
 488        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 489        WRITE_ONCE(max_samples_per_tick, max);
 490
 491        sysctl_perf_event_sample_rate = max * HZ;
 492        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 493
 494        if (!irq_work_queue(&perf_duration_work)) {
 495                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 496                             "kernel.perf_event_max_sample_rate to %d\n",
 497                             __report_avg, __report_allowed,
 498                             sysctl_perf_event_sample_rate);
 499        }
 500}
 501
 502static atomic64_t perf_event_id;
 503
 504static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 505                              enum event_type_t event_type);
 506
 507static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 508                             enum event_type_t event_type,
 509                             struct task_struct *task);
 510
 511static void update_context_time(struct perf_event_context *ctx);
 512static u64 perf_event_time(struct perf_event *event);
 513
 514void __weak perf_event_print_debug(void)        { }
 515
 516extern __weak const char *perf_pmu_name(void)
 517{
 518        return "pmu";
 519}
 520
 521static inline u64 perf_clock(void)
 522{
 523        return local_clock();
 524}
 525
 526static inline u64 perf_event_clock(struct perf_event *event)
 527{
 528        return event->clock();
 529}
 530
 531#ifdef CONFIG_CGROUP_PERF
 532
 533static inline bool
 534perf_cgroup_match(struct perf_event *event)
 535{
 536        struct perf_event_context *ctx = event->ctx;
 537        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 538
 539        /* @event doesn't care about cgroup */
 540        if (!event->cgrp)
 541                return true;
 542
 543        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 544        if (!cpuctx->cgrp)
 545                return false;
 546
 547        /*
 548         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 549         * also enabled for all its descendant cgroups.  If @cpuctx's
 550         * cgroup is a descendant of @event's (the test covers identity
 551         * case), it's a match.
 552         */
 553        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 554                                    event->cgrp->css.cgroup);
 555}
 556
 557static inline void perf_detach_cgroup(struct perf_event *event)
 558{
 559        css_put(&event->cgrp->css);
 560        event->cgrp = NULL;
 561}
 562
 563static inline int is_cgroup_event(struct perf_event *event)
 564{
 565        return event->cgrp != NULL;
 566}
 567
 568static inline u64 perf_cgroup_event_time(struct perf_event *event)
 569{
 570        struct perf_cgroup_info *t;
 571
 572        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 573        return t->time;
 574}
 575
 576static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 577{
 578        struct perf_cgroup_info *info;
 579        u64 now;
 580
 581        now = perf_clock();
 582
 583        info = this_cpu_ptr(cgrp->info);
 584
 585        info->time += now - info->timestamp;
 586        info->timestamp = now;
 587}
 588
 589static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 590{
 591        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 592        if (cgrp_out)
 593                __update_cgrp_time(cgrp_out);
 594}
 595
 596static inline void update_cgrp_time_from_event(struct perf_event *event)
 597{
 598        struct perf_cgroup *cgrp;
 599
 600        /*
 601         * ensure we access cgroup data only when needed and
 602         * when we know the cgroup is pinned (css_get)
 603         */
 604        if (!is_cgroup_event(event))
 605                return;
 606
 607        cgrp = perf_cgroup_from_task(current, event->ctx);
 608        /*
 609         * Do not update time when cgroup is not active
 610         */
 611        if (cgrp == event->cgrp)
 612                __update_cgrp_time(event->cgrp);
 613}
 614
 615static inline void
 616perf_cgroup_set_timestamp(struct task_struct *task,
 617                          struct perf_event_context *ctx)
 618{
 619        struct perf_cgroup *cgrp;
 620        struct perf_cgroup_info *info;
 621
 622        /*
 623         * ctx->lock held by caller
 624         * ensure we do not access cgroup data
 625         * unless we have the cgroup pinned (css_get)
 626         */
 627        if (!task || !ctx->nr_cgroups)
 628                return;
 629
 630        cgrp = perf_cgroup_from_task(task, ctx);
 631        info = this_cpu_ptr(cgrp->info);
 632        info->timestamp = ctx->timestamp;
 633}
 634
 635#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 636#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 637
 638/*
 639 * reschedule events based on the cgroup constraint of task.
 640 *
 641 * mode SWOUT : schedule out everything
 642 * mode SWIN : schedule in based on cgroup for next
 643 */
 644static void perf_cgroup_switch(struct task_struct *task, int mode)
 645{
 646        struct perf_cpu_context *cpuctx;
 647        struct pmu *pmu;
 648        unsigned long flags;
 649
 650        /*
 651         * disable interrupts to avoid geting nr_cgroup
 652         * changes via __perf_event_disable(). Also
 653         * avoids preemption.
 654         */
 655        local_irq_save(flags);
 656
 657        /*
 658         * we reschedule only in the presence of cgroup
 659         * constrained events.
 660         */
 661
 662        list_for_each_entry_rcu(pmu, &pmus, entry) {
 663                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 664                if (cpuctx->unique_pmu != pmu)
 665                        continue; /* ensure we process each cpuctx once */
 666
 667                /*
 668                 * perf_cgroup_events says at least one
 669                 * context on this CPU has cgroup events.
 670                 *
 671                 * ctx->nr_cgroups reports the number of cgroup
 672                 * events for a context.
 673                 */
 674                if (cpuctx->ctx.nr_cgroups > 0) {
 675                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 676                        perf_pmu_disable(cpuctx->ctx.pmu);
 677
 678                        if (mode & PERF_CGROUP_SWOUT) {
 679                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 680                                /*
 681                                 * must not be done before ctxswout due
 682                                 * to event_filter_match() in event_sched_out()
 683                                 */
 684                                cpuctx->cgrp = NULL;
 685                        }
 686
 687                        if (mode & PERF_CGROUP_SWIN) {
 688                                WARN_ON_ONCE(cpuctx->cgrp);
 689                                /*
 690                                 * set cgrp before ctxsw in to allow
 691                                 * event_filter_match() to not have to pass
 692                                 * task around
 693                                 * we pass the cpuctx->ctx to perf_cgroup_from_task()
 694                                 * because cgorup events are only per-cpu
 695                                 */
 696                                cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
 697                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 698                        }
 699                        perf_pmu_enable(cpuctx->ctx.pmu);
 700                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 701                }
 702        }
 703
 704        local_irq_restore(flags);
 705}
 706
 707static inline void perf_cgroup_sched_out(struct task_struct *task,
 708                                         struct task_struct *next)
 709{
 710        struct perf_cgroup *cgrp1;
 711        struct perf_cgroup *cgrp2 = NULL;
 712
 713        rcu_read_lock();
 714        /*
 715         * we come here when we know perf_cgroup_events > 0
 716         * we do not need to pass the ctx here because we know
 717         * we are holding the rcu lock
 718         */
 719        cgrp1 = perf_cgroup_from_task(task, NULL);
 720        cgrp2 = perf_cgroup_from_task(next, NULL);
 721
 722        /*
 723         * only schedule out current cgroup events if we know
 724         * that we are switching to a different cgroup. Otherwise,
 725         * do no touch the cgroup events.
 726         */
 727        if (cgrp1 != cgrp2)
 728                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 729
 730        rcu_read_unlock();
 731}
 732
 733static inline void perf_cgroup_sched_in(struct task_struct *prev,
 734                                        struct task_struct *task)
 735{
 736        struct perf_cgroup *cgrp1;
 737        struct perf_cgroup *cgrp2 = NULL;
 738
 739        rcu_read_lock();
 740        /*
 741         * we come here when we know perf_cgroup_events > 0
 742         * we do not need to pass the ctx here because we know
 743         * we are holding the rcu lock
 744         */
 745        cgrp1 = perf_cgroup_from_task(task, NULL);
 746        cgrp2 = perf_cgroup_from_task(prev, NULL);
 747
 748        /*
 749         * only need to schedule in cgroup events if we are changing
 750         * cgroup during ctxsw. Cgroup events were not scheduled
 751         * out of ctxsw out if that was not the case.
 752         */
 753        if (cgrp1 != cgrp2)
 754                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 755
 756        rcu_read_unlock();
 757}
 758
 759static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 760                                      struct perf_event_attr *attr,
 761                                      struct perf_event *group_leader)
 762{
 763        struct perf_cgroup *cgrp;
 764        struct cgroup_subsys_state *css;
 765        struct fd f = fdget(fd);
 766        int ret = 0;
 767
 768        if (!f.file)
 769                return -EBADF;
 770
 771        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 772                                         &perf_event_cgrp_subsys);
 773        if (IS_ERR(css)) {
 774                ret = PTR_ERR(css);
 775                goto out;
 776        }
 777
 778        cgrp = container_of(css, struct perf_cgroup, css);
 779        event->cgrp = cgrp;
 780
 781        /*
 782         * all events in a group must monitor
 783         * the same cgroup because a task belongs
 784         * to only one perf cgroup at a time
 785         */
 786        if (group_leader && group_leader->cgrp != cgrp) {
 787                perf_detach_cgroup(event);
 788                ret = -EINVAL;
 789        }
 790out:
 791        fdput(f);
 792        return ret;
 793}
 794
 795static inline void
 796perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 797{
 798        struct perf_cgroup_info *t;
 799        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 800        event->shadow_ctx_time = now - t->timestamp;
 801}
 802
 803static inline void
 804perf_cgroup_defer_enabled(struct perf_event *event)
 805{
 806        /*
 807         * when the current task's perf cgroup does not match
 808         * the event's, we need to remember to call the
 809         * perf_mark_enable() function the first time a task with
 810         * a matching perf cgroup is scheduled in.
 811         */
 812        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 813                event->cgrp_defer_enabled = 1;
 814}
 815
 816static inline void
 817perf_cgroup_mark_enabled(struct perf_event *event,
 818                         struct perf_event_context *ctx)
 819{
 820        struct perf_event *sub;
 821        u64 tstamp = perf_event_time(event);
 822
 823        if (!event->cgrp_defer_enabled)
 824                return;
 825
 826        event->cgrp_defer_enabled = 0;
 827
 828        event->tstamp_enabled = tstamp - event->total_time_enabled;
 829        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 830                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 831                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 832                        sub->cgrp_defer_enabled = 0;
 833                }
 834        }
 835}
 836#else /* !CONFIG_CGROUP_PERF */
 837
 838static inline bool
 839perf_cgroup_match(struct perf_event *event)
 840{
 841        return true;
 842}
 843
 844static inline void perf_detach_cgroup(struct perf_event *event)
 845{}
 846
 847static inline int is_cgroup_event(struct perf_event *event)
 848{
 849        return 0;
 850}
 851
 852static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 853{
 854        return 0;
 855}
 856
 857static inline void update_cgrp_time_from_event(struct perf_event *event)
 858{
 859}
 860
 861static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 862{
 863}
 864
 865static inline void perf_cgroup_sched_out(struct task_struct *task,
 866                                         struct task_struct *next)
 867{
 868}
 869
 870static inline void perf_cgroup_sched_in(struct task_struct *prev,
 871                                        struct task_struct *task)
 872{
 873}
 874
 875static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 876                                      struct perf_event_attr *attr,
 877                                      struct perf_event *group_leader)
 878{
 879        return -EINVAL;
 880}
 881
 882static inline void
 883perf_cgroup_set_timestamp(struct task_struct *task,
 884                          struct perf_event_context *ctx)
 885{
 886}
 887
 888void
 889perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 890{
 891}
 892
 893static inline void
 894perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 895{
 896}
 897
 898static inline u64 perf_cgroup_event_time(struct perf_event *event)
 899{
 900        return 0;
 901}
 902
 903static inline void
 904perf_cgroup_defer_enabled(struct perf_event *event)
 905{
 906}
 907
 908static inline void
 909perf_cgroup_mark_enabled(struct perf_event *event,
 910                         struct perf_event_context *ctx)
 911{
 912}
 913#endif
 914
 915/*
 916 * set default to be dependent on timer tick just
 917 * like original code
 918 */
 919#define PERF_CPU_HRTIMER (1000 / HZ)
 920/*
 921 * function must be called with interrupts disbled
 922 */
 923static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
 924{
 925        struct perf_cpu_context *cpuctx;
 926        int rotations = 0;
 927
 928        WARN_ON(!irqs_disabled());
 929
 930        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 931        rotations = perf_rotate_context(cpuctx);
 932
 933        raw_spin_lock(&cpuctx->hrtimer_lock);
 934        if (rotations)
 935                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 936        else
 937                cpuctx->hrtimer_active = 0;
 938        raw_spin_unlock(&cpuctx->hrtimer_lock);
 939
 940        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
 941}
 942
 943static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 944{
 945        struct hrtimer *timer = &cpuctx->hrtimer;
 946        struct pmu *pmu = cpuctx->ctx.pmu;
 947        u64 interval;
 948
 949        /* no multiplexing needed for SW PMU */
 950        if (pmu->task_ctx_nr == perf_sw_context)
 951                return;
 952
 953        /*
 954         * check default is sane, if not set then force to
 955         * default interval (1/tick)
 956         */
 957        interval = pmu->hrtimer_interval_ms;
 958        if (interval < 1)
 959                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 960
 961        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
 962
 963        raw_spin_lock_init(&cpuctx->hrtimer_lock);
 964        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
 965        timer->function = perf_mux_hrtimer_handler;
 966}
 967
 968static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
 969{
 970        struct hrtimer *timer = &cpuctx->hrtimer;
 971        struct pmu *pmu = cpuctx->ctx.pmu;
 972        unsigned long flags;
 973
 974        /* not for SW PMU */
 975        if (pmu->task_ctx_nr == perf_sw_context)
 976                return 0;
 977
 978        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
 979        if (!cpuctx->hrtimer_active) {
 980                cpuctx->hrtimer_active = 1;
 981                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
 982                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 983        }
 984        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
 985
 986        return 0;
 987}
 988
 989void perf_pmu_disable(struct pmu *pmu)
 990{
 991        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 992        if (!(*count)++)
 993                pmu->pmu_disable(pmu);
 994}
 995
 996void perf_pmu_enable(struct pmu *pmu)
 997{
 998        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 999        if (!--(*count))
1000                pmu->pmu_enable(pmu);
1001}
1002
1003static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1004
1005/*
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
1010 */
1011static void perf_event_ctx_activate(struct perf_event_context *ctx)
1012{
1013        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1014
1015        WARN_ON(!irqs_disabled());
1016
1017        WARN_ON(!list_empty(&ctx->active_ctx_list));
1018
1019        list_add(&ctx->active_ctx_list, head);
1020}
1021
1022static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023{
1024        WARN_ON(!irqs_disabled());
1025
1026        WARN_ON(list_empty(&ctx->active_ctx_list));
1027
1028        list_del_init(&ctx->active_ctx_list);
1029}
1030
1031static void get_ctx(struct perf_event_context *ctx)
1032{
1033        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1034}
1035
1036static void free_ctx(struct rcu_head *head)
1037{
1038        struct perf_event_context *ctx;
1039
1040        ctx = container_of(head, struct perf_event_context, rcu_head);
1041        kfree(ctx->task_ctx_data);
1042        kfree(ctx);
1043}
1044
1045static void put_ctx(struct perf_event_context *ctx)
1046{
1047        if (atomic_dec_and_test(&ctx->refcount)) {
1048                if (ctx->parent_ctx)
1049                        put_ctx(ctx->parent_ctx);
1050                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1051                        put_task_struct(ctx->task);
1052                call_rcu(&ctx->rcu_head, free_ctx);
1053        }
1054}
1055
1056/*
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1059 *
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062 *
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1065 *
1066 *  - perf_event_exit_task_context()    [ child , 0 ]
1067 *      perf_event_exit_event()
1068 *        put_event()                   [ parent, 1 ]
1069 *
1070 *  - perf_event_init_context()         [ parent, 0 ]
1071 *      inherit_task_group()
1072 *        inherit_group()
1073 *          inherit_event()
1074 *            perf_event_alloc()
1075 *              perf_init_event()
1076 *                perf_try_init_event() [ child , 1 ]
1077 *
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1082 *
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1085 * interact.
1086 *
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1091 *
1092 * The places that change perf_event::ctx will issue:
1093 *
1094 *   perf_remove_from_context();
1095 *   synchronize_rcu();
1096 *   perf_install_in_context();
1097 *
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1103 *
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106 * function.
1107 *
1108 * Lock order:
1109 *    cred_guard_mutex
1110 *      task_struct::perf_event_mutex
1111 *        perf_event_context::mutex
1112 *          perf_event::child_mutex;
1113 *            perf_event_context::lock
1114 *          perf_event::mmap_mutex
1115 *          mmap_sem
1116 */
1117static struct perf_event_context *
1118perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1119{
1120        struct perf_event_context *ctx;
1121
1122again:
1123        rcu_read_lock();
1124        ctx = ACCESS_ONCE(event->ctx);
1125        if (!atomic_inc_not_zero(&ctx->refcount)) {
1126                rcu_read_unlock();
1127                goto again;
1128        }
1129        rcu_read_unlock();
1130
1131        mutex_lock_nested(&ctx->mutex, nesting);
1132        if (event->ctx != ctx) {
1133                mutex_unlock(&ctx->mutex);
1134                put_ctx(ctx);
1135                goto again;
1136        }
1137
1138        return ctx;
1139}
1140
1141static inline struct perf_event_context *
1142perf_event_ctx_lock(struct perf_event *event)
1143{
1144        return perf_event_ctx_lock_nested(event, 0);
1145}
1146
1147static void perf_event_ctx_unlock(struct perf_event *event,
1148                                  struct perf_event_context *ctx)
1149{
1150        mutex_unlock(&ctx->mutex);
1151        put_ctx(ctx);
1152}
1153
1154/*
1155 * This must be done under the ctx->lock, such as to serialize against
1156 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1157 * calling scheduler related locks and ctx->lock nests inside those.
1158 */
1159static __must_check struct perf_event_context *
1160unclone_ctx(struct perf_event_context *ctx)
1161{
1162        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1163
1164        lockdep_assert_held(&ctx->lock);
1165
1166        if (parent_ctx)
1167                ctx->parent_ctx = NULL;
1168        ctx->generation++;
1169
1170        return parent_ctx;
1171}
1172
1173static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1174{
1175        /*
1176         * only top level events have the pid namespace they were created in
1177         */
1178        if (event->parent)
1179                event = event->parent;
1180
1181        return task_tgid_nr_ns(p, event->ns);
1182}
1183
1184static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1185{
1186        /*
1187         * only top level events have the pid namespace they were created in
1188         */
1189        if (event->parent)
1190                event = event->parent;
1191
1192        return task_pid_nr_ns(p, event->ns);
1193}
1194
1195/*
1196 * If we inherit events we want to return the parent event id
1197 * to userspace.
1198 */
1199static u64 primary_event_id(struct perf_event *event)
1200{
1201        u64 id = event->id;
1202
1203        if (event->parent)
1204                id = event->parent->id;
1205
1206        return id;
1207}
1208
1209/*
1210 * Get the perf_event_context for a task and lock it.
1211 *
1212 * This has to cope with with the fact that until it is locked,
1213 * the context could get moved to another task.
1214 */
1215static struct perf_event_context *
1216perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1217{
1218        struct perf_event_context *ctx;
1219
1220retry:
1221        /*
1222         * One of the few rules of preemptible RCU is that one cannot do
1223         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1224         * part of the read side critical section was irqs-enabled -- see
1225         * rcu_read_unlock_special().
1226         *
1227         * Since ctx->lock nests under rq->lock we must ensure the entire read
1228         * side critical section has interrupts disabled.
1229         */
1230        local_irq_save(*flags);
1231        rcu_read_lock();
1232        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1233        if (ctx) {
1234                /*
1235                 * If this context is a clone of another, it might
1236                 * get swapped for another underneath us by
1237                 * perf_event_task_sched_out, though the
1238                 * rcu_read_lock() protects us from any context
1239                 * getting freed.  Lock the context and check if it
1240                 * got swapped before we could get the lock, and retry
1241                 * if so.  If we locked the right context, then it
1242                 * can't get swapped on us any more.
1243                 */
1244                raw_spin_lock(&ctx->lock);
1245                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1246                        raw_spin_unlock(&ctx->lock);
1247                        rcu_read_unlock();
1248                        local_irq_restore(*flags);
1249                        goto retry;
1250                }
1251
1252                if (ctx->task == TASK_TOMBSTONE ||
1253                    !atomic_inc_not_zero(&ctx->refcount)) {
1254                        raw_spin_unlock(&ctx->lock);
1255                        ctx = NULL;
1256                } else {
1257                        WARN_ON_ONCE(ctx->task != task);
1258                }
1259        }
1260        rcu_read_unlock();
1261        if (!ctx)
1262                local_irq_restore(*flags);
1263        return ctx;
1264}
1265
1266/*
1267 * Get the context for a task and increment its pin_count so it
1268 * can't get swapped to another task.  This also increments its
1269 * reference count so that the context can't get freed.
1270 */
1271static struct perf_event_context *
1272perf_pin_task_context(struct task_struct *task, int ctxn)
1273{
1274        struct perf_event_context *ctx;
1275        unsigned long flags;
1276
1277        ctx = perf_lock_task_context(task, ctxn, &flags);
1278        if (ctx) {
1279                ++ctx->pin_count;
1280                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1281        }
1282        return ctx;
1283}
1284
1285static void perf_unpin_context(struct perf_event_context *ctx)
1286{
1287        unsigned long flags;
1288
1289        raw_spin_lock_irqsave(&ctx->lock, flags);
1290        --ctx->pin_count;
1291        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1292}
1293
1294/*
1295 * Update the record of the current time in a context.
1296 */
1297static void update_context_time(struct perf_event_context *ctx)
1298{
1299        u64 now = perf_clock();
1300
1301        ctx->time += now - ctx->timestamp;
1302        ctx->timestamp = now;
1303}
1304
1305static u64 perf_event_time(struct perf_event *event)
1306{
1307        struct perf_event_context *ctx = event->ctx;
1308
1309        if (is_cgroup_event(event))
1310                return perf_cgroup_event_time(event);
1311
1312        return ctx ? ctx->time : 0;
1313}
1314
1315/*
1316 * Update the total_time_enabled and total_time_running fields for a event.
1317 */
1318static void update_event_times(struct perf_event *event)
1319{
1320        struct perf_event_context *ctx = event->ctx;
1321        u64 run_end;
1322
1323        lockdep_assert_held(&ctx->lock);
1324
1325        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1326            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1327                return;
1328
1329        /*
1330         * in cgroup mode, time_enabled represents
1331         * the time the event was enabled AND active
1332         * tasks were in the monitored cgroup. This is
1333         * independent of the activity of the context as
1334         * there may be a mix of cgroup and non-cgroup events.
1335         *
1336         * That is why we treat cgroup events differently
1337         * here.
1338         */
1339        if (is_cgroup_event(event))
1340                run_end = perf_cgroup_event_time(event);
1341        else if (ctx->is_active)
1342                run_end = ctx->time;
1343        else
1344                run_end = event->tstamp_stopped;
1345
1346        event->total_time_enabled = run_end - event->tstamp_enabled;
1347
1348        if (event->state == PERF_EVENT_STATE_INACTIVE)
1349                run_end = event->tstamp_stopped;
1350        else
1351                run_end = perf_event_time(event);
1352
1353        event->total_time_running = run_end - event->tstamp_running;
1354
1355}
1356
1357/*
1358 * Update total_time_enabled and total_time_running for all events in a group.
1359 */
1360static void update_group_times(struct perf_event *leader)
1361{
1362        struct perf_event *event;
1363
1364        update_event_times(leader);
1365        list_for_each_entry(event, &leader->sibling_list, group_entry)
1366                update_event_times(event);
1367}
1368
1369static struct list_head *
1370ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1371{
1372        if (event->attr.pinned)
1373                return &ctx->pinned_groups;
1374        else
1375                return &ctx->flexible_groups;
1376}
1377
1378/*
1379 * Add a event from the lists for its context.
1380 * Must be called with ctx->mutex and ctx->lock held.
1381 */
1382static void
1383list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1384{
1385        lockdep_assert_held(&ctx->lock);
1386
1387        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1388        event->attach_state |= PERF_ATTACH_CONTEXT;
1389
1390        /*
1391         * If we're a stand alone event or group leader, we go to the context
1392         * list, group events are kept attached to the group so that
1393         * perf_group_detach can, at all times, locate all siblings.
1394         */
1395        if (event->group_leader == event) {
1396                struct list_head *list;
1397
1398                if (is_software_event(event))
1399                        event->group_flags |= PERF_GROUP_SOFTWARE;
1400
1401                list = ctx_group_list(event, ctx);
1402                list_add_tail(&event->group_entry, list);
1403        }
1404
1405        if (is_cgroup_event(event))
1406                ctx->nr_cgroups++;
1407
1408        list_add_rcu(&event->event_entry, &ctx->event_list);
1409        ctx->nr_events++;
1410        if (event->attr.inherit_stat)
1411                ctx->nr_stat++;
1412
1413        ctx->generation++;
1414}
1415
1416/*
1417 * Initialize event state based on the perf_event_attr::disabled.
1418 */
1419static inline void perf_event__state_init(struct perf_event *event)
1420{
1421        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1422                                              PERF_EVENT_STATE_INACTIVE;
1423}
1424
1425static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1426{
1427        int entry = sizeof(u64); /* value */
1428        int size = 0;
1429        int nr = 1;
1430
1431        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1432                size += sizeof(u64);
1433
1434        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1435                size += sizeof(u64);
1436
1437        if (event->attr.read_format & PERF_FORMAT_ID)
1438                entry += sizeof(u64);
1439
1440        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1441                nr += nr_siblings;
1442                size += sizeof(u64);
1443        }
1444
1445        size += entry * nr;
1446        event->read_size = size;
1447}
1448
1449static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1450{
1451        struct perf_sample_data *data;
1452        u16 size = 0;
1453
1454        if (sample_type & PERF_SAMPLE_IP)
1455                size += sizeof(data->ip);
1456
1457        if (sample_type & PERF_SAMPLE_ADDR)
1458                size += sizeof(data->addr);
1459
1460        if (sample_type & PERF_SAMPLE_PERIOD)
1461                size += sizeof(data->period);
1462
1463        if (sample_type & PERF_SAMPLE_WEIGHT)
1464                size += sizeof(data->weight);
1465
1466        if (sample_type & PERF_SAMPLE_READ)
1467                size += event->read_size;
1468
1469        if (sample_type & PERF_SAMPLE_DATA_SRC)
1470                size += sizeof(data->data_src.val);
1471
1472        if (sample_type & PERF_SAMPLE_TRANSACTION)
1473                size += sizeof(data->txn);
1474
1475        event->header_size = size;
1476}
1477
1478/*
1479 * Called at perf_event creation and when events are attached/detached from a
1480 * group.
1481 */
1482static void perf_event__header_size(struct perf_event *event)
1483{
1484        __perf_event_read_size(event,
1485                               event->group_leader->nr_siblings);
1486        __perf_event_header_size(event, event->attr.sample_type);
1487}
1488
1489static void perf_event__id_header_size(struct perf_event *event)
1490{
1491        struct perf_sample_data *data;
1492        u64 sample_type = event->attr.sample_type;
1493        u16 size = 0;
1494
1495        if (sample_type & PERF_SAMPLE_TID)
1496                size += sizeof(data->tid_entry);
1497
1498        if (sample_type & PERF_SAMPLE_TIME)
1499                size += sizeof(data->time);
1500
1501        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1502                size += sizeof(data->id);
1503
1504        if (sample_type & PERF_SAMPLE_ID)
1505                size += sizeof(data->id);
1506
1507        if (sample_type & PERF_SAMPLE_STREAM_ID)
1508                size += sizeof(data->stream_id);
1509
1510        if (sample_type & PERF_SAMPLE_CPU)
1511                size += sizeof(data->cpu_entry);
1512
1513        event->id_header_size = size;
1514}
1515
1516static bool perf_event_validate_size(struct perf_event *event)
1517{
1518        /*
1519         * The values computed here will be over-written when we actually
1520         * attach the event.
1521         */
1522        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1523        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1524        perf_event__id_header_size(event);
1525
1526        /*
1527         * Sum the lot; should not exceed the 64k limit we have on records.
1528         * Conservative limit to allow for callchains and other variable fields.
1529         */
1530        if (event->read_size + event->header_size +
1531            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1532                return false;
1533
1534        return true;
1535}
1536
1537static void perf_group_attach(struct perf_event *event)
1538{
1539        struct perf_event *group_leader = event->group_leader, *pos;
1540
1541        /*
1542         * We can have double attach due to group movement in perf_event_open.
1543         */
1544        if (event->attach_state & PERF_ATTACH_GROUP)
1545                return;
1546
1547        event->attach_state |= PERF_ATTACH_GROUP;
1548
1549        if (group_leader == event)
1550                return;
1551
1552        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1553
1554        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1555                        !is_software_event(event))
1556                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1557
1558        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1559        group_leader->nr_siblings++;
1560
1561        perf_event__header_size(group_leader);
1562
1563        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1564                perf_event__header_size(pos);
1565}
1566
1567/*
1568 * Remove a event from the lists for its context.
1569 * Must be called with ctx->mutex and ctx->lock held.
1570 */
1571static void
1572list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1573{
1574        struct perf_cpu_context *cpuctx;
1575
1576        WARN_ON_ONCE(event->ctx != ctx);
1577        lockdep_assert_held(&ctx->lock);
1578
1579        /*
1580         * We can have double detach due to exit/hot-unplug + close.
1581         */
1582        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1583                return;
1584
1585        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1586
1587        if (is_cgroup_event(event)) {
1588                ctx->nr_cgroups--;
1589                /*
1590                 * Because cgroup events are always per-cpu events, this will
1591                 * always be called from the right CPU.
1592                 */
1593                cpuctx = __get_cpu_context(ctx);
1594                /*
1595                 * If there are no more cgroup events then clear cgrp to avoid
1596                 * stale pointer in update_cgrp_time_from_cpuctx().
1597                 */
1598                if (!ctx->nr_cgroups)
1599                        cpuctx->cgrp = NULL;
1600        }
1601
1602        ctx->nr_events--;
1603        if (event->attr.inherit_stat)
1604                ctx->nr_stat--;
1605
1606        list_del_rcu(&event->event_entry);
1607
1608        if (event->group_leader == event)
1609                list_del_init(&event->group_entry);
1610
1611        update_group_times(event);
1612
1613        /*
1614         * If event was in error state, then keep it
1615         * that way, otherwise bogus counts will be
1616         * returned on read(). The only way to get out
1617         * of error state is by explicit re-enabling
1618         * of the event
1619         */
1620        if (event->state > PERF_EVENT_STATE_OFF)
1621                event->state = PERF_EVENT_STATE_OFF;
1622
1623        ctx->generation++;
1624}
1625
1626static void perf_group_detach(struct perf_event *event)
1627{
1628        struct perf_event *sibling, *tmp;
1629        struct list_head *list = NULL;
1630
1631        /*
1632         * We can have double detach due to exit/hot-unplug + close.
1633         */
1634        if (!(event->attach_state & PERF_ATTACH_GROUP))
1635                return;
1636
1637        event->attach_state &= ~PERF_ATTACH_GROUP;
1638
1639        /*
1640         * If this is a sibling, remove it from its group.
1641         */
1642        if (event->group_leader != event) {
1643                list_del_init(&event->group_entry);
1644                event->group_leader->nr_siblings--;
1645                goto out;
1646        }
1647
1648        if (!list_empty(&event->group_entry))
1649                list = &event->group_entry;
1650
1651        /*
1652         * If this was a group event with sibling events then
1653         * upgrade the siblings to singleton events by adding them
1654         * to whatever list we are on.
1655         */
1656        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1657                if (list)
1658                        list_move_tail(&sibling->group_entry, list);
1659                sibling->group_leader = sibling;
1660
1661                /* Inherit group flags from the previous leader */
1662                sibling->group_flags = event->group_flags;
1663
1664                WARN_ON_ONCE(sibling->ctx != event->ctx);
1665        }
1666
1667out:
1668        perf_event__header_size(event->group_leader);
1669
1670        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1671                perf_event__header_size(tmp);
1672}
1673
1674static bool is_orphaned_event(struct perf_event *event)
1675{
1676        return event->state == PERF_EVENT_STATE_DEAD;
1677}
1678
1679static inline int pmu_filter_match(struct perf_event *event)
1680{
1681        struct pmu *pmu = event->pmu;
1682        return pmu->filter_match ? pmu->filter_match(event) : 1;
1683}
1684
1685static inline int
1686event_filter_match(struct perf_event *event)
1687{
1688        return (event->cpu == -1 || event->cpu == smp_processor_id())
1689            && perf_cgroup_match(event) && pmu_filter_match(event);
1690}
1691
1692static void
1693event_sched_out(struct perf_event *event,
1694                  struct perf_cpu_context *cpuctx,
1695                  struct perf_event_context *ctx)
1696{
1697        u64 tstamp = perf_event_time(event);
1698        u64 delta;
1699
1700        WARN_ON_ONCE(event->ctx != ctx);
1701        lockdep_assert_held(&ctx->lock);
1702
1703        /*
1704         * An event which could not be activated because of
1705         * filter mismatch still needs to have its timings
1706         * maintained, otherwise bogus information is return
1707         * via read() for time_enabled, time_running:
1708         */
1709        if (event->state == PERF_EVENT_STATE_INACTIVE
1710            && !event_filter_match(event)) {
1711                delta = tstamp - event->tstamp_stopped;
1712                event->tstamp_running += delta;
1713                event->tstamp_stopped = tstamp;
1714        }
1715
1716        if (event->state != PERF_EVENT_STATE_ACTIVE)
1717                return;
1718
1719        perf_pmu_disable(event->pmu);
1720
1721        event->tstamp_stopped = tstamp;
1722        event->pmu->del(event, 0);
1723        event->oncpu = -1;
1724        event->state = PERF_EVENT_STATE_INACTIVE;
1725        if (event->pending_disable) {
1726                event->pending_disable = 0;
1727                event->state = PERF_EVENT_STATE_OFF;
1728        }
1729
1730        if (!is_software_event(event))
1731                cpuctx->active_oncpu--;
1732        if (!--ctx->nr_active)
1733                perf_event_ctx_deactivate(ctx);
1734        if (event->attr.freq && event->attr.sample_freq)
1735                ctx->nr_freq--;
1736        if (event->attr.exclusive || !cpuctx->active_oncpu)
1737                cpuctx->exclusive = 0;
1738
1739        perf_pmu_enable(event->pmu);
1740}
1741
1742static void
1743group_sched_out(struct perf_event *group_event,
1744                struct perf_cpu_context *cpuctx,
1745                struct perf_event_context *ctx)
1746{
1747        struct perf_event *event;
1748        int state = group_event->state;
1749
1750        event_sched_out(group_event, cpuctx, ctx);
1751
1752        /*
1753         * Schedule out siblings (if any):
1754         */
1755        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1756                event_sched_out(event, cpuctx, ctx);
1757
1758        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1759                cpuctx->exclusive = 0;
1760}
1761
1762#define DETACH_GROUP    0x01UL
1763
1764/*
1765 * Cross CPU call to remove a performance event
1766 *
1767 * We disable the event on the hardware level first. After that we
1768 * remove it from the context list.
1769 */
1770static void
1771__perf_remove_from_context(struct perf_event *event,
1772                           struct perf_cpu_context *cpuctx,
1773                           struct perf_event_context *ctx,
1774                           void *info)
1775{
1776        unsigned long flags = (unsigned long)info;
1777
1778        event_sched_out(event, cpuctx, ctx);
1779        if (flags & DETACH_GROUP)
1780                perf_group_detach(event);
1781        list_del_event(event, ctx);
1782
1783        if (!ctx->nr_events && ctx->is_active) {
1784                ctx->is_active = 0;
1785                if (ctx->task) {
1786                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1787                        cpuctx->task_ctx = NULL;
1788                }
1789        }
1790}
1791
1792/*
1793 * Remove the event from a task's (or a CPU's) list of events.
1794 *
1795 * If event->ctx is a cloned context, callers must make sure that
1796 * every task struct that event->ctx->task could possibly point to
1797 * remains valid.  This is OK when called from perf_release since
1798 * that only calls us on the top-level context, which can't be a clone.
1799 * When called from perf_event_exit_task, it's OK because the
1800 * context has been detached from its task.
1801 */
1802static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1803{
1804        lockdep_assert_held(&event->ctx->mutex);
1805
1806        event_function_call(event, __perf_remove_from_context, (void *)flags);
1807}
1808
1809/*
1810 * Cross CPU call to disable a performance event
1811 */
1812static void __perf_event_disable(struct perf_event *event,
1813                                 struct perf_cpu_context *cpuctx,
1814                                 struct perf_event_context *ctx,
1815                                 void *info)
1816{
1817        if (event->state < PERF_EVENT_STATE_INACTIVE)
1818                return;
1819
1820        update_context_time(ctx);
1821        update_cgrp_time_from_event(event);
1822        update_group_times(event);
1823        if (event == event->group_leader)
1824                group_sched_out(event, cpuctx, ctx);
1825        else
1826                event_sched_out(event, cpuctx, ctx);
1827        event->state = PERF_EVENT_STATE_OFF;
1828}
1829
1830/*
1831 * Disable a event.
1832 *
1833 * If event->ctx is a cloned context, callers must make sure that
1834 * every task struct that event->ctx->task could possibly point to
1835 * remains valid.  This condition is satisifed when called through
1836 * perf_event_for_each_child or perf_event_for_each because they
1837 * hold the top-level event's child_mutex, so any descendant that
1838 * goes to exit will block in perf_event_exit_event().
1839 *
1840 * When called from perf_pending_event it's OK because event->ctx
1841 * is the current context on this CPU and preemption is disabled,
1842 * hence we can't get into perf_event_task_sched_out for this context.
1843 */
1844static void _perf_event_disable(struct perf_event *event)
1845{
1846        struct perf_event_context *ctx = event->ctx;
1847
1848        raw_spin_lock_irq(&ctx->lock);
1849        if (event->state <= PERF_EVENT_STATE_OFF) {
1850                raw_spin_unlock_irq(&ctx->lock);
1851                return;
1852        }
1853        raw_spin_unlock_irq(&ctx->lock);
1854
1855        event_function_call(event, __perf_event_disable, NULL);
1856}
1857
1858void perf_event_disable_local(struct perf_event *event)
1859{
1860        event_function_local(event, __perf_event_disable, NULL);
1861}
1862
1863/*
1864 * Strictly speaking kernel users cannot create groups and therefore this
1865 * interface does not need the perf_event_ctx_lock() magic.
1866 */
1867void perf_event_disable(struct perf_event *event)
1868{
1869        struct perf_event_context *ctx;
1870
1871        ctx = perf_event_ctx_lock(event);
1872        _perf_event_disable(event);
1873        perf_event_ctx_unlock(event, ctx);
1874}
1875EXPORT_SYMBOL_GPL(perf_event_disable);
1876
1877static void perf_set_shadow_time(struct perf_event *event,
1878                                 struct perf_event_context *ctx,
1879                                 u64 tstamp)
1880{
1881        /*
1882         * use the correct time source for the time snapshot
1883         *
1884         * We could get by without this by leveraging the
1885         * fact that to get to this function, the caller
1886         * has most likely already called update_context_time()
1887         * and update_cgrp_time_xx() and thus both timestamp
1888         * are identical (or very close). Given that tstamp is,
1889         * already adjusted for cgroup, we could say that:
1890         *    tstamp - ctx->timestamp
1891         * is equivalent to
1892         *    tstamp - cgrp->timestamp.
1893         *
1894         * Then, in perf_output_read(), the calculation would
1895         * work with no changes because:
1896         * - event is guaranteed scheduled in
1897         * - no scheduled out in between
1898         * - thus the timestamp would be the same
1899         *
1900         * But this is a bit hairy.
1901         *
1902         * So instead, we have an explicit cgroup call to remain
1903         * within the time time source all along. We believe it
1904         * is cleaner and simpler to understand.
1905         */
1906        if (is_cgroup_event(event))
1907                perf_cgroup_set_shadow_time(event, tstamp);
1908        else
1909                event->shadow_ctx_time = tstamp - ctx->timestamp;
1910}
1911
1912#define MAX_INTERRUPTS (~0ULL)
1913
1914static void perf_log_throttle(struct perf_event *event, int enable);
1915static void perf_log_itrace_start(struct perf_event *event);
1916
1917static int
1918event_sched_in(struct perf_event *event,
1919                 struct perf_cpu_context *cpuctx,
1920                 struct perf_event_context *ctx)
1921{
1922        u64 tstamp = perf_event_time(event);
1923        int ret = 0;
1924
1925        lockdep_assert_held(&ctx->lock);
1926
1927        if (event->state <= PERF_EVENT_STATE_OFF)
1928                return 0;
1929
1930        event->state = PERF_EVENT_STATE_ACTIVE;
1931        event->oncpu = smp_processor_id();
1932
1933        /*
1934         * Unthrottle events, since we scheduled we might have missed several
1935         * ticks already, also for a heavily scheduling task there is little
1936         * guarantee it'll get a tick in a timely manner.
1937         */
1938        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1939                perf_log_throttle(event, 1);
1940                event->hw.interrupts = 0;
1941        }
1942
1943        /*
1944         * The new state must be visible before we turn it on in the hardware:
1945         */
1946        smp_wmb();
1947
1948        perf_pmu_disable(event->pmu);
1949
1950        perf_set_shadow_time(event, ctx, tstamp);
1951
1952        perf_log_itrace_start(event);
1953
1954        if (event->pmu->add(event, PERF_EF_START)) {
1955                event->state = PERF_EVENT_STATE_INACTIVE;
1956                event->oncpu = -1;
1957                ret = -EAGAIN;
1958                goto out;
1959        }
1960
1961        event->tstamp_running += tstamp - event->tstamp_stopped;
1962
1963        if (!is_software_event(event))
1964                cpuctx->active_oncpu++;
1965        if (!ctx->nr_active++)
1966                perf_event_ctx_activate(ctx);
1967        if (event->attr.freq && event->attr.sample_freq)
1968                ctx->nr_freq++;
1969
1970        if (event->attr.exclusive)
1971                cpuctx->exclusive = 1;
1972
1973out:
1974        perf_pmu_enable(event->pmu);
1975
1976        return ret;
1977}
1978
1979static int
1980group_sched_in(struct perf_event *group_event,
1981               struct perf_cpu_context *cpuctx,
1982               struct perf_event_context *ctx)
1983{
1984        struct perf_event *event, *partial_group = NULL;
1985        struct pmu *pmu = ctx->pmu;
1986        u64 now = ctx->time;
1987        bool simulate = false;
1988
1989        if (group_event->state == PERF_EVENT_STATE_OFF)
1990                return 0;
1991
1992        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1993
1994        if (event_sched_in(group_event, cpuctx, ctx)) {
1995                pmu->cancel_txn(pmu);
1996                perf_mux_hrtimer_restart(cpuctx);
1997                return -EAGAIN;
1998        }
1999
2000        /*
2001         * Schedule in siblings as one group (if any):
2002         */
2003        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004                if (event_sched_in(event, cpuctx, ctx)) {
2005                        partial_group = event;
2006                        goto group_error;
2007                }
2008        }
2009
2010        if (!pmu->commit_txn(pmu))
2011                return 0;
2012
2013group_error:
2014        /*
2015         * Groups can be scheduled in as one unit only, so undo any
2016         * partial group before returning:
2017         * The events up to the failed event are scheduled out normally,
2018         * tstamp_stopped will be updated.
2019         *
2020         * The failed events and the remaining siblings need to have
2021         * their timings updated as if they had gone thru event_sched_in()
2022         * and event_sched_out(). This is required to get consistent timings
2023         * across the group. This also takes care of the case where the group
2024         * could never be scheduled by ensuring tstamp_stopped is set to mark
2025         * the time the event was actually stopped, such that time delta
2026         * calculation in update_event_times() is correct.
2027         */
2028        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2029                if (event == partial_group)
2030                        simulate = true;
2031
2032                if (simulate) {
2033                        event->tstamp_running += now - event->tstamp_stopped;
2034                        event->tstamp_stopped = now;
2035                } else {
2036                        event_sched_out(event, cpuctx, ctx);
2037                }
2038        }
2039        event_sched_out(group_event, cpuctx, ctx);
2040
2041        pmu->cancel_txn(pmu);
2042
2043        perf_mux_hrtimer_restart(cpuctx);
2044
2045        return -EAGAIN;
2046}
2047
2048/*
2049 * Work out whether we can put this event group on the CPU now.
2050 */
2051static int group_can_go_on(struct perf_event *event,
2052                           struct perf_cpu_context *cpuctx,
2053                           int can_add_hw)
2054{
2055        /*
2056         * Groups consisting entirely of software events can always go on.
2057         */
2058        if (event->group_flags & PERF_GROUP_SOFTWARE)
2059                return 1;
2060        /*
2061         * If an exclusive group is already on, no other hardware
2062         * events can go on.
2063         */
2064        if (cpuctx->exclusive)
2065                return 0;
2066        /*
2067         * If this group is exclusive and there are already
2068         * events on the CPU, it can't go on.
2069         */
2070        if (event->attr.exclusive && cpuctx->active_oncpu)
2071                return 0;
2072        /*
2073         * Otherwise, try to add it if all previous groups were able
2074         * to go on.
2075         */
2076        return can_add_hw;
2077}
2078
2079static void add_event_to_ctx(struct perf_event *event,
2080                               struct perf_event_context *ctx)
2081{
2082        u64 tstamp = perf_event_time(event);
2083
2084        list_add_event(event, ctx);
2085        perf_group_attach(event);
2086        event->tstamp_enabled = tstamp;
2087        event->tstamp_running = tstamp;
2088        event->tstamp_stopped = tstamp;
2089}
2090
2091static void ctx_sched_out(struct perf_event_context *ctx,
2092                          struct perf_cpu_context *cpuctx,
2093                          enum event_type_t event_type);
2094static void
2095ctx_sched_in(struct perf_event_context *ctx,
2096             struct perf_cpu_context *cpuctx,
2097             enum event_type_t event_type,
2098             struct task_struct *task);
2099
2100static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2101                               struct perf_event_context *ctx)
2102{
2103        if (!cpuctx->task_ctx)
2104                return;
2105
2106        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2107                return;
2108
2109        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2110}
2111
2112static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113                                struct perf_event_context *ctx,
2114                                struct task_struct *task)
2115{
2116        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117        if (ctx)
2118                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120        if (ctx)
2121                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122}
2123
2124static void ctx_resched(struct perf_cpu_context *cpuctx,
2125                        struct perf_event_context *task_ctx)
2126{
2127        perf_pmu_disable(cpuctx->ctx.pmu);
2128        if (task_ctx)
2129                task_ctx_sched_out(cpuctx, task_ctx);
2130        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131        perf_event_sched_in(cpuctx, task_ctx, current);
2132        perf_pmu_enable(cpuctx->ctx.pmu);
2133}
2134
2135/*
2136 * Cross CPU call to install and enable a performance event
2137 *
2138 * Very similar to remote_function() + event_function() but cannot assume that
2139 * things like ctx->is_active and cpuctx->task_ctx are set.
2140 */
2141static int  __perf_install_in_context(void *info)
2142{
2143        struct perf_event *event = info;
2144        struct perf_event_context *ctx = event->ctx;
2145        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2147        bool activate = true;
2148        int ret = 0;
2149
2150        raw_spin_lock(&cpuctx->ctx.lock);
2151        if (ctx->task) {
2152                raw_spin_lock(&ctx->lock);
2153                task_ctx = ctx;
2154
2155                /* If we're on the wrong CPU, try again */
2156                if (task_cpu(ctx->task) != smp_processor_id()) {
2157                        ret = -ESRCH;
2158                        goto unlock;
2159                }
2160
2161                /*
2162                 * If we're on the right CPU, see if the task we target is
2163                 * current, if not we don't have to activate the ctx, a future
2164                 * context switch will do that for us.
2165                 */
2166                if (ctx->task != current)
2167                        activate = false;
2168                else
2169                        WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2170
2171        } else if (task_ctx) {
2172                raw_spin_lock(&task_ctx->lock);
2173        }
2174
2175        if (activate) {
2176                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2177                add_event_to_ctx(event, ctx);
2178                ctx_resched(cpuctx, task_ctx);
2179        } else {
2180                add_event_to_ctx(event, ctx);
2181        }
2182
2183unlock:
2184        perf_ctx_unlock(cpuctx, task_ctx);
2185
2186        return ret;
2187}
2188
2189/*
2190 * Attach a performance event to a context.
2191 *
2192 * Very similar to event_function_call, see comment there.
2193 */
2194static void
2195perf_install_in_context(struct perf_event_context *ctx,
2196                        struct perf_event *event,
2197                        int cpu)
2198{
2199        struct task_struct *task = READ_ONCE(ctx->task);
2200
2201        lockdep_assert_held(&ctx->mutex);
2202
2203        event->ctx = ctx;
2204        if (event->cpu != -1)
2205                event->cpu = cpu;
2206
2207        if (!task) {
2208                cpu_function_call(cpu, __perf_install_in_context, event);
2209                return;
2210        }
2211
2212        /*
2213         * Should not happen, we validate the ctx is still alive before calling.
2214         */
2215        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2216                return;
2217
2218        /*
2219         * Installing events is tricky because we cannot rely on ctx->is_active
2220         * to be set in case this is the nr_events 0 -> 1 transition.
2221         */
2222again:
2223        /*
2224         * Cannot use task_function_call() because we need to run on the task's
2225         * CPU regardless of whether its current or not.
2226         */
2227        if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2228                return;
2229
2230        raw_spin_lock_irq(&ctx->lock);
2231        task = ctx->task;
2232        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2233                /*
2234                 * Cannot happen because we already checked above (which also
2235                 * cannot happen), and we hold ctx->mutex, which serializes us
2236                 * against perf_event_exit_task_context().
2237                 */
2238                raw_spin_unlock_irq(&ctx->lock);
2239                return;
2240        }
2241        raw_spin_unlock_irq(&ctx->lock);
2242        /*
2243         * Since !ctx->is_active doesn't mean anything, we must IPI
2244         * unconditionally.
2245         */
2246        goto again;
2247}
2248
2249/*
2250 * Put a event into inactive state and update time fields.
2251 * Enabling the leader of a group effectively enables all
2252 * the group members that aren't explicitly disabled, so we
2253 * have to update their ->tstamp_enabled also.
2254 * Note: this works for group members as well as group leaders
2255 * since the non-leader members' sibling_lists will be empty.
2256 */
2257static void __perf_event_mark_enabled(struct perf_event *event)
2258{
2259        struct perf_event *sub;
2260        u64 tstamp = perf_event_time(event);
2261
2262        event->state = PERF_EVENT_STATE_INACTIVE;
2263        event->tstamp_enabled = tstamp - event->total_time_enabled;
2264        list_for_each_entry(sub, &event->sibling_list, group_entry) {
2265                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2266                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2267        }
2268}
2269
2270/*
2271 * Cross CPU call to enable a performance event
2272 */
2273static void __perf_event_enable(struct perf_event *event,
2274                                struct perf_cpu_context *cpuctx,
2275                                struct perf_event_context *ctx,
2276                                void *info)
2277{
2278        struct perf_event *leader = event->group_leader;
2279        struct perf_event_context *task_ctx;
2280
2281        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2282            event->state <= PERF_EVENT_STATE_ERROR)
2283                return;
2284
2285        if (ctx->is_active)
2286                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2287
2288        __perf_event_mark_enabled(event);
2289
2290        if (!ctx->is_active)
2291                return;
2292
2293        if (!event_filter_match(event)) {
2294                if (is_cgroup_event(event))
2295                        perf_cgroup_defer_enabled(event);
2296                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2297                return;
2298        }
2299
2300        /*
2301         * If the event is in a group and isn't the group leader,
2302         * then don't put it on unless the group is on.
2303         */
2304        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2305                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2306                return;
2307        }
2308
2309        task_ctx = cpuctx->task_ctx;
2310        if (ctx->task)
2311                WARN_ON_ONCE(task_ctx != ctx);
2312
2313        ctx_resched(cpuctx, task_ctx);
2314}
2315
2316/*
2317 * Enable a event.
2318 *
2319 * If event->ctx is a cloned context, callers must make sure that
2320 * every task struct that event->ctx->task could possibly point to
2321 * remains valid.  This condition is satisfied when called through
2322 * perf_event_for_each_child or perf_event_for_each as described
2323 * for perf_event_disable.
2324 */
2325static void _perf_event_enable(struct perf_event *event)
2326{
2327        struct perf_event_context *ctx = event->ctx;
2328
2329        raw_spin_lock_irq(&ctx->lock);
2330        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2331            event->state <  PERF_EVENT_STATE_ERROR) {
2332                raw_spin_unlock_irq(&ctx->lock);
2333                return;
2334        }
2335
2336        /*
2337         * If the event is in error state, clear that first.
2338         *
2339         * That way, if we see the event in error state below, we know that it
2340         * has gone back into error state, as distinct from the task having
2341         * been scheduled away before the cross-call arrived.
2342         */
2343        if (event->state == PERF_EVENT_STATE_ERROR)
2344                event->state = PERF_EVENT_STATE_OFF;
2345        raw_spin_unlock_irq(&ctx->lock);
2346
2347        event_function_call(event, __perf_event_enable, NULL);
2348}
2349
2350/*
2351 * See perf_event_disable();
2352 */
2353void perf_event_enable(struct perf_event *event)
2354{
2355        struct perf_event_context *ctx;
2356
2357        ctx = perf_event_ctx_lock(event);
2358        _perf_event_enable(event);
2359        perf_event_ctx_unlock(event, ctx);
2360}
2361EXPORT_SYMBOL_GPL(perf_event_enable);
2362
2363static int _perf_event_refresh(struct perf_event *event, int refresh)
2364{
2365        /*
2366         * not supported on inherited events
2367         */
2368        if (event->attr.inherit || !is_sampling_event(event))
2369                return -EINVAL;
2370
2371        atomic_add(refresh, &event->event_limit);
2372        _perf_event_enable(event);
2373
2374        return 0;
2375}
2376
2377/*
2378 * See perf_event_disable()
2379 */
2380int perf_event_refresh(struct perf_event *event, int refresh)
2381{
2382        struct perf_event_context *ctx;
2383        int ret;
2384
2385        ctx = perf_event_ctx_lock(event);
2386        ret = _perf_event_refresh(event, refresh);
2387        perf_event_ctx_unlock(event, ctx);
2388
2389        return ret;
2390}
2391EXPORT_SYMBOL_GPL(perf_event_refresh);
2392
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394                          struct perf_cpu_context *cpuctx,
2395                          enum event_type_t event_type)
2396{
2397        int is_active = ctx->is_active;
2398        struct perf_event *event;
2399
2400        lockdep_assert_held(&ctx->lock);
2401
2402        if (likely(!ctx->nr_events)) {
2403                /*
2404                 * See __perf_remove_from_context().
2405                 */
2406                WARN_ON_ONCE(ctx->is_active);
2407                if (ctx->task)
2408                        WARN_ON_ONCE(cpuctx->task_ctx);
2409                return;
2410        }
2411
2412        ctx->is_active &= ~event_type;
2413        if (!(ctx->is_active & EVENT_ALL))
2414                ctx->is_active = 0;
2415
2416        if (ctx->task) {
2417                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2418                if (!ctx->is_active)
2419                        cpuctx->task_ctx = NULL;
2420        }
2421
2422        /*
2423         * Always update time if it was set; not only when it changes.
2424         * Otherwise we can 'forget' to update time for any but the last
2425         * context we sched out. For example:
2426         *
2427         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2428         *   ctx_sched_out(.event_type = EVENT_PINNED)
2429         *
2430         * would only update time for the pinned events.
2431         */
2432        if (is_active & EVENT_TIME) {
2433                /* update (and stop) ctx time */
2434                update_context_time(ctx);
2435                update_cgrp_time_from_cpuctx(cpuctx);
2436        }
2437
2438        is_active ^= ctx->is_active; /* changed bits */
2439
2440        if (!ctx->nr_active || !(is_active & EVENT_ALL))
2441                return;
2442
2443        perf_pmu_disable(ctx->pmu);
2444        if (is_active & EVENT_PINNED) {
2445                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2446                        group_sched_out(event, cpuctx, ctx);
2447        }
2448
2449        if (is_active & EVENT_FLEXIBLE) {
2450                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2451                        group_sched_out(event, cpuctx, ctx);
2452        }
2453        perf_pmu_enable(ctx->pmu);
2454}
2455
2456/*
2457 * Test whether two contexts are equivalent, i.e. whether they have both been
2458 * cloned from the same version of the same context.
2459 *
2460 * Equivalence is measured using a generation number in the context that is
2461 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2462 * and list_del_event().
2463 */
2464static int context_equiv(struct perf_event_context *ctx1,
2465                         struct perf_event_context *ctx2)
2466{
2467        lockdep_assert_held(&ctx1->lock);
2468        lockdep_assert_held(&ctx2->lock);
2469
2470        /* Pinning disables the swap optimization */
2471        if (ctx1->pin_count || ctx2->pin_count)
2472                return 0;
2473
2474        /* If ctx1 is the parent of ctx2 */
2475        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2476                return 1;
2477
2478        /* If ctx2 is the parent of ctx1 */
2479        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2480                return 1;
2481
2482        /*
2483         * If ctx1 and ctx2 have the same parent; we flatten the parent
2484         * hierarchy, see perf_event_init_context().
2485         */
2486        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2487                        ctx1->parent_gen == ctx2->parent_gen)
2488                return 1;
2489
2490        /* Unmatched */
2491        return 0;
2492}
2493
2494static void __perf_event_sync_stat(struct perf_event *event,
2495                                     struct perf_event *next_event)
2496{
2497        u64 value;
2498
2499        if (!event->attr.inherit_stat)
2500                return;
2501
2502        /*
2503         * Update the event value, we cannot use perf_event_read()
2504         * because we're in the middle of a context switch and have IRQs
2505         * disabled, which upsets smp_call_function_single(), however
2506         * we know the event must be on the current CPU, therefore we
2507         * don't need to use it.
2508         */
2509        switch (event->state) {
2510        case PERF_EVENT_STATE_ACTIVE:
2511                event->pmu->read(event);
2512                /* fall-through */
2513
2514        case PERF_EVENT_STATE_INACTIVE:
2515                update_event_times(event);
2516                break;
2517
2518        default:
2519                break;
2520        }
2521
2522        /*
2523         * In order to keep per-task stats reliable we need to flip the event
2524         * values when we flip the contexts.
2525         */
2526        value = local64_read(&next_event->count);
2527        value = local64_xchg(&event->count, value);
2528        local64_set(&next_event->count, value);
2529
2530        swap(event->total_time_enabled, next_event->total_time_enabled);
2531        swap(event->total_time_running, next_event->total_time_running);
2532
2533        /*
2534         * Since we swizzled the values, update the user visible data too.
2535         */
2536        perf_event_update_userpage(event);
2537        perf_event_update_userpage(next_event);
2538}
2539
2540static void perf_event_sync_stat(struct perf_event_context *ctx,
2541                                   struct perf_event_context *next_ctx)
2542{
2543        struct perf_event *event, *next_event;
2544
2545        if (!ctx->nr_stat)
2546                return;
2547
2548        update_context_time(ctx);
2549
2550        event = list_first_entry(&ctx->event_list,
2551                                   struct perf_event, event_entry);
2552
2553        next_event = list_first_entry(&next_ctx->event_list,
2554                                        struct perf_event, event_entry);
2555
2556        while (&event->event_entry != &ctx->event_list &&
2557               &next_event->event_entry != &next_ctx->event_list) {
2558
2559                __perf_event_sync_stat(event, next_event);
2560
2561                event = list_next_entry(event, event_entry);
2562                next_event = list_next_entry(next_event, event_entry);
2563        }
2564}
2565
2566static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2567                                         struct task_struct *next)
2568{
2569        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2570        struct perf_event_context *next_ctx;
2571        struct perf_event_context *parent, *next_parent;
2572        struct perf_cpu_context *cpuctx;
2573        int do_switch = 1;
2574
2575        if (likely(!ctx))
2576                return;
2577
2578        cpuctx = __get_cpu_context(ctx);
2579        if (!cpuctx->task_ctx)
2580                return;
2581
2582        rcu_read_lock();
2583        next_ctx = next->perf_event_ctxp[ctxn];
2584        if (!next_ctx)
2585                goto unlock;
2586
2587        parent = rcu_dereference(ctx->parent_ctx);
2588        next_parent = rcu_dereference(next_ctx->parent_ctx);
2589
2590        /* If neither context have a parent context; they cannot be clones. */
2591        if (!parent && !next_parent)
2592                goto unlock;
2593
2594        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2595                /*
2596                 * Looks like the two contexts are clones, so we might be
2597                 * able to optimize the context switch.  We lock both
2598                 * contexts and check that they are clones under the
2599                 * lock (including re-checking that neither has been
2600                 * uncloned in the meantime).  It doesn't matter which
2601                 * order we take the locks because no other cpu could
2602                 * be trying to lock both of these tasks.
2603                 */
2604                raw_spin_lock(&ctx->lock);
2605                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2606                if (context_equiv(ctx, next_ctx)) {
2607                        WRITE_ONCE(ctx->task, next);
2608                        WRITE_ONCE(next_ctx->task, task);
2609
2610                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2611
2612                        /*
2613                         * RCU_INIT_POINTER here is safe because we've not
2614                         * modified the ctx and the above modification of
2615                         * ctx->task and ctx->task_ctx_data are immaterial
2616                         * since those values are always verified under
2617                         * ctx->lock which we're now holding.
2618                         */
2619                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2620                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2621
2622                        do_switch = 0;
2623
2624                        perf_event_sync_stat(ctx, next_ctx);
2625                }
2626                raw_spin_unlock(&next_ctx->lock);
2627                raw_spin_unlock(&ctx->lock);
2628        }
2629unlock:
2630        rcu_read_unlock();
2631
2632        if (do_switch) {
2633                raw_spin_lock(&ctx->lock);
2634                task_ctx_sched_out(cpuctx, ctx);
2635                raw_spin_unlock(&ctx->lock);
2636        }
2637}
2638
2639void perf_sched_cb_dec(struct pmu *pmu)
2640{
2641        this_cpu_dec(perf_sched_cb_usages);
2642}
2643
2644void perf_sched_cb_inc(struct pmu *pmu)
2645{
2646        this_cpu_inc(perf_sched_cb_usages);
2647}
2648
2649/*
2650 * This function provides the context switch callback to the lower code
2651 * layer. It is invoked ONLY when the context switch callback is enabled.
2652 */
2653static void perf_pmu_sched_task(struct task_struct *prev,
2654                                struct task_struct *next,
2655                                bool sched_in)
2656{
2657        struct perf_cpu_context *cpuctx;
2658        struct pmu *pmu;
2659        unsigned long flags;
2660
2661        if (prev == next)
2662                return;
2663
2664        local_irq_save(flags);
2665
2666        rcu_read_lock();
2667
2668        list_for_each_entry_rcu(pmu, &pmus, entry) {
2669                if (pmu->sched_task) {
2670                        cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2671
2672                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2673
2674                        perf_pmu_disable(pmu);
2675
2676                        pmu->sched_task(cpuctx->task_ctx, sched_in);
2677
2678                        perf_pmu_enable(pmu);
2679
2680                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2681                }
2682        }
2683
2684        rcu_read_unlock();
2685
2686        local_irq_restore(flags);
2687}
2688
2689static void perf_event_switch(struct task_struct *task,
2690                              struct task_struct *next_prev, bool sched_in);
2691
2692#define for_each_task_context_nr(ctxn)                                  \
2693        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2694
2695/*
2696 * Called from scheduler to remove the events of the current task,
2697 * with interrupts disabled.
2698 *
2699 * We stop each event and update the event value in event->count.
2700 *
2701 * This does not protect us against NMI, but disable()
2702 * sets the disabled bit in the control field of event _before_
2703 * accessing the event control register. If a NMI hits, then it will
2704 * not restart the event.
2705 */
2706void __perf_event_task_sched_out(struct task_struct *task,
2707                                 struct task_struct *next)
2708{
2709        int ctxn;
2710
2711        if (__this_cpu_read(perf_sched_cb_usages))
2712                perf_pmu_sched_task(task, next, false);
2713
2714        if (atomic_read(&nr_switch_events))
2715                perf_event_switch(task, next, false);
2716
2717        for_each_task_context_nr(ctxn)
2718                perf_event_context_sched_out(task, ctxn, next);
2719
2720        /*
2721         * if cgroup events exist on this CPU, then we need
2722         * to check if we have to switch out PMU state.
2723         * cgroup event are system-wide mode only
2724         */
2725        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2726                perf_cgroup_sched_out(task, next);
2727}
2728
2729/*
2730 * Called with IRQs disabled
2731 */
2732static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2733                              enum event_type_t event_type)
2734{
2735        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2736}
2737
2738static void
2739ctx_pinned_sched_in(struct perf_event_context *ctx,
2740                    struct perf_cpu_context *cpuctx)
2741{
2742        struct perf_event *event;
2743
2744        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2745                if (event->state <= PERF_EVENT_STATE_OFF)
2746                        continue;
2747                if (!event_filter_match(event))
2748                        continue;
2749
2750                /* may need to reset tstamp_enabled */
2751                if (is_cgroup_event(event))
2752                        perf_cgroup_mark_enabled(event, ctx);
2753
2754                if (group_can_go_on(event, cpuctx, 1))
2755                        group_sched_in(event, cpuctx, ctx);
2756
2757                /*
2758                 * If this pinned group hasn't been scheduled,
2759                 * put it in error state.
2760                 */
2761                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2762                        update_group_times(event);
2763                        event->state = PERF_EVENT_STATE_ERROR;
2764                }
2765        }
2766}
2767
2768static void
2769ctx_flexible_sched_in(struct perf_event_context *ctx,
2770                      struct perf_cpu_context *cpuctx)
2771{
2772        struct perf_event *event;
2773        int can_add_hw = 1;
2774
2775        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2776                /* Ignore events in OFF or ERROR state */
2777                if (event->state <= PERF_EVENT_STATE_OFF)
2778                        continue;
2779                /*
2780                 * Listen to the 'cpu' scheduling filter constraint
2781                 * of events:
2782                 */
2783                if (!event_filter_match(event))
2784                        continue;
2785
2786                /* may need to reset tstamp_enabled */
2787                if (is_cgroup_event(event))
2788                        perf_cgroup_mark_enabled(event, ctx);
2789
2790                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2791                        if (group_sched_in(event, cpuctx, ctx))
2792                                can_add_hw = 0;
2793                }
2794        }
2795}
2796
2797static void
2798ctx_sched_in(struct perf_event_context *ctx,
2799             struct perf_cpu_context *cpuctx,
2800             enum event_type_t event_type,
2801             struct task_struct *task)
2802{
2803        int is_active = ctx->is_active;
2804        u64 now;
2805
2806        lockdep_assert_held(&ctx->lock);
2807
2808        if (likely(!ctx->nr_events))
2809                return;
2810
2811        ctx->is_active |= (event_type | EVENT_TIME);
2812        if (ctx->task) {
2813                if (!is_active)
2814                        cpuctx->task_ctx = ctx;
2815                else
2816                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2817        }
2818
2819        is_active ^= ctx->is_active; /* changed bits */
2820
2821        if (is_active & EVENT_TIME) {
2822                /* start ctx time */
2823                now = perf_clock();
2824                ctx->timestamp = now;
2825                perf_cgroup_set_timestamp(task, ctx);
2826        }
2827
2828        /*
2829         * First go through the list and put on any pinned groups
2830         * in order to give them the best chance of going on.
2831         */
2832        if (is_active & EVENT_PINNED)
2833                ctx_pinned_sched_in(ctx, cpuctx);
2834
2835        /* Then walk through the lower prio flexible groups */
2836        if (is_active & EVENT_FLEXIBLE)
2837                ctx_flexible_sched_in(ctx, cpuctx);
2838}
2839
2840static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2841                             enum event_type_t event_type,
2842                             struct task_struct *task)
2843{
2844        struct perf_event_context *ctx = &cpuctx->ctx;
2845
2846        ctx_sched_in(ctx, cpuctx, event_type, task);
2847}
2848
2849static void perf_event_context_sched_in(struct perf_event_context *ctx,
2850                                        struct task_struct *task)
2851{
2852        struct perf_cpu_context *cpuctx;
2853
2854        cpuctx = __get_cpu_context(ctx);
2855        if (cpuctx->task_ctx == ctx)
2856                return;
2857
2858        perf_ctx_lock(cpuctx, ctx);
2859        perf_pmu_disable(ctx->pmu);
2860        /*
2861         * We want to keep the following priority order:
2862         * cpu pinned (that don't need to move), task pinned,
2863         * cpu flexible, task flexible.
2864         */
2865        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2866        perf_event_sched_in(cpuctx, ctx, task);
2867        perf_pmu_enable(ctx->pmu);
2868        perf_ctx_unlock(cpuctx, ctx);
2869}
2870
2871/*
2872 * Called from scheduler to add the events of the current task
2873 * with interrupts disabled.
2874 *
2875 * We restore the event value and then enable it.
2876 *
2877 * This does not protect us against NMI, but enable()
2878 * sets the enabled bit in the control field of event _before_
2879 * accessing the event control register. If a NMI hits, then it will
2880 * keep the event running.
2881 */
2882void __perf_event_task_sched_in(struct task_struct *prev,
2883                                struct task_struct *task)
2884{
2885        struct perf_event_context *ctx;
2886        int ctxn;
2887
2888        /*
2889         * If cgroup events exist on this CPU, then we need to check if we have
2890         * to switch in PMU state; cgroup event are system-wide mode only.
2891         *
2892         * Since cgroup events are CPU events, we must schedule these in before
2893         * we schedule in the task events.
2894         */
2895        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2896                perf_cgroup_sched_in(prev, task);
2897
2898        for_each_task_context_nr(ctxn) {
2899                ctx = task->perf_event_ctxp[ctxn];
2900                if (likely(!ctx))
2901                        continue;
2902
2903                perf_event_context_sched_in(ctx, task);
2904        }
2905
2906        if (atomic_read(&nr_switch_events))
2907                perf_event_switch(task, prev, true);
2908
2909        if (__this_cpu_read(perf_sched_cb_usages))
2910                perf_pmu_sched_task(prev, task, true);
2911}
2912
2913static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2914{
2915        u64 frequency = event->attr.sample_freq;
2916        u64 sec = NSEC_PER_SEC;
2917        u64 divisor, dividend;
2918
2919        int count_fls, nsec_fls, frequency_fls, sec_fls;
2920
2921        count_fls = fls64(count);
2922        nsec_fls = fls64(nsec);
2923        frequency_fls = fls64(frequency);
2924        sec_fls = 30;
2925
2926        /*
2927         * We got @count in @nsec, with a target of sample_freq HZ
2928         * the target period becomes:
2929         *
2930         *             @count * 10^9
2931         * period = -------------------
2932         *          @nsec * sample_freq
2933         *
2934         */
2935
2936        /*
2937         * Reduce accuracy by one bit such that @a and @b converge
2938         * to a similar magnitude.
2939         */
2940#define REDUCE_FLS(a, b)                \
2941do {                                    \
2942        if (a##_fls > b##_fls) {        \
2943                a >>= 1;                \
2944                a##_fls--;              \
2945        } else {                        \
2946                b >>= 1;                \
2947                b##_fls--;              \
2948        }                               \
2949} while (0)
2950
2951        /*
2952         * Reduce accuracy until either term fits in a u64, then proceed with
2953         * the other, so that finally we can do a u64/u64 division.
2954         */
2955        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2956                REDUCE_FLS(nsec, frequency);
2957                REDUCE_FLS(sec, count);
2958        }
2959
2960        if (count_fls + sec_fls > 64) {
2961                divisor = nsec * frequency;
2962
2963                while (count_fls + sec_fls > 64) {
2964                        REDUCE_FLS(count, sec);
2965                        divisor >>= 1;
2966                }
2967
2968                dividend = count * sec;
2969        } else {
2970                dividend = count * sec;
2971
2972                while (nsec_fls + frequency_fls > 64) {
2973                        REDUCE_FLS(nsec, frequency);
2974                        dividend >>= 1;
2975                }
2976
2977                divisor = nsec * frequency;
2978        }
2979
2980        if (!divisor)
2981                return dividend;
2982
2983        return div64_u64(dividend, divisor);
2984}
2985
2986static DEFINE_PER_CPU(int, perf_throttled_count);
2987static DEFINE_PER_CPU(u64, perf_throttled_seq);
2988
2989static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2990{
2991        struct hw_perf_event *hwc = &event->hw;
2992        s64 period, sample_period;
2993        s64 delta;
2994
2995        period = perf_calculate_period(event, nsec, count);
2996
2997        delta = (s64)(period - hwc->sample_period);
2998        delta = (delta + 7) / 8; /* low pass filter */
2999
3000        sample_period = hwc->sample_period + delta;
3001
3002        if (!sample_period)
3003                sample_period = 1;
3004
3005        hwc->sample_period = sample_period;
3006
3007        if (local64_read(&hwc->period_left) > 8*sample_period) {
3008                if (disable)
3009                        event->pmu->stop(event, PERF_EF_UPDATE);
3010
3011                local64_set(&hwc->period_left, 0);
3012
3013                if (disable)
3014                        event->pmu->start(event, PERF_EF_RELOAD);
3015        }
3016}
3017
3018/*
3019 * combine freq adjustment with unthrottling to avoid two passes over the
3020 * events. At the same time, make sure, having freq events does not change
3021 * the rate of unthrottling as that would introduce bias.
3022 */
3023static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3024                                           int needs_unthr)
3025{
3026        struct perf_event *event;
3027        struct hw_perf_event *hwc;
3028        u64 now, period = TICK_NSEC;
3029        s64 delta;
3030
3031        /*
3032         * only need to iterate over all events iff:
3033         * - context have events in frequency mode (needs freq adjust)
3034         * - there are events to unthrottle on this cpu
3035         */
3036        if (!(ctx->nr_freq || needs_unthr))
3037                return;
3038
3039        raw_spin_lock(&ctx->lock);
3040        perf_pmu_disable(ctx->pmu);
3041
3042        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3043                if (event->state != PERF_EVENT_STATE_ACTIVE)
3044                        continue;
3045
3046                if (!event_filter_match(event))
3047                        continue;
3048
3049                perf_pmu_disable(event->pmu);
3050
3051                hwc = &event->hw;
3052
3053                if (hwc->interrupts == MAX_INTERRUPTS) {
3054                        hwc->interrupts = 0;
3055                        perf_log_throttle(event, 1);
3056                        event->pmu->start(event, 0);
3057                }
3058
3059                if (!event->attr.freq || !event->attr.sample_freq)
3060                        goto next;
3061
3062                /*
3063                 * stop the event and update event->count
3064                 */
3065                event->pmu->stop(event, PERF_EF_UPDATE);
3066
3067                now = local64_read(&event->count);
3068                delta = now - hwc->freq_count_stamp;
3069                hwc->freq_count_stamp = now;
3070
3071                /*
3072                 * restart the event
3073                 * reload only if value has changed
3074                 * we have stopped the event so tell that
3075                 * to perf_adjust_period() to avoid stopping it
3076                 * twice.
3077                 */
3078                if (delta > 0)
3079                        perf_adjust_period(event, period, delta, false);
3080
3081                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3082        next:
3083                perf_pmu_enable(event->pmu);
3084        }
3085
3086        perf_pmu_enable(ctx->pmu);
3087        raw_spin_unlock(&ctx->lock);
3088}
3089
3090/*
3091 * Round-robin a context's events:
3092 */
3093static void rotate_ctx(struct perf_event_context *ctx)
3094{
3095        /*
3096         * Rotate the first entry last of non-pinned groups. Rotation might be
3097         * disabled by the inheritance code.
3098         */
3099        if (!ctx->rotate_disable)
3100                list_rotate_left(&ctx->flexible_groups);
3101}
3102
3103static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3104{
3105        struct perf_event_context *ctx = NULL;
3106        int rotate = 0;
3107
3108        if (cpuctx->ctx.nr_events) {
3109                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3110                        rotate = 1;
3111        }
3112
3113        ctx = cpuctx->task_ctx;
3114        if (ctx && ctx->nr_events) {
3115                if (ctx->nr_events != ctx->nr_active)
3116                        rotate = 1;
3117        }
3118
3119        if (!rotate)
3120                goto done;
3121
3122        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3123        perf_pmu_disable(cpuctx->ctx.pmu);
3124
3125        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3126        if (ctx)
3127                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3128
3129        rotate_ctx(&cpuctx->ctx);
3130        if (ctx)
3131                rotate_ctx(ctx);
3132
3133        perf_event_sched_in(cpuctx, ctx, current);
3134
3135        perf_pmu_enable(cpuctx->ctx.pmu);
3136        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3137done:
3138
3139        return rotate;
3140}
3141
3142void perf_event_task_tick(void)
3143{
3144        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3145        struct perf_event_context *ctx, *tmp;
3146        int throttled;
3147
3148        WARN_ON(!irqs_disabled());
3149
3150        __this_cpu_inc(perf_throttled_seq);
3151        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3152        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3153
3154        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3155                perf_adjust_freq_unthr_context(ctx, throttled);
3156}
3157
3158static int event_enable_on_exec(struct perf_event *event,
3159                                struct perf_event_context *ctx)
3160{
3161        if (!event->attr.enable_on_exec)
3162                return 0;
3163
3164        event->attr.enable_on_exec = 0;
3165        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3166                return 0;
3167
3168        __perf_event_mark_enabled(event);
3169
3170        return 1;
3171}
3172
3173/*
3174 * Enable all of a task's events that have been marked enable-on-exec.
3175 * This expects task == current.
3176 */
3177static void perf_event_enable_on_exec(int ctxn)
3178{
3179        struct perf_event_context *ctx, *clone_ctx = NULL;
3180        struct perf_cpu_context *cpuctx;
3181        struct perf_event *event;
3182        unsigned long flags;
3183        int enabled = 0;
3184
3185        local_irq_save(flags);
3186        ctx = current->perf_event_ctxp[ctxn];
3187        if (!ctx || !ctx->nr_events)
3188                goto out;
3189
3190        cpuctx = __get_cpu_context(ctx);
3191        perf_ctx_lock(cpuctx, ctx);
3192        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3193        list_for_each_entry(event, &ctx->event_list, event_entry)
3194                enabled |= event_enable_on_exec(event, ctx);
3195
3196        /*
3197         * Unclone and reschedule this context if we enabled any event.
3198         */
3199        if (enabled) {
3200                clone_ctx = unclone_ctx(ctx);
3201                ctx_resched(cpuctx, ctx);
3202        }
3203        perf_ctx_unlock(cpuctx, ctx);
3204
3205out:
3206        local_irq_restore(flags);
3207
3208        if (clone_ctx)
3209                put_ctx(clone_ctx);
3210}
3211
3212void perf_event_exec(void)
3213{
3214        int ctxn;
3215
3216        rcu_read_lock();
3217        for_each_task_context_nr(ctxn)
3218                perf_event_enable_on_exec(ctxn);
3219        rcu_read_unlock();
3220}
3221
3222struct perf_read_data {
3223        struct perf_event *event;
3224        bool group;
3225        int ret;
3226};
3227
3228/*
3229 * Cross CPU call to read the hardware event
3230 */
3231static void __perf_event_read(void *info)
3232{
3233        struct perf_read_data *data = info;
3234        struct perf_event *sub, *event = data->event;
3235        struct perf_event_context *ctx = event->ctx;
3236        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237        struct pmu *pmu = event->pmu;
3238
3239        /*
3240         * If this is a task context, we need to check whether it is
3241         * the current task context of this cpu.  If not it has been
3242         * scheduled out before the smp call arrived.  In that case
3243         * event->count would have been updated to a recent sample
3244         * when the event was scheduled out.
3245         */
3246        if (ctx->task && cpuctx->task_ctx != ctx)
3247                return;
3248
3249        raw_spin_lock(&ctx->lock);
3250        if (ctx->is_active) {
3251                update_context_time(ctx);
3252                update_cgrp_time_from_event(event);
3253        }
3254
3255        update_event_times(event);
3256        if (event->state != PERF_EVENT_STATE_ACTIVE)
3257                goto unlock;
3258
3259        if (!data->group) {
3260                pmu->read(event);
3261                data->ret = 0;
3262                goto unlock;
3263        }
3264
3265        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266
3267        pmu->read(event);
3268
3269        list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270                update_event_times(sub);
3271                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272                        /*
3273                         * Use sibling's PMU rather than @event's since
3274                         * sibling could be on different (eg: software) PMU.
3275                         */
3276                        sub->pmu->read(sub);
3277                }
3278        }
3279
3280        data->ret = pmu->commit_txn(pmu);
3281
3282unlock:
3283        raw_spin_unlock(&ctx->lock);
3284}
3285
3286static inline u64 perf_event_count(struct perf_event *event)
3287{
3288        if (event->pmu->count)
3289                return event->pmu->count(event);
3290
3291        return __perf_event_count(event);
3292}
3293
3294/*
3295 * NMI-safe method to read a local event, that is an event that
3296 * is:
3297 *   - either for the current task, or for this CPU
3298 *   - does not have inherit set, for inherited task events
3299 *     will not be local and we cannot read them atomically
3300 *   - must not have a pmu::count method
3301 */
3302u64 perf_event_read_local(struct perf_event *event)
3303{
3304        unsigned long flags;
3305        u64 val;
3306
3307        /*
3308         * Disabling interrupts avoids all counter scheduling (context
3309         * switches, timer based rotation and IPIs).
3310         */
3311        local_irq_save(flags);
3312
3313        /* If this is a per-task event, it must be for current */
3314        WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315                     event->hw.target != current);
3316
3317        /* If this is a per-CPU event, it must be for this CPU */
3318        WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319                     event->cpu != smp_processor_id());
3320
3321        /*
3322         * It must not be an event with inherit set, we cannot read
3323         * all child counters from atomic context.
3324         */
3325        WARN_ON_ONCE(event->attr.inherit);
3326
3327        /*
3328         * It must not have a pmu::count method, those are not
3329         * NMI safe.
3330         */
3331        WARN_ON_ONCE(event->pmu->count);
3332
3333        /*
3334         * If the event is currently on this CPU, its either a per-task event,
3335         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336         * oncpu == -1).
3337         */
3338        if (event->oncpu == smp_processor_id())
3339                event->pmu->read(event);
3340
3341        val = local64_read(&event->count);
3342        local_irq_restore(flags);
3343
3344        return val;
3345}
3346
3347static int perf_event_read(struct perf_event *event, bool group)
3348{
3349        int ret = 0;
3350
3351        /*
3352         * If event is enabled and currently active on a CPU, update the
3353         * value in the event structure:
3354         */
3355        if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356                struct perf_read_data data = {
3357                        .event = event,
3358                        .group = group,
3359                        .ret = 0,
3360                };
3361                smp_call_function_single(event->oncpu,
3362                                         __perf_event_read, &data, 1);
3363                ret = data.ret;
3364        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365                struct perf_event_context *ctx = event->ctx;
3366                unsigned long flags;
3367
3368                raw_spin_lock_irqsave(&ctx->lock, flags);
3369                /*
3370                 * may read while context is not active
3371                 * (e.g., thread is blocked), in that case
3372                 * we cannot update context time
3373                 */
3374                if (ctx->is_active) {
3375                        update_context_time(ctx);
3376                        update_cgrp_time_from_event(event);
3377                }
3378                if (group)
3379                        update_group_times(event);
3380                else
3381                        update_event_times(event);
3382                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383        }
3384
3385        return ret;
3386}
3387
3388/*
3389 * Initialize the perf_event context in a task_struct:
3390 */
3391static void __perf_event_init_context(struct perf_event_context *ctx)
3392{
3393        raw_spin_lock_init(&ctx->lock);
3394        mutex_init(&ctx->mutex);
3395        INIT_LIST_HEAD(&ctx->active_ctx_list);
3396        INIT_LIST_HEAD(&ctx->pinned_groups);
3397        INIT_LIST_HEAD(&ctx->flexible_groups);
3398        INIT_LIST_HEAD(&ctx->event_list);
3399        atomic_set(&ctx->refcount, 1);
3400}
3401
3402static struct perf_event_context *
3403alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3404{
3405        struct perf_event_context *ctx;
3406
3407        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3408        if (!ctx)
3409                return NULL;
3410
3411        __perf_event_init_context(ctx);
3412        if (task) {
3413                ctx->task = task;
3414                get_task_struct(task);
3415        }
3416        ctx->pmu = pmu;
3417
3418        return ctx;
3419}
3420
3421static struct task_struct *
3422find_lively_task_by_vpid(pid_t vpid)
3423{
3424        struct task_struct *task;
3425
3426        rcu_read_lock();
3427        if (!vpid)
3428                task = current;
3429        else
3430                task = find_task_by_vpid(vpid);
3431        if (task)
3432                get_task_struct(task);
3433        rcu_read_unlock();
3434
3435        if (!task)
3436                return ERR_PTR(-ESRCH);
3437
3438        return task;
3439}
3440
3441/*
3442 * Returns a matching context with refcount and pincount.
3443 */
3444static struct perf_event_context *
3445find_get_context(struct pmu *pmu, struct task_struct *task,
3446                struct perf_event *event)
3447{
3448        struct perf_event_context *ctx, *clone_ctx = NULL;
3449        struct perf_cpu_context *cpuctx;
3450        void *task_ctx_data = NULL;
3451        unsigned long flags;
3452        int ctxn, err;
3453        int cpu = event->cpu;
3454
3455        if (!task) {
3456                /* Must be root to operate on a CPU event: */
3457                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3458                        return ERR_PTR(-EACCES);
3459
3460                /*
3461                 * We could be clever and allow to attach a event to an
3462                 * offline CPU and activate it when the CPU comes up, but
3463                 * that's for later.
3464                 */
3465                if (!cpu_online(cpu))
3466                        return ERR_PTR(-ENODEV);
3467
3468                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3469                ctx = &cpuctx->ctx;
3470                get_ctx(ctx);
3471                ++ctx->pin_count;
3472
3473                return ctx;
3474        }
3475
3476        err = -EINVAL;
3477        ctxn = pmu->task_ctx_nr;
3478        if (ctxn < 0)
3479                goto errout;
3480
3481        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3482                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3483                if (!task_ctx_data) {
3484                        err = -ENOMEM;
3485                        goto errout;
3486                }
3487        }
3488
3489retry:
3490        ctx = perf_lock_task_context(task, ctxn, &flags);
3491        if (ctx) {
3492                clone_ctx = unclone_ctx(ctx);
3493                ++ctx->pin_count;
3494
3495                if (task_ctx_data && !ctx->task_ctx_data) {
3496                        ctx->task_ctx_data = task_ctx_data;
3497                        task_ctx_data = NULL;
3498                }
3499                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3500
3501                if (clone_ctx)
3502                        put_ctx(clone_ctx);
3503        } else {
3504                ctx = alloc_perf_context(pmu, task);
3505                err = -ENOMEM;
3506                if (!ctx)
3507                        goto errout;
3508
3509                if (task_ctx_data) {
3510                        ctx->task_ctx_data = task_ctx_data;
3511                        task_ctx_data = NULL;
3512                }
3513
3514                err = 0;
3515                mutex_lock(&task->perf_event_mutex);
3516                /*
3517                 * If it has already passed perf_event_exit_task().
3518                 * we must see PF_EXITING, it takes this mutex too.
3519                 */
3520                if (task->flags & PF_EXITING)
3521                        err = -ESRCH;
3522                else if (task->perf_event_ctxp[ctxn])
3523                        err = -EAGAIN;
3524                else {
3525                        get_ctx(ctx);
3526                        ++ctx->pin_count;
3527                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3528                }
3529                mutex_unlock(&task->perf_event_mutex);
3530
3531                if (unlikely(err)) {
3532                        put_ctx(ctx);
3533
3534                        if (err == -EAGAIN)
3535                                goto retry;
3536                        goto errout;
3537                }
3538        }
3539
3540        kfree(task_ctx_data);
3541        return ctx;
3542
3543errout:
3544        kfree(task_ctx_data);
3545        return ERR_PTR(err);
3546}
3547
3548static void perf_event_free_filter(struct perf_event *event);
3549static void perf_event_free_bpf_prog(struct perf_event *event);
3550
3551static void free_event_rcu(struct rcu_head *head)
3552{
3553        struct perf_event *event;
3554
3555        event = container_of(head, struct perf_event, rcu_head);
3556        if (event->ns)
3557                put_pid_ns(event->ns);
3558        perf_event_free_filter(event);
3559        kfree(event);
3560}
3561
3562static void ring_buffer_attach(struct perf_event *event,
3563                               struct ring_buffer *rb);
3564
3565static void unaccount_event_cpu(struct perf_event *event, int cpu)
3566{
3567        if (event->parent)
3568                return;
3569
3570        if (is_cgroup_event(event))
3571                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3572}
3573
3574#ifdef CONFIG_NO_HZ_FULL
3575static DEFINE_SPINLOCK(nr_freq_lock);
3576#endif
3577
3578static void unaccount_freq_event_nohz(void)
3579{
3580#ifdef CONFIG_NO_HZ_FULL
3581        spin_lock(&nr_freq_lock);
3582        if (atomic_dec_and_test(&nr_freq_events))
3583                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3584        spin_unlock(&nr_freq_lock);
3585#endif
3586}
3587
3588static void unaccount_freq_event(void)
3589{
3590        if (tick_nohz_full_enabled())
3591                unaccount_freq_event_nohz();
3592        else
3593                atomic_dec(&nr_freq_events);
3594}
3595
3596static void unaccount_event(struct perf_event *event)
3597{
3598        bool dec = false;
3599
3600        if (event->parent)
3601                return;
3602
3603        if (event->attach_state & PERF_ATTACH_TASK)
3604                dec = true;
3605        if (event->attr.mmap || event->attr.mmap_data)
3606                atomic_dec(&nr_mmap_events);
3607        if (event->attr.comm)
3608                atomic_dec(&nr_comm_events);
3609        if (event->attr.task)
3610                atomic_dec(&nr_task_events);
3611        if (event->attr.freq)
3612                unaccount_freq_event();
3613        if (event->attr.context_switch) {
3614                dec = true;
3615                atomic_dec(&nr_switch_events);
3616        }
3617        if (is_cgroup_event(event))
3618                dec = true;
3619        if (has_branch_stack(event))
3620                dec = true;
3621
3622        if (dec) {
3623                if (!atomic_add_unless(&perf_sched_count, -1, 1))
3624                        schedule_delayed_work(&perf_sched_work, HZ);
3625        }
3626
3627        unaccount_event_cpu(event, event->cpu);
3628}
3629
3630static void perf_sched_delayed(struct work_struct *work)
3631{
3632        mutex_lock(&perf_sched_mutex);
3633        if (atomic_dec_and_test(&perf_sched_count))
3634                static_branch_disable(&perf_sched_events);
3635        mutex_unlock(&perf_sched_mutex);
3636}
3637
3638/*
3639 * The following implement mutual exclusion of events on "exclusive" pmus
3640 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3641 * at a time, so we disallow creating events that might conflict, namely:
3642 *
3643 *  1) cpu-wide events in the presence of per-task events,
3644 *  2) per-task events in the presence of cpu-wide events,
3645 *  3) two matching events on the same context.
3646 *
3647 * The former two cases are handled in the allocation path (perf_event_alloc(),
3648 * _free_event()), the latter -- before the first perf_install_in_context().
3649 */
3650static int exclusive_event_init(struct perf_event *event)
3651{
3652        struct pmu *pmu = event->pmu;
3653
3654        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3655                return 0;
3656
3657        /*
3658         * Prevent co-existence of per-task and cpu-wide events on the
3659         * same exclusive pmu.
3660         *
3661         * Negative pmu::exclusive_cnt means there are cpu-wide
3662         * events on this "exclusive" pmu, positive means there are
3663         * per-task events.
3664         *
3665         * Since this is called in perf_event_alloc() path, event::ctx
3666         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3667         * to mean "per-task event", because unlike other attach states it
3668         * never gets cleared.
3669         */
3670        if (event->attach_state & PERF_ATTACH_TASK) {
3671                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3672                        return -EBUSY;
3673        } else {
3674                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3675                        return -EBUSY;
3676        }
3677
3678        return 0;
3679}
3680
3681static void exclusive_event_destroy(struct perf_event *event)
3682{
3683        struct pmu *pmu = event->pmu;
3684
3685        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3686                return;
3687
3688        /* see comment in exclusive_event_init() */
3689        if (event->attach_state & PERF_ATTACH_TASK)
3690                atomic_dec(&pmu->exclusive_cnt);
3691        else
3692                atomic_inc(&pmu->exclusive_cnt);
3693}
3694
3695static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3696{
3697        if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3698            (e1->cpu == e2->cpu ||
3699             e1->cpu == -1 ||
3700             e2->cpu == -1))
3701                return true;
3702        return false;
3703}
3704
3705/* Called under the same ctx::mutex as perf_install_in_context() */
3706static bool exclusive_event_installable(struct perf_event *event,
3707                                        struct perf_event_context *ctx)
3708{
3709        struct perf_event *iter_event;
3710        struct pmu *pmu = event->pmu;
3711
3712        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3713                return true;
3714
3715        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3716                if (exclusive_event_match(iter_event, event))
3717                        return false;
3718        }
3719
3720        return true;
3721}
3722
3723static void _free_event(struct perf_event *event)
3724{
3725        irq_work_sync(&event->pending);
3726
3727        unaccount_event(event);
3728
3729        if (event->rb) {
3730                /*
3731                 * Can happen when we close an event with re-directed output.
3732                 *
3733                 * Since we have a 0 refcount, perf_mmap_close() will skip
3734                 * over us; possibly making our ring_buffer_put() the last.
3735                 */
3736                mutex_lock(&event->mmap_mutex);
3737                ring_buffer_attach(event, NULL);
3738                mutex_unlock(&event->mmap_mutex);
3739        }
3740
3741        if (is_cgroup_event(event))
3742                perf_detach_cgroup(event);
3743
3744        if (!event->parent) {
3745                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3746                        put_callchain_buffers();
3747        }
3748
3749        perf_event_free_bpf_prog(event);
3750
3751        if (event->destroy)
3752                event->destroy(event);
3753
3754        if (event->ctx)
3755                put_ctx(event->ctx);
3756
3757        if (event->pmu) {
3758                exclusive_event_destroy(event);
3759                module_put(event->pmu->module);
3760        }
3761
3762        call_rcu(&event->rcu_head, free_event_rcu);
3763}
3764
3765/*
3766 * Used to free events which have a known refcount of 1, such as in error paths
3767 * where the event isn't exposed yet and inherited events.
3768 */
3769static void free_event(struct perf_event *event)
3770{
3771        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3772                                "unexpected event refcount: %ld; ptr=%p\n",
3773                                atomic_long_read(&event->refcount), event)) {
3774                /* leak to avoid use-after-free */
3775                return;
3776        }
3777
3778        _free_event(event);
3779}
3780
3781/*
3782 * Remove user event from the owner task.
3783 */
3784static void perf_remove_from_owner(struct perf_event *event)
3785{
3786        struct task_struct *owner;
3787
3788        rcu_read_lock();
3789        /*
3790         * Matches the smp_store_release() in perf_event_exit_task(). If we
3791         * observe !owner it means the list deletion is complete and we can
3792         * indeed free this event, otherwise we need to serialize on
3793         * owner->perf_event_mutex.
3794         */
3795        owner = lockless_dereference(event->owner);
3796        if (owner) {
3797                /*
3798                 * Since delayed_put_task_struct() also drops the last
3799                 * task reference we can safely take a new reference
3800                 * while holding the rcu_read_lock().
3801                 */
3802                get_task_struct(owner);
3803        }
3804        rcu_read_unlock();
3805
3806        if (owner) {
3807                /*
3808                 * If we're here through perf_event_exit_task() we're already
3809                 * holding ctx->mutex which would be an inversion wrt. the
3810                 * normal lock order.
3811                 *
3812                 * However we can safely take this lock because its the child
3813                 * ctx->mutex.
3814                 */
3815                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3816
3817                /*
3818                 * We have to re-check the event->owner field, if it is cleared
3819                 * we raced with perf_event_exit_task(), acquiring the mutex
3820                 * ensured they're done, and we can proceed with freeing the
3821                 * event.
3822                 */
3823                if (event->owner) {
3824                        list_del_init(&event->owner_entry);
3825                        smp_store_release(&event->owner, NULL);
3826                }
3827                mutex_unlock(&owner->perf_event_mutex);
3828                put_task_struct(owner);
3829        }
3830}
3831
3832static void put_event(struct perf_event *event)
3833{
3834        if (!atomic_long_dec_and_test(&event->refcount))
3835                return;
3836
3837        _free_event(event);
3838}
3839
3840/*
3841 * Kill an event dead; while event:refcount will preserve the event
3842 * object, it will not preserve its functionality. Once the last 'user'
3843 * gives up the object, we'll destroy the thing.
3844 */
3845int perf_event_release_kernel(struct perf_event *event)
3846{
3847        struct perf_event_context *ctx = event->ctx;
3848        struct perf_event *child, *tmp;
3849
3850        /*
3851         * If we got here through err_file: fput(event_file); we will not have
3852         * attached to a context yet.
3853         */
3854        if (!ctx) {
3855                WARN_ON_ONCE(event->attach_state &
3856                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3857                goto no_ctx;
3858        }
3859
3860        if (!is_kernel_event(event))
3861                perf_remove_from_owner(event);
3862
3863        ctx = perf_event_ctx_lock(event);
3864        WARN_ON_ONCE(ctx->parent_ctx);
3865        perf_remove_from_context(event, DETACH_GROUP);
3866
3867        raw_spin_lock_irq(&ctx->lock);
3868        /*
3869         * Mark this even as STATE_DEAD, there is no external reference to it
3870         * anymore.
3871         *
3872         * Anybody acquiring event->child_mutex after the below loop _must_
3873         * also see this, most importantly inherit_event() which will avoid
3874         * placing more children on the list.
3875         *
3876         * Thus this guarantees that we will in fact observe and kill _ALL_
3877         * child events.
3878         */
3879        event->state = PERF_EVENT_STATE_DEAD;
3880        raw_spin_unlock_irq(&ctx->lock);
3881
3882        perf_event_ctx_unlock(event, ctx);
3883
3884again:
3885        mutex_lock(&event->child_mutex);
3886        list_for_each_entry(child, &event->child_list, child_list) {
3887
3888                /*
3889                 * Cannot change, child events are not migrated, see the
3890                 * comment with perf_event_ctx_lock_nested().
3891                 */
3892                ctx = lockless_dereference(child->ctx);
3893                /*
3894                 * Since child_mutex nests inside ctx::mutex, we must jump
3895                 * through hoops. We start by grabbing a reference on the ctx.
3896                 *
3897                 * Since the event cannot get freed while we hold the
3898                 * child_mutex, the context must also exist and have a !0
3899                 * reference count.
3900                 */
3901                get_ctx(ctx);
3902
3903                /*
3904                 * Now that we have a ctx ref, we can drop child_mutex, and
3905                 * acquire ctx::mutex without fear of it going away. Then we
3906                 * can re-acquire child_mutex.
3907                 */
3908                mutex_unlock(&event->child_mutex);
3909                mutex_lock(&ctx->mutex);
3910                mutex_lock(&event->child_mutex);
3911
3912                /*
3913                 * Now that we hold ctx::mutex and child_mutex, revalidate our
3914                 * state, if child is still the first entry, it didn't get freed
3915                 * and we can continue doing so.
3916                 */
3917                tmp = list_first_entry_or_null(&event->child_list,
3918                                               struct perf_event, child_list);
3919                if (tmp == child) {
3920                        perf_remove_from_context(child, DETACH_GROUP);
3921                        list_del(&child->child_list);
3922                        free_event(child);
3923                        /*
3924                         * This matches the refcount bump in inherit_event();
3925                         * this can't be the last reference.
3926                         */
3927                        put_event(event);
3928                }
3929
3930                mutex_unlock(&event->child_mutex);
3931                mutex_unlock(&ctx->mutex);
3932                put_ctx(ctx);
3933                goto again;
3934        }
3935        mutex_unlock(&event->child_mutex);
3936
3937no_ctx:
3938        put_event(event); /* Must be the 'last' reference */
3939        return 0;
3940}
3941EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3942
3943/*
3944 * Called when the last reference to the file is gone.
3945 */
3946static int perf_release(struct inode *inode, struct file *file)
3947{
3948        perf_event_release_kernel(file->private_data);
3949        return 0;
3950}
3951
3952u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3953{
3954        struct perf_event *child;
3955        u64 total = 0;
3956
3957        *enabled = 0;
3958        *running = 0;
3959
3960        mutex_lock(&event->child_mutex);
3961
3962        (void)perf_event_read(event, false);
3963        total += perf_event_count(event);
3964
3965        *enabled += event->total_time_enabled +
3966                        atomic64_read(&event->child_total_time_enabled);
3967        *running += event->total_time_running +
3968                        atomic64_read(&event->child_total_time_running);
3969
3970        list_for_each_entry(child, &event->child_list, child_list) {
3971                (void)perf_event_read(child, false);
3972                total += perf_event_count(child);
3973                *enabled += child->total_time_enabled;
3974                *running += child->total_time_running;
3975        }
3976        mutex_unlock(&event->child_mutex);
3977
3978        return total;
3979}
3980EXPORT_SYMBOL_GPL(perf_event_read_value);
3981
3982static int __perf_read_group_add(struct perf_event *leader,
3983                                        u64 read_format, u64 *values)
3984{
3985        struct perf_event *sub;
3986        int n = 1; /* skip @nr */
3987        int ret;
3988
3989        ret = perf_event_read(leader, true);
3990        if (ret)
3991                return ret;
3992
3993        /*
3994         * Since we co-schedule groups, {enabled,running} times of siblings
3995         * will be identical to those of the leader, so we only publish one
3996         * set.
3997         */
3998        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3999                values[n++] += leader->total_time_enabled +
4000                        atomic64_read(&leader->child_total_time_enabled);
4001        }
4002
4003        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4004                values[n++] += leader->total_time_running +
4005                        atomic64_read(&leader->child_total_time_running);
4006        }
4007
4008        /*
4009         * Write {count,id} tuples for every sibling.
4010         */
4011        values[n++] += perf_event_count(leader);
4012        if (read_format & PERF_FORMAT_ID)
4013                values[n++] = primary_event_id(leader);
4014
4015        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4016                values[n++] += perf_event_count(sub);
4017                if (read_format & PERF_FORMAT_ID)
4018                        values[n++] = primary_event_id(sub);
4019        }
4020
4021        return 0;
4022}
4023
4024static int perf_read_group(struct perf_event *event,
4025                                   u64 read_format, char __user *buf)
4026{
4027        struct perf_event *leader = event->group_leader, *child;
4028        struct perf_event_context *ctx = leader->ctx;
4029        int ret;
4030        u64 *values;
4031
4032        lockdep_assert_held(&ctx->mutex);
4033
4034        values = kzalloc(event->read_size, GFP_KERNEL);
4035        if (!values)
4036                return -ENOMEM;
4037
4038        values[0] = 1 + leader->nr_siblings;
4039
4040        /*
4041         * By locking the child_mutex of the leader we effectively
4042         * lock the child list of all siblings.. XXX explain how.
4043         */
4044        mutex_lock(&leader->child_mutex);
4045
4046        ret = __perf_read_group_add(leader, read_format, values);
4047        if (ret)
4048                goto unlock;
4049
4050        list_for_each_entry(child, &leader->child_list, child_list) {
4051                ret = __perf_read_group_add(child, read_format, values);
4052                if (ret)
4053                        goto unlock;
4054        }
4055
4056        mutex_unlock(&leader->child_mutex);
4057
4058        ret = event->read_size;
4059        if (copy_to_user(buf, values, event->read_size))
4060                ret = -EFAULT;
4061        goto out;
4062
4063unlock:
4064        mutex_unlock(&leader->child_mutex);
4065out:
4066        kfree(values);
4067        return ret;
4068}
4069
4070static int perf_read_one(struct perf_event *event,
4071                                 u64 read_format, char __user *buf)
4072{
4073        u64 enabled, running;
4074        u64 values[4];
4075        int n = 0;
4076
4077        values[n++] = perf_event_read_value(event, &enabled, &running);
4078        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4079                values[n++] = enabled;
4080        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4081                values[n++] = running;
4082        if (read_format & PERF_FORMAT_ID)
4083                values[n++] = primary_event_id(event);
4084
4085        if (copy_to_user(buf, values, n * sizeof(u64)))
4086                return -EFAULT;
4087
4088        return n * sizeof(u64);
4089}
4090
4091static bool is_event_hup(struct perf_event *event)
4092{
4093        bool no_children;
4094
4095        if (event->state > PERF_EVENT_STATE_EXIT)
4096                return false;
4097
4098        mutex_lock(&event->child_mutex);
4099        no_children = list_empty(&event->child_list);
4100        mutex_unlock(&event->child_mutex);
4101        return no_children;
4102}
4103
4104/*
4105 * Read the performance event - simple non blocking version for now
4106 */
4107static ssize_t
4108__perf_read(struct perf_event *event, char __user *buf, size_t count)
4109{
4110        u64 read_format = event->attr.read_format;
4111        int ret;
4112
4113        /*
4114         * Return end-of-file for a read on a event that is in
4115         * error state (i.e. because it was pinned but it couldn't be
4116         * scheduled on to the CPU at some point).
4117         */
4118        if (event->state == PERF_EVENT_STATE_ERROR)
4119                return 0;
4120
4121        if (count < event->read_size)
4122                return -ENOSPC;
4123
4124        WARN_ON_ONCE(event->ctx->parent_ctx);
4125        if (read_format & PERF_FORMAT_GROUP)
4126                ret = perf_read_group(event, read_format, buf);
4127        else
4128                ret = perf_read_one(event, read_format, buf);
4129
4130        return ret;
4131}
4132
4133static ssize_t
4134perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4135{
4136        struct perf_event *event = file->private_data;
4137        struct perf_event_context *ctx;
4138        int ret;
4139
4140        ctx = perf_event_ctx_lock(event);
4141        ret = __perf_read(event, buf, count);
4142        perf_event_ctx_unlock(event, ctx);
4143
4144        return ret;
4145}
4146
4147static unsigned int perf_poll(struct file *file, poll_table *wait)
4148{
4149        struct perf_event *event = file->private_data;
4150        struct ring_buffer *rb;
4151        unsigned int events = POLLHUP;
4152
4153        poll_wait(file, &event->waitq, wait);
4154
4155        if (is_event_hup(event))
4156                return events;
4157
4158        /*
4159         * Pin the event->rb by taking event->mmap_mutex; otherwise
4160         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4161         */
4162        mutex_lock(&event->mmap_mutex);
4163        rb = event->rb;
4164        if (rb)
4165                events = atomic_xchg(&rb->poll, 0);
4166        mutex_unlock(&event->mmap_mutex);
4167        return events;
4168}
4169
4170static void _perf_event_reset(struct perf_event *event)
4171{
4172        (void)perf_event_read(event, false);
4173        local64_set(&event->count, 0);
4174        perf_event_update_userpage(event);
4175}
4176
4177/*
4178 * Holding the top-level event's child_mutex means that any
4179 * descendant process that has inherited this event will block
4180 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4181 * task existence requirements of perf_event_enable/disable.
4182 */
4183static void perf_event_for_each_child(struct perf_event *event,
4184                                        void (*func)(struct perf_event *))
4185{
4186        struct perf_event *child;
4187
4188        WARN_ON_ONCE(event->ctx->parent_ctx);
4189
4190        mutex_lock(&event->child_mutex);
4191        func(event);
4192        list_for_each_entry(child, &event->child_list, child_list)
4193                func(child);
4194        mutex_unlock(&event->child_mutex);
4195}
4196
4197static void perf_event_for_each(struct perf_event *event,
4198                                  void (*func)(struct perf_event *))
4199{
4200        struct perf_event_context *ctx = event->ctx;
4201        struct perf_event *sibling;
4202
4203        lockdep_assert_held(&ctx->mutex);
4204
4205        event = event->group_leader;
4206
4207        perf_event_for_each_child(event, func);
4208        list_for_each_entry(sibling, &event->sibling_list, group_entry)
4209                perf_event_for_each_child(sibling, func);
4210}
4211
4212static void __perf_event_period(struct perf_event *event,
4213                                struct perf_cpu_context *cpuctx,
4214                                struct perf_event_context *ctx,
4215                                void *info)
4216{
4217        u64 value = *((u64 *)info);
4218        bool active;
4219
4220        if (event->attr.freq) {
4221                event->attr.sample_freq = value;
4222        } else {
4223                event->attr.sample_period = value;
4224                event->hw.sample_period = value;
4225        }
4226
4227        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4228        if (active) {
4229                perf_pmu_disable(ctx->pmu);
4230                /*
4231                 * We could be throttled; unthrottle now to avoid the tick
4232                 * trying to unthrottle while we already re-started the event.
4233                 */
4234                if (event->hw.interrupts == MAX_INTERRUPTS) {
4235                        event->hw.interrupts = 0;
4236                        perf_log_throttle(event, 1);
4237                }
4238                event->pmu->stop(event, PERF_EF_UPDATE);
4239        }
4240
4241        local64_set(&event->hw.period_left, 0);
4242
4243        if (active) {
4244                event->pmu->start(event, PERF_EF_RELOAD);
4245                perf_pmu_enable(ctx->pmu);
4246        }
4247}
4248
4249static int perf_event_period(struct perf_event *event, u64 __user *arg)
4250{
4251        u64 value;
4252
4253        if (!is_sampling_event(event))
4254                return -EINVAL;
4255
4256        if (copy_from_user(&value, arg, sizeof(value)))
4257                return -EFAULT;
4258
4259        if (!value)
4260                return -EINVAL;
4261
4262        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4263                return -EINVAL;
4264
4265        event_function_call(event, __perf_event_period, &value);
4266
4267        return 0;
4268}
4269
4270static const struct file_operations perf_fops;
4271
4272static inline int perf_fget_light(int fd, struct fd *p)
4273{
4274        struct fd f = fdget(fd);
4275        if (!f.file)
4276                return -EBADF;
4277
4278        if (f.file->f_op != &perf_fops) {
4279                fdput(f);
4280                return -EBADF;
4281        }
4282        *p = f;
4283        return 0;
4284}
4285
4286static int perf_event_set_output(struct perf_event *event,
4287                                 struct perf_event *output_event);
4288static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4289static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4290
4291static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4292{
4293        void (*func)(struct perf_event *);
4294        u32 flags = arg;
4295
4296        switch (cmd) {
4297        case PERF_EVENT_IOC_ENABLE:
4298                func = _perf_event_enable;
4299                break;
4300        case PERF_EVENT_IOC_DISABLE:
4301                func = _perf_event_disable;
4302                break;
4303        case PERF_EVENT_IOC_RESET:
4304                func = _perf_event_reset;
4305                break;
4306
4307        case PERF_EVENT_IOC_REFRESH:
4308                return _perf_event_refresh(event, arg);
4309
4310        case PERF_EVENT_IOC_PERIOD:
4311                return perf_event_period(event, (u64 __user *)arg);
4312
4313        case PERF_EVENT_IOC_ID:
4314        {
4315                u64 id = primary_event_id(event);
4316
4317                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4318                        return -EFAULT;
4319                return 0;
4320        }
4321
4322        case PERF_EVENT_IOC_SET_OUTPUT:
4323        {
4324                int ret;
4325                if (arg != -1) {
4326                        struct perf_event *output_event;
4327                        struct fd output;
4328                        ret = perf_fget_light(arg, &output);
4329                        if (ret)
4330                                return ret;
4331                        output_event = output.file->private_data;
4332                        ret = perf_event_set_output(event, output_event);
4333                        fdput(output);
4334                } else {
4335                        ret = perf_event_set_output(event, NULL);
4336                }
4337                return ret;
4338        }
4339
4340        case PERF_EVENT_IOC_SET_FILTER:
4341                return perf_event_set_filter(event, (void __user *)arg);
4342
4343        case PERF_EVENT_IOC_SET_BPF:
4344                return perf_event_set_bpf_prog(event, arg);
4345
4346        default:
4347                return -ENOTTY;
4348        }
4349
4350        if (flags & PERF_IOC_FLAG_GROUP)
4351                perf_event_for_each(event, func);
4352        else
4353                perf_event_for_each_child(event, func);
4354
4355        return 0;
4356}
4357
4358static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4359{
4360        struct perf_event *event = file->private_data;
4361        struct perf_event_context *ctx;
4362        long ret;
4363
4364        ctx = perf_event_ctx_lock(event);
4365        ret = _perf_ioctl(event, cmd, arg);
4366        perf_event_ctx_unlock(event, ctx);
4367
4368        return ret;
4369}
4370
4371#ifdef CONFIG_COMPAT
4372static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4373                                unsigned long arg)
4374{
4375        switch (_IOC_NR(cmd)) {
4376        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4377        case _IOC_NR(PERF_EVENT_IOC_ID):
4378                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4379                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4380                        cmd &= ~IOCSIZE_MASK;
4381                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4382                }
4383                break;
4384        }
4385        return perf_ioctl(file, cmd, arg);
4386}
4387#else
4388# define perf_compat_ioctl NULL
4389#endif
4390
4391int perf_event_task_enable(void)
4392{
4393        struct perf_event_context *ctx;
4394        struct perf_event *event;
4395
4396        mutex_lock(&current->perf_event_mutex);
4397        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4398                ctx = perf_event_ctx_lock(event);
4399                perf_event_for_each_child(event, _perf_event_enable);
4400                perf_event_ctx_unlock(event, ctx);
4401        }
4402        mutex_unlock(&current->perf_event_mutex);
4403
4404        return 0;
4405}
4406
4407int perf_event_task_disable(void)
4408{
4409        struct perf_event_context *ctx;
4410        struct perf_event *event;
4411
4412        mutex_lock(&current->perf_event_mutex);
4413        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4414                ctx = perf_event_ctx_lock(event);
4415                perf_event_for_each_child(event, _perf_event_disable);
4416                perf_event_ctx_unlock(event, ctx);
4417        }
4418        mutex_unlock(&current->perf_event_mutex);
4419
4420        return 0;
4421}
4422
4423static int perf_event_index(struct perf_event *event)
4424{
4425        if (event->hw.state & PERF_HES_STOPPED)
4426                return 0;
4427
4428        if (event->state != PERF_EVENT_STATE_ACTIVE)
4429                return 0;
4430
4431        return event->pmu->event_idx(event);
4432}
4433
4434static void calc_timer_values(struct perf_event *event,
4435                                u64 *now,
4436                                u64 *enabled,
4437                                u64 *running)
4438{
4439        u64 ctx_time;
4440
4441        *now = perf_clock();
4442        ctx_time = event->shadow_ctx_time + *now;
4443        *enabled = ctx_time - event->tstamp_enabled;
4444        *running = ctx_time - event->tstamp_running;
4445}
4446
4447static void perf_event_init_userpage(struct perf_event *event)
4448{
4449        struct perf_event_mmap_page *userpg;
4450        struct ring_buffer *rb;
4451
4452        rcu_read_lock();
4453        rb = rcu_dereference(event->rb);
4454        if (!rb)
4455                goto unlock;
4456
4457        userpg = rb->user_page;
4458
4459        /* Allow new userspace to detect that bit 0 is deprecated */
4460        userpg->cap_bit0_is_deprecated = 1;
4461        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4462        userpg->data_offset = PAGE_SIZE;
4463        userpg->data_size = perf_data_size(rb);
4464
4465unlock:
4466        rcu_read_unlock();
4467}
4468
4469void __weak arch_perf_update_userpage(
4470        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4471{
4472}
4473
4474/*
4475 * Callers need to ensure there can be no nesting of this function, otherwise
4476 * the seqlock logic goes bad. We can not serialize this because the arch
4477 * code calls this from NMI context.
4478 */
4479void perf_event_update_userpage(struct perf_event *event)
4480{
4481        struct perf_event_mmap_page *userpg;
4482        struct ring_buffer *rb;
4483        u64 enabled, running, now;
4484
4485        rcu_read_lock();
4486        rb = rcu_dereference(event->rb);
4487        if (!rb)
4488                goto unlock;
4489
4490        /*
4491         * compute total_time_enabled, total_time_running
4492         * based on snapshot values taken when the event
4493         * was last scheduled in.
4494         *
4495         * we cannot simply called update_context_time()
4496         * because of locking issue as we can be called in
4497         * NMI context
4498         */
4499        calc_timer_values(event, &now, &enabled, &running);
4500
4501        userpg = rb->user_page;
4502        /*
4503         * Disable preemption so as to not let the corresponding user-space
4504         * spin too long if we get preempted.
4505         */
4506        preempt_disable();
4507        ++userpg->lock;
4508        barrier();
4509        userpg->index = perf_event_index(event);
4510        userpg->offset = perf_event_count(event);
4511        if (userpg->index)
4512                userpg->offset -= local64_read(&event->hw.prev_count);
4513
4514        userpg->time_enabled = enabled +
4515                        atomic64_read(&event->child_total_time_enabled);
4516
4517        userpg->time_running = running +
4518                        atomic64_read(&event->child_total_time_running);
4519
4520        arch_perf_update_userpage(event, userpg, now);
4521
4522        barrier();
4523        ++userpg->lock;
4524        preempt_enable();
4525unlock:
4526        rcu_read_unlock();
4527}
4528
4529static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4530{
4531        struct perf_event *event = vma->vm_file->private_data;
4532        struct ring_buffer *rb;
4533        int ret = VM_FAULT_SIGBUS;
4534
4535        if (vmf->flags & FAULT_FLAG_MKWRITE) {
4536                if (vmf->pgoff == 0)
4537                        ret = 0;
4538                return ret;
4539        }
4540
4541        rcu_read_lock();
4542        rb = rcu_dereference(event->rb);
4543        if (!rb)
4544                goto unlock;
4545
4546        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4547                goto unlock;
4548
4549        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4550        if (!vmf->page)
4551                goto unlock;
4552
4553        get_page(vmf->page);
4554        vmf->page->mapping = vma->vm_file->f_mapping;
4555        vmf->page->index   = vmf->pgoff;
4556
4557        ret = 0;
4558unlock:
4559        rcu_read_unlock();
4560
4561        return ret;
4562}
4563
4564static void ring_buffer_attach(struct perf_event *event,
4565                               struct ring_buffer *rb)
4566{
4567        struct ring_buffer *old_rb = NULL;
4568        unsigned long flags;
4569
4570        if (event->rb) {
4571                /*
4572                 * Should be impossible, we set this when removing
4573                 * event->rb_entry and wait/clear when adding event->rb_entry.
4574                 */
4575                WARN_ON_ONCE(event->rcu_pending);
4576
4577                old_rb = event->rb;
4578                spin_lock_irqsave(&old_rb->event_lock, flags);
4579                list_del_rcu(&event->rb_entry);
4580                spin_unlock_irqrestore(&old_rb->event_lock, flags);
4581
4582                event->rcu_batches = get_state_synchronize_rcu();
4583                event->rcu_pending = 1;
4584        }
4585
4586        if (rb) {
4587                if (event->rcu_pending) {
4588                        cond_synchronize_rcu(event->rcu_batches);
4589                        event->rcu_pending = 0;
4590                }
4591
4592                spin_lock_irqsave(&rb->event_lock, flags);
4593                list_add_rcu(&event->rb_entry, &rb->event_list);
4594                spin_unlock_irqrestore(&rb->event_lock, flags);
4595        }
4596
4597        rcu_assign_pointer(event->rb, rb);
4598
4599        if (old_rb) {
4600                ring_buffer_put(old_rb);
4601                /*
4602                 * Since we detached before setting the new rb, so that we
4603                 * could attach the new rb, we could have missed a wakeup.
4604                 * Provide it now.
4605                 */
4606                wake_up_all(&event->waitq);
4607        }
4608}
4609
4610static void ring_buffer_wakeup(struct perf_event *event)
4611{
4612        struct ring_buffer *rb;
4613
4614        rcu_read_lock();
4615        rb = rcu_dereference(event->rb);
4616        if (rb) {
4617                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4618                        wake_up_all(&event->waitq);
4619        }
4620        rcu_read_unlock();
4621}
4622
4623struct ring_buffer *ring_buffer_get(struct perf_event *event)
4624{
4625        struct ring_buffer *rb;
4626
4627        rcu_read_lock();
4628        rb = rcu_dereference(event->rb);
4629        if (rb) {
4630                if (!atomic_inc_not_zero(&rb->refcount))
4631                        rb = NULL;
4632        }
4633        rcu_read_unlock();
4634
4635        return rb;
4636}
4637
4638void ring_buffer_put(struct ring_buffer *rb)
4639{
4640        if (!atomic_dec_and_test(&rb->refcount))
4641                return;
4642
4643        WARN_ON_ONCE(!list_empty(&rb->event_list));
4644
4645        call_rcu(&rb->rcu_head, rb_free_rcu);
4646}
4647
4648static void perf_mmap_open(struct vm_area_struct *vma)
4649{
4650        struct perf_event *event = vma->vm_file->private_data;
4651
4652        atomic_inc(&event->mmap_count);
4653        atomic_inc(&event->rb->mmap_count);
4654
4655        if (vma->vm_pgoff)
4656                atomic_inc(&event->rb->aux_mmap_count);
4657
4658        if (event->pmu->event_mapped)
4659                event->pmu->event_mapped(event);
4660}
4661
4662/*
4663 * A buffer can be mmap()ed multiple times; either directly through the same
4664 * event, or through other events by use of perf_event_set_output().
4665 *
4666 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4667 * the buffer here, where we still have a VM context. This means we need
4668 * to detach all events redirecting to us.
4669 */
4670static void perf_mmap_close(struct vm_area_struct *vma)
4671{
4672        struct perf_event *event = vma->vm_file->private_data;
4673
4674        struct ring_buffer *rb = ring_buffer_get(event);
4675        struct user_struct *mmap_user = rb->mmap_user;
4676        int mmap_locked = rb->mmap_locked;
4677        unsigned long size = perf_data_size(rb);
4678
4679        if (event->pmu->event_unmapped)
4680                event->pmu->event_unmapped(event);
4681
4682        /*
4683         * rb->aux_mmap_count will always drop before rb->mmap_count and
4684         * event->mmap_count, so it is ok to use event->mmap_mutex to
4685         * serialize with perf_mmap here.
4686         */
4687        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4688            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4689                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4690                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4691
4692                rb_free_aux(rb);
4693                mutex_unlock(&event->mmap_mutex);
4694        }
4695
4696        atomic_dec(&rb->mmap_count);
4697
4698        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4699                goto out_put;
4700
4701        ring_buffer_attach(event, NULL);
4702        mutex_unlock(&event->mmap_mutex);
4703
4704        /* If there's still other mmap()s of this buffer, we're done. */
4705        if (atomic_read(&rb->mmap_count))
4706                goto out_put;
4707
4708        /*
4709         * No other mmap()s, detach from all other events that might redirect
4710         * into the now unreachable buffer. Somewhat complicated by the
4711         * fact that rb::event_lock otherwise nests inside mmap_mutex.
4712         */
4713again:
4714        rcu_read_lock();
4715        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4716                if (!atomic_long_inc_not_zero(&event->refcount)) {
4717                        /*
4718                         * This event is en-route to free_event() which will
4719                         * detach it and remove it from the list.
4720                         */
4721                        continue;
4722                }
4723                rcu_read_unlock();
4724
4725                mutex_lock(&event->mmap_mutex);
4726                /*
4727                 * Check we didn't race with perf_event_set_output() which can
4728                 * swizzle the rb from under us while we were waiting to
4729                 * acquire mmap_mutex.
4730                 *
4731                 * If we find a different rb; ignore this event, a next
4732                 * iteration will no longer find it on the list. We have to
4733                 * still restart the iteration to make sure we're not now
4734                 * iterating the wrong list.
4735                 */
4736                if (event->rb == rb)
4737                        ring_buffer_attach(event, NULL);
4738
4739                mutex_unlock(&event->mmap_mutex);
4740                put_event(event);
4741
4742                /*
4743                 * Restart the iteration; either we're on the wrong list or
4744                 * destroyed its integrity by doing a deletion.
4745                 */
4746                goto again;
4747        }
4748        rcu_read_unlock();
4749
4750        /*
4751         * It could be there's still a few 0-ref events on the list; they'll
4752         * get cleaned up by free_event() -- they'll also still have their
4753         * ref on the rb and will free it whenever they are done with it.
4754         *
4755         * Aside from that, this buffer is 'fully' detached and unmapped,
4756         * undo the VM accounting.
4757         */
4758
4759        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4760        vma->vm_mm->pinned_vm -= mmap_locked;
4761        free_uid(mmap_user);
4762
4763out_put:
4764        ring_buffer_put(rb); /* could be last */
4765}
4766
4767static const struct vm_operations_struct perf_mmap_vmops = {
4768        .open           = perf_mmap_open,
4769        .close          = perf_mmap_close, /* non mergable */
4770        .fault          = perf_mmap_fault,
4771        .page_mkwrite   = perf_mmap_fault,
4772};
4773
4774static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4775{
4776        struct perf_event *event = file->private_data;
4777        unsigned long user_locked, user_lock_limit;
4778        struct user_struct *user = current_user();
4779        unsigned long locked, lock_limit;
4780        struct ring_buffer *rb = NULL;
4781        unsigned long vma_size;
4782        unsigned long nr_pages;
4783        long user_extra = 0, extra = 0;
4784        int ret = 0, flags = 0;
4785
4786        /*
4787         * Don't allow mmap() of inherited per-task counters. This would
4788         * create a performance issue due to all children writing to the
4789         * same rb.
4790         */
4791        if (event->cpu == -1 && event->attr.inherit)
4792                return -EINVAL;
4793
4794        if (!(vma->vm_flags & VM_SHARED))
4795                return -EINVAL;
4796
4797        vma_size = vma->vm_end - vma->vm_start;
4798
4799        if (vma->vm_pgoff == 0) {
4800                nr_pages = (vma_size / PAGE_SIZE) - 1;
4801        } else {
4802                /*
4803                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4804                 * mapped, all subsequent mappings should have the same size
4805                 * and offset. Must be above the normal perf buffer.
4806                 */
4807                u64 aux_offset, aux_size;
4808
4809                if (!event->rb)
4810                        return -EINVAL;
4811
4812                nr_pages = vma_size / PAGE_SIZE;
4813
4814                mutex_lock(&event->mmap_mutex);
4815                ret = -EINVAL;
4816
4817                rb = event->rb;
4818                if (!rb)
4819                        goto aux_unlock;
4820
4821                aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4822                aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4823
4824                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4825                        goto aux_unlock;
4826
4827                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4828                        goto aux_unlock;
4829
4830                /* already mapped with a different offset */
4831                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4832                        goto aux_unlock;
4833
4834                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4835                        goto aux_unlock;
4836
4837                /* already mapped with a different size */
4838                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4839                        goto aux_unlock;
4840
4841                if (!is_power_of_2(nr_pages))
4842                        goto aux_unlock;
4843
4844                if (!atomic_inc_not_zero(&rb->mmap_count))
4845                        goto aux_unlock;
4846
4847                if (rb_has_aux(rb)) {
4848                        atomic_inc(&rb->aux_mmap_count);
4849                        ret = 0;
4850                        goto unlock;
4851                }
4852
4853                atomic_set(&rb->aux_mmap_count, 1);
4854                user_extra = nr_pages;
4855
4856                goto accounting;
4857        }
4858
4859        /*
4860         * If we have rb pages ensure they're a power-of-two number, so we
4861         * can do bitmasks instead of modulo.
4862         */
4863        if (nr_pages != 0 && !is_power_of_2(nr_pages))
4864                return -EINVAL;
4865
4866        if (vma_size != PAGE_SIZE * (1 + nr_pages))
4867                return -EINVAL;
4868
4869        WARN_ON_ONCE(event->ctx->parent_ctx);
4870again:
4871        mutex_lock(&event->mmap_mutex);
4872        if (event->rb) {
4873                if (event->rb->nr_pages != nr_pages) {
4874                        ret = -EINVAL;
4875                        goto unlock;
4876                }
4877
4878                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4879                        /*
4880                         * Raced against perf_mmap_close() through
4881                         * perf_event_set_output(). Try again, hope for better
4882                         * luck.
4883                         */
4884                        mutex_unlock(&event->mmap_mutex);
4885                        goto again;
4886                }
4887
4888                goto unlock;
4889        }
4890
4891        user_extra = nr_pages + 1;
4892
4893accounting:
4894        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4895
4896        /*
4897         * Increase the limit linearly with more CPUs:
4898         */
4899        user_lock_limit *= num_online_cpus();
4900
4901        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4902
4903        if (user_locked > user_lock_limit)
4904                extra = user_locked - user_lock_limit;
4905
4906        lock_limit = rlimit(RLIMIT_MEMLOCK);
4907        lock_limit >>= PAGE_SHIFT;
4908        locked = vma->vm_mm->pinned_vm + extra;
4909
4910        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4911                !capable(CAP_IPC_LOCK)) {
4912                ret = -EPERM;
4913                goto unlock;
4914        }
4915
4916        WARN_ON(!rb && event->rb);
4917
4918        if (vma->vm_flags & VM_WRITE)
4919                flags |= RING_BUFFER_WRITABLE;
4920
4921        if (!rb) {
4922                rb = rb_alloc(nr_pages,
4923                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
4924                              event->cpu, flags);
4925
4926                if (!rb) {
4927                        ret = -ENOMEM;
4928                        goto unlock;
4929                }
4930
4931                atomic_set(&rb->mmap_count, 1);
4932                rb->mmap_user = get_current_user();
4933                rb->mmap_locked = extra;
4934
4935                ring_buffer_attach(event, rb);
4936
4937                perf_event_init_userpage(event);
4938                perf_event_update_userpage(event);
4939        } else {
4940                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4941                                   event->attr.aux_watermark, flags);
4942                if (!ret)
4943                        rb->aux_mmap_locked = extra;
4944        }
4945
4946unlock:
4947        if (!ret) {
4948                atomic_long_add(user_extra, &user->locked_vm);
4949                vma->vm_mm->pinned_vm += extra;
4950
4951                atomic_inc(&event->mmap_count);
4952        } else if (rb) {
4953                atomic_dec(&rb->mmap_count);
4954        }
4955aux_unlock:
4956        mutex_unlock(&event->mmap_mutex);
4957
4958        /*
4959         * Since pinned accounting is per vm we cannot allow fork() to copy our
4960         * vma.
4961         */
4962        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4963        vma->vm_ops = &perf_mmap_vmops;
4964
4965        if (event->pmu->event_mapped)
4966                event->pmu->event_mapped(event);
4967
4968        return ret;
4969}
4970
4971static int perf_fasync(int fd, struct file *filp, int on)
4972{
4973        struct inode *inode = file_inode(filp);
4974        struct perf_event *event = filp->private_data;
4975        int retval;
4976
4977        inode_lock(inode);
4978        retval = fasync_helper(fd, filp, on, &event->fasync);
4979        inode_unlock(inode);
4980
4981        if (retval < 0)
4982                return retval;
4983
4984        return 0;
4985}
4986
4987static const struct file_operations perf_fops = {
4988        .llseek                 = no_llseek,
4989        .release                = perf_release,
4990        .read                   = perf_read,
4991        .poll                   = perf_poll,
4992        .unlocked_ioctl         = perf_ioctl,
4993        .compat_ioctl           = perf_compat_ioctl,
4994        .mmap                   = perf_mmap,
4995        .fasync                 = perf_fasync,
4996};
4997
4998/*
4999 * Perf event wakeup
5000 *
5001 * If there's data, ensure we set the poll() state and publish everything
5002 * to user-space before waking everybody up.
5003 */
5004
5005static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5006{
5007        /* only the parent has fasync state */
5008        if (event->parent)
5009                event = event->parent;
5010        return &event->fasync;
5011}
5012
5013void perf_event_wakeup(struct perf_event *event)
5014{
5015        ring_buffer_wakeup(event);
5016
5017        if (event->pending_kill) {
5018                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5019                event->pending_kill = 0;
5020        }
5021}
5022
5023static void perf_pending_event(struct irq_work *entry)
5024{
5025        struct perf_event *event = container_of(entry,
5026                        struct perf_event, pending);
5027        int rctx;
5028
5029        rctx = perf_swevent_get_recursion_context();
5030        /*
5031         * If we 'fail' here, that's OK, it means recursion is already disabled
5032         * and we won't recurse 'further'.
5033         */
5034
5035        if (event->pending_disable) {
5036                event->pending_disable = 0;
5037                perf_event_disable_local(event);
5038        }
5039
5040        if (event->pending_wakeup) {
5041                event->pending_wakeup = 0;
5042                perf_event_wakeup(event);
5043        }
5044
5045        if (rctx >= 0)
5046                perf_swevent_put_recursion_context(rctx);
5047}
5048
5049/*
5050 * We assume there is only KVM supporting the callbacks.
5051 * Later on, we might change it to a list if there is
5052 * another virtualization implementation supporting the callbacks.
5053 */
5054struct perf_guest_info_callbacks *perf_guest_cbs;
5055
5056int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5057{
5058        perf_guest_cbs = cbs;
5059        return 0;
5060}
5061EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5062
5063int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5064{
5065        perf_guest_cbs = NULL;
5066        return 0;
5067}
5068EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5069
5070static void
5071perf_output_sample_regs(struct perf_output_handle *handle,
5072                        struct pt_regs *regs, u64 mask)
5073{
5074        int bit;
5075
5076        for_each_set_bit(bit, (const unsigned long *) &mask,
5077                         sizeof(mask) * BITS_PER_BYTE) {
5078                u64 val;
5079
5080                val = perf_reg_value(regs, bit);
5081                perf_output_put(handle, val);
5082        }
5083}
5084
5085static void perf_sample_regs_user(struct perf_regs *regs_user,
5086                                  struct pt_regs *regs,
5087                                  struct pt_regs *regs_user_copy)
5088{
5089        if (user_mode(regs)) {
5090                regs_user->abi = perf_reg_abi(current);
5091                regs_user->regs = regs;
5092        } else if (current->mm) {
5093                perf_get_regs_user(regs_user, regs, regs_user_copy);
5094        } else {
5095                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5096                regs_user->regs = NULL;
5097        }
5098}
5099
5100static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5101                                  struct pt_regs *regs)
5102{
5103        regs_intr->regs = regs;
5104        regs_intr->abi  = perf_reg_abi(current);
5105}
5106
5107
5108/*
5109 * Get remaining task size from user stack pointer.
5110 *
5111 * It'd be better to take stack vma map and limit this more
5112 * precisly, but there's no way to get it safely under interrupt,
5113 * so using TASK_SIZE as limit.
5114 */
5115static u64 perf_ustack_task_size(struct pt_regs *regs)
5116{
5117        unsigned long addr = perf_user_stack_pointer(regs);
5118
5119        if (!addr || addr >= TASK_SIZE)
5120                return 0;
5121
5122        return TASK_SIZE - addr;
5123}
5124
5125static u16
5126perf_sample_ustack_size(u16 stack_size, u16 header_size,
5127                        struct pt_regs *regs)
5128{
5129        u64 task_size;
5130
5131        /* No regs, no stack pointer, no dump. */
5132        if (!regs)
5133                return 0;
5134
5135        /*
5136         * Check if we fit in with the requested stack size into the:
5137         * - TASK_SIZE
5138         *   If we don't, we limit the size to the TASK_SIZE.
5139         *
5140         * - remaining sample size
5141         *   If we don't, we customize the stack size to
5142         *   fit in to the remaining sample size.
5143         */
5144
5145        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5146        stack_size = min(stack_size, (u16) task_size);
5147
5148        /* Current header size plus static size and dynamic size. */
5149        header_size += 2 * sizeof(u64);
5150
5151        /* Do we fit in with the current stack dump size? */
5152        if ((u16) (header_size + stack_size) < header_size) {
5153                /*
5154                 * If we overflow the maximum size for the sample,
5155                 * we customize the stack dump size to fit in.
5156                 */
5157                stack_size = USHRT_MAX - header_size - sizeof(u64);
5158                stack_size = round_up(stack_size, sizeof(u64));
5159        }
5160
5161        return stack_size;
5162}
5163
5164static void
5165perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5166                          struct pt_regs *regs)
5167{
5168        /* Case of a kernel thread, nothing to dump */
5169        if (!regs) {
5170                u64 size = 0;
5171                perf_output_put(handle, size);
5172        } else {
5173                unsigned long sp;
5174                unsigned int rem;
5175                u64 dyn_size;
5176
5177                /*
5178                 * We dump:
5179                 * static size
5180                 *   - the size requested by user or the best one we can fit
5181                 *     in to the sample max size
5182                 * data
5183                 *   - user stack dump data
5184                 * dynamic size
5185                 *   - the actual dumped size
5186                 */
5187
5188                /* Static size. */
5189                perf_output_put(handle, dump_size);
5190
5191                /* Data. */
5192                sp = perf_user_stack_pointer(regs);
5193                rem = __output_copy_user(handle, (void *) sp, dump_size);
5194                dyn_size = dump_size - rem;
5195
5196                perf_output_skip(handle, rem);
5197
5198                /* Dynamic size. */
5199                perf_output_put(handle, dyn_size);
5200        }
5201}
5202
5203static void __perf_event_header__init_id(struct perf_event_header *header,
5204                                         struct perf_sample_data *data,
5205                                         struct perf_event *event)
5206{
5207        u64 sample_type = event->attr.sample_type;
5208
5209        data->type = sample_type;
5210        header->size += event->id_header_size;
5211
5212        if (sample_type & PERF_SAMPLE_TID) {
5213                /* namespace issues */
5214                data->tid_entry.pid = perf_event_pid(event, current);
5215                data->tid_entry.tid = perf_event_tid(event, current);
5216        }
5217
5218        if (sample_type & PERF_SAMPLE_TIME)
5219                data->time = perf_event_clock(event);
5220
5221        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5222                data->id = primary_event_id(event);
5223
5224        if (sample_type & PERF_SAMPLE_STREAM_ID)
5225                data->stream_id = event->id;
5226
5227        if (sample_type & PERF_SAMPLE_CPU) {
5228                data->cpu_entry.cpu      = raw_smp_processor_id();
5229                data->cpu_entry.reserved = 0;
5230        }
5231}
5232
5233void perf_event_header__init_id(struct perf_event_header *header,
5234                                struct perf_sample_data *data,
5235                                struct perf_event *event)
5236{
5237        if (event->attr.sample_id_all)
5238                __perf_event_header__init_id(header, data, event);
5239}
5240
5241static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5242                                           struct perf_sample_data *data)
5243{
5244        u64 sample_type = data->type;
5245
5246        if (sample_type & PERF_SAMPLE_TID)
5247                perf_output_put(handle, data->tid_entry);
5248
5249        if (sample_type & PERF_SAMPLE_TIME)
5250                perf_output_put(handle, data->time);
5251
5252        if (sample_type & PERF_SAMPLE_ID)
5253                perf_output_put(handle, data->id);
5254
5255        if (sample_type & PERF_SAMPLE_STREAM_ID)
5256                perf_output_put(handle, data->stream_id);
5257
5258        if (sample_type & PERF_SAMPLE_CPU)
5259                perf_output_put(handle, data->cpu_entry);
5260
5261        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5262                perf_output_put(handle, data->id);
5263}
5264
5265void perf_event__output_id_sample(struct perf_event *event,
5266                                  struct perf_output_handle *handle,
5267                                  struct perf_sample_data *sample)
5268{
5269        if (event->attr.sample_id_all)
5270                __perf_event__output_id_sample(handle, sample);
5271}
5272
5273static void perf_output_read_one(struct perf_output_handle *handle,
5274                                 struct perf_event *event,
5275                                 u64 enabled, u64 running)
5276{
5277        u64 read_format = event->attr.read_format;
5278        u64 values[4];
5279        int n = 0;
5280
5281        values[n++] = perf_event_count(event);
5282        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5283                values[n++] = enabled +
5284                        atomic64_read(&event->child_total_time_enabled);
5285        }
5286        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5287                values[n++] = running +
5288                        atomic64_read(&event->child_total_time_running);
5289        }
5290        if (read_format & PERF_FORMAT_ID)
5291                values[n++] = primary_event_id(event);
5292
5293        __output_copy(handle, values, n * sizeof(u64));
5294}
5295
5296/*
5297 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5298 */
5299static void perf_output_read_group(struct perf_output_handle *handle,
5300                            struct perf_event *event,
5301                            u64 enabled, u64 running)
5302{
5303        struct perf_event *leader = event->group_leader, *sub;
5304        u64 read_format = event->attr.read_format;
5305        u64 values[5];
5306        int n = 0;
5307
5308        values[n++] = 1 + leader->nr_siblings;
5309
5310        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5311                values[n++] = enabled;
5312
5313        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5314                values[n++] = running;
5315
5316        if (leader != event)
5317                leader->pmu->read(leader);
5318
5319        values[n++] = perf_event_count(leader);
5320        if (read_format & PERF_FORMAT_ID)
5321                values[n++] = primary_event_id(leader);
5322
5323        __output_copy(handle, values, n * sizeof(u64));
5324
5325        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5326                n = 0;
5327
5328                if ((sub != event) &&
5329                    (sub->state == PERF_EVENT_STATE_ACTIVE))
5330                        sub->pmu->read(sub);
5331
5332                values[n++] = perf_event_count(sub);
5333                if (read_format & PERF_FORMAT_ID)
5334                        values[n++] = primary_event_id(sub);
5335
5336                __output_copy(handle, values, n * sizeof(u64));
5337        }
5338}
5339
5340#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5341                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
5342
5343static void perf_output_read(struct perf_output_handle *handle,
5344                             struct perf_event *event)
5345{
5346        u64 enabled = 0, running = 0, now;
5347        u64 read_format = event->attr.read_format;
5348
5349        /*
5350         * compute total_time_enabled, total_time_running
5351         * based on snapshot values taken when the event
5352         * was last scheduled in.
5353         *
5354         * we cannot simply called update_context_time()
5355         * because of locking issue as we are called in
5356         * NMI context
5357         */
5358        if (read_format & PERF_FORMAT_TOTAL_TIMES)
5359                calc_timer_values(event, &now, &enabled, &running);
5360
5361        if (event->attr.read_format & PERF_FORMAT_GROUP)
5362                perf_output_read_group(handle, event, enabled, running);
5363        else
5364                perf_output_read_one(handle, event, enabled, running);
5365}
5366
5367void perf_output_sample(struct perf_output_handle *handle,
5368                        struct perf_event_header *header,
5369                        struct perf_sample_data *data,
5370                        struct perf_event *event)
5371{
5372        u64 sample_type = data->type;
5373
5374        perf_output_put(handle, *header);
5375
5376        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5377                perf_output_put(handle, data->id);
5378
5379        if (sample_type & PERF_SAMPLE_IP)
5380                perf_output_put(handle, data->ip);
5381
5382        if (sample_type & PERF_SAMPLE_TID)
5383                perf_output_put(handle, data->tid_entry);
5384
5385        if (sample_type & PERF_SAMPLE_TIME)
5386                perf_output_put(handle, data->time);
5387
5388        if (sample_type & PERF_SAMPLE_ADDR)
5389                perf_output_put(handle, data->addr);
5390
5391        if (sample_type & PERF_SAMPLE_ID)
5392                perf_output_put(handle, data->id);
5393
5394        if (sample_type & PERF_SAMPLE_STREAM_ID)
5395                perf_output_put(handle, data->stream_id);
5396
5397        if (sample_type & PERF_SAMPLE_CPU)
5398                perf_output_put(handle, data->cpu_entry);
5399
5400        if (sample_type & PERF_SAMPLE_PERIOD)
5401                perf_output_put(handle, data->period);
5402
5403        if (sample_type & PERF_SAMPLE_READ)
5404                perf_output_read(handle, event);
5405
5406        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5407                if (data->callchain) {
5408                        int size = 1;
5409
5410                        if (data->callchain)
5411                                size += data->callchain->nr;
5412
5413                        size *= sizeof(u64);
5414
5415                        __output_copy(handle, data->callchain, size);
5416                } else {
5417                        u64 nr = 0;
5418                        perf_output_put(handle, nr);
5419                }
5420        }
5421
5422        if (sample_type & PERF_SAMPLE_RAW) {
5423                if (data->raw) {
5424                        u32 raw_size = data->raw->size;
5425                        u32 real_size = round_up(raw_size + sizeof(u32),
5426                                                 sizeof(u64)) - sizeof(u32);
5427                        u64 zero = 0;
5428
5429                        perf_output_put(handle, real_size);
5430                        __output_copy(handle, data->raw->data, raw_size);
5431                        if (real_size - raw_size)
5432                                __output_copy(handle, &zero, real_size - raw_size);
5433                } else {
5434                        struct {
5435                                u32     size;
5436                                u32     data;
5437                        } raw = {
5438                                .size = sizeof(u32),
5439                                .data = 0,
5440                        };
5441                        perf_output_put(handle, raw);
5442                }
5443        }
5444
5445        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5446                if (data->br_stack) {
5447                        size_t size;
5448
5449                        size = data->br_stack->nr
5450                             * sizeof(struct perf_branch_entry);
5451
5452                        perf_output_put(handle, data->br_stack->nr);
5453                        perf_output_copy(handle, data->br_stack->entries, size);
5454                } else {
5455                        /*
5456                         * we always store at least the value of nr
5457                         */
5458                        u64 nr = 0;
5459                        perf_output_put(handle, nr);
5460                }
5461        }
5462
5463        if (sample_type & PERF_SAMPLE_REGS_USER) {
5464                u64 abi = data->regs_user.abi;
5465
5466                /*
5467                 * If there are no regs to dump, notice it through
5468                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5469                 */
5470                perf_output_put(handle, abi);
5471
5472                if (abi) {
5473                        u64 mask = event->attr.sample_regs_user;
5474                        perf_output_sample_regs(handle,
5475                                                data->regs_user.regs,
5476                                                mask);
5477                }
5478        }
5479
5480        if (sample_type & PERF_SAMPLE_STACK_USER) {
5481                perf_output_sample_ustack(handle,
5482                                          data->stack_user_size,
5483                                          data->regs_user.regs);
5484        }
5485
5486        if (sample_type & PERF_SAMPLE_WEIGHT)
5487                perf_output_put(handle, data->weight);
5488
5489        if (sample_type & PERF_SAMPLE_DATA_SRC)
5490                perf_output_put(handle, data->data_src.val);
5491
5492        if (sample_type & PERF_SAMPLE_TRANSACTION)
5493                perf_output_put(handle, data->txn);
5494
5495        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5496                u64 abi = data->regs_intr.abi;
5497                /*
5498                 * If there are no regs to dump, notice it through
5499                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5500                 */
5501                perf_output_put(handle, abi);
5502
5503                if (abi) {
5504                        u64 mask = event->attr.sample_regs_intr;
5505
5506                        perf_output_sample_regs(handle,
5507                                                data->regs_intr.regs,
5508                                                mask);
5509                }
5510        }
5511
5512        if (!event->attr.watermark) {
5513                int wakeup_events = event->attr.wakeup_events;
5514
5515                if (wakeup_events) {
5516                        struct ring_buffer *rb = handle->rb;
5517                        int events = local_inc_return(&rb->events);
5518
5519                        if (events >= wakeup_events) {
5520                                local_sub(wakeup_events, &rb->events);
5521                                local_inc(&rb->wakeup);
5522                        }
5523                }
5524        }
5525}
5526
5527void perf_prepare_sample(struct perf_event_header *header,
5528                         struct perf_sample_data *data,
5529                         struct perf_event *event,
5530                         struct pt_regs *regs)
5531{
5532        u64 sample_type = event->attr.sample_type;
5533
5534        header->type = PERF_RECORD_SAMPLE;
5535        header->size = sizeof(*header) + event->header_size;
5536
5537        header->misc = 0;
5538        header->misc |= perf_misc_flags(regs);
5539
5540        __perf_event_header__init_id(header, data, event);
5541
5542        if (sample_type & PERF_SAMPLE_IP)
5543                data->ip = perf_instruction_pointer(regs);
5544
5545        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5546                int size = 1;
5547
5548                data->callchain = perf_callchain(event, regs);
5549
5550                if (data->callchain)
5551                        size += data->callchain->nr;
5552
5553                header->size += size * sizeof(u64);
5554        }
5555
5556        if (sample_type & PERF_SAMPLE_RAW) {
5557                int size = sizeof(u32);
5558
5559                if (data->raw)
5560                        size += data->raw->size;
5561                else
5562                        size += sizeof(u32);
5563
5564                header->size += round_up(size, sizeof(u64));
5565        }
5566
5567        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5568                int size = sizeof(u64); /* nr */
5569                if (data->br_stack) {
5570                        size += data->br_stack->nr
5571                              * sizeof(struct perf_branch_entry);
5572                }
5573                header->size += size;
5574        }
5575
5576        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5577                perf_sample_regs_user(&data->regs_user, regs,
5578                                      &data->regs_user_copy);
5579
5580        if (sample_type & PERF_SAMPLE_REGS_USER) {
5581                /* regs dump ABI info */
5582                int size = sizeof(u64);
5583
5584                if (data->regs_user.regs) {
5585                        u64 mask = event->attr.sample_regs_user;
5586                        size += hweight64(mask) * sizeof(u64);
5587                }
5588
5589                header->size += size;
5590        }
5591
5592        if (sample_type & PERF_SAMPLE_STACK_USER) {
5593                /*
5594                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5595                 * processed as the last one or have additional check added
5596                 * in case new sample type is added, because we could eat
5597                 * up the rest of the sample size.
5598                 */
5599                u16 stack_size = event->attr.sample_stack_user;
5600                u16 size = sizeof(u64);
5601
5602                stack_size = perf_sample_ustack_size(stack_size, header->size,
5603                                                     data->regs_user.regs);
5604
5605                /*
5606                 * If there is something to dump, add space for the dump
5607                 * itself and for the field that tells the dynamic size,
5608                 * which is how many have been actually dumped.
5609                 */
5610                if (stack_size)
5611                        size += sizeof(u64) + stack_size;
5612
5613                data->stack_user_size = stack_size;
5614                header->size += size;
5615        }
5616
5617        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5618                /* regs dump ABI info */
5619                int size = sizeof(u64);
5620
5621                perf_sample_regs_intr(&data->regs_intr, regs);
5622
5623                if (data->regs_intr.regs) {
5624                        u64 mask = event->attr.sample_regs_intr;
5625
5626                        size += hweight64(mask) * sizeof(u64);
5627                }
5628
5629                header->size += size;
5630        }
5631}
5632
5633void perf_event_output(struct perf_event *event,
5634                        struct perf_sample_data *data,
5635                        struct pt_regs *regs)
5636{
5637        struct perf_output_handle handle;
5638        struct perf_event_header header;
5639
5640        /* protect the callchain buffers */
5641        rcu_read_lock();
5642
5643        perf_prepare_sample(&header, data, event, regs);
5644
5645        if (perf_output_begin(&handle, event, header.size))
5646                goto exit;
5647
5648        perf_output_sample(&handle, &header, data, event);
5649
5650        perf_output_end(&handle);
5651
5652exit:
5653        rcu_read_unlock();
5654}
5655
5656/*
5657 * read event_id
5658 */
5659
5660struct perf_read_event {
5661        struct perf_event_header        header;
5662
5663        u32                             pid;
5664        u32                             tid;
5665};
5666
5667static void
5668perf_event_read_event(struct perf_event *event,
5669                        struct task_struct *task)
5670{
5671        struct perf_output_handle handle;
5672        struct perf_sample_data sample;
5673        struct perf_read_event read_event = {
5674                .header = {
5675                        .type = PERF_RECORD_READ,
5676                        .misc = 0,
5677                        .size = sizeof(read_event) + event->read_size,
5678                },
5679                .pid = perf_event_pid(event, task),
5680                .tid = perf_event_tid(event, task),
5681        };
5682        int ret;
5683
5684        perf_event_header__init_id(&read_event.header, &sample, event);
5685        ret = perf_output_begin(&handle, event, read_event.header.size);
5686        if (ret)
5687                return;
5688
5689        perf_output_put(&handle, read_event);
5690        perf_output_read(&handle, event);
5691        perf_event__output_id_sample(event, &handle, &sample);
5692
5693        perf_output_end(&handle);
5694}
5695
5696typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5697
5698static void
5699perf_event_aux_ctx(struct perf_event_context *ctx,
5700                   perf_event_aux_output_cb output,
5701                   void *data)
5702{
5703        struct perf_event *event;
5704
5705        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5706                if (event->state < PERF_EVENT_STATE_INACTIVE)
5707                        continue;
5708                if (!event_filter_match(event))
5709                        continue;
5710                output(event, data);
5711        }
5712}
5713
5714static void
5715perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5716                        struct perf_event_context *task_ctx)
5717{
5718        rcu_read_lock();
5719        preempt_disable();
5720        perf_event_aux_ctx(task_ctx, output, data);
5721        preempt_enable();
5722        rcu_read_unlock();
5723}
5724
5725static void
5726perf_event_aux(perf_event_aux_output_cb output, void *data,
5727               struct perf_event_context *task_ctx)
5728{
5729        struct perf_cpu_context *cpuctx;
5730        struct perf_event_context *ctx;
5731        struct pmu *pmu;
5732        int ctxn;
5733
5734        /*
5735         * If we have task_ctx != NULL we only notify
5736         * the task context itself. The task_ctx is set
5737         * only for EXIT events before releasing task
5738         * context.
5739         */
5740        if (task_ctx) {
5741                perf_event_aux_task_ctx(output, data, task_ctx);
5742                return;
5743        }
5744
5745        rcu_read_lock();
5746        list_for_each_entry_rcu(pmu, &pmus, entry) {
5747                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5748                if (cpuctx->unique_pmu != pmu)
5749                        goto next;
5750                perf_event_aux_ctx(&cpuctx->ctx, output, data);
5751                ctxn = pmu->task_ctx_nr;
5752                if (ctxn < 0)
5753                        goto next;
5754                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5755                if (ctx)
5756                        perf_event_aux_ctx(ctx, output, data);
5757next:
5758                put_cpu_ptr(pmu->pmu_cpu_context);
5759        }
5760        rcu_read_unlock();
5761}
5762
5763/*
5764 * task tracking -- fork/exit
5765 *
5766 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5767 */
5768
5769struct perf_task_event {
5770        struct task_struct              *task;
5771        struct perf_event_context       *task_ctx;
5772
5773        struct {
5774                struct perf_event_header        header;
5775
5776                u32                             pid;
5777                u32                             ppid;
5778                u32                             tid;
5779                u32                             ptid;
5780                u64                             time;
5781        } event_id;
5782};
5783
5784static int perf_event_task_match(struct perf_event *event)
5785{
5786        return event->attr.comm  || event->attr.mmap ||
5787               event->attr.mmap2 || event->attr.mmap_data ||
5788               event->attr.task;
5789}
5790
5791static void perf_event_task_output(struct perf_event *event,
5792                                   void *data)
5793{
5794        struct perf_task_event *task_event = data;
5795        struct perf_output_handle handle;
5796        struct perf_sample_data sample;
5797        struct task_struct *task = task_event->task;
5798        int ret, size = task_event->event_id.header.size;
5799
5800        if (!perf_event_task_match(event))
5801                return;
5802
5803        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5804
5805        ret = perf_output_begin(&handle, event,
5806                                task_event->event_id.header.size);
5807        if (ret)
5808                goto out;
5809
5810        task_event->event_id.pid = perf_event_pid(event, task);
5811        task_event->event_id.ppid = perf_event_pid(event, current);
5812
5813        task_event->event_id.tid = perf_event_tid(event, task);
5814        task_event->event_id.ptid = perf_event_tid(event, current);
5815
5816        task_event->event_id.time = perf_event_clock(event);
5817
5818        perf_output_put(&handle, task_event->event_id);
5819
5820        perf_event__output_id_sample(event, &handle, &sample);
5821
5822        perf_output_end(&handle);
5823out:
5824        task_event->event_id.header.size = size;
5825}
5826
5827static void perf_event_task(struct task_struct *task,
5828                              struct perf_event_context *task_ctx,
5829                              int new)
5830{
5831        struct perf_task_event task_event;
5832
5833        if (!atomic_read(&nr_comm_events) &&
5834            !atomic_read(&nr_mmap_events) &&
5835            !atomic_read(&nr_task_events))
5836                return;
5837
5838        task_event = (struct perf_task_event){
5839                .task     = task,
5840                .task_ctx = task_ctx,
5841                .event_id    = {
5842                        .header = {
5843                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5844                                .misc = 0,
5845                                .size = sizeof(task_event.event_id),
5846                        },
5847                        /* .pid  */
5848                        /* .ppid */
5849                        /* .tid  */
5850                        /* .ptid */
5851                        /* .time */
5852                },
5853        };
5854
5855        perf_event_aux(perf_event_task_output,
5856                       &task_event,
5857                       task_ctx);
5858}
5859
5860void perf_event_fork(struct task_struct *task)
5861{
5862        perf_event_task(task, NULL, 1);
5863}
5864
5865/*
5866 * comm tracking
5867 */
5868
5869struct perf_comm_event {
5870        struct task_struct      *task;
5871        char                    *comm;
5872        int                     comm_size;
5873
5874        struct {
5875                struct perf_event_header        header;
5876
5877                u32                             pid;
5878                u32                             tid;
5879        } event_id;
5880};
5881
5882static int perf_event_comm_match(struct perf_event *event)
5883{
5884        return event->attr.comm;
5885}
5886
5887static void perf_event_comm_output(struct perf_event *event,
5888                                   void *data)
5889{
5890        struct perf_comm_event *comm_event = data;
5891        struct perf_output_handle handle;
5892        struct perf_sample_data sample;
5893        int size = comm_event->event_id.header.size;
5894        int ret;
5895
5896        if (!perf_event_comm_match(event))
5897                return;
5898
5899        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5900        ret = perf_output_begin(&handle, event,
5901                                comm_event->event_id.header.size);
5902
5903        if (ret)
5904                goto out;
5905
5906        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5907        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5908
5909        perf_output_put(&handle, comm_event->event_id);
5910        __output_copy(&handle, comm_event->comm,
5911                                   comm_event->comm_size);
5912
5913        perf_event__output_id_sample(event, &handle, &sample);
5914
5915        perf_output_end(&handle);
5916out:
5917        comm_event->event_id.header.size = size;
5918}
5919
5920static void perf_event_comm_event(struct perf_comm_event *comm_event)
5921{
5922        char comm[TASK_COMM_LEN];
5923        unsigned int size;
5924
5925        memset(comm, 0, sizeof(comm));
5926        strlcpy(comm, comm_event->task->comm, sizeof(comm));
5927        size = ALIGN(strlen(comm)+1, sizeof(u64));
5928
5929        comm_event->comm = comm;
5930        comm_event->comm_size = size;
5931
5932        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5933
5934        perf_event_aux(perf_event_comm_output,
5935                       comm_event,
5936                       NULL);
5937}
5938
5939void perf_event_comm(struct task_struct *task, bool exec)
5940{
5941        struct perf_comm_event comm_event;
5942
5943        if (!atomic_read(&nr_comm_events))
5944                return;
5945
5946        comm_event = (struct perf_comm_event){
5947                .task   = task,
5948                /* .comm      */
5949                /* .comm_size */
5950                .event_id  = {
5951                        .header = {
5952                                .type = PERF_RECORD_COMM,
5953                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5954                                /* .size */
5955                        },
5956                        /* .pid */
5957                        /* .tid */
5958                },
5959        };
5960
5961        perf_event_comm_event(&comm_event);
5962}
5963
5964/*
5965 * mmap tracking
5966 */
5967
5968struct perf_mmap_event {
5969        struct vm_area_struct   *vma;
5970
5971        const char              *file_name;
5972        int                     file_size;
5973        int                     maj, min;
5974        u64                     ino;
5975        u64                     ino_generation;
5976        u32                     prot, flags;
5977
5978        struct {
5979                struct perf_event_header        header;
5980
5981                u32                             pid;
5982                u32                             tid;
5983                u64                             start;
5984                u64                             len;
5985                u64                             pgoff;
5986        } event_id;
5987};
5988
5989static int perf_event_mmap_match(struct perf_event *event,
5990                                 void *data)
5991{
5992        struct perf_mmap_event *mmap_event = data;
5993        struct vm_area_struct *vma = mmap_event->vma;
5994        int executable = vma->vm_flags & VM_EXEC;
5995
5996        return (!executable && event->attr.mmap_data) ||
5997               (executable && (event->attr.mmap || event->attr.mmap2));
5998}
5999
6000static void perf_event_mmap_output(struct perf_event *event,
6001                                   void *data)
6002{
6003        struct perf_mmap_event *mmap_event = data;
6004        struct perf_output_handle handle;
6005        struct perf_sample_data sample;
6006        int size = mmap_event->event_id.header.size;
6007        int ret;
6008
6009        if (!perf_event_mmap_match(event, data))
6010                return;
6011
6012        if (event->attr.mmap2) {
6013                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6014                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6015                mmap_event->event_id.header.size += sizeof(mmap_event->min);
6016                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6017                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6018                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6019                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6020        }
6021
6022        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6023        ret = perf_output_begin(&handle, event,
6024                                mmap_event->event_id.header.size);
6025        if (ret)
6026                goto out;
6027
6028        mmap_event->event_id.pid = perf_event_pid(event, current);
6029        mmap_event->event_id.tid = perf_event_tid(event, current);
6030
6031        perf_output_put(&handle, mmap_event->event_id);
6032
6033        if (event->attr.mmap2) {
6034                perf_output_put(&handle, mmap_event->maj);
6035                perf_output_put(&handle, mmap_event->min);
6036                perf_output_put(&handle, mmap_event->ino);
6037                perf_output_put(&handle, mmap_event->ino_generation);
6038                perf_output_put(&handle, mmap_event->prot);
6039                perf_output_put(&handle, mmap_event->flags);
6040        }
6041
6042        __output_copy(&handle, mmap_event->file_name,
6043                                   mmap_event->file_size);
6044
6045        perf_event__output_id_sample(event, &handle, &sample);
6046
6047        perf_output_end(&handle);
6048out:
6049        mmap_event->event_id.header.size = size;
6050}
6051
6052static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6053{
6054        struct vm_area_struct *vma = mmap_event->vma;
6055        struct file *file = vma->vm_file;
6056        int maj = 0, min = 0;
6057        u64 ino = 0, gen = 0;
6058        u32 prot = 0, flags = 0;
6059        unsigned int size;
6060        char tmp[16];
6061        char *buf = NULL;
6062        char *name;
6063
6064        if (file) {
6065                struct inode *inode;
6066                dev_t dev;
6067
6068                buf = kmalloc(PATH_MAX, GFP_KERNEL);
6069                if (!buf) {
6070                        name = "//enomem";
6071                        goto cpy_name;
6072                }
6073                /*
6074                 * d_path() works from the end of the rb backwards, so we
6075                 * need to add enough zero bytes after the string to handle
6076                 * the 64bit alignment we do later.
6077                 */
6078                name = file_path(file, buf, PATH_MAX - sizeof(u64));
6079                if (IS_ERR(name)) {
6080                        name = "//toolong";
6081                        goto cpy_name;
6082                }
6083                inode = file_inode(vma->vm_file);
6084                dev = inode->i_sb->s_dev;
6085                ino = inode->i_ino;
6086                gen = inode->i_generation;
6087                maj = MAJOR(dev);
6088                min = MINOR(dev);
6089
6090                if (vma->vm_flags & VM_READ)
6091                        prot |= PROT_READ;
6092                if (vma->vm_flags & VM_WRITE)
6093                        prot |= PROT_WRITE;
6094                if (vma->vm_flags & VM_EXEC)
6095                        prot |= PROT_EXEC;
6096
6097                if (vma->vm_flags & VM_MAYSHARE)
6098                        flags = MAP_SHARED;
6099                else
6100                        flags = MAP_PRIVATE;
6101
6102                if (vma->vm_flags & VM_DENYWRITE)
6103                        flags |= MAP_DENYWRITE;
6104                if (vma->vm_flags & VM_MAYEXEC)
6105                        flags |= MAP_EXECUTABLE;
6106                if (vma->vm_flags & VM_LOCKED)
6107                        flags |= MAP_LOCKED;
6108                if (vma->vm_flags & VM_HUGETLB)
6109                        flags |= MAP_HUGETLB;
6110
6111                goto got_name;
6112        } else {
6113                if (vma->vm_ops && vma->vm_ops->name) {
6114                        name = (char *) vma->vm_ops->name(vma);
6115                        if (name)
6116                                goto cpy_name;
6117                }
6118
6119                name = (char *)arch_vma_name(vma);
6120                if (name)
6121                        goto cpy_name;
6122
6123                if (vma->vm_start <= vma->vm_mm->start_brk &&
6124                                vma->vm_end >= vma->vm_mm->brk) {
6125                        name = "[heap]";
6126                        goto cpy_name;
6127                }
6128                if (vma->vm_start <= vma->vm_mm->start_stack &&
6129                                vma->vm_end >= vma->vm_mm->start_stack) {
6130                        name = "[stack]";
6131                        goto cpy_name;
6132                }
6133
6134                name = "//anon";
6135                goto cpy_name;
6136        }
6137
6138cpy_name:
6139        strlcpy(tmp, name, sizeof(tmp));
6140        name = tmp;
6141got_name:
6142        /*
6143         * Since our buffer works in 8 byte units we need to align our string
6144         * size to a multiple of 8. However, we must guarantee the tail end is
6145         * zero'd out to avoid leaking random bits to userspace.
6146         */
6147        size = strlen(name)+1;
6148        while (!IS_ALIGNED(size, sizeof(u64)))
6149                name[size++] = '\0';
6150
6151        mmap_event->file_name = name;
6152        mmap_event->file_size = size;
6153        mmap_event->maj = maj;
6154        mmap_event->min = min;
6155        mmap_event->ino = ino;
6156        mmap_event->ino_generation = gen;
6157        mmap_event->prot = prot;
6158        mmap_event->flags = flags;
6159
6160        if (!(vma->vm_flags & VM_EXEC))
6161                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6162
6163        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6164
6165        perf_event_aux(perf_event_mmap_output,
6166                       mmap_event,
6167                       NULL);
6168
6169        kfree(buf);
6170}
6171
6172void perf_event_mmap(struct vm_area_struct *vma)
6173{
6174        struct perf_mmap_event mmap_event;
6175
6176        if (!atomic_read(&nr_mmap_events))
6177                return;
6178
6179        mmap_event = (struct perf_mmap_event){
6180                .vma    = vma,
6181                /* .file_name */
6182                /* .file_size */
6183                .event_id  = {
6184                        .header = {
6185                                .type = PERF_RECORD_MMAP,
6186                                .misc = PERF_RECORD_MISC_USER,
6187                                /* .size */
6188                        },
6189                        /* .pid */
6190                        /* .tid */
6191                        .start  = vma->vm_start,
6192                        .len    = vma->vm_end - vma->vm_start,
6193                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6194                },
6195                /* .maj (attr_mmap2 only) */
6196                /* .min (attr_mmap2 only) */
6197                /* .ino (attr_mmap2 only) */
6198                /* .ino_generation (attr_mmap2 only) */
6199                /* .prot (attr_mmap2 only) */
6200                /* .flags (attr_mmap2 only) */
6201        };
6202
6203        perf_event_mmap_event(&mmap_event);
6204}
6205
6206void perf_event_aux_event(struct perf_event *event, unsigned long head,
6207                          unsigned long size, u64 flags)
6208{
6209        struct perf_output_handle handle;
6210        struct perf_sample_data sample;
6211        struct perf_aux_event {
6212                struct perf_event_header        header;
6213                u64                             offset;
6214                u64                             size;
6215                u64                             flags;
6216        } rec = {
6217                .header = {
6218                        .type = PERF_RECORD_AUX,
6219                        .misc = 0,
6220                        .size = sizeof(rec),
6221                },
6222                .offset         = head,
6223                .size           = size,
6224                .flags          = flags,
6225        };
6226        int ret;
6227
6228        perf_event_header__init_id(&rec.header, &sample, event);
6229        ret = perf_output_begin(&handle, event, rec.header.size);
6230
6231        if (ret)
6232                return;
6233
6234        perf_output_put(&handle, rec);
6235        perf_event__output_id_sample(event, &handle, &sample);
6236
6237        perf_output_end(&handle);
6238}
6239
6240/*
6241 * Lost/dropped samples logging
6242 */
6243void perf_log_lost_samples(struct perf_event *event, u64 lost)
6244{
6245        struct perf_output_handle handle;
6246        struct perf_sample_data sample;
6247        int ret;
6248
6249        struct {
6250                struct perf_event_header        header;
6251                u64                             lost;
6252        } lost_samples_event = {
6253                .header = {
6254                        .type = PERF_RECORD_LOST_SAMPLES,
6255                        .misc = 0,
6256                        .size = sizeof(lost_samples_event),
6257                },
6258                .lost           = lost,
6259        };
6260
6261        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6262
6263        ret = perf_output_begin(&handle, event,
6264                                lost_samples_event.header.size);
6265        if (ret)
6266                return;
6267
6268        perf_output_put(&handle, lost_samples_event);
6269        perf_event__output_id_sample(event, &handle, &sample);
6270        perf_output_end(&handle);
6271}
6272
6273/*
6274 * context_switch tracking
6275 */
6276
6277struct perf_switch_event {
6278        struct task_struct      *task;
6279        struct task_struct      *next_prev;
6280
6281        struct {
6282                struct perf_event_header        header;
6283                u32                             next_prev_pid;
6284                u32                             next_prev_tid;
6285        } event_id;
6286};
6287
6288static int perf_event_switch_match(struct perf_event *event)
6289{
6290        return event->attr.context_switch;
6291}
6292
6293static void perf_event_switch_output(struct perf_event *event, void *data)
6294{
6295        struct perf_switch_event *se = data;
6296        struct perf_output_handle handle;
6297        struct perf_sample_data sample;
6298        int ret;
6299
6300        if (!perf_event_switch_match(event))
6301                return;
6302
6303        /* Only CPU-wide events are allowed to see next/prev pid/tid */
6304        if (event->ctx->task) {
6305                se->event_id.header.type = PERF_RECORD_SWITCH;
6306                se->event_id.header.size = sizeof(se->event_id.header);
6307        } else {
6308                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6309                se->event_id.header.size = sizeof(se->event_id);
6310                se->event_id.next_prev_pid =
6311                                        perf_event_pid(event, se->next_prev);
6312                se->event_id.next_prev_tid =
6313                                        perf_event_tid(event, se->next_prev);
6314        }
6315
6316        perf_event_header__init_id(&se->event_id.header, &sample, event);
6317
6318        ret = perf_output_begin(&handle, event, se->event_id.header.size);
6319        if (ret)
6320                return;
6321
6322        if (event->ctx->task)
6323                perf_output_put(&handle, se->event_id.header);
6324        else
6325                perf_output_put(&handle, se->event_id);
6326
6327        perf_event__output_id_sample(event, &handle, &sample);
6328
6329        perf_output_end(&handle);
6330}
6331
6332static void perf_event_switch(struct task_struct *task,
6333                              struct task_struct *next_prev, bool sched_in)
6334{
6335        struct perf_switch_event switch_event;
6336
6337        /* N.B. caller checks nr_switch_events != 0 */
6338
6339        switch_event = (struct perf_switch_event){
6340                .task           = task,
6341                .next_prev      = next_prev,
6342                .event_id       = {
6343                        .header = {
6344                                /* .type */
6345                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6346                                /* .size */
6347                        },
6348                        /* .next_prev_pid */
6349                        /* .next_prev_tid */
6350                },
6351        };
6352
6353        perf_event_aux(perf_event_switch_output,
6354                       &switch_event,
6355                       NULL);
6356}
6357
6358/*
6359 * IRQ throttle logging
6360 */
6361
6362static void perf_log_throttle(struct perf_event *event, int enable)
6363{
6364        struct perf_output_handle handle;
6365        struct perf_sample_data sample;
6366        int ret;
6367
6368        struct {
6369                struct perf_event_header        header;
6370                u64                             time;
6371                u64                             id;
6372                u64                             stream_id;
6373        } throttle_event = {
6374                .header = {
6375                        .type = PERF_RECORD_THROTTLE,
6376                        .misc = 0,
6377                        .size = sizeof(throttle_event),
6378                },
6379                .time           = perf_event_clock(event),
6380                .id             = primary_event_id(event),
6381                .stream_id      = event->id,
6382        };
6383
6384        if (enable)
6385                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6386
6387        perf_event_header__init_id(&throttle_event.header, &sample, event);
6388
6389        ret = perf_output_begin(&handle, event,
6390                                throttle_event.header.size);
6391        if (ret)
6392                return;
6393
6394        perf_output_put(&handle, throttle_event);
6395        perf_event__output_id_sample(event, &handle, &sample);
6396        perf_output_end(&handle);
6397}
6398
6399static void perf_log_itrace_start(struct perf_event *event)
6400{
6401        struct perf_output_handle handle;
6402        struct perf_sample_data sample;
6403        struct perf_aux_event {
6404                struct perf_event_header        header;
6405                u32                             pid;
6406                u32                             tid;
6407        } rec;
6408        int ret;
6409
6410        if (event->parent)
6411                event = event->parent;
6412
6413        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6414            event->hw.itrace_started)
6415                return;
6416
6417        rec.header.type = PERF_RECORD_ITRACE_START;
6418        rec.header.misc = 0;
6419        rec.header.size = sizeof(rec);
6420        rec.pid = perf_event_pid(event, current);
6421        rec.tid = perf_event_tid(event, current);
6422
6423        perf_event_header__init_id(&rec.header, &sample, event);
6424        ret = perf_output_begin(&handle, event, rec.header.size);
6425
6426        if (ret)
6427                return;
6428
6429        perf_output_put(&handle, rec);
6430        perf_event__output_id_sample(event, &handle, &sample);
6431
6432        perf_output_end(&handle);
6433}
6434
6435/*
6436 * Generic event overflow handling, sampling.
6437 */
6438
6439static int __perf_event_overflow(struct perf_event *event,
6440                                   int throttle, struct perf_sample_data *data,
6441                                   struct pt_regs *regs)
6442{
6443        int events = atomic_read(&event->event_limit);
6444        struct hw_perf_event *hwc = &event->hw;
6445        u64 seq;
6446        int ret = 0;
6447
6448        /*
6449         * Non-sampling counters might still use the PMI to fold short
6450         * hardware counters, ignore those.
6451         */
6452        if (unlikely(!is_sampling_event(event)))
6453                return 0;
6454
6455        seq = __this_cpu_read(perf_throttled_seq);
6456        if (seq != hwc->interrupts_seq) {
6457                hwc->interrupts_seq = seq;
6458                hwc->interrupts = 1;
6459        } else {
6460                hwc->interrupts++;
6461                if (unlikely(throttle
6462                             && hwc->interrupts >= max_samples_per_tick)) {
6463                        __this_cpu_inc(perf_throttled_count);
6464                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6465                        hwc->interrupts = MAX_INTERRUPTS;
6466                        perf_log_throttle(event, 0);
6467                        ret = 1;
6468                }
6469        }
6470
6471        if (event->attr.freq) {
6472                u64 now = perf_clock();
6473                s64 delta = now - hwc->freq_time_stamp;
6474
6475                hwc->freq_time_stamp = now;
6476
6477                if (delta > 0 && delta < 2*TICK_NSEC)
6478                        perf_adjust_period(event, delta, hwc->last_period, true);
6479        }
6480
6481        /*
6482         * XXX event_limit might not quite work as expected on inherited
6483         * events
6484         */
6485
6486        event->pending_kill = POLL_IN;
6487        if (events && atomic_dec_and_test(&event->event_limit)) {
6488                ret = 1;
6489                event->pending_kill = POLL_HUP;
6490                event->pending_disable = 1;
6491                irq_work_queue(&event->pending);
6492        }
6493
6494        if (event->overflow_handler)
6495                event->overflow_handler(event, data, regs);
6496        else
6497                perf_event_output(event, data, regs);
6498
6499        if (*perf_event_fasync(event) && event->pending_kill) {
6500                event->pending_wakeup = 1;
6501                irq_work_queue(&event->pending);
6502        }
6503
6504        return ret;
6505}
6506
6507int perf_event_overflow(struct perf_event *event,
6508                          struct perf_sample_data *data,
6509                          struct pt_regs *regs)
6510{
6511        return __perf_event_overflow(event, 1, data, regs);
6512}
6513
6514/*
6515 * Generic software event infrastructure
6516 */
6517
6518struct swevent_htable {
6519        struct swevent_hlist            *swevent_hlist;
6520        struct mutex                    hlist_mutex;
6521        int                             hlist_refcount;
6522
6523        /* Recursion avoidance in each contexts */
6524        int                             recursion[PERF_NR_CONTEXTS];
6525};
6526
6527static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6528
6529/*
6530 * We directly increment event->count and keep a second value in
6531 * event->hw.period_left to count intervals. This period event
6532 * is kept in the range [-sample_period, 0] so that we can use the
6533 * sign as trigger.
6534 */
6535
6536u64 perf_swevent_set_period(struct perf_event *event)
6537{
6538        struct hw_perf_event *hwc = &event->hw;
6539        u64 period = hwc->last_period;
6540        u64 nr, offset;
6541        s64 old, val;
6542
6543        hwc->last_period = hwc->sample_period;
6544
6545again:
6546        old = val = local64_read(&hwc->period_left);
6547        if (val < 0)
6548                return 0;
6549
6550        nr = div64_u64(period + val, period);
6551        offset = nr * period;
6552        val -= offset;
6553        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6554                goto again;
6555
6556        return nr;
6557}
6558
6559static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6560                                    struct perf_sample_data *data,
6561                                    struct pt_regs *regs)
6562{
6563        struct hw_perf_event *hwc = &event->hw;
6564        int throttle = 0;
6565
6566        if (!overflow)
6567                overflow = perf_swevent_set_period(event);
6568
6569        if (hwc->interrupts == MAX_INTERRUPTS)
6570                return;
6571
6572        for (; overflow; overflow--) {
6573                if (__perf_event_overflow(event, throttle,
6574                                            data, regs)) {
6575                        /*
6576                         * We inhibit the overflow from happening when
6577                         * hwc->interrupts == MAX_INTERRUPTS.
6578                         */
6579                        break;
6580                }
6581                throttle = 1;
6582        }
6583}
6584
6585static void perf_swevent_event(struct perf_event *event, u64 nr,
6586                               struct perf_sample_data *data,
6587                               struct pt_regs *regs)
6588{
6589        struct hw_perf_event *hwc = &event->hw;
6590
6591        local64_add(nr, &event->count);
6592
6593        if (!regs)
6594                return;
6595
6596        if (!is_sampling_event(event))
6597                return;
6598
6599        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6600                data->period = nr;
6601                return perf_swevent_overflow(event, 1, data, regs);
6602        } else
6603                data->period = event->hw.last_period;
6604
6605        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6606                return perf_swevent_overflow(event, 1, data, regs);
6607
6608        if (local64_add_negative(nr, &hwc->period_left))
6609                return;
6610
6611        perf_swevent_overflow(event, 0, data, regs);
6612}
6613
6614static int perf_exclude_event(struct perf_event *event,
6615                              struct pt_regs *regs)
6616{
6617        if (event->hw.state & PERF_HES_STOPPED)
6618                return 1;
6619
6620        if (regs) {
6621                if (event->attr.exclude_user && user_mode(regs))
6622                        return 1;
6623
6624                if (event->attr.exclude_kernel && !user_mode(regs))
6625                        return 1;
6626        }
6627
6628        return 0;
6629}
6630
6631static int perf_swevent_match(struct perf_event *event,
6632                                enum perf_type_id type,
6633                                u32 event_id,
6634                                struct perf_sample_data *data,
6635                                struct pt_regs *regs)
6636{
6637        if (event->attr.type != type)
6638                return 0;
6639
6640        if (event->attr.config != event_id)
6641                return 0;
6642
6643        if (perf_exclude_event(event, regs))
6644                return 0;
6645
6646        return 1;
6647}
6648
6649static inline u64 swevent_hash(u64 type, u32 event_id)
6650{
6651        u64 val = event_id | (type << 32);
6652
6653        return hash_64(val, SWEVENT_HLIST_BITS);
6654}
6655
6656static inline struct hlist_head *
6657__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6658{
6659        u64 hash = swevent_hash(type, event_id);
6660
6661        return &hlist->heads[hash];
6662}
6663
6664/* For the read side: events when they trigger */
6665static inline struct hlist_head *
6666find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6667{
6668        struct swevent_hlist *hlist;
6669
6670        hlist = rcu_dereference(swhash->swevent_hlist);
6671        if (!hlist)
6672                return NULL;
6673
6674        return __find_swevent_head(hlist, type, event_id);
6675}
6676
6677/* For the event head insertion and removal in the hlist */
6678static inline struct hlist_head *
6679find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6680{
6681        struct swevent_hlist *hlist;
6682        u32 event_id = event->attr.config;
6683        u64 type = event->attr.type;
6684
6685        /*
6686         * Event scheduling is always serialized against hlist allocation
6687         * and release. Which makes the protected version suitable here.
6688         * The context lock guarantees that.
6689         */
6690        hlist = rcu_dereference_protected(swhash->swevent_hlist,
6691                                          lockdep_is_held(&event->ctx->lock));
6692        if (!hlist)
6693                return NULL;
6694
6695        return __find_swevent_head(hlist, type, event_id);
6696}
6697
6698static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6699                                    u64 nr,
6700                                    struct perf_sample_data *data,
6701                                    struct pt_regs *regs)
6702{
6703        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6704        struct perf_event *event;
6705        struct hlist_head *head;
6706
6707        rcu_read_lock();
6708        head = find_swevent_head_rcu(swhash, type, event_id);
6709        if (!head)
6710                goto end;
6711
6712        hlist_for_each_entry_rcu(event, head, hlist_entry) {
6713                if (perf_swevent_match(event, type, event_id, data, regs))
6714                        perf_swevent_event(event, nr, data, regs);
6715        }
6716end:
6717        rcu_read_unlock();
6718}
6719
6720DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6721
6722int perf_swevent_get_recursion_context(void)
6723{
6724        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6725
6726        return get_recursion_context(swhash->recursion);
6727}
6728EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6729
6730inline void perf_swevent_put_recursion_context(int rctx)
6731{
6732        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733
6734        put_recursion_context(swhash->recursion, rctx);
6735}
6736
6737void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6738{
6739        struct perf_sample_data data;
6740
6741        if (WARN_ON_ONCE(!regs))
6742                return;
6743
6744        perf_sample_data_init(&data, addr, 0);
6745        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6746}
6747
6748void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6749{
6750        int rctx;
6751
6752        preempt_disable_notrace();
6753        rctx = perf_swevent_get_recursion_context();
6754        if (unlikely(rctx < 0))
6755                goto fail;
6756
6757        ___perf_sw_event(event_id, nr, regs, addr);
6758
6759        perf_swevent_put_recursion_context(rctx);
6760fail:
6761        preempt_enable_notrace();
6762}
6763
6764static void perf_swevent_read(struct perf_event *event)
6765{
6766}
6767
6768static int perf_swevent_add(struct perf_event *event, int flags)
6769{
6770        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6771        struct hw_perf_event *hwc = &event->hw;
6772        struct hlist_head *head;
6773
6774        if (is_sampling_event(event)) {
6775                hwc->last_period = hwc->sample_period;
6776                perf_swevent_set_period(event);
6777        }
6778
6779        hwc->state = !(flags & PERF_EF_START);
6780
6781        head = find_swevent_head(swhash, event);
6782        if (WARN_ON_ONCE(!head))
6783                return -EINVAL;
6784
6785        hlist_add_head_rcu(&event->hlist_entry, head);
6786        perf_event_update_userpage(event);
6787
6788        return 0;
6789}
6790
6791static void perf_swevent_del(struct perf_event *event, int flags)
6792{
6793        hlist_del_rcu(&event->hlist_entry);
6794}
6795
6796static void perf_swevent_start(struct perf_event *event, int flags)
6797{
6798        event->hw.state = 0;
6799}
6800
6801static void perf_swevent_stop(struct perf_event *event, int flags)
6802{
6803        event->hw.state = PERF_HES_STOPPED;
6804}
6805
6806/* Deref the hlist from the update side */
6807static inline struct swevent_hlist *
6808swevent_hlist_deref(struct swevent_htable *swhash)
6809{
6810        return rcu_dereference_protected(swhash->swevent_hlist,
6811                                         lockdep_is_held(&swhash->hlist_mutex));
6812}
6813
6814static void swevent_hlist_release(struct swevent_htable *swhash)
6815{
6816        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6817
6818        if (!hlist)
6819                return;
6820
6821        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6822        kfree_rcu(hlist, rcu_head);
6823}
6824
6825static void swevent_hlist_put_cpu(int cpu)
6826{
6827        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828
6829        mutex_lock(&swhash->hlist_mutex);
6830
6831        if (!--swhash->hlist_refcount)
6832                swevent_hlist_release(swhash);
6833
6834        mutex_unlock(&swhash->hlist_mutex);
6835}
6836
6837static void swevent_hlist_put(void)
6838{
6839        int cpu;
6840
6841        for_each_possible_cpu(cpu)
6842                swevent_hlist_put_cpu(cpu);
6843}
6844
6845static int swevent_hlist_get_cpu(int cpu)
6846{
6847        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6848        int err = 0;
6849
6850        mutex_lock(&swhash->hlist_mutex);
6851        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6852                struct swevent_hlist *hlist;
6853
6854                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6855                if (!hlist) {
6856                        err = -ENOMEM;
6857                        goto exit;
6858                }
6859                rcu_assign_pointer(swhash->swevent_hlist, hlist);
6860        }
6861        swhash->hlist_refcount++;
6862exit:
6863        mutex_unlock(&swhash->hlist_mutex);
6864
6865        return err;
6866}
6867
6868static int swevent_hlist_get(void)
6869{
6870        int err, cpu, failed_cpu;
6871
6872        get_online_cpus();
6873        for_each_possible_cpu(cpu) {
6874                err = swevent_hlist_get_cpu(cpu);
6875                if (err) {
6876                        failed_cpu = cpu;
6877                        goto fail;
6878                }
6879        }
6880        put_online_cpus();
6881
6882        return 0;
6883fail:
6884        for_each_possible_cpu(cpu) {
6885                if (cpu == failed_cpu)
6886                        break;
6887                swevent_hlist_put_cpu(cpu);
6888        }
6889
6890        put_online_cpus();
6891        return err;
6892}
6893
6894struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6895
6896static void sw_perf_event_destroy(struct perf_event *event)
6897{
6898        u64 event_id = event->attr.config;
6899
6900        WARN_ON(event->parent);
6901
6902        static_key_slow_dec(&perf_swevent_enabled[event_id]);
6903        swevent_hlist_put();
6904}
6905
6906static int perf_swevent_init(struct perf_event *event)
6907{
6908        u64 event_id = event->attr.config;
6909
6910        if (event->attr.type != PERF_TYPE_SOFTWARE)
6911                return -ENOENT;
6912
6913        /*
6914         * no branch sampling for software events
6915         */
6916        if (has_branch_stack(event))
6917                return -EOPNOTSUPP;
6918
6919        switch (event_id) {
6920        case PERF_COUNT_SW_CPU_CLOCK:
6921        case PERF_COUNT_SW_TASK_CLOCK:
6922                return -ENOENT;
6923
6924        default:
6925                break;
6926        }
6927
6928        if (event_id >= PERF_COUNT_SW_MAX)
6929                return -ENOENT;
6930
6931        if (!event->parent) {
6932                int err;
6933
6934                err = swevent_hlist_get();
6935                if (err)
6936                        return err;
6937
6938                static_key_slow_inc(&perf_swevent_enabled[event_id]);
6939                event->destroy = sw_perf_event_destroy;
6940        }
6941
6942        return 0;
6943}
6944
6945static struct pmu perf_swevent = {
6946        .task_ctx_nr    = perf_sw_context,
6947
6948        .capabilities   = PERF_PMU_CAP_NO_NMI,
6949
6950        .event_init     = perf_swevent_init,
6951        .add            = perf_swevent_add,
6952        .del            = perf_swevent_del,
6953        .start          = perf_swevent_start,
6954        .stop           = perf_swevent_stop,
6955        .read           = perf_swevent_read,
6956};
6957
6958#ifdef CONFIG_EVENT_TRACING
6959
6960static int perf_tp_filter_match(struct perf_event *event,
6961                                struct perf_sample_data *data)
6962{
6963        void *record = data->raw->data;
6964
6965        /* only top level events have filters set */
6966        if (event->parent)
6967                event = event->parent;
6968
6969        if (likely(!event->filter) || filter_match_preds(event->filter, record))
6970                return 1;
6971        return 0;
6972}
6973
6974static int perf_tp_event_match(struct perf_event *event,
6975                                struct perf_sample_data *data,
6976                                struct pt_regs *regs)
6977{
6978        if (event->hw.state & PERF_HES_STOPPED)
6979                return 0;
6980        /*
6981         * All tracepoints are from kernel-space.
6982         */
6983        if (event->attr.exclude_kernel)
6984                return 0;
6985
6986        if (!perf_tp_filter_match(event, data))
6987                return 0;
6988
6989        return 1;
6990}
6991
6992void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6993                   struct pt_regs *regs, struct hlist_head *head, int rctx,
6994                   struct task_struct *task)
6995{
6996        struct perf_sample_data data;
6997        struct perf_event *event;
6998
6999        struct perf_raw_record raw = {
7000                .size = entry_size,
7001                .data = record,
7002        };
7003
7004        perf_sample_data_init(&data, addr, 0);
7005        data.raw = &raw;
7006
7007        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7008                if (perf_tp_event_match(event, &data, regs))
7009                        perf_swevent_event(event, count, &data, regs);
7010        }
7011
7012        /*
7013         * If we got specified a target task, also iterate its context and
7014         * deliver this event there too.
7015         */
7016        if (task && task != current) {
7017                struct perf_event_context *ctx;
7018                struct trace_entry *entry = record;
7019
7020                rcu_read_lock();
7021                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7022                if (!ctx)
7023                        goto unlock;
7024
7025                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7026                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7027                                continue;
7028                        if (event->attr.config != entry->type)
7029                                continue;
7030                        if (perf_tp_event_match(event, &data, regs))
7031                                perf_swevent_event(event, count, &data, regs);
7032                }
7033unlock:
7034                rcu_read_unlock();
7035        }
7036
7037        perf_swevent_put_recursion_context(rctx);
7038}
7039EXPORT_SYMBOL_GPL(perf_tp_event);
7040
7041static void tp_perf_event_destroy(struct perf_event *event)
7042{
7043        perf_trace_destroy(event);
7044}
7045
7046static int perf_tp_event_init(struct perf_event *event)
7047{
7048        int err;
7049
7050        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7051                return -ENOENT;
7052
7053        /*
7054         * no branch sampling for tracepoint events
7055         */
7056        if (has_branch_stack(event))
7057                return -EOPNOTSUPP;
7058
7059        err = perf_trace_init(event);
7060        if (err)
7061                return err;
7062
7063        event->destroy = tp_perf_event_destroy;
7064
7065        return 0;
7066}
7067
7068static struct pmu perf_tracepoint = {
7069        .task_ctx_nr    = perf_sw_context,
7070
7071        .event_init     = perf_tp_event_init,
7072        .add            = perf_trace_add,
7073        .del            = perf_trace_del,
7074        .start          = perf_swevent_start,
7075        .stop           = perf_swevent_stop,
7076        .read           = perf_swevent_read,
7077};
7078
7079static inline void perf_tp_register(void)
7080{
7081        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7082}
7083
7084static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7085{
7086        char *filter_str;
7087        int ret;
7088
7089        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7090                return -EINVAL;
7091
7092        filter_str = strndup_user(arg, PAGE_SIZE);
7093        if (IS_ERR(filter_str))
7094                return PTR_ERR(filter_str);
7095
7096        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7097
7098        kfree(filter_str);
7099        return ret;
7100}
7101
7102static void perf_event_free_filter(struct perf_event *event)
7103{
7104        ftrace_profile_free_filter(event);
7105}
7106
7107static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7108{
7109        struct bpf_prog *prog;
7110
7111        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7112                return -EINVAL;
7113
7114        if (event->tp_event->prog)
7115                return -EEXIST;
7116
7117        if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7118                /* bpf programs can only be attached to u/kprobes */
7119                return -EINVAL;
7120
7121        prog = bpf_prog_get(prog_fd);
7122        if (IS_ERR(prog))
7123                return PTR_ERR(prog);
7124
7125        if (prog->type != BPF_PROG_TYPE_KPROBE) {
7126                /* valid fd, but invalid bpf program type */
7127                bpf_prog_put(prog);
7128                return -EINVAL;
7129        }
7130
7131        event->tp_event->prog = prog;
7132
7133        return 0;
7134}
7135
7136static void perf_event_free_bpf_prog(struct perf_event *event)
7137{
7138        struct bpf_prog *prog;
7139
7140        if (!event->tp_event)
7141                return;
7142
7143        prog = event->tp_event->prog;
7144        if (prog) {
7145                event->tp_event->prog = NULL;
7146                bpf_prog_put(prog);
7147        }
7148}
7149
7150#else
7151
7152static inline void perf_tp_register(void)
7153{
7154}
7155
7156static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7157{
7158        return -ENOENT;
7159}
7160
7161static void perf_event_free_filter(struct perf_event *event)
7162{
7163}
7164
7165static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7166{
7167        return -ENOENT;
7168}
7169
7170static void perf_event_free_bpf_prog(struct perf_event *event)
7171{
7172}
7173#endif /* CONFIG_EVENT_TRACING */
7174
7175#ifdef CONFIG_HAVE_HW_BREAKPOINT
7176void perf_bp_event(struct perf_event *bp, void *data)
7177{
7178        struct perf_sample_data sample;
7179        struct pt_regs *regs = data;
7180
7181        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7182
7183        if (!bp->hw.state && !perf_exclude_event(bp, regs))
7184                perf_swevent_event(bp, 1, &sample, regs);
7185}
7186#endif
7187
7188/*
7189 * hrtimer based swevent callback
7190 */
7191
7192static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7193{
7194        enum hrtimer_restart ret = HRTIMER_RESTART;
7195        struct perf_sample_data data;
7196        struct pt_regs *regs;
7197        struct perf_event *event;
7198        u64 period;
7199
7200        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7201
7202        if (event->state != PERF_EVENT_STATE_ACTIVE)
7203                return HRTIMER_NORESTART;
7204
7205        event->pmu->read(event);
7206
7207        perf_sample_data_init(&data, 0, event->hw.last_period);
7208        regs = get_irq_regs();
7209
7210        if (regs && !perf_exclude_event(event, regs)) {
7211                if (!(event->attr.exclude_idle && is_idle_task(current)))
7212                        if (__perf_event_overflow(event, 1, &data, regs))
7213                                ret = HRTIMER_NORESTART;
7214        }
7215
7216        period = max_t(u64, 10000, event->hw.sample_period);
7217        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7218
7219        return ret;
7220}
7221
7222static void perf_swevent_start_hrtimer(struct perf_event *event)
7223{
7224        struct hw_perf_event *hwc = &event->hw;
7225        s64 period;
7226
7227        if (!is_sampling_event(event))
7228                return;
7229
7230        period = local64_read(&hwc->period_left);
7231        if (period) {
7232                if (period < 0)
7233                        period = 10000;
7234
7235                local64_set(&hwc->period_left, 0);
7236        } else {
7237                period = max_t(u64, 10000, hwc->sample_period);
7238        }
7239        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7240                      HRTIMER_MODE_REL_PINNED);
7241}
7242
7243static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7244{
7245        struct hw_perf_event *hwc = &event->hw;
7246
7247        if (is_sampling_event(event)) {
7248                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7249                local64_set(&hwc->period_left, ktime_to_ns(remaining));
7250
7251                hrtimer_cancel(&hwc->hrtimer);
7252        }
7253}
7254
7255static void perf_swevent_init_hrtimer(struct perf_event *event)
7256{
7257        struct hw_perf_event *hwc = &event->hw;
7258
7259        if (!is_sampling_event(event))
7260                return;
7261
7262        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7263        hwc->hrtimer.function = perf_swevent_hrtimer;
7264
7265        /*
7266         * Since hrtimers have a fixed rate, we can do a static freq->period
7267         * mapping and avoid the whole period adjust feedback stuff.
7268         */
7269        if (event->attr.freq) {
7270                long freq = event->attr.sample_freq;
7271
7272                event->attr.sample_period = NSEC_PER_SEC / freq;
7273                hwc->sample_period = event->attr.sample_period;
7274                local64_set(&hwc->period_left, hwc->sample_period);
7275                hwc->last_period = hwc->sample_period;
7276                event->attr.freq = 0;
7277        }
7278}
7279
7280/*
7281 * Software event: cpu wall time clock
7282 */
7283
7284static void cpu_clock_event_update(struct perf_event *event)
7285{
7286        s64 prev;
7287        u64 now;
7288
7289        now = local_clock();
7290        prev = local64_xchg(&event->hw.prev_count, now);
7291        local64_add(now - prev, &event->count);
7292}
7293
7294static void cpu_clock_event_start(struct perf_event *event, int flags)
7295{
7296        local64_set(&event->hw.prev_count, local_clock());
7297        perf_swevent_start_hrtimer(event);
7298}
7299
7300static void cpu_clock_event_stop(struct perf_event *event, int flags)
7301{
7302        perf_swevent_cancel_hrtimer(event);
7303        cpu_clock_event_update(event);
7304}
7305
7306static int cpu_clock_event_add(struct perf_event *event, int flags)
7307{
7308        if (flags & PERF_EF_START)
7309                cpu_clock_event_start(event, flags);
7310        perf_event_update_userpage(event);
7311
7312        return 0;
7313}
7314
7315static void cpu_clock_event_del(struct perf_event *event, int flags)
7316{
7317        cpu_clock_event_stop(event, flags);
7318}
7319
7320static void cpu_clock_event_read(struct perf_event *event)
7321{
7322        cpu_clock_event_update(event);
7323}
7324
7325static int cpu_clock_event_init(struct perf_event *event)
7326{
7327        if (event->attr.type != PERF_TYPE_SOFTWARE)
7328                return -ENOENT;
7329
7330        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7331                return -ENOENT;
7332
7333        /*
7334         * no branch sampling for software events
7335         */
7336        if (has_branch_stack(event))
7337                return -EOPNOTSUPP;
7338
7339        perf_swevent_init_hrtimer(event);
7340
7341        return 0;
7342}
7343
7344static struct pmu perf_cpu_clock = {
7345        .task_ctx_nr    = perf_sw_context,
7346
7347        .capabilities   = PERF_PMU_CAP_NO_NMI,
7348
7349        .event_init     = cpu_clock_event_init,
7350        .add            = cpu_clock_event_add,
7351        .del            = cpu_clock_event_del,
7352        .start          = cpu_clock_event_start,
7353        .stop           = cpu_clock_event_stop,
7354        .read           = cpu_clock_event_read,
7355};
7356
7357/*
7358 * Software event: task time clock
7359 */
7360
7361static void task_clock_event_update(struct perf_event *event, u64 now)
7362{
7363        u64 prev;
7364        s64 delta;
7365
7366        prev = local64_xchg(&event->hw.prev_count, now);
7367        delta = now - prev;
7368        local64_add(delta, &event->count);
7369}
7370
7371static void task_clock_event_start(struct perf_event *event, int flags)
7372{
7373        local64_set(&event->hw.prev_count, event->ctx->time);
7374        perf_swevent_start_hrtimer(event);
7375}
7376
7377static void task_clock_event_stop(struct perf_event *event, int flags)
7378{
7379        perf_swevent_cancel_hrtimer(event);
7380        task_clock_event_update(event, event->ctx->time);
7381}
7382
7383static int task_clock_event_add(struct perf_event *event, int flags)
7384{
7385        if (flags & PERF_EF_START)
7386                task_clock_event_start(event, flags);
7387        perf_event_update_userpage(event);
7388
7389        return 0;
7390}
7391
7392static void task_clock_event_del(struct perf_event *event, int flags)
7393{
7394        task_clock_event_stop(event, PERF_EF_UPDATE);
7395}
7396
7397static void task_clock_event_read(struct perf_event *event)
7398{
7399        u64 now = perf_clock();
7400        u64 delta = now - event->ctx->timestamp;
7401        u64 time = event->ctx->time + delta;
7402
7403        task_clock_event_update(event, time);
7404}
7405
7406static int task_clock_event_init(struct perf_event *event)
7407{
7408        if (event->attr.type != PERF_TYPE_SOFTWARE)
7409                return -ENOENT;
7410
7411        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7412                return -ENOENT;
7413
7414        /*
7415         * no branch sampling for software events
7416         */
7417        if (has_branch_stack(event))
7418                return -EOPNOTSUPP;
7419
7420        perf_swevent_init_hrtimer(event);
7421
7422        return 0;
7423}
7424
7425static struct pmu perf_task_clock = {
7426        .task_ctx_nr    = perf_sw_context,
7427
7428        .capabilities   = PERF_PMU_CAP_NO_NMI,
7429
7430        .event_init     = task_clock_event_init,
7431        .add            = task_clock_event_add,
7432        .del            = task_clock_event_del,
7433        .start          = task_clock_event_start,
7434        .stop           = task_clock_event_stop,
7435        .read           = task_clock_event_read,
7436};
7437
7438static void perf_pmu_nop_void(struct pmu *pmu)
7439{
7440}
7441
7442static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7443{
7444}
7445
7446static int perf_pmu_nop_int(struct pmu *pmu)
7447{
7448        return 0;
7449}
7450
7451static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7452
7453static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7454{
7455        __this_cpu_write(nop_txn_flags, flags);
7456
7457        if (flags & ~PERF_PMU_TXN_ADD)
7458                return;
7459
7460        perf_pmu_disable(pmu);
7461}
7462
7463static int perf_pmu_commit_txn(struct pmu *pmu)
7464{
7465        unsigned int flags = __this_cpu_read(nop_txn_flags);
7466
7467        __this_cpu_write(nop_txn_flags, 0);
7468
7469        if (flags & ~PERF_PMU_TXN_ADD)
7470                return 0;
7471
7472        perf_pmu_enable(pmu);
7473        return 0;
7474}
7475
7476static void perf_pmu_cancel_txn(struct pmu *pmu)
7477{
7478        unsigned int flags =  __this_cpu_read(nop_txn_flags);
7479
7480        __this_cpu_write(nop_txn_flags, 0);
7481
7482        if (flags & ~PERF_PMU_TXN_ADD)
7483                return;
7484
7485        perf_pmu_enable(pmu);
7486}
7487
7488static int perf_event_idx_default(struct perf_event *event)
7489{
7490        return 0;
7491}
7492
7493/*
7494 * Ensures all contexts with the same task_ctx_nr have the same
7495 * pmu_cpu_context too.
7496 */
7497static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7498{
7499        struct pmu *pmu;
7500
7501        if (ctxn < 0)
7502                return NULL;
7503
7504        list_for_each_entry(pmu, &pmus, entry) {
7505                if (pmu->task_ctx_nr == ctxn)
7506                        return pmu->pmu_cpu_context;
7507        }
7508
7509        return NULL;
7510}
7511
7512static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7513{
7514        int cpu;
7515
7516        for_each_possible_cpu(cpu) {
7517                struct perf_cpu_context *cpuctx;
7518
7519                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7520
7521                if (cpuctx->unique_pmu == old_pmu)
7522                        cpuctx->unique_pmu = pmu;
7523        }
7524}
7525
7526static void free_pmu_context(struct pmu *pmu)
7527{
7528        struct pmu *i;
7529
7530        mutex_lock(&pmus_lock);
7531        /*
7532         * Like a real lame refcount.
7533         */
7534        list_for_each_entry(i, &pmus, entry) {
7535                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7536                        update_pmu_context(i, pmu);
7537                        goto out;
7538                }
7539        }
7540
7541        free_percpu(pmu->pmu_cpu_context);
7542out:
7543        mutex_unlock(&pmus_lock);
7544}
7545static struct idr pmu_idr;
7546
7547static ssize_t
7548type_show(struct device *dev, struct device_attribute *attr, char *page)
7549{
7550        struct pmu *pmu = dev_get_drvdata(dev);
7551
7552        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7553}
7554static DEVICE_ATTR_RO(type);
7555
7556static ssize_t
7557perf_event_mux_interval_ms_show(struct device *dev,
7558                                struct device_attribute *attr,
7559                                char *page)
7560{
7561        struct pmu *pmu = dev_get_drvdata(dev);
7562
7563        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7564}
7565
7566static DEFINE_MUTEX(mux_interval_mutex);
7567
7568static ssize_t
7569perf_event_mux_interval_ms_store(struct device *dev,
7570                                 struct device_attribute *attr,
7571                                 const char *buf, size_t count)
7572{
7573        struct pmu *pmu = dev_get_drvdata(dev);
7574        int timer, cpu, ret;
7575
7576        ret = kstrtoint(buf, 0, &timer);
7577        if (ret)
7578                return ret;
7579
7580        if (timer < 1)
7581                return -EINVAL;
7582
7583        /* same value, noting to do */
7584        if (timer == pmu->hrtimer_interval_ms)
7585                return count;
7586
7587        mutex_lock(&mux_interval_mutex);
7588        pmu->hrtimer_interval_ms = timer;
7589
7590        /* update all cpuctx for this PMU */
7591        get_online_cpus();
7592        for_each_online_cpu(cpu) {
7593                struct perf_cpu_context *cpuctx;
7594                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7595                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7596
7597                cpu_function_call(cpu,
7598                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7599        }
7600        put_online_cpus();
7601        mutex_unlock(&mux_interval_mutex);
7602
7603        return count;
7604}
7605static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7606
7607static struct attribute *pmu_dev_attrs[] = {
7608        &dev_attr_type.attr,
7609        &dev_attr_perf_event_mux_interval_ms.attr,
7610        NULL,
7611};
7612ATTRIBUTE_GROUPS(pmu_dev);
7613
7614static int pmu_bus_running;
7615static struct bus_type pmu_bus = {
7616        .name           = "event_source",
7617        .dev_groups     = pmu_dev_groups,
7618};
7619
7620static void pmu_dev_release(struct device *dev)
7621{
7622        kfree(dev);
7623}
7624
7625static int pmu_dev_alloc(struct pmu *pmu)
7626{
7627        int ret = -ENOMEM;
7628
7629        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7630        if (!pmu->dev)
7631                goto out;
7632
7633        pmu->dev->groups = pmu->attr_groups;
7634        device_initialize(pmu->dev);
7635        ret = dev_set_name(pmu->dev, "%s", pmu->name);
7636        if (ret)
7637                goto free_dev;
7638
7639        dev_set_drvdata(pmu->dev, pmu);
7640        pmu->dev->bus = &pmu_bus;
7641        pmu->dev->release = pmu_dev_release;
7642        ret = device_add(pmu->dev);
7643        if (ret)
7644                goto free_dev;
7645
7646out:
7647        return ret;
7648
7649free_dev:
7650        put_device(pmu->dev);
7651        goto out;
7652}
7653
7654static struct lock_class_key cpuctx_mutex;
7655static struct lock_class_key cpuctx_lock;
7656
7657int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7658{
7659        int cpu, ret;
7660
7661        mutex_lock(&pmus_lock);
7662        ret = -ENOMEM;
7663        pmu->pmu_disable_count = alloc_percpu(int);
7664        if (!pmu->pmu_disable_count)
7665                goto unlock;
7666
7667        pmu->type = -1;
7668        if (!name)
7669                goto skip_type;
7670        pmu->name = name;
7671
7672        if (type < 0) {
7673                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7674                if (type < 0) {
7675                        ret = type;
7676                        goto free_pdc;
7677                }
7678        }
7679        pmu->type = type;
7680
7681        if (pmu_bus_running) {
7682                ret = pmu_dev_alloc(pmu);
7683                if (ret)
7684                        goto free_idr;
7685        }
7686
7687skip_type:
7688        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7689        if (pmu->pmu_cpu_context)
7690                goto got_cpu_context;
7691
7692        ret = -ENOMEM;
7693        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7694        if (!pmu->pmu_cpu_context)
7695                goto free_dev;
7696
7697        for_each_possible_cpu(cpu) {
7698                struct perf_cpu_context *cpuctx;
7699
7700                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7701                __perf_event_init_context(&cpuctx->ctx);
7702                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7703                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7704                cpuctx->ctx.pmu = pmu;
7705
7706                __perf_mux_hrtimer_init(cpuctx, cpu);
7707
7708                cpuctx->unique_pmu = pmu;
7709        }
7710
7711got_cpu_context:
7712        if (!pmu->start_txn) {
7713                if (pmu->pmu_enable) {
7714                        /*
7715                         * If we have pmu_enable/pmu_disable calls, install
7716                         * transaction stubs that use that to try and batch
7717                         * hardware accesses.
7718                         */
7719                        pmu->start_txn  = perf_pmu_start_txn;
7720                        pmu->commit_txn = perf_pmu_commit_txn;
7721                        pmu->cancel_txn = perf_pmu_cancel_txn;
7722                } else {
7723                        pmu->start_txn  = perf_pmu_nop_txn;
7724                        pmu->commit_txn = perf_pmu_nop_int;
7725                        pmu->cancel_txn = perf_pmu_nop_void;
7726                }
7727        }
7728
7729        if (!pmu->pmu_enable) {
7730                pmu->pmu_enable  = perf_pmu_nop_void;
7731                pmu->pmu_disable = perf_pmu_nop_void;
7732        }
7733
7734        if (!pmu->event_idx)
7735                pmu->event_idx = perf_event_idx_default;
7736
7737        list_add_rcu(&pmu->entry, &pmus);
7738        atomic_set(&pmu->exclusive_cnt, 0);
7739        ret = 0;
7740unlock:
7741        mutex_unlock(&pmus_lock);
7742
7743        return ret;
7744
7745free_dev:
7746        device_del(pmu->dev);
7747        put_device(pmu->dev);
7748
7749free_idr:
7750        if (pmu->type >= PERF_TYPE_MAX)
7751                idr_remove(&pmu_idr, pmu->type);
7752
7753free_pdc:
7754        free_percpu(pmu->pmu_disable_count);
7755        goto unlock;
7756}
7757EXPORT_SYMBOL_GPL(perf_pmu_register);
7758
7759void perf_pmu_unregister(struct pmu *pmu)
7760{
7761        mutex_lock(&pmus_lock);
7762        list_del_rcu(&pmu->entry);
7763        mutex_unlock(&pmus_lock);
7764
7765        /*
7766         * We dereference the pmu list under both SRCU and regular RCU, so
7767         * synchronize against both of those.
7768         */
7769        synchronize_srcu(&pmus_srcu);
7770        synchronize_rcu();
7771
7772        free_percpu(pmu->pmu_disable_count);
7773        if (pmu->type >= PERF_TYPE_MAX)
7774                idr_remove(&pmu_idr, pmu->type);
7775        device_del(pmu->dev);
7776        put_device(pmu->dev);
7777        free_pmu_context(pmu);
7778}
7779EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7780
7781static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7782{
7783        struct perf_event_context *ctx = NULL;
7784        int ret;
7785
7786        if (!try_module_get(pmu->module))
7787                return -ENODEV;
7788
7789        if (event->group_leader != event) {
7790                /*
7791                 * This ctx->mutex can nest when we're called through
7792                 * inheritance. See the perf_event_ctx_lock_nested() comment.
7793                 */
7794                ctx = perf_event_ctx_lock_nested(event->group_leader,
7795                                                 SINGLE_DEPTH_NESTING);
7796                BUG_ON(!ctx);
7797        }
7798
7799        event->pmu = pmu;
7800        ret = pmu->event_init(event);
7801
7802        if (ctx)
7803                perf_event_ctx_unlock(event->group_leader, ctx);
7804
7805        if (ret)
7806                module_put(pmu->module);
7807
7808        return ret;
7809}
7810
7811static struct pmu *perf_init_event(struct perf_event *event)
7812{
7813        struct pmu *pmu = NULL;
7814        int idx;
7815        int ret;
7816
7817        idx = srcu_read_lock(&pmus_srcu);
7818
7819        rcu_read_lock();
7820        pmu = idr_find(&pmu_idr, event->attr.type);
7821        rcu_read_unlock();
7822        if (pmu) {
7823                ret = perf_try_init_event(pmu, event);
7824                if (ret)
7825                        pmu = ERR_PTR(ret);
7826                goto unlock;
7827        }
7828
7829        list_for_each_entry_rcu(pmu, &pmus, entry) {
7830                ret = perf_try_init_event(pmu, event);
7831                if (!ret)
7832                        goto unlock;
7833
7834                if (ret != -ENOENT) {
7835                        pmu = ERR_PTR(ret);
7836                        goto unlock;
7837                }
7838        }
7839        pmu = ERR_PTR(-ENOENT);
7840unlock:
7841        srcu_read_unlock(&pmus_srcu, idx);
7842
7843        return pmu;
7844}
7845
7846static void account_event_cpu(struct perf_event *event, int cpu)
7847{
7848        if (event->parent)
7849                return;
7850
7851        if (is_cgroup_event(event))
7852                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7853}
7854
7855/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7856static void account_freq_event_nohz(void)
7857{
7858#ifdef CONFIG_NO_HZ_FULL
7859        /* Lock so we don't race with concurrent unaccount */
7860        spin_lock(&nr_freq_lock);
7861        if (atomic_inc_return(&nr_freq_events) == 1)
7862                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7863        spin_unlock(&nr_freq_lock);
7864#endif
7865}
7866
7867static void account_freq_event(void)
7868{
7869        if (tick_nohz_full_enabled())
7870                account_freq_event_nohz();
7871        else
7872                atomic_inc(&nr_freq_events);
7873}
7874
7875
7876static void account_event(struct perf_event *event)
7877{
7878        bool inc = false;
7879
7880        if (event->parent)
7881                return;
7882
7883        if (event->attach_state & PERF_ATTACH_TASK)
7884                inc = true;
7885        if (event->attr.mmap || event->attr.mmap_data)
7886                atomic_inc(&nr_mmap_events);
7887        if (event->attr.comm)
7888                atomic_inc(&nr_comm_events);
7889        if (event->attr.task)
7890                atomic_inc(&nr_task_events);
7891        if (event->attr.freq)
7892                account_freq_event();
7893        if (event->attr.context_switch) {
7894                atomic_inc(&nr_switch_events);
7895                inc = true;
7896        }
7897        if (has_branch_stack(event))
7898                inc = true;
7899        if (is_cgroup_event(event))
7900                inc = true;
7901
7902        if (inc) {
7903                if (atomic_inc_not_zero(&perf_sched_count))
7904                        goto enabled;
7905
7906                mutex_lock(&perf_sched_mutex);
7907                if (!atomic_read(&perf_sched_count)) {
7908                        static_branch_enable(&perf_sched_events);
7909                        /*
7910                         * Guarantee that all CPUs observe they key change and
7911                         * call the perf scheduling hooks before proceeding to
7912                         * install events that need them.
7913                         */
7914                        synchronize_sched();
7915                }
7916                /*
7917                 * Now that we have waited for the sync_sched(), allow further
7918                 * increments to by-pass the mutex.
7919                 */
7920                atomic_inc(&perf_sched_count);
7921                mutex_unlock(&perf_sched_mutex);
7922        }
7923enabled:
7924
7925        account_event_cpu(event, event->cpu);
7926}
7927
7928/*
7929 * Allocate and initialize a event structure
7930 */
7931static struct perf_event *
7932perf_event_alloc(struct perf_event_attr *attr, int cpu,
7933                 struct task_struct *task,
7934                 struct perf_event *group_leader,
7935                 struct perf_event *parent_event,
7936                 perf_overflow_handler_t overflow_handler,
7937                 void *context, int cgroup_fd)
7938{
7939        struct pmu *pmu;
7940        struct perf_event *event;
7941        struct hw_perf_event *hwc;
7942        long err = -EINVAL;
7943
7944        if ((unsigned)cpu >= nr_cpu_ids) {
7945                if (!task || cpu != -1)
7946                        return ERR_PTR(-EINVAL);
7947        }
7948
7949        event = kzalloc(sizeof(*event), GFP_KERNEL);
7950        if (!event)
7951                return ERR_PTR(-ENOMEM);
7952
7953        /*
7954         * Single events are their own group leaders, with an
7955         * empty sibling list:
7956         */
7957        if (!group_leader)
7958                group_leader = event;
7959
7960        mutex_init(&event->child_mutex);
7961        INIT_LIST_HEAD(&event->child_list);
7962
7963        INIT_LIST_HEAD(&event->group_entry);
7964        INIT_LIST_HEAD(&event->event_entry);
7965        INIT_LIST_HEAD(&event->sibling_list);
7966        INIT_LIST_HEAD(&event->rb_entry);
7967        INIT_LIST_HEAD(&event->active_entry);
7968        INIT_HLIST_NODE(&event->hlist_entry);
7969
7970
7971        init_waitqueue_head(&event->waitq);
7972        init_irq_work(&event->pending, perf_pending_event);
7973
7974        mutex_init(&event->mmap_mutex);
7975
7976        atomic_long_set(&event->refcount, 1);
7977        event->cpu              = cpu;
7978        event->attr             = *attr;
7979        event->group_leader     = group_leader;
7980        event->pmu              = NULL;
7981        event->oncpu            = -1;
7982
7983        event->parent           = parent_event;
7984
7985        event->ns               = get_pid_ns(task_active_pid_ns(current));
7986        event->id               = atomic64_inc_return(&perf_event_id);
7987
7988        event->state            = PERF_EVENT_STATE_INACTIVE;
7989
7990        if (task) {
7991                event->attach_state = PERF_ATTACH_TASK;
7992                /*
7993                 * XXX pmu::event_init needs to know what task to account to
7994                 * and we cannot use the ctx information because we need the
7995                 * pmu before we get a ctx.
7996                 */
7997                event->hw.target = task;
7998        }
7999
8000        event->clock = &local_clock;
8001        if (parent_event)
8002                event->clock = parent_event->clock;
8003
8004        if (!overflow_handler && parent_event) {
8005                overflow_handler = parent_event->overflow_handler;
8006                context = parent_event->overflow_handler_context;
8007        }
8008
8009        event->overflow_handler = overflow_handler;
8010        event->overflow_handler_context = context;
8011
8012        perf_event__state_init(event);
8013
8014        pmu = NULL;
8015
8016        hwc = &event->hw;
8017        hwc->sample_period = attr->sample_period;
8018        if (attr->freq && attr->sample_freq)
8019                hwc->sample_period = 1;
8020        hwc->last_period = hwc->sample_period;
8021
8022        local64_set(&hwc->period_left, hwc->sample_period);
8023
8024        /*
8025         * we currently do not support PERF_FORMAT_GROUP on inherited events
8026         */
8027        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8028                goto err_ns;
8029
8030        if (!has_branch_stack(event))
8031                event->attr.branch_sample_type = 0;
8032
8033        if (cgroup_fd != -1) {
8034                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8035                if (err)
8036                        goto err_ns;
8037        }
8038
8039        pmu = perf_init_event(event);
8040        if (!pmu)
8041                goto err_ns;
8042        else if (IS_ERR(pmu)) {
8043                err = PTR_ERR(pmu);
8044                goto err_ns;
8045        }
8046
8047        err = exclusive_event_init(event);
8048        if (err)
8049                goto err_pmu;
8050
8051        if (!event->parent) {
8052                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8053                        err = get_callchain_buffers();
8054                        if (err)
8055                                goto err_per_task;
8056                }
8057        }
8058
8059        /* symmetric to unaccount_event() in _free_event() */
8060        account_event(event);
8061
8062        return event;
8063
8064err_per_task:
8065        exclusive_event_destroy(event);
8066
8067err_pmu:
8068        if (event->destroy)
8069                event->destroy(event);
8070        module_put(pmu->module);
8071err_ns:
8072        if (is_cgroup_event(event))
8073                perf_detach_cgroup(event);
8074        if (event->ns)
8075                put_pid_ns(event->ns);
8076        kfree(event);
8077
8078        return ERR_PTR(err);
8079}
8080
8081static int perf_copy_attr(struct perf_event_attr __user *uattr,
8082                          struct perf_event_attr *attr)
8083{
8084        u32 size;
8085        int ret;
8086
8087        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8088                return -EFAULT;
8089
8090        /*
8091         * zero the full structure, so that a short copy will be nice.
8092         */
8093        memset(attr, 0, sizeof(*attr));
8094
8095        ret = get_user(size, &uattr->size);
8096        if (ret)
8097                return ret;
8098
8099        if (size > PAGE_SIZE)   /* silly large */
8100                goto err_size;
8101
8102        if (!size)              /* abi compat */
8103                size = PERF_ATTR_SIZE_VER0;
8104
8105        if (size < PERF_ATTR_SIZE_VER0)
8106                goto err_size;
8107
8108        /*
8109         * If we're handed a bigger struct than we know of,
8110         * ensure all the unknown bits are 0 - i.e. new
8111         * user-space does not rely on any kernel feature
8112         * extensions we dont know about yet.
8113         */
8114        if (size > sizeof(*attr)) {
8115                unsigned char __user *addr;
8116                unsigned char __user *end;
8117                unsigned char val;
8118
8119                addr = (void __user *)uattr + sizeof(*attr);
8120                end  = (void __user *)uattr + size;
8121
8122                for (; addr < end; addr++) {
8123                        ret = get_user(val, addr);
8124                        if (ret)
8125                                return ret;
8126                        if (val)
8127                                goto err_size;
8128                }
8129                size = sizeof(*attr);
8130        }
8131
8132        ret = copy_from_user(attr, uattr, size);
8133        if (ret)
8134                return -EFAULT;
8135
8136        if (attr->__reserved_1)
8137                return -EINVAL;
8138
8139        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8140                return -EINVAL;
8141
8142        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8143                return -EINVAL;
8144
8145        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8146                u64 mask = attr->branch_sample_type;
8147
8148                /* only using defined bits */
8149                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8150                        return -EINVAL;
8151
8152                /* at least one branch bit must be set */
8153                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8154                        return -EINVAL;
8155
8156                /* propagate priv level, when not set for branch */
8157                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8158
8159                        /* exclude_kernel checked on syscall entry */
8160                        if (!attr->exclude_kernel)
8161                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
8162
8163                        if (!attr->exclude_user)
8164                                mask |= PERF_SAMPLE_BRANCH_USER;
8165
8166                        if (!attr->exclude_hv)
8167                                mask |= PERF_SAMPLE_BRANCH_HV;
8168                        /*
8169                         * adjust user setting (for HW filter setup)
8170                         */
8171                        attr->branch_sample_type = mask;
8172                }
8173                /* privileged levels capture (kernel, hv): check permissions */
8174                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8175                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8176                        return -EACCES;
8177        }
8178
8179        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8180                ret = perf_reg_validate(attr->sample_regs_user);
8181                if (ret)
8182                        return ret;
8183        }
8184
8185        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8186                if (!arch_perf_have_user_stack_dump())
8187                        return -ENOSYS;
8188
8189                /*
8190                 * We have __u32 type for the size, but so far
8191                 * we can only use __u16 as maximum due to the
8192                 * __u16 sample size limit.
8193                 */
8194                if (attr->sample_stack_user >= USHRT_MAX)
8195                        ret = -EINVAL;
8196                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8197                        ret = -EINVAL;
8198        }
8199
8200        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8201                ret = perf_reg_validate(attr->sample_regs_intr);
8202out:
8203        return ret;
8204
8205err_size:
8206        put_user(sizeof(*attr), &uattr->size);
8207        ret = -E2BIG;
8208        goto out;
8209}
8210
8211static int
8212perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8213{
8214        struct ring_buffer *rb = NULL;
8215        int ret = -EINVAL;
8216
8217        if (!output_event)
8218                goto set;
8219
8220        /* don't allow circular references */
8221        if (event == output_event)
8222                goto out;
8223
8224        /*
8225         * Don't allow cross-cpu buffers
8226         */
8227        if (output_event->cpu != event->cpu)
8228                goto out;
8229
8230        /*
8231         * If its not a per-cpu rb, it must be the same task.
8232         */
8233        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8234                goto out;
8235
8236        /*
8237         * Mixing clocks in the same buffer is trouble you don't need.
8238         */
8239        if (output_event->clock != event->clock)
8240                goto out;
8241
8242        /*
8243         * If both events generate aux data, they must be on the same PMU
8244         */
8245        if (has_aux(event) && has_aux(output_event) &&
8246            event->pmu != output_event->pmu)
8247                goto out;
8248
8249set:
8250        mutex_lock(&event->mmap_mutex);
8251        /* Can't redirect output if we've got an active mmap() */
8252        if (atomic_read(&event->mmap_count))
8253                goto unlock;
8254
8255        if (output_event) {
8256                /* get the rb we want to redirect to */
8257                rb = ring_buffer_get(output_event);
8258                if (!rb)
8259                        goto unlock;
8260        }
8261
8262        ring_buffer_attach(event, rb);
8263
8264        ret = 0;
8265unlock:
8266        mutex_unlock(&event->mmap_mutex);
8267
8268out:
8269        return ret;
8270}
8271
8272static void mutex_lock_double(struct mutex *a, struct mutex *b)
8273{
8274        if (b < a)
8275                swap(a, b);
8276
8277        mutex_lock(a);
8278        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8279}
8280
8281static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8282{
8283        bool nmi_safe = false;
8284
8285        switch (clk_id) {
8286        case CLOCK_MONOTONIC:
8287                event->clock = &ktime_get_mono_fast_ns;
8288                nmi_safe = true;
8289                break;
8290
8291        case CLOCK_MONOTONIC_RAW:
8292                event->clock = &ktime_get_raw_fast_ns;
8293                nmi_safe = true;
8294                break;
8295
8296        case CLOCK_REALTIME:
8297                event->clock = &ktime_get_real_ns;
8298                break;
8299
8300        case CLOCK_BOOTTIME:
8301                event->clock = &ktime_get_boot_ns;
8302                break;
8303
8304        case CLOCK_TAI:
8305                event->clock = &ktime_get_tai_ns;
8306                break;
8307
8308        default:
8309                return -EINVAL;
8310        }
8311
8312        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8313                return -EINVAL;
8314
8315        return 0;
8316}
8317
8318/**
8319 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8320 *
8321 * @attr_uptr:  event_id type attributes for monitoring/sampling
8322 * @pid:                target pid
8323 * @cpu:                target cpu
8324 * @group_fd:           group leader event fd
8325 */
8326SYSCALL_DEFINE5(perf_event_open,
8327                struct perf_event_attr __user *, attr_uptr,
8328                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8329{
8330        struct perf_event *group_leader = NULL, *output_event = NULL;
8331        struct perf_event *event, *sibling;
8332        struct perf_event_attr attr;
8333        struct perf_event_context *ctx, *uninitialized_var(gctx);
8334        struct file *event_file = NULL;
8335        struct fd group = {NULL, 0};
8336        struct task_struct *task = NULL;
8337        struct pmu *pmu;
8338        int event_fd;
8339        int move_group = 0;
8340        int err;
8341        int f_flags = O_RDWR;
8342        int cgroup_fd = -1;
8343
8344        /* for future expandability... */
8345        if (flags & ~PERF_FLAG_ALL)
8346                return -EINVAL;
8347
8348        err = perf_copy_attr(attr_uptr, &attr);
8349        if (err)
8350                return err;
8351
8352        if (!attr.exclude_kernel) {
8353                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8354                        return -EACCES;
8355        }
8356
8357        if (attr.freq) {
8358                if (attr.sample_freq > sysctl_perf_event_sample_rate)
8359                        return -EINVAL;
8360        } else {
8361                if (attr.sample_period & (1ULL << 63))
8362                        return -EINVAL;
8363        }
8364
8365        /*
8366         * In cgroup mode, the pid argument is used to pass the fd
8367         * opened to the cgroup directory in cgroupfs. The cpu argument
8368         * designates the cpu on which to monitor threads from that
8369         * cgroup.
8370         */
8371        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8372                return -EINVAL;
8373
8374        if (flags & PERF_FLAG_FD_CLOEXEC)
8375                f_flags |= O_CLOEXEC;
8376
8377        event_fd = get_unused_fd_flags(f_flags);
8378        if (event_fd < 0)
8379                return event_fd;
8380
8381        if (group_fd != -1) {
8382                err = perf_fget_light(group_fd, &group);
8383                if (err)
8384                        goto err_fd;
8385                group_leader = group.file->private_data;
8386                if (flags & PERF_FLAG_FD_OUTPUT)
8387                        output_event = group_leader;
8388                if (flags & PERF_FLAG_FD_NO_GROUP)
8389                        group_leader = NULL;
8390        }
8391
8392        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8393                task = find_lively_task_by_vpid(pid);
8394                if (IS_ERR(task)) {
8395                        err = PTR_ERR(task);
8396                        goto err_group_fd;
8397                }
8398        }
8399
8400        if (task && group_leader &&
8401            group_leader->attr.inherit != attr.inherit) {
8402                err = -EINVAL;
8403                goto err_task;
8404        }
8405
8406        get_online_cpus();
8407
8408        if (task) {
8409                err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
8410                if (err)
8411                        goto err_cpus;
8412
8413                /*
8414                 * Reuse ptrace permission checks for now.
8415                 *
8416                 * We must hold cred_guard_mutex across this and any potential
8417                 * perf_install_in_context() call for this new event to
8418                 * serialize against exec() altering our credentials (and the
8419                 * perf_event_exit_task() that could imply).
8420                 */
8421                err = -EACCES;
8422                if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
8423                        goto err_cred;
8424        }
8425
8426        if (flags & PERF_FLAG_PID_CGROUP)
8427                cgroup_fd = pid;
8428
8429        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8430                                 NULL, NULL, cgroup_fd);
8431        if (IS_ERR(event)) {
8432                err = PTR_ERR(event);
8433                goto err_cred;
8434        }
8435
8436        if (is_sampling_event(event)) {
8437                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8438                        err = -ENOTSUPP;
8439                        goto err_alloc;
8440                }
8441        }
8442
8443        /*
8444         * Special case software events and allow them to be part of
8445         * any hardware group.
8446         */
8447        pmu = event->pmu;
8448
8449        if (attr.use_clockid) {
8450                err = perf_event_set_clock(event, attr.clockid);
8451                if (err)
8452                        goto err_alloc;
8453        }
8454
8455        if (group_leader &&
8456            (is_software_event(event) != is_software_event(group_leader))) {
8457                if (is_software_event(event)) {
8458                        /*
8459                         * If event and group_leader are not both a software
8460                         * event, and event is, then group leader is not.
8461                         *
8462                         * Allow the addition of software events to !software
8463                         * groups, this is safe because software events never
8464                         * fail to schedule.
8465                         */
8466                        pmu = group_leader->pmu;
8467                } else if (is_software_event(group_leader) &&
8468                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8469                        /*
8470                         * In case the group is a pure software group, and we
8471                         * try to add a hardware event, move the whole group to
8472                         * the hardware context.
8473                         */
8474                        move_group = 1;
8475                }
8476        }
8477
8478        /*
8479         * Get the target context (task or percpu):
8480         */
8481        ctx = find_get_context(pmu, task, event);
8482        if (IS_ERR(ctx)) {
8483                err = PTR_ERR(ctx);
8484                goto err_alloc;
8485        }
8486
8487        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8488                err = -EBUSY;
8489                goto err_context;
8490        }
8491
8492        /*
8493         * Look up the group leader (we will attach this event to it):
8494         */
8495        if (group_leader) {
8496                err = -EINVAL;
8497
8498                /*
8499                 * Do not allow a recursive hierarchy (this new sibling
8500                 * becoming part of another group-sibling):
8501                 */
8502                if (group_leader->group_leader != group_leader)
8503                        goto err_context;
8504
8505                /* All events in a group should have the same clock */
8506                if (group_leader->clock != event->clock)
8507                        goto err_context;
8508
8509                /*
8510                 * Do not allow to attach to a group in a different
8511                 * task or CPU context:
8512                 */
8513                if (move_group) {
8514                        /*
8515                         * Make sure we're both on the same task, or both
8516                         * per-cpu events.
8517                         */
8518                        if (group_leader->ctx->task != ctx->task)
8519                                goto err_context;
8520
8521                        /*
8522                         * Make sure we're both events for the same CPU;
8523                         * grouping events for different CPUs is broken; since
8524                         * you can never concurrently schedule them anyhow.
8525                         */
8526                        if (group_leader->cpu != event->cpu)
8527                                goto err_context;
8528                } else {
8529                        if (group_leader->ctx != ctx)
8530                                goto err_context;
8531                }
8532
8533                /*
8534                 * Only a group leader can be exclusive or pinned
8535                 */
8536                if (attr.exclusive || attr.pinned)
8537                        goto err_context;
8538        }
8539
8540        if (output_event) {
8541                err = perf_event_set_output(event, output_event);
8542                if (err)
8543                        goto err_context;
8544        }
8545
8546        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8547                                        f_flags);
8548        if (IS_ERR(event_file)) {
8549                err = PTR_ERR(event_file);
8550                event_file = NULL;
8551                goto err_context;
8552        }
8553
8554        if (move_group) {
8555                gctx = group_leader->ctx;
8556                mutex_lock_double(&gctx->mutex, &ctx->mutex);
8557                if (gctx->task == TASK_TOMBSTONE) {
8558                        err = -ESRCH;
8559                        goto err_locked;
8560                }
8561        } else {
8562                mutex_lock(&ctx->mutex);
8563        }
8564
8565        if (ctx->task == TASK_TOMBSTONE) {
8566                err = -ESRCH;
8567                goto err_locked;
8568        }
8569
8570        if (!perf_event_validate_size(event)) {
8571                err = -E2BIG;
8572                goto err_locked;
8573        }
8574
8575        /*
8576         * Must be under the same ctx::mutex as perf_install_in_context(),
8577         * because we need to serialize with concurrent event creation.
8578         */
8579        if (!exclusive_event_installable(event, ctx)) {
8580                /* exclusive and group stuff are assumed mutually exclusive */
8581                WARN_ON_ONCE(move_group);
8582
8583                err = -EBUSY;
8584                goto err_locked;
8585        }
8586
8587        WARN_ON_ONCE(ctx->parent_ctx);
8588
8589        /*
8590         * This is the point on no return; we cannot fail hereafter. This is
8591         * where we start modifying current state.
8592         */
8593
8594        if (move_group) {
8595                /*
8596                 * See perf_event_ctx_lock() for comments on the details
8597                 * of swizzling perf_event::ctx.
8598                 */
8599                perf_remove_from_context(group_leader, 0);
8600
8601                list_for_each_entry(sibling, &group_leader->sibling_list,
8602                                    group_entry) {
8603                        perf_remove_from_context(sibling, 0);
8604                        put_ctx(gctx);
8605                }
8606
8607                /*
8608                 * Wait for everybody to stop referencing the events through
8609                 * the old lists, before installing it on new lists.
8610                 */
8611                synchronize_rcu();
8612
8613                /*
8614                 * Install the group siblings before the group leader.
8615                 *
8616                 * Because a group leader will try and install the entire group
8617                 * (through the sibling list, which is still in-tact), we can
8618                 * end up with siblings installed in the wrong context.
8619                 *
8620                 * By installing siblings first we NO-OP because they're not
8621                 * reachable through the group lists.
8622                 */
8623                list_for_each_entry(sibling, &group_leader->sibling_list,
8624                                    group_entry) {
8625                        perf_event__state_init(sibling);
8626                        perf_install_in_context(ctx, sibling, sibling->cpu);
8627                        get_ctx(ctx);
8628                }
8629
8630                /*
8631                 * Removing from the context ends up with disabled
8632                 * event. What we want here is event in the initial
8633                 * startup state, ready to be add into new context.
8634                 */
8635                perf_event__state_init(group_leader);
8636                perf_install_in_context(ctx, group_leader, group_leader->cpu);
8637                get_ctx(ctx);
8638
8639                /*
8640                 * Now that all events are installed in @ctx, nothing
8641                 * references @gctx anymore, so drop the last reference we have
8642                 * on it.
8643                 */
8644                put_ctx(gctx);
8645        }
8646
8647        /*
8648         * Precalculate sample_data sizes; do while holding ctx::mutex such
8649         * that we're serialized against further additions and before
8650         * perf_install_in_context() which is the point the event is active and
8651         * can use these values.
8652         */
8653        perf_event__header_size(event);
8654        perf_event__id_header_size(event);
8655
8656        event->owner = current;
8657
8658        perf_install_in_context(ctx, event, event->cpu);
8659        perf_unpin_context(ctx);
8660
8661        if (move_group)
8662                mutex_unlock(&gctx->mutex);
8663        mutex_unlock(&ctx->mutex);
8664
8665        if (task) {
8666                mutex_unlock(&task->signal->cred_guard_mutex);
8667                put_task_struct(task);
8668        }
8669
8670        put_online_cpus();
8671
8672        mutex_lock(&current->perf_event_mutex);
8673        list_add_tail(&event->owner_entry, &current->perf_event_list);
8674        mutex_unlock(&current->perf_event_mutex);
8675
8676        /*
8677         * Drop the reference on the group_event after placing the
8678         * new event on the sibling_list. This ensures destruction
8679         * of the group leader will find the pointer to itself in
8680         * perf_group_detach().
8681         */
8682        fdput(group);
8683        fd_install(event_fd, event_file);
8684        return event_fd;
8685
8686err_locked:
8687        if (move_group)
8688                mutex_unlock(&gctx->mutex);
8689        mutex_unlock(&ctx->mutex);
8690/* err_file: */
8691        fput(event_file);
8692err_context:
8693        perf_unpin_context(ctx);
8694        put_ctx(ctx);
8695err_alloc:
8696        /*
8697         * If event_file is set, the fput() above will have called ->release()
8698         * and that will take care of freeing the event.
8699         */
8700        if (!event_file)
8701                free_event(event);
8702err_cred:
8703        if (task)
8704                mutex_unlock(&task->signal->cred_guard_mutex);
8705err_cpus:
8706        put_online_cpus();
8707err_task:
8708        if (task)
8709                put_task_struct(task);
8710err_group_fd:
8711        fdput(group);
8712err_fd:
8713        put_unused_fd(event_fd);
8714        return err;
8715}
8716
8717/**
8718 * perf_event_create_kernel_counter
8719 *
8720 * @attr: attributes of the counter to create
8721 * @cpu: cpu in which the counter is bound
8722 * @task: task to profile (NULL for percpu)
8723 */
8724struct perf_event *
8725perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8726                                 struct task_struct *task,
8727                                 perf_overflow_handler_t overflow_handler,
8728                                 void *context)
8729{
8730        struct perf_event_context *ctx;
8731        struct perf_event *event;
8732        int err;
8733
8734        /*
8735         * Get the target context (task or percpu):
8736         */
8737
8738        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8739                                 overflow_handler, context, -1);
8740        if (IS_ERR(event)) {
8741                err = PTR_ERR(event);
8742                goto err;
8743        }
8744
8745        /* Mark owner so we could distinguish it from user events. */
8746        event->owner = TASK_TOMBSTONE;
8747
8748        ctx = find_get_context(event->pmu, task, event);
8749        if (IS_ERR(ctx)) {
8750                err = PTR_ERR(ctx);
8751                goto err_free;
8752        }
8753
8754        WARN_ON_ONCE(ctx->parent_ctx);
8755        mutex_lock(&ctx->mutex);
8756        if (ctx->task == TASK_TOMBSTONE) {
8757                err = -ESRCH;
8758                goto err_unlock;
8759        }
8760
8761        if (!exclusive_event_installable(event, ctx)) {
8762                err = -EBUSY;
8763                goto err_unlock;
8764        }
8765
8766        perf_install_in_context(ctx, event, cpu);
8767        perf_unpin_context(ctx);
8768        mutex_unlock(&ctx->mutex);
8769
8770        return event;
8771
8772err_unlock:
8773        mutex_unlock(&ctx->mutex);
8774        perf_unpin_context(ctx);
8775        put_ctx(ctx);
8776err_free:
8777        free_event(event);
8778err:
8779        return ERR_PTR(err);
8780}
8781EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8782
8783void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8784{
8785        struct perf_event_context *src_ctx;
8786        struct perf_event_context *dst_ctx;
8787        struct perf_event *event, *tmp;
8788        LIST_HEAD(events);
8789
8790        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8791        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8792
8793        /*
8794         * See perf_event_ctx_lock() for comments on the details
8795         * of swizzling perf_event::ctx.
8796         */
8797        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8798        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8799                                 event_entry) {
8800                perf_remove_from_context(event, 0);
8801                unaccount_event_cpu(event, src_cpu);
8802                put_ctx(src_ctx);
8803                list_add(&event->migrate_entry, &events);
8804        }
8805
8806        /*
8807         * Wait for the events to quiesce before re-instating them.
8808         */
8809        synchronize_rcu();
8810
8811        /*
8812         * Re-instate events in 2 passes.
8813         *
8814         * Skip over group leaders and only install siblings on this first
8815         * pass, siblings will not get enabled without a leader, however a
8816         * leader will enable its siblings, even if those are still on the old
8817         * context.
8818         */
8819        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8820                if (event->group_leader == event)
8821                        continue;
8822
8823                list_del(&event->migrate_entry);
8824                if (event->state >= PERF_EVENT_STATE_OFF)
8825                        event->state = PERF_EVENT_STATE_INACTIVE;
8826                account_event_cpu(event, dst_cpu);
8827                perf_install_in_context(dst_ctx, event, dst_cpu);
8828                get_ctx(dst_ctx);
8829        }
8830
8831        /*
8832         * Once all the siblings are setup properly, install the group leaders
8833         * to make it go.
8834         */
8835        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8836                list_del(&event->migrate_entry);
8837                if (event->state >= PERF_EVENT_STATE_OFF)
8838                        event->state = PERF_EVENT_STATE_INACTIVE;
8839                account_event_cpu(event, dst_cpu);
8840                perf_install_in_context(dst_ctx, event, dst_cpu);
8841                get_ctx(dst_ctx);
8842        }
8843        mutex_unlock(&dst_ctx->mutex);
8844        mutex_unlock(&src_ctx->mutex);
8845}
8846EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8847
8848static void sync_child_event(struct perf_event *child_event,
8849                               struct task_struct *child)
8850{
8851        struct perf_event *parent_event = child_event->parent;
8852        u64 child_val;
8853
8854        if (child_event->attr.inherit_stat)
8855                perf_event_read_event(child_event, child);
8856
8857        child_val = perf_event_count(child_event);
8858
8859        /*
8860         * Add back the child's count to the parent's count:
8861         */
8862        atomic64_add(child_val, &parent_event->child_count);
8863        atomic64_add(child_event->total_time_enabled,
8864                     &parent_event->child_total_time_enabled);
8865        atomic64_add(child_event->total_time_running,
8866                     &parent_event->child_total_time_running);
8867}
8868
8869static void
8870perf_event_exit_event(struct perf_event *child_event,
8871                      struct perf_event_context *child_ctx,
8872                      struct task_struct *child)
8873{
8874        struct perf_event *parent_event = child_event->parent;
8875
8876        /*
8877         * Do not destroy the 'original' grouping; because of the context
8878         * switch optimization the original events could've ended up in a
8879         * random child task.
8880         *
8881         * If we were to destroy the original group, all group related
8882         * operations would cease to function properly after this random
8883         * child dies.
8884         *
8885         * Do destroy all inherited groups, we don't care about those
8886         * and being thorough is better.
8887         */
8888        raw_spin_lock_irq(&child_ctx->lock);
8889        WARN_ON_ONCE(child_ctx->is_active);
8890
8891        if (parent_event)
8892                perf_group_detach(child_event);
8893        list_del_event(child_event, child_ctx);
8894        child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8895        raw_spin_unlock_irq(&child_ctx->lock);
8896
8897        /*
8898         * Parent events are governed by their filedesc, retain them.
8899         */
8900        if (!parent_event) {
8901                perf_event_wakeup(child_event);
8902                return;
8903        }
8904        /*
8905         * Child events can be cleaned up.
8906         */
8907
8908        sync_child_event(child_event, child);
8909
8910        /*
8911         * Remove this event from the parent's list
8912         */
8913        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8914        mutex_lock(&parent_event->child_mutex);
8915        list_del_init(&child_event->child_list);
8916        mutex_unlock(&parent_event->child_mutex);
8917
8918        /*
8919         * Kick perf_poll() for is_event_hup().
8920         */
8921        perf_event_wakeup(parent_event);
8922        free_event(child_event);
8923        put_event(parent_event);
8924}
8925
8926static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8927{
8928        struct perf_event_context *child_ctx, *clone_ctx = NULL;
8929        struct perf_event *child_event, *next;
8930
8931        WARN_ON_ONCE(child != current);
8932
8933        child_ctx = perf_pin_task_context(child, ctxn);
8934        if (!child_ctx)
8935                return;
8936
8937        /*
8938         * In order to reduce the amount of tricky in ctx tear-down, we hold
8939         * ctx::mutex over the entire thing. This serializes against almost
8940         * everything that wants to access the ctx.
8941         *
8942         * The exception is sys_perf_event_open() /
8943         * perf_event_create_kernel_count() which does find_get_context()
8944         * without ctx::mutex (it cannot because of the move_group double mutex
8945         * lock thing). See the comments in perf_install_in_context().
8946         */
8947        mutex_lock(&child_ctx->mutex);
8948
8949        /*
8950         * In a single ctx::lock section, de-schedule the events and detach the
8951         * context from the task such that we cannot ever get it scheduled back
8952         * in.
8953         */
8954        raw_spin_lock_irq(&child_ctx->lock);
8955        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8956
8957        /*
8958         * Now that the context is inactive, destroy the task <-> ctx relation
8959         * and mark the context dead.
8960         */
8961        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8962        put_ctx(child_ctx); /* cannot be last */
8963        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8964        put_task_struct(current); /* cannot be last */
8965
8966        clone_ctx = unclone_ctx(child_ctx);
8967        raw_spin_unlock_irq(&child_ctx->lock);
8968
8969        if (clone_ctx)
8970                put_ctx(clone_ctx);
8971
8972        /*
8973         * Report the task dead after unscheduling the events so that we
8974         * won't get any samples after PERF_RECORD_EXIT. We can however still
8975         * get a few PERF_RECORD_READ events.
8976         */
8977        perf_event_task(child, child_ctx, 0);
8978
8979        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8980                perf_event_exit_event(child_event, child_ctx, child);
8981
8982        mutex_unlock(&child_ctx->mutex);
8983
8984        put_ctx(child_ctx);
8985}
8986
8987/*
8988 * When a child task exits, feed back event values to parent events.
8989 *
8990 * Can be called with cred_guard_mutex held when called from
8991 * install_exec_creds().
8992 */
8993void perf_event_exit_task(struct task_struct *child)
8994{
8995        struct perf_event *event, *tmp;
8996        int ctxn;
8997
8998        mutex_lock(&child->perf_event_mutex);
8999        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9000                                 owner_entry) {
9001                list_del_init(&event->owner_entry);
9002
9003                /*
9004                 * Ensure the list deletion is visible before we clear
9005                 * the owner, closes a race against perf_release() where
9006                 * we need to serialize on the owner->perf_event_mutex.
9007                 */
9008                smp_store_release(&event->owner, NULL);
9009        }
9010        mutex_unlock(&child->perf_event_mutex);
9011
9012        for_each_task_context_nr(ctxn)
9013                perf_event_exit_task_context(child, ctxn);
9014
9015        /*
9016         * The perf_event_exit_task_context calls perf_event_task
9017         * with child's task_ctx, which generates EXIT events for
9018         * child contexts and sets child->perf_event_ctxp[] to NULL.
9019         * At this point we need to send EXIT events to cpu contexts.
9020         */
9021        perf_event_task(child, NULL, 0);
9022}
9023
9024static void perf_free_event(struct perf_event *event,
9025                            struct perf_event_context *ctx)
9026{
9027        struct perf_event *parent = event->parent;
9028
9029        if (WARN_ON_ONCE(!parent))
9030                return;
9031
9032        mutex_lock(&parent->child_mutex);
9033        list_del_init(&event->child_list);
9034        mutex_unlock(&parent->child_mutex);
9035
9036        put_event(parent);
9037
9038        raw_spin_lock_irq(&ctx->lock);
9039        perf_group_detach(event);
9040        list_del_event(event, ctx);
9041        raw_spin_unlock_irq(&ctx->lock);
9042        free_event(event);
9043}
9044
9045/*
9046 * Free an unexposed, unused context as created by inheritance by
9047 * perf_event_init_task below, used by fork() in case of fail.
9048 *
9049 * Not all locks are strictly required, but take them anyway to be nice and
9050 * help out with the lockdep assertions.
9051 */
9052void perf_event_free_task(struct task_struct *task)
9053{
9054        struct perf_event_context *ctx;
9055        struct perf_event *event, *tmp;
9056        int ctxn;
9057
9058        for_each_task_context_nr(ctxn) {
9059                ctx = task->perf_event_ctxp[ctxn];
9060                if (!ctx)
9061                        continue;
9062
9063                mutex_lock(&ctx->mutex);
9064again:
9065                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9066                                group_entry)
9067                        perf_free_event(event, ctx);
9068
9069                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9070                                group_entry)
9071                        perf_free_event(event, ctx);
9072
9073                if (!list_empty(&ctx->pinned_groups) ||
9074                                !list_empty(&ctx->flexible_groups))
9075                        goto again;
9076
9077                mutex_unlock(&ctx->mutex);
9078
9079                put_ctx(ctx);
9080        }
9081}
9082
9083void perf_event_delayed_put(struct task_struct *task)
9084{
9085        int ctxn;
9086
9087        for_each_task_context_nr(ctxn)
9088                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9089}
9090
9091struct file *perf_event_get(unsigned int fd)
9092{
9093        struct file *file;
9094
9095        file = fget_raw(fd);
9096        if (!file)
9097                return ERR_PTR(-EBADF);
9098
9099        if (file->f_op != &perf_fops) {
9100                fput(file);
9101                return ERR_PTR(-EBADF);
9102        }
9103
9104        return file;
9105}
9106
9107const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9108{
9109        if (!event)
9110                return ERR_PTR(-EINVAL);
9111
9112        return &event->attr;
9113}
9114
9115/*
9116 * inherit a event from parent task to child task:
9117 */
9118static struct perf_event *
9119inherit_event(struct perf_event *parent_event,
9120              struct task_struct *parent,
9121              struct perf_event_context *parent_ctx,
9122              struct task_struct *child,
9123              struct perf_event *group_leader,
9124              struct perf_event_context *child_ctx)
9125{
9126        enum perf_event_active_state parent_state = parent_event->state;
9127        struct perf_event *child_event;
9128        unsigned long flags;
9129
9130        /*
9131         * Instead of creating recursive hierarchies of events,
9132         * we link inherited events back to the original parent,
9133         * which has a filp for sure, which we use as the reference
9134         * count:
9135         */
9136        if (parent_event->parent)
9137                parent_event = parent_event->parent;
9138
9139        child_event = perf_event_alloc(&parent_event->attr,
9140                                           parent_event->cpu,
9141                                           child,
9142                                           group_leader, parent_event,
9143                                           NULL, NULL, -1);
9144        if (IS_ERR(child_event))
9145                return child_event;
9146
9147        /*
9148         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9149         * must be under the same lock in order to serialize against
9150         * perf_event_release_kernel(), such that either we must observe
9151         * is_orphaned_event() or they will observe us on the child_list.
9152         */
9153        mutex_lock(&parent_event->child_mutex);
9154        if (is_orphaned_event(parent_event) ||
9155            !atomic_long_inc_not_zero(&parent_event->refcount)) {
9156                mutex_unlock(&parent_event->child_mutex);
9157                free_event(child_event);
9158                return NULL;
9159        }
9160
9161        get_ctx(child_ctx);
9162
9163        /*
9164         * Make the child state follow the state of the parent event,
9165         * not its attr.disabled bit.  We hold the parent's mutex,
9166         * so we won't race with perf_event_{en, dis}able_family.
9167         */
9168        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9169                child_event->state = PERF_EVENT_STATE_INACTIVE;
9170        else
9171                child_event->state = PERF_EVENT_STATE_OFF;
9172
9173        if (parent_event->attr.freq) {
9174                u64 sample_period = parent_event->hw.sample_period;
9175                struct hw_perf_event *hwc = &child_event->hw;
9176
9177                hwc->sample_period = sample_period;
9178                hwc->last_period   = sample_period;
9179
9180                local64_set(&hwc->period_left, sample_period);
9181        }
9182
9183        child_event->ctx = child_ctx;
9184        child_event->overflow_handler = parent_event->overflow_handler;
9185        child_event->overflow_handler_context
9186                = parent_event->overflow_handler_context;
9187
9188        /*
9189         * Precalculate sample_data sizes
9190         */
9191        perf_event__header_size(child_event);
9192        perf_event__id_header_size(child_event);
9193
9194        /*
9195         * Link it up in the child's context:
9196         */
9197        raw_spin_lock_irqsave(&child_ctx->lock, flags);
9198        add_event_to_ctx(child_event, child_ctx);
9199        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9200
9201        /*
9202         * Link this into the parent event's child list
9203         */
9204        list_add_tail(&child_event->child_list, &parent_event->child_list);
9205        mutex_unlock(&parent_event->child_mutex);
9206
9207        return child_event;
9208}
9209
9210static int inherit_group(struct perf_event *parent_event,
9211              struct task_struct *parent,
9212              struct perf_event_context *parent_ctx,
9213              struct task_struct *child,
9214              struct perf_event_context *child_ctx)
9215{
9216        struct perf_event *leader;
9217        struct perf_event *sub;
9218        struct perf_event *child_ctr;
9219
9220        leader = inherit_event(parent_event, parent, parent_ctx,
9221                                 child, NULL, child_ctx);
9222        if (IS_ERR(leader))
9223                return PTR_ERR(leader);
9224        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9225                child_ctr = inherit_event(sub, parent, parent_ctx,
9226                                            child, leader, child_ctx);
9227                if (IS_ERR(child_ctr))
9228                        return PTR_ERR(child_ctr);
9229        }
9230        return 0;
9231}
9232
9233static int
9234inherit_task_group(struct perf_event *event, struct task_struct *parent,
9235                   struct perf_event_context *parent_ctx,
9236                   struct task_struct *child, int ctxn,
9237                   int *inherited_all)
9238{
9239        int ret;
9240        struct perf_event_context *child_ctx;
9241
9242        if (!event->attr.inherit) {
9243                *inherited_all = 0;
9244                return 0;
9245        }
9246
9247        child_ctx = child->perf_event_ctxp[ctxn];
9248        if (!child_ctx) {
9249                /*
9250                 * This is executed from the parent task context, so
9251                 * inherit events that have been marked for cloning.
9252                 * First allocate and initialize a context for the
9253                 * child.
9254                 */
9255
9256                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9257                if (!child_ctx)
9258                        return -ENOMEM;
9259
9260                child->perf_event_ctxp[ctxn] = child_ctx;
9261        }
9262
9263        ret = inherit_group(event, parent, parent_ctx,
9264                            child, child_ctx);
9265
9266        if (ret)
9267                *inherited_all = 0;
9268
9269        return ret;
9270}
9271
9272/*
9273 * Initialize the perf_event context in task_struct
9274 */
9275static int perf_event_init_context(struct task_struct *child, int ctxn)
9276{
9277        struct perf_event_context *child_ctx, *parent_ctx;
9278        struct perf_event_context *cloned_ctx;
9279        struct perf_event *event;
9280        struct task_struct *parent = current;
9281        int inherited_all = 1;
9282        unsigned long flags;
9283        int ret = 0;
9284
9285        if (likely(!parent->perf_event_ctxp[ctxn]))
9286                return 0;
9287
9288        /*
9289         * If the parent's context is a clone, pin it so it won't get
9290         * swapped under us.
9291         */
9292        parent_ctx = perf_pin_task_context(parent, ctxn);
9293        if (!parent_ctx)
9294                return 0;
9295
9296        /*
9297         * No need to check if parent_ctx != NULL here; since we saw
9298         * it non-NULL earlier, the only reason for it to become NULL
9299         * is if we exit, and since we're currently in the middle of
9300         * a fork we can't be exiting at the same time.
9301         */
9302
9303        /*
9304         * Lock the parent list. No need to lock the child - not PID
9305         * hashed yet and not running, so nobody can access it.
9306         */
9307        mutex_lock(&parent_ctx->mutex);
9308
9309        /*
9310         * We dont have to disable NMIs - we are only looking at
9311         * the list, not manipulating it:
9312         */
9313        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9314                ret = inherit_task_group(event, parent, parent_ctx,
9315                                         child, ctxn, &inherited_all);
9316                if (ret)
9317                        break;
9318        }
9319
9320        /*
9321         * We can't hold ctx->lock when iterating the ->flexible_group list due
9322         * to allocations, but we need to prevent rotation because
9323         * rotate_ctx() will change the list from interrupt context.
9324         */
9325        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9326        parent_ctx->rotate_disable = 1;
9327        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9328
9329        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9330                ret = inherit_task_group(event, parent, parent_ctx,
9331                                         child, ctxn, &inherited_all);
9332                if (ret)
9333                        break;
9334        }
9335
9336        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9337        parent_ctx->rotate_disable = 0;
9338
9339        child_ctx = child->perf_event_ctxp[ctxn];
9340
9341        if (child_ctx && inherited_all) {
9342                /*
9343                 * Mark the child context as a clone of the parent
9344                 * context, or of whatever the parent is a clone of.
9345                 *
9346                 * Note that if the parent is a clone, the holding of
9347                 * parent_ctx->lock avoids it from being uncloned.
9348                 */
9349                cloned_ctx = parent_ctx->parent_ctx;
9350                if (cloned_ctx) {
9351                        child_ctx->parent_ctx = cloned_ctx;
9352                        child_ctx->parent_gen = parent_ctx->parent_gen;
9353                } else {
9354                        child_ctx->parent_ctx = parent_ctx;
9355                        child_ctx->parent_gen = parent_ctx->generation;
9356                }
9357                get_ctx(child_ctx->parent_ctx);
9358        }
9359
9360        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9361        mutex_unlock(&parent_ctx->mutex);
9362
9363        perf_unpin_context(parent_ctx);
9364        put_ctx(parent_ctx);
9365
9366        return ret;
9367}
9368
9369/*
9370 * Initialize the perf_event context in task_struct
9371 */
9372int perf_event_init_task(struct task_struct *child)
9373{
9374        int ctxn, ret;
9375
9376        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9377        mutex_init(&child->perf_event_mutex);
9378        INIT_LIST_HEAD(&child->perf_event_list);
9379
9380        for_each_task_context_nr(ctxn) {
9381                ret = perf_event_init_context(child, ctxn);
9382                if (ret) {
9383                        perf_event_free_task(child);
9384                        return ret;
9385                }
9386        }
9387
9388        return 0;
9389}
9390
9391static void __init perf_event_init_all_cpus(void)
9392{
9393        struct swevent_htable *swhash;
9394        int cpu;
9395
9396        for_each_possible_cpu(cpu) {
9397                swhash = &per_cpu(swevent_htable, cpu);
9398                mutex_init(&swhash->hlist_mutex);
9399                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9400        }
9401}
9402
9403static void perf_event_init_cpu(int cpu)
9404{
9405        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9406
9407        mutex_lock(&swhash->hlist_mutex);
9408        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9409                struct swevent_hlist *hlist;
9410
9411                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9412                WARN_ON(!hlist);
9413                rcu_assign_pointer(swhash->swevent_hlist, hlist);
9414        }
9415        mutex_unlock(&swhash->hlist_mutex);
9416}
9417
9418#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9419static void __perf_event_exit_context(void *__info)
9420{
9421        struct perf_event_context *ctx = __info;
9422        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9423        struct perf_event *event;
9424
9425        raw_spin_lock(&ctx->lock);
9426        list_for_each_entry(event, &ctx->event_list, event_entry)
9427                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9428        raw_spin_unlock(&ctx->lock);
9429}
9430
9431static void perf_event_exit_cpu_context(int cpu)
9432{
9433        struct perf_event_context *ctx;
9434        struct pmu *pmu;
9435        int idx;
9436
9437        idx = srcu_read_lock(&pmus_srcu);
9438        list_for_each_entry_rcu(pmu, &pmus, entry) {
9439                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9440
9441                mutex_lock(&ctx->mutex);
9442                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9443                mutex_unlock(&ctx->mutex);
9444        }
9445        srcu_read_unlock(&pmus_srcu, idx);
9446}
9447
9448static void perf_event_exit_cpu(int cpu)
9449{
9450        perf_event_exit_cpu_context(cpu);
9451}
9452#else
9453static inline void perf_event_exit_cpu(int cpu) { }
9454#endif
9455
9456static int
9457perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9458{
9459        int cpu;
9460
9461        for_each_online_cpu(cpu)
9462                perf_event_exit_cpu(cpu);
9463
9464        return NOTIFY_OK;
9465}
9466
9467/*
9468 * Run the perf reboot notifier at the very last possible moment so that
9469 * the generic watchdog code runs as long as possible.
9470 */
9471static struct notifier_block perf_reboot_notifier = {
9472        .notifier_call = perf_reboot,
9473        .priority = INT_MIN,
9474};
9475
9476static int
9477perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9478{
9479        unsigned int cpu = (long)hcpu;
9480
9481        switch (action & ~CPU_TASKS_FROZEN) {
9482
9483        case CPU_UP_PREPARE:
9484                /*
9485                 * This must be done before the CPU comes alive, because the
9486                 * moment we can run tasks we can encounter (software) events.
9487                 *
9488                 * Specifically, someone can have inherited events on kthreadd
9489                 * or a pre-existing worker thread that gets re-bound.
9490                 */
9491                perf_event_init_cpu(cpu);
9492                break;
9493
9494        case CPU_DOWN_PREPARE:
9495                /*
9496                 * This must be done before the CPU dies because after that an
9497                 * active event might want to IPI the CPU and that'll not work
9498                 * so great for dead CPUs.
9499                 *
9500                 * XXX smp_call_function_single() return -ENXIO without a warn
9501                 * so we could possibly deal with this.
9502                 *
9503                 * This is safe against new events arriving because
9504                 * sys_perf_event_open() serializes against hotplug using
9505                 * get_online_cpus().
9506                 */
9507                perf_event_exit_cpu(cpu);
9508                break;
9509        default:
9510                break;
9511        }
9512
9513        return NOTIFY_OK;
9514}
9515
9516void __init perf_event_init(void)
9517{
9518        int ret;
9519
9520        idr_init(&pmu_idr);
9521
9522        perf_event_init_all_cpus();
9523        init_srcu_struct(&pmus_srcu);
9524        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9525        perf_pmu_register(&perf_cpu_clock, NULL, -1);
9526        perf_pmu_register(&perf_task_clock, NULL, -1);
9527        perf_tp_register();
9528        perf_cpu_notifier(perf_cpu_notify);
9529        register_reboot_notifier(&perf_reboot_notifier);
9530
9531        ret = init_hw_breakpoint();
9532        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9533
9534        /*
9535         * Build time assertion that we keep the data_head at the intended
9536         * location.  IOW, validation we got the __reserved[] size right.
9537         */
9538        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9539                     != 1024);
9540}
9541
9542ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9543                              char *page)
9544{
9545        struct perf_pmu_events_attr *pmu_attr =
9546                container_of(attr, struct perf_pmu_events_attr, attr);
9547
9548        if (pmu_attr->event_str)
9549                return sprintf(page, "%s\n", pmu_attr->event_str);
9550
9551        return 0;
9552}
9553EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9554
9555static int __init perf_event_sysfs_init(void)
9556{
9557        struct pmu *pmu;
9558        int ret;
9559
9560        mutex_lock(&pmus_lock);
9561
9562        ret = bus_register(&pmu_bus);
9563        if (ret)
9564                goto unlock;
9565
9566        list_for_each_entry(pmu, &pmus, entry) {
9567                if (!pmu->name || pmu->type < 0)
9568                        continue;
9569
9570                ret = pmu_dev_alloc(pmu);
9571                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9572        }
9573        pmu_bus_running = 1;
9574        ret = 0;
9575
9576unlock:
9577        mutex_unlock(&pmus_lock);
9578
9579        return ret;
9580}
9581device_initcall(perf_event_sysfs_init);
9582
9583#ifdef CONFIG_CGROUP_PERF
9584static struct cgroup_subsys_state *
9585perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9586{
9587        struct perf_cgroup *jc;
9588
9589        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9590        if (!jc)
9591                return ERR_PTR(-ENOMEM);
9592
9593        jc->info = alloc_percpu(struct perf_cgroup_info);
9594        if (!jc->info) {
9595                kfree(jc);
9596                return ERR_PTR(-ENOMEM);
9597        }
9598
9599        return &jc->css;
9600}
9601
9602static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9603{
9604        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9605
9606        free_percpu(jc->info);
9607        kfree(jc);
9608}
9609
9610static int __perf_cgroup_move(void *info)
9611{
9612        struct task_struct *task = info;
9613        rcu_read_lock();
9614        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9615        rcu_read_unlock();
9616        return 0;
9617}
9618
9619static void perf_cgroup_attach(struct cgroup_taskset *tset)
9620{
9621        struct task_struct *task;
9622        struct cgroup_subsys_state *css;
9623
9624        cgroup_taskset_for_each(task, css, tset)
9625                task_function_call(task, __perf_cgroup_move, task);
9626}
9627
9628struct cgroup_subsys perf_event_cgrp_subsys = {
9629        .css_alloc      = perf_cgroup_css_alloc,
9630        .css_free       = perf_cgroup_css_free,
9631        .attach         = perf_cgroup_attach,
9632};
9633#endif /* CONFIG_CGROUP_PERF */
9634