linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <asm/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;      /* Handle normal Linux uptimes. */
 106int nr_threads;                 /* The idle threads do not count.. */
 107
 108int max_threads;                /* tunable limit on nr_threads */
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117        return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124        int cpu;
 125        int total = 0;
 126
 127        for_each_possible_cpu(cpu)
 128                total += per_cpu(process_counts, cpu);
 129
 130        return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147        kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_info(struct thread_info *ti)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE
 162static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 163                                                  int node)
 164{
 165        struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
 166                                                  THREAD_SIZE_ORDER);
 167
 168        if (page)
 169                memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 170                                            1 << THREAD_SIZE_ORDER);
 171
 172        return page ? page_address(page) : NULL;
 173}
 174
 175static inline void free_thread_info(struct thread_info *ti)
 176{
 177        struct page *page = virt_to_page(ti);
 178
 179        memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 180                                    -(1 << THREAD_SIZE_ORDER));
 181        __free_kmem_pages(page, THREAD_SIZE_ORDER);
 182}
 183# else
 184static struct kmem_cache *thread_info_cache;
 185
 186static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 187                                                  int node)
 188{
 189        return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
 190}
 191
 192static void free_thread_info(struct thread_info *ti)
 193{
 194        kmem_cache_free(thread_info_cache, ti);
 195}
 196
 197void thread_info_cache_init(void)
 198{
 199        thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 200                                              THREAD_SIZE, 0, NULL);
 201        BUG_ON(thread_info_cache == NULL);
 202}
 203# endif
 204#endif
 205
 206/* SLAB cache for signal_struct structures (tsk->signal) */
 207static struct kmem_cache *signal_cachep;
 208
 209/* SLAB cache for sighand_struct structures (tsk->sighand) */
 210struct kmem_cache *sighand_cachep;
 211
 212/* SLAB cache for files_struct structures (tsk->files) */
 213struct kmem_cache *files_cachep;
 214
 215/* SLAB cache for fs_struct structures (tsk->fs) */
 216struct kmem_cache *fs_cachep;
 217
 218/* SLAB cache for vm_area_struct structures */
 219struct kmem_cache *vm_area_cachep;
 220
 221/* SLAB cache for mm_struct structures (tsk->mm) */
 222static struct kmem_cache *mm_cachep;
 223
 224static void account_kernel_stack(struct thread_info *ti, int account)
 225{
 226        struct zone *zone = page_zone(virt_to_page(ti));
 227
 228        mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 229}
 230
 231void free_task(struct task_struct *tsk)
 232{
 233        account_kernel_stack(tsk->stack, -1);
 234        arch_release_thread_info(tsk->stack);
 235        free_thread_info(tsk->stack);
 236        rt_mutex_debug_task_free(tsk);
 237        ftrace_graph_exit_task(tsk);
 238        put_seccomp_filter(tsk);
 239        arch_release_task_struct(tsk);
 240        free_task_struct(tsk);
 241}
 242EXPORT_SYMBOL(free_task);
 243
 244static inline void free_signal_struct(struct signal_struct *sig)
 245{
 246        taskstats_tgid_free(sig);
 247        sched_autogroup_exit(sig);
 248        kmem_cache_free(signal_cachep, sig);
 249}
 250
 251static inline void put_signal_struct(struct signal_struct *sig)
 252{
 253        if (atomic_dec_and_test(&sig->sigcnt))
 254                free_signal_struct(sig);
 255}
 256
 257void __put_task_struct(struct task_struct *tsk)
 258{
 259        WARN_ON(!tsk->exit_state);
 260        WARN_ON(atomic_read(&tsk->usage));
 261        WARN_ON(tsk == current);
 262
 263        cgroup_free(tsk);
 264        task_numa_free(tsk);
 265        security_task_free(tsk);
 266        exit_creds(tsk);
 267        delayacct_tsk_free(tsk);
 268        put_signal_struct(tsk->signal);
 269
 270        if (!profile_handoff_task(tsk))
 271                free_task(tsk);
 272}
 273EXPORT_SYMBOL_GPL(__put_task_struct);
 274
 275void __init __weak arch_task_cache_init(void) { }
 276
 277/*
 278 * set_max_threads
 279 */
 280static void set_max_threads(unsigned int max_threads_suggested)
 281{
 282        u64 threads;
 283
 284        /*
 285         * The number of threads shall be limited such that the thread
 286         * structures may only consume a small part of the available memory.
 287         */
 288        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 289                threads = MAX_THREADS;
 290        else
 291                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 292                                    (u64) THREAD_SIZE * 8UL);
 293
 294        if (threads > max_threads_suggested)
 295                threads = max_threads_suggested;
 296
 297        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 298}
 299
 300#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 301/* Initialized by the architecture: */
 302int arch_task_struct_size __read_mostly;
 303#endif
 304
 305void __init fork_init(void)
 306{
 307#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 308#ifndef ARCH_MIN_TASKALIGN
 309#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 310#endif
 311        /* create a slab on which task_structs can be allocated */
 312        task_struct_cachep = kmem_cache_create("task_struct",
 313                        arch_task_struct_size, ARCH_MIN_TASKALIGN,
 314                        SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 315#endif
 316
 317        /* do the arch specific task caches init */
 318        arch_task_cache_init();
 319
 320        set_max_threads(MAX_THREADS);
 321
 322        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 323        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 324        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 325                init_task.signal->rlim[RLIMIT_NPROC];
 326}
 327
 328int __weak arch_dup_task_struct(struct task_struct *dst,
 329                                               struct task_struct *src)
 330{
 331        *dst = *src;
 332        return 0;
 333}
 334
 335void set_task_stack_end_magic(struct task_struct *tsk)
 336{
 337        unsigned long *stackend;
 338
 339        stackend = end_of_stack(tsk);
 340        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 341}
 342
 343static struct task_struct *dup_task_struct(struct task_struct *orig)
 344{
 345        struct task_struct *tsk;
 346        struct thread_info *ti;
 347        int node = tsk_fork_get_node(orig);
 348        int err;
 349
 350        tsk = alloc_task_struct_node(node);
 351        if (!tsk)
 352                return NULL;
 353
 354        ti = alloc_thread_info_node(tsk, node);
 355        if (!ti)
 356                goto free_tsk;
 357
 358        err = arch_dup_task_struct(tsk, orig);
 359        if (err)
 360                goto free_ti;
 361
 362        tsk->stack = ti;
 363#ifdef CONFIG_SECCOMP
 364        /*
 365         * We must handle setting up seccomp filters once we're under
 366         * the sighand lock in case orig has changed between now and
 367         * then. Until then, filter must be NULL to avoid messing up
 368         * the usage counts on the error path calling free_task.
 369         */
 370        tsk->seccomp.filter = NULL;
 371#endif
 372
 373        setup_thread_stack(tsk, orig);
 374        clear_user_return_notifier(tsk);
 375        clear_tsk_need_resched(tsk);
 376        set_task_stack_end_magic(tsk);
 377
 378#ifdef CONFIG_CC_STACKPROTECTOR
 379        tsk->stack_canary = get_random_int();
 380#endif
 381
 382        /*
 383         * One for us, one for whoever does the "release_task()" (usually
 384         * parent)
 385         */
 386        atomic_set(&tsk->usage, 2);
 387#ifdef CONFIG_BLK_DEV_IO_TRACE
 388        tsk->btrace_seq = 0;
 389#endif
 390        tsk->splice_pipe = NULL;
 391        tsk->task_frag.page = NULL;
 392        tsk->wake_q.next = NULL;
 393
 394        account_kernel_stack(ti, 1);
 395
 396        kcov_task_init(tsk);
 397
 398        return tsk;
 399
 400free_ti:
 401        free_thread_info(ti);
 402free_tsk:
 403        free_task_struct(tsk);
 404        return NULL;
 405}
 406
 407#ifdef CONFIG_MMU
 408static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 409{
 410        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 411        struct rb_node **rb_link, *rb_parent;
 412        int retval;
 413        unsigned long charge;
 414
 415        uprobe_start_dup_mmap();
 416        down_write(&oldmm->mmap_sem);
 417        flush_cache_dup_mm(oldmm);
 418        uprobe_dup_mmap(oldmm, mm);
 419        /*
 420         * Not linked in yet - no deadlock potential:
 421         */
 422        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 423
 424        /* No ordering required: file already has been exposed. */
 425        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 426
 427        mm->total_vm = oldmm->total_vm;
 428        mm->data_vm = oldmm->data_vm;
 429        mm->exec_vm = oldmm->exec_vm;
 430        mm->stack_vm = oldmm->stack_vm;
 431
 432        rb_link = &mm->mm_rb.rb_node;
 433        rb_parent = NULL;
 434        pprev = &mm->mmap;
 435        retval = ksm_fork(mm, oldmm);
 436        if (retval)
 437                goto out;
 438        retval = khugepaged_fork(mm, oldmm);
 439        if (retval)
 440                goto out;
 441
 442        prev = NULL;
 443        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 444                struct file *file;
 445
 446                if (mpnt->vm_flags & VM_DONTCOPY) {
 447                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 448                        continue;
 449                }
 450                charge = 0;
 451                if (mpnt->vm_flags & VM_ACCOUNT) {
 452                        unsigned long len = vma_pages(mpnt);
 453
 454                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 455                                goto fail_nomem;
 456                        charge = len;
 457                }
 458                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 459                if (!tmp)
 460                        goto fail_nomem;
 461                *tmp = *mpnt;
 462                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 463                retval = vma_dup_policy(mpnt, tmp);
 464                if (retval)
 465                        goto fail_nomem_policy;
 466                tmp->vm_mm = mm;
 467                if (anon_vma_fork(tmp, mpnt))
 468                        goto fail_nomem_anon_vma_fork;
 469                tmp->vm_flags &=
 470                        ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 471                tmp->vm_next = tmp->vm_prev = NULL;
 472                tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 473                file = tmp->vm_file;
 474                if (file) {
 475                        struct inode *inode = file_inode(file);
 476                        struct address_space *mapping = file->f_mapping;
 477
 478                        get_file(file);
 479                        if (tmp->vm_flags & VM_DENYWRITE)
 480                                atomic_dec(&inode->i_writecount);
 481                        i_mmap_lock_write(mapping);
 482                        if (tmp->vm_flags & VM_SHARED)
 483                                atomic_inc(&mapping->i_mmap_writable);
 484                        flush_dcache_mmap_lock(mapping);
 485                        /* insert tmp into the share list, just after mpnt */
 486                        vma_interval_tree_insert_after(tmp, mpnt,
 487                                        &mapping->i_mmap);
 488                        flush_dcache_mmap_unlock(mapping);
 489                        i_mmap_unlock_write(mapping);
 490                }
 491
 492                /*
 493                 * Clear hugetlb-related page reserves for children. This only
 494                 * affects MAP_PRIVATE mappings. Faults generated by the child
 495                 * are not guaranteed to succeed, even if read-only
 496                 */
 497                if (is_vm_hugetlb_page(tmp))
 498                        reset_vma_resv_huge_pages(tmp);
 499
 500                /*
 501                 * Link in the new vma and copy the page table entries.
 502                 */
 503                *pprev = tmp;
 504                pprev = &tmp->vm_next;
 505                tmp->vm_prev = prev;
 506                prev = tmp;
 507
 508                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 509                rb_link = &tmp->vm_rb.rb_right;
 510                rb_parent = &tmp->vm_rb;
 511
 512                mm->map_count++;
 513                retval = copy_page_range(mm, oldmm, mpnt);
 514
 515                if (tmp->vm_ops && tmp->vm_ops->open)
 516                        tmp->vm_ops->open(tmp);
 517
 518                if (retval)
 519                        goto out;
 520        }
 521        /* a new mm has just been created */
 522        arch_dup_mmap(oldmm, mm);
 523        retval = 0;
 524out:
 525        up_write(&mm->mmap_sem);
 526        flush_tlb_mm(oldmm);
 527        up_write(&oldmm->mmap_sem);
 528        uprobe_end_dup_mmap();
 529        return retval;
 530fail_nomem_anon_vma_fork:
 531        mpol_put(vma_policy(tmp));
 532fail_nomem_policy:
 533        kmem_cache_free(vm_area_cachep, tmp);
 534fail_nomem:
 535        retval = -ENOMEM;
 536        vm_unacct_memory(charge);
 537        goto out;
 538}
 539
 540static inline int mm_alloc_pgd(struct mm_struct *mm)
 541{
 542        mm->pgd = pgd_alloc(mm);
 543        if (unlikely(!mm->pgd))
 544                return -ENOMEM;
 545        return 0;
 546}
 547
 548static inline void mm_free_pgd(struct mm_struct *mm)
 549{
 550        pgd_free(mm, mm->pgd);
 551}
 552#else
 553static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 554{
 555        down_write(&oldmm->mmap_sem);
 556        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 557        up_write(&oldmm->mmap_sem);
 558        return 0;
 559}
 560#define mm_alloc_pgd(mm)        (0)
 561#define mm_free_pgd(mm)
 562#endif /* CONFIG_MMU */
 563
 564__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 565
 566#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 567#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 568
 569static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 570
 571static int __init coredump_filter_setup(char *s)
 572{
 573        default_dump_filter =
 574                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 575                MMF_DUMP_FILTER_MASK;
 576        return 1;
 577}
 578
 579__setup("coredump_filter=", coredump_filter_setup);
 580
 581#include <linux/init_task.h>
 582
 583static void mm_init_aio(struct mm_struct *mm)
 584{
 585#ifdef CONFIG_AIO
 586        spin_lock_init(&mm->ioctx_lock);
 587        mm->ioctx_table = NULL;
 588#endif
 589}
 590
 591static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 592{
 593#ifdef CONFIG_MEMCG
 594        mm->owner = p;
 595#endif
 596}
 597
 598static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 599{
 600        mm->mmap = NULL;
 601        mm->mm_rb = RB_ROOT;
 602        mm->vmacache_seqnum = 0;
 603        atomic_set(&mm->mm_users, 1);
 604        atomic_set(&mm->mm_count, 1);
 605        init_rwsem(&mm->mmap_sem);
 606        INIT_LIST_HEAD(&mm->mmlist);
 607        mm->core_state = NULL;
 608        atomic_long_set(&mm->nr_ptes, 0);
 609        mm_nr_pmds_init(mm);
 610        mm->map_count = 0;
 611        mm->locked_vm = 0;
 612        mm->pinned_vm = 0;
 613        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 614        spin_lock_init(&mm->page_table_lock);
 615        mm_init_cpumask(mm);
 616        mm_init_aio(mm);
 617        mm_init_owner(mm, p);
 618        mmu_notifier_mm_init(mm);
 619        clear_tlb_flush_pending(mm);
 620#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 621        mm->pmd_huge_pte = NULL;
 622#endif
 623
 624        if (current->mm) {
 625                mm->flags = current->mm->flags & MMF_INIT_MASK;
 626                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 627        } else {
 628                mm->flags = default_dump_filter;
 629                mm->def_flags = 0;
 630        }
 631
 632        if (mm_alloc_pgd(mm))
 633                goto fail_nopgd;
 634
 635        if (init_new_context(p, mm))
 636                goto fail_nocontext;
 637
 638        return mm;
 639
 640fail_nocontext:
 641        mm_free_pgd(mm);
 642fail_nopgd:
 643        free_mm(mm);
 644        return NULL;
 645}
 646
 647static void check_mm(struct mm_struct *mm)
 648{
 649        int i;
 650
 651        for (i = 0; i < NR_MM_COUNTERS; i++) {
 652                long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654                if (unlikely(x))
 655                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 656                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 657        }
 658
 659        if (atomic_long_read(&mm->nr_ptes))
 660                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 661                                atomic_long_read(&mm->nr_ptes));
 662        if (mm_nr_pmds(mm))
 663                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 664                                mm_nr_pmds(mm));
 665
 666#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 667        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 668#endif
 669}
 670
 671/*
 672 * Allocate and initialize an mm_struct.
 673 */
 674struct mm_struct *mm_alloc(void)
 675{
 676        struct mm_struct *mm;
 677
 678        mm = allocate_mm();
 679        if (!mm)
 680                return NULL;
 681
 682        memset(mm, 0, sizeof(*mm));
 683        return mm_init(mm, current);
 684}
 685
 686/*
 687 * Called when the last reference to the mm
 688 * is dropped: either by a lazy thread or by
 689 * mmput. Free the page directory and the mm.
 690 */
 691void __mmdrop(struct mm_struct *mm)
 692{
 693        BUG_ON(mm == &init_mm);
 694        mm_free_pgd(mm);
 695        destroy_context(mm);
 696        mmu_notifier_mm_destroy(mm);
 697        check_mm(mm);
 698        free_mm(mm);
 699}
 700EXPORT_SYMBOL_GPL(__mmdrop);
 701
 702/*
 703 * Decrement the use count and release all resources for an mm.
 704 */
 705void mmput(struct mm_struct *mm)
 706{
 707        might_sleep();
 708
 709        if (atomic_dec_and_test(&mm->mm_users)) {
 710                uprobe_clear_state(mm);
 711                exit_aio(mm);
 712                ksm_exit(mm);
 713                khugepaged_exit(mm); /* must run before exit_mmap */
 714                exit_mmap(mm);
 715                set_mm_exe_file(mm, NULL);
 716                if (!list_empty(&mm->mmlist)) {
 717                        spin_lock(&mmlist_lock);
 718                        list_del(&mm->mmlist);
 719                        spin_unlock(&mmlist_lock);
 720                }
 721                if (mm->binfmt)
 722                        module_put(mm->binfmt->module);
 723                mmdrop(mm);
 724        }
 725}
 726EXPORT_SYMBOL_GPL(mmput);
 727
 728/**
 729 * set_mm_exe_file - change a reference to the mm's executable file
 730 *
 731 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 732 *
 733 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 734 * invocations: in mmput() nobody alive left, in execve task is single
 735 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 736 * mm->exe_file, but does so without using set_mm_exe_file() in order
 737 * to do avoid the need for any locks.
 738 */
 739void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 740{
 741        struct file *old_exe_file;
 742
 743        /*
 744         * It is safe to dereference the exe_file without RCU as
 745         * this function is only called if nobody else can access
 746         * this mm -- see comment above for justification.
 747         */
 748        old_exe_file = rcu_dereference_raw(mm->exe_file);
 749
 750        if (new_exe_file)
 751                get_file(new_exe_file);
 752        rcu_assign_pointer(mm->exe_file, new_exe_file);
 753        if (old_exe_file)
 754                fput(old_exe_file);
 755}
 756
 757/**
 758 * get_mm_exe_file - acquire a reference to the mm's executable file
 759 *
 760 * Returns %NULL if mm has no associated executable file.
 761 * User must release file via fput().
 762 */
 763struct file *get_mm_exe_file(struct mm_struct *mm)
 764{
 765        struct file *exe_file;
 766
 767        rcu_read_lock();
 768        exe_file = rcu_dereference(mm->exe_file);
 769        if (exe_file && !get_file_rcu(exe_file))
 770                exe_file = NULL;
 771        rcu_read_unlock();
 772        return exe_file;
 773}
 774EXPORT_SYMBOL(get_mm_exe_file);
 775
 776/**
 777 * get_task_mm - acquire a reference to the task's mm
 778 *
 779 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 780 * this kernel workthread has transiently adopted a user mm with use_mm,
 781 * to do its AIO) is not set and if so returns a reference to it, after
 782 * bumping up the use count.  User must release the mm via mmput()
 783 * after use.  Typically used by /proc and ptrace.
 784 */
 785struct mm_struct *get_task_mm(struct task_struct *task)
 786{
 787        struct mm_struct *mm;
 788
 789        task_lock(task);
 790        mm = task->mm;
 791        if (mm) {
 792                if (task->flags & PF_KTHREAD)
 793                        mm = NULL;
 794                else
 795                        atomic_inc(&mm->mm_users);
 796        }
 797        task_unlock(task);
 798        return mm;
 799}
 800EXPORT_SYMBOL_GPL(get_task_mm);
 801
 802struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 803{
 804        struct mm_struct *mm;
 805        int err;
 806
 807        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 808        if (err)
 809                return ERR_PTR(err);
 810
 811        mm = get_task_mm(task);
 812        if (mm && mm != current->mm &&
 813                        !ptrace_may_access(task, mode)) {
 814                mmput(mm);
 815                mm = ERR_PTR(-EACCES);
 816        }
 817        mutex_unlock(&task->signal->cred_guard_mutex);
 818
 819        return mm;
 820}
 821
 822static void complete_vfork_done(struct task_struct *tsk)
 823{
 824        struct completion *vfork;
 825
 826        task_lock(tsk);
 827        vfork = tsk->vfork_done;
 828        if (likely(vfork)) {
 829                tsk->vfork_done = NULL;
 830                complete(vfork);
 831        }
 832        task_unlock(tsk);
 833}
 834
 835static int wait_for_vfork_done(struct task_struct *child,
 836                                struct completion *vfork)
 837{
 838        int killed;
 839
 840        freezer_do_not_count();
 841        killed = wait_for_completion_killable(vfork);
 842        freezer_count();
 843
 844        if (killed) {
 845                task_lock(child);
 846                child->vfork_done = NULL;
 847                task_unlock(child);
 848        }
 849
 850        put_task_struct(child);
 851        return killed;
 852}
 853
 854/* Please note the differences between mmput and mm_release.
 855 * mmput is called whenever we stop holding onto a mm_struct,
 856 * error success whatever.
 857 *
 858 * mm_release is called after a mm_struct has been removed
 859 * from the current process.
 860 *
 861 * This difference is important for error handling, when we
 862 * only half set up a mm_struct for a new process and need to restore
 863 * the old one.  Because we mmput the new mm_struct before
 864 * restoring the old one. . .
 865 * Eric Biederman 10 January 1998
 866 */
 867void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 868{
 869        /* Get rid of any futexes when releasing the mm */
 870#ifdef CONFIG_FUTEX
 871        if (unlikely(tsk->robust_list)) {
 872                exit_robust_list(tsk);
 873                tsk->robust_list = NULL;
 874        }
 875#ifdef CONFIG_COMPAT
 876        if (unlikely(tsk->compat_robust_list)) {
 877                compat_exit_robust_list(tsk);
 878                tsk->compat_robust_list = NULL;
 879        }
 880#endif
 881        if (unlikely(!list_empty(&tsk->pi_state_list)))
 882                exit_pi_state_list(tsk);
 883#endif
 884
 885        uprobe_free_utask(tsk);
 886
 887        /* Get rid of any cached register state */
 888        deactivate_mm(tsk, mm);
 889
 890        /*
 891         * If we're exiting normally, clear a user-space tid field if
 892         * requested.  We leave this alone when dying by signal, to leave
 893         * the value intact in a core dump, and to save the unnecessary
 894         * trouble, say, a killed vfork parent shouldn't touch this mm.
 895         * Userland only wants this done for a sys_exit.
 896         */
 897        if (tsk->clear_child_tid) {
 898                if (!(tsk->flags & PF_SIGNALED) &&
 899                    atomic_read(&mm->mm_users) > 1) {
 900                        /*
 901                         * We don't check the error code - if userspace has
 902                         * not set up a proper pointer then tough luck.
 903                         */
 904                        put_user(0, tsk->clear_child_tid);
 905                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 906                                        1, NULL, NULL, 0);
 907                }
 908                tsk->clear_child_tid = NULL;
 909        }
 910
 911        /*
 912         * All done, finally we can wake up parent and return this mm to him.
 913         * Also kthread_stop() uses this completion for synchronization.
 914         */
 915        if (tsk->vfork_done)
 916                complete_vfork_done(tsk);
 917}
 918
 919/*
 920 * Allocate a new mm structure and copy contents from the
 921 * mm structure of the passed in task structure.
 922 */
 923static struct mm_struct *dup_mm(struct task_struct *tsk)
 924{
 925        struct mm_struct *mm, *oldmm = current->mm;
 926        int err;
 927
 928        mm = allocate_mm();
 929        if (!mm)
 930                goto fail_nomem;
 931
 932        memcpy(mm, oldmm, sizeof(*mm));
 933
 934        if (!mm_init(mm, tsk))
 935                goto fail_nomem;
 936
 937        err = dup_mmap(mm, oldmm);
 938        if (err)
 939                goto free_pt;
 940
 941        mm->hiwater_rss = get_mm_rss(mm);
 942        mm->hiwater_vm = mm->total_vm;
 943
 944        if (mm->binfmt && !try_module_get(mm->binfmt->module))
 945                goto free_pt;
 946
 947        return mm;
 948
 949free_pt:
 950        /* don't put binfmt in mmput, we haven't got module yet */
 951        mm->binfmt = NULL;
 952        mmput(mm);
 953
 954fail_nomem:
 955        return NULL;
 956}
 957
 958static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 959{
 960        struct mm_struct *mm, *oldmm;
 961        int retval;
 962
 963        tsk->min_flt = tsk->maj_flt = 0;
 964        tsk->nvcsw = tsk->nivcsw = 0;
 965#ifdef CONFIG_DETECT_HUNG_TASK
 966        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 967#endif
 968
 969        tsk->mm = NULL;
 970        tsk->active_mm = NULL;
 971
 972        /*
 973         * Are we cloning a kernel thread?
 974         *
 975         * We need to steal a active VM for that..
 976         */
 977        oldmm = current->mm;
 978        if (!oldmm)
 979                return 0;
 980
 981        /* initialize the new vmacache entries */
 982        vmacache_flush(tsk);
 983
 984        if (clone_flags & CLONE_VM) {
 985                atomic_inc(&oldmm->mm_users);
 986                mm = oldmm;
 987                goto good_mm;
 988        }
 989
 990        retval = -ENOMEM;
 991        mm = dup_mm(tsk);
 992        if (!mm)
 993                goto fail_nomem;
 994
 995good_mm:
 996        tsk->mm = mm;
 997        tsk->active_mm = mm;
 998        return 0;
 999
1000fail_nomem:
1001        return retval;
1002}
1003
1004static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1005{
1006        struct fs_struct *fs = current->fs;
1007        if (clone_flags & CLONE_FS) {
1008                /* tsk->fs is already what we want */
1009                spin_lock(&fs->lock);
1010                if (fs->in_exec) {
1011                        spin_unlock(&fs->lock);
1012                        return -EAGAIN;
1013                }
1014                fs->users++;
1015                spin_unlock(&fs->lock);
1016                return 0;
1017        }
1018        tsk->fs = copy_fs_struct(fs);
1019        if (!tsk->fs)
1020                return -ENOMEM;
1021        return 0;
1022}
1023
1024static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1025{
1026        struct files_struct *oldf, *newf;
1027        int error = 0;
1028
1029        /*
1030         * A background process may not have any files ...
1031         */
1032        oldf = current->files;
1033        if (!oldf)
1034                goto out;
1035
1036        if (clone_flags & CLONE_FILES) {
1037                atomic_inc(&oldf->count);
1038                goto out;
1039        }
1040
1041        newf = dup_fd(oldf, &error);
1042        if (!newf)
1043                goto out;
1044
1045        tsk->files = newf;
1046        error = 0;
1047out:
1048        return error;
1049}
1050
1051static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1052{
1053#ifdef CONFIG_BLOCK
1054        struct io_context *ioc = current->io_context;
1055        struct io_context *new_ioc;
1056
1057        if (!ioc)
1058                return 0;
1059        /*
1060         * Share io context with parent, if CLONE_IO is set
1061         */
1062        if (clone_flags & CLONE_IO) {
1063                ioc_task_link(ioc);
1064                tsk->io_context = ioc;
1065        } else if (ioprio_valid(ioc->ioprio)) {
1066                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1067                if (unlikely(!new_ioc))
1068                        return -ENOMEM;
1069
1070                new_ioc->ioprio = ioc->ioprio;
1071                put_io_context(new_ioc);
1072        }
1073#endif
1074        return 0;
1075}
1076
1077static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1078{
1079        struct sighand_struct *sig;
1080
1081        if (clone_flags & CLONE_SIGHAND) {
1082                atomic_inc(&current->sighand->count);
1083                return 0;
1084        }
1085        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1086        rcu_assign_pointer(tsk->sighand, sig);
1087        if (!sig)
1088                return -ENOMEM;
1089
1090        atomic_set(&sig->count, 1);
1091        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1092        return 0;
1093}
1094
1095void __cleanup_sighand(struct sighand_struct *sighand)
1096{
1097        if (atomic_dec_and_test(&sighand->count)) {
1098                signalfd_cleanup(sighand);
1099                /*
1100                 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1101                 * without an RCU grace period, see __lock_task_sighand().
1102                 */
1103                kmem_cache_free(sighand_cachep, sighand);
1104        }
1105}
1106
1107/*
1108 * Initialize POSIX timer handling for a thread group.
1109 */
1110static void posix_cpu_timers_init_group(struct signal_struct *sig)
1111{
1112        unsigned long cpu_limit;
1113
1114        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1115        if (cpu_limit != RLIM_INFINITY) {
1116                sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1117                sig->cputimer.running = true;
1118        }
1119
1120        /* The timer lists. */
1121        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1122        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1123        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1124}
1125
1126static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1127{
1128        struct signal_struct *sig;
1129
1130        if (clone_flags & CLONE_THREAD)
1131                return 0;
1132
1133        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1134        tsk->signal = sig;
1135        if (!sig)
1136                return -ENOMEM;
1137
1138        sig->nr_threads = 1;
1139        atomic_set(&sig->live, 1);
1140        atomic_set(&sig->sigcnt, 1);
1141
1142        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1143        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1144        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1145
1146        init_waitqueue_head(&sig->wait_chldexit);
1147        sig->curr_target = tsk;
1148        init_sigpending(&sig->shared_pending);
1149        INIT_LIST_HEAD(&sig->posix_timers);
1150        seqlock_init(&sig->stats_lock);
1151        prev_cputime_init(&sig->prev_cputime);
1152
1153        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1154        sig->real_timer.function = it_real_fn;
1155
1156        task_lock(current->group_leader);
1157        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1158        task_unlock(current->group_leader);
1159
1160        posix_cpu_timers_init_group(sig);
1161
1162        tty_audit_fork(sig);
1163        sched_autogroup_fork(sig);
1164
1165        sig->oom_score_adj = current->signal->oom_score_adj;
1166        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1167
1168        sig->has_child_subreaper = current->signal->has_child_subreaper ||
1169                                   current->signal->is_child_subreaper;
1170
1171        mutex_init(&sig->cred_guard_mutex);
1172
1173        return 0;
1174}
1175
1176static void copy_seccomp(struct task_struct *p)
1177{
1178#ifdef CONFIG_SECCOMP
1179        /*
1180         * Must be called with sighand->lock held, which is common to
1181         * all threads in the group. Holding cred_guard_mutex is not
1182         * needed because this new task is not yet running and cannot
1183         * be racing exec.
1184         */
1185        assert_spin_locked(&current->sighand->siglock);
1186
1187        /* Ref-count the new filter user, and assign it. */
1188        get_seccomp_filter(current);
1189        p->seccomp = current->seccomp;
1190
1191        /*
1192         * Explicitly enable no_new_privs here in case it got set
1193         * between the task_struct being duplicated and holding the
1194         * sighand lock. The seccomp state and nnp must be in sync.
1195         */
1196        if (task_no_new_privs(current))
1197                task_set_no_new_privs(p);
1198
1199        /*
1200         * If the parent gained a seccomp mode after copying thread
1201         * flags and between before we held the sighand lock, we have
1202         * to manually enable the seccomp thread flag here.
1203         */
1204        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1205                set_tsk_thread_flag(p, TIF_SECCOMP);
1206#endif
1207}
1208
1209SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1210{
1211        current->clear_child_tid = tidptr;
1212
1213        return task_pid_vnr(current);
1214}
1215
1216static void rt_mutex_init_task(struct task_struct *p)
1217{
1218        raw_spin_lock_init(&p->pi_lock);
1219#ifdef CONFIG_RT_MUTEXES
1220        p->pi_waiters = RB_ROOT;
1221        p->pi_waiters_leftmost = NULL;
1222        p->pi_blocked_on = NULL;
1223#endif
1224}
1225
1226/*
1227 * Initialize POSIX timer handling for a single task.
1228 */
1229static void posix_cpu_timers_init(struct task_struct *tsk)
1230{
1231        tsk->cputime_expires.prof_exp = 0;
1232        tsk->cputime_expires.virt_exp = 0;
1233        tsk->cputime_expires.sched_exp = 0;
1234        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1235        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1236        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1237}
1238
1239static inline void
1240init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1241{
1242         task->pids[type].pid = pid;
1243}
1244
1245/*
1246 * This creates a new process as a copy of the old one,
1247 * but does not actually start it yet.
1248 *
1249 * It copies the registers, and all the appropriate
1250 * parts of the process environment (as per the clone
1251 * flags). The actual kick-off is left to the caller.
1252 */
1253static struct task_struct *copy_process(unsigned long clone_flags,
1254                                        unsigned long stack_start,
1255                                        unsigned long stack_size,
1256                                        int __user *child_tidptr,
1257                                        struct pid *pid,
1258                                        int trace,
1259                                        unsigned long tls)
1260{
1261        int retval;
1262        struct task_struct *p;
1263
1264        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1265                return ERR_PTR(-EINVAL);
1266
1267        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1268                return ERR_PTR(-EINVAL);
1269
1270        /*
1271         * Thread groups must share signals as well, and detached threads
1272         * can only be started up within the thread group.
1273         */
1274        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1275                return ERR_PTR(-EINVAL);
1276
1277        /*
1278         * Shared signal handlers imply shared VM. By way of the above,
1279         * thread groups also imply shared VM. Blocking this case allows
1280         * for various simplifications in other code.
1281         */
1282        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1283                return ERR_PTR(-EINVAL);
1284
1285        /*
1286         * Siblings of global init remain as zombies on exit since they are
1287         * not reaped by their parent (swapper). To solve this and to avoid
1288         * multi-rooted process trees, prevent global and container-inits
1289         * from creating siblings.
1290         */
1291        if ((clone_flags & CLONE_PARENT) &&
1292                                current->signal->flags & SIGNAL_UNKILLABLE)
1293                return ERR_PTR(-EINVAL);
1294
1295        /*
1296         * If the new process will be in a different pid or user namespace
1297         * do not allow it to share a thread group with the forking task.
1298         */
1299        if (clone_flags & CLONE_THREAD) {
1300                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1301                    (task_active_pid_ns(current) !=
1302                                current->nsproxy->pid_ns_for_children))
1303                        return ERR_PTR(-EINVAL);
1304        }
1305
1306        retval = security_task_create(clone_flags);
1307        if (retval)
1308                goto fork_out;
1309
1310        retval = -ENOMEM;
1311        p = dup_task_struct(current);
1312        if (!p)
1313                goto fork_out;
1314
1315        ftrace_graph_init_task(p);
1316
1317        rt_mutex_init_task(p);
1318
1319#ifdef CONFIG_PROVE_LOCKING
1320        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1321        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1322#endif
1323        retval = -EAGAIN;
1324        if (atomic_read(&p->real_cred->user->processes) >=
1325                        task_rlimit(p, RLIMIT_NPROC)) {
1326                if (p->real_cred->user != INIT_USER &&
1327                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1328                        goto bad_fork_free;
1329        }
1330        current->flags &= ~PF_NPROC_EXCEEDED;
1331
1332        retval = copy_creds(p, clone_flags);
1333        if (retval < 0)
1334                goto bad_fork_free;
1335
1336        /*
1337         * If multiple threads are within copy_process(), then this check
1338         * triggers too late. This doesn't hurt, the check is only there
1339         * to stop root fork bombs.
1340         */
1341        retval = -EAGAIN;
1342        if (nr_threads >= max_threads)
1343                goto bad_fork_cleanup_count;
1344
1345        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1346        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1347        p->flags |= PF_FORKNOEXEC;
1348        INIT_LIST_HEAD(&p->children);
1349        INIT_LIST_HEAD(&p->sibling);
1350        rcu_copy_process(p);
1351        p->vfork_done = NULL;
1352        spin_lock_init(&p->alloc_lock);
1353
1354        init_sigpending(&p->pending);
1355
1356        p->utime = p->stime = p->gtime = 0;
1357        p->utimescaled = p->stimescaled = 0;
1358        prev_cputime_init(&p->prev_cputime);
1359
1360#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1361        seqcount_init(&p->vtime_seqcount);
1362        p->vtime_snap = 0;
1363        p->vtime_snap_whence = VTIME_INACTIVE;
1364#endif
1365
1366#if defined(SPLIT_RSS_COUNTING)
1367        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1368#endif
1369
1370        p->default_timer_slack_ns = current->timer_slack_ns;
1371
1372        task_io_accounting_init(&p->ioac);
1373        acct_clear_integrals(p);
1374
1375        posix_cpu_timers_init(p);
1376
1377        p->start_time = ktime_get_ns();
1378        p->real_start_time = ktime_get_boot_ns();
1379        p->io_context = NULL;
1380        p->audit_context = NULL;
1381        threadgroup_change_begin(current);
1382        cgroup_fork(p);
1383#ifdef CONFIG_NUMA
1384        p->mempolicy = mpol_dup(p->mempolicy);
1385        if (IS_ERR(p->mempolicy)) {
1386                retval = PTR_ERR(p->mempolicy);
1387                p->mempolicy = NULL;
1388                goto bad_fork_cleanup_threadgroup_lock;
1389        }
1390#endif
1391#ifdef CONFIG_CPUSETS
1392        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1393        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1394        seqcount_init(&p->mems_allowed_seq);
1395#endif
1396#ifdef CONFIG_TRACE_IRQFLAGS
1397        p->irq_events = 0;
1398        p->hardirqs_enabled = 0;
1399        p->hardirq_enable_ip = 0;
1400        p->hardirq_enable_event = 0;
1401        p->hardirq_disable_ip = _THIS_IP_;
1402        p->hardirq_disable_event = 0;
1403        p->softirqs_enabled = 1;
1404        p->softirq_enable_ip = _THIS_IP_;
1405        p->softirq_enable_event = 0;
1406        p->softirq_disable_ip = 0;
1407        p->softirq_disable_event = 0;
1408        p->hardirq_context = 0;
1409        p->softirq_context = 0;
1410#endif
1411
1412        p->pagefault_disabled = 0;
1413
1414#ifdef CONFIG_LOCKDEP
1415        p->lockdep_depth = 0; /* no locks held yet */
1416        p->curr_chain_key = 0;
1417        p->lockdep_recursion = 0;
1418#endif
1419
1420#ifdef CONFIG_DEBUG_MUTEXES
1421        p->blocked_on = NULL; /* not blocked yet */
1422#endif
1423#ifdef CONFIG_BCACHE
1424        p->sequential_io        = 0;
1425        p->sequential_io_avg    = 0;
1426#endif
1427
1428        /* Perform scheduler related setup. Assign this task to a CPU. */
1429        retval = sched_fork(clone_flags, p);
1430        if (retval)
1431                goto bad_fork_cleanup_policy;
1432
1433        retval = perf_event_init_task(p);
1434        if (retval)
1435                goto bad_fork_cleanup_policy;
1436        retval = audit_alloc(p);
1437        if (retval)
1438                goto bad_fork_cleanup_perf;
1439        /* copy all the process information */
1440        shm_init_task(p);
1441        retval = copy_semundo(clone_flags, p);
1442        if (retval)
1443                goto bad_fork_cleanup_audit;
1444        retval = copy_files(clone_flags, p);
1445        if (retval)
1446                goto bad_fork_cleanup_semundo;
1447        retval = copy_fs(clone_flags, p);
1448        if (retval)
1449                goto bad_fork_cleanup_files;
1450        retval = copy_sighand(clone_flags, p);
1451        if (retval)
1452                goto bad_fork_cleanup_fs;
1453        retval = copy_signal(clone_flags, p);
1454        if (retval)
1455                goto bad_fork_cleanup_sighand;
1456        retval = copy_mm(clone_flags, p);
1457        if (retval)
1458                goto bad_fork_cleanup_signal;
1459        retval = copy_namespaces(clone_flags, p);
1460        if (retval)
1461                goto bad_fork_cleanup_mm;
1462        retval = copy_io(clone_flags, p);
1463        if (retval)
1464                goto bad_fork_cleanup_namespaces;
1465        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1466        if (retval)
1467                goto bad_fork_cleanup_io;
1468
1469        if (pid != &init_struct_pid) {
1470                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1471                if (IS_ERR(pid)) {
1472                        retval = PTR_ERR(pid);
1473                        goto bad_fork_cleanup_io;
1474                }
1475        }
1476
1477        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1478        /*
1479         * Clear TID on mm_release()?
1480         */
1481        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1482#ifdef CONFIG_BLOCK
1483        p->plug = NULL;
1484#endif
1485#ifdef CONFIG_FUTEX
1486        p->robust_list = NULL;
1487#ifdef CONFIG_COMPAT
1488        p->compat_robust_list = NULL;
1489#endif
1490        INIT_LIST_HEAD(&p->pi_state_list);
1491        p->pi_state_cache = NULL;
1492#endif
1493        /*
1494         * sigaltstack should be cleared when sharing the same VM
1495         */
1496        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1497                p->sas_ss_sp = p->sas_ss_size = 0;
1498
1499        /*
1500         * Syscall tracing and stepping should be turned off in the
1501         * child regardless of CLONE_PTRACE.
1502         */
1503        user_disable_single_step(p);
1504        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1505#ifdef TIF_SYSCALL_EMU
1506        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1507#endif
1508        clear_all_latency_tracing(p);
1509
1510        /* ok, now we should be set up.. */
1511        p->pid = pid_nr(pid);
1512        if (clone_flags & CLONE_THREAD) {
1513                p->exit_signal = -1;
1514                p->group_leader = current->group_leader;
1515                p->tgid = current->tgid;
1516        } else {
1517                if (clone_flags & CLONE_PARENT)
1518                        p->exit_signal = current->group_leader->exit_signal;
1519                else
1520                        p->exit_signal = (clone_flags & CSIGNAL);
1521                p->group_leader = p;
1522                p->tgid = p->pid;
1523        }
1524
1525        p->nr_dirtied = 0;
1526        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1527        p->dirty_paused_when = 0;
1528
1529        p->pdeath_signal = 0;
1530        INIT_LIST_HEAD(&p->thread_group);
1531        p->task_works = NULL;
1532
1533        /*
1534         * Ensure that the cgroup subsystem policies allow the new process to be
1535         * forked. It should be noted the the new process's css_set can be changed
1536         * between here and cgroup_post_fork() if an organisation operation is in
1537         * progress.
1538         */
1539        retval = cgroup_can_fork(p);
1540        if (retval)
1541                goto bad_fork_free_pid;
1542
1543        /*
1544         * Make it visible to the rest of the system, but dont wake it up yet.
1545         * Need tasklist lock for parent etc handling!
1546         */
1547        write_lock_irq(&tasklist_lock);
1548
1549        /* CLONE_PARENT re-uses the old parent */
1550        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1551                p->real_parent = current->real_parent;
1552                p->parent_exec_id = current->parent_exec_id;
1553        } else {
1554                p->real_parent = current;
1555                p->parent_exec_id = current->self_exec_id;
1556        }
1557
1558        spin_lock(&current->sighand->siglock);
1559
1560        /*
1561         * Copy seccomp details explicitly here, in case they were changed
1562         * before holding sighand lock.
1563         */
1564        copy_seccomp(p);
1565
1566        /*
1567         * Process group and session signals need to be delivered to just the
1568         * parent before the fork or both the parent and the child after the
1569         * fork. Restart if a signal comes in before we add the new process to
1570         * it's process group.
1571         * A fatal signal pending means that current will exit, so the new
1572         * thread can't slip out of an OOM kill (or normal SIGKILL).
1573        */
1574        recalc_sigpending();
1575        if (signal_pending(current)) {
1576                spin_unlock(&current->sighand->siglock);
1577                write_unlock_irq(&tasklist_lock);
1578                retval = -ERESTARTNOINTR;
1579                goto bad_fork_cancel_cgroup;
1580        }
1581
1582        if (likely(p->pid)) {
1583                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1584
1585                init_task_pid(p, PIDTYPE_PID, pid);
1586                if (thread_group_leader(p)) {
1587                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1588                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1589
1590                        if (is_child_reaper(pid)) {
1591                                ns_of_pid(pid)->child_reaper = p;
1592                                p->signal->flags |= SIGNAL_UNKILLABLE;
1593                        }
1594
1595                        p->signal->leader_pid = pid;
1596                        p->signal->tty = tty_kref_get(current->signal->tty);
1597                        list_add_tail(&p->sibling, &p->real_parent->children);
1598                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1599                        attach_pid(p, PIDTYPE_PGID);
1600                        attach_pid(p, PIDTYPE_SID);
1601                        __this_cpu_inc(process_counts);
1602                } else {
1603                        current->signal->nr_threads++;
1604                        atomic_inc(&current->signal->live);
1605                        atomic_inc(&current->signal->sigcnt);
1606                        list_add_tail_rcu(&p->thread_group,
1607                                          &p->group_leader->thread_group);
1608                        list_add_tail_rcu(&p->thread_node,
1609                                          &p->signal->thread_head);
1610                }
1611                attach_pid(p, PIDTYPE_PID);
1612                nr_threads++;
1613        }
1614
1615        total_forks++;
1616        spin_unlock(&current->sighand->siglock);
1617        syscall_tracepoint_update(p);
1618        write_unlock_irq(&tasklist_lock);
1619
1620        proc_fork_connector(p);
1621        cgroup_post_fork(p);
1622        threadgroup_change_end(current);
1623        perf_event_fork(p);
1624
1625        trace_task_newtask(p, clone_flags);
1626        uprobe_copy_process(p, clone_flags);
1627
1628        return p;
1629
1630bad_fork_cancel_cgroup:
1631        cgroup_cancel_fork(p);
1632bad_fork_free_pid:
1633        if (pid != &init_struct_pid)
1634                free_pid(pid);
1635bad_fork_cleanup_io:
1636        if (p->io_context)
1637                exit_io_context(p);
1638bad_fork_cleanup_namespaces:
1639        exit_task_namespaces(p);
1640bad_fork_cleanup_mm:
1641        if (p->mm)
1642                mmput(p->mm);
1643bad_fork_cleanup_signal:
1644        if (!(clone_flags & CLONE_THREAD))
1645                free_signal_struct(p->signal);
1646bad_fork_cleanup_sighand:
1647        __cleanup_sighand(p->sighand);
1648bad_fork_cleanup_fs:
1649        exit_fs(p); /* blocking */
1650bad_fork_cleanup_files:
1651        exit_files(p); /* blocking */
1652bad_fork_cleanup_semundo:
1653        exit_sem(p);
1654bad_fork_cleanup_audit:
1655        audit_free(p);
1656bad_fork_cleanup_perf:
1657        perf_event_free_task(p);
1658bad_fork_cleanup_policy:
1659#ifdef CONFIG_NUMA
1660        mpol_put(p->mempolicy);
1661bad_fork_cleanup_threadgroup_lock:
1662#endif
1663        threadgroup_change_end(current);
1664        delayacct_tsk_free(p);
1665bad_fork_cleanup_count:
1666        atomic_dec(&p->cred->user->processes);
1667        exit_creds(p);
1668bad_fork_free:
1669        free_task(p);
1670fork_out:
1671        return ERR_PTR(retval);
1672}
1673
1674static inline void init_idle_pids(struct pid_link *links)
1675{
1676        enum pid_type type;
1677
1678        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1679                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1680                links[type].pid = &init_struct_pid;
1681        }
1682}
1683
1684struct task_struct *fork_idle(int cpu)
1685{
1686        struct task_struct *task;
1687        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1688        if (!IS_ERR(task)) {
1689                init_idle_pids(task->pids);
1690                init_idle(task, cpu);
1691        }
1692
1693        return task;
1694}
1695
1696/*
1697 *  Ok, this is the main fork-routine.
1698 *
1699 * It copies the process, and if successful kick-starts
1700 * it and waits for it to finish using the VM if required.
1701 */
1702long _do_fork(unsigned long clone_flags,
1703              unsigned long stack_start,
1704              unsigned long stack_size,
1705              int __user *parent_tidptr,
1706              int __user *child_tidptr,
1707              unsigned long tls)
1708{
1709        struct task_struct *p;
1710        int trace = 0;
1711        long nr;
1712
1713        /*
1714         * Determine whether and which event to report to ptracer.  When
1715         * called from kernel_thread or CLONE_UNTRACED is explicitly
1716         * requested, no event is reported; otherwise, report if the event
1717         * for the type of forking is enabled.
1718         */
1719        if (!(clone_flags & CLONE_UNTRACED)) {
1720                if (clone_flags & CLONE_VFORK)
1721                        trace = PTRACE_EVENT_VFORK;
1722                else if ((clone_flags & CSIGNAL) != SIGCHLD)
1723                        trace = PTRACE_EVENT_CLONE;
1724                else
1725                        trace = PTRACE_EVENT_FORK;
1726
1727                if (likely(!ptrace_event_enabled(current, trace)))
1728                        trace = 0;
1729        }
1730
1731        p = copy_process(clone_flags, stack_start, stack_size,
1732                         child_tidptr, NULL, trace, tls);
1733        /*
1734         * Do this prior waking up the new thread - the thread pointer
1735         * might get invalid after that point, if the thread exits quickly.
1736         */
1737        if (!IS_ERR(p)) {
1738                struct completion vfork;
1739                struct pid *pid;
1740
1741                trace_sched_process_fork(current, p);
1742
1743                pid = get_task_pid(p, PIDTYPE_PID);
1744                nr = pid_vnr(pid);
1745
1746                if (clone_flags & CLONE_PARENT_SETTID)
1747                        put_user(nr, parent_tidptr);
1748
1749                if (clone_flags & CLONE_VFORK) {
1750                        p->vfork_done = &vfork;
1751                        init_completion(&vfork);
1752                        get_task_struct(p);
1753                }
1754
1755                wake_up_new_task(p);
1756
1757                /* forking complete and child started to run, tell ptracer */
1758                if (unlikely(trace))
1759                        ptrace_event_pid(trace, pid);
1760
1761                if (clone_flags & CLONE_VFORK) {
1762                        if (!wait_for_vfork_done(p, &vfork))
1763                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1764                }
1765
1766                put_pid(pid);
1767        } else {
1768                nr = PTR_ERR(p);
1769        }
1770        return nr;
1771}
1772
1773#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1774/* For compatibility with architectures that call do_fork directly rather than
1775 * using the syscall entry points below. */
1776long do_fork(unsigned long clone_flags,
1777              unsigned long stack_start,
1778              unsigned long stack_size,
1779              int __user *parent_tidptr,
1780              int __user *child_tidptr)
1781{
1782        return _do_fork(clone_flags, stack_start, stack_size,
1783                        parent_tidptr, child_tidptr, 0);
1784}
1785#endif
1786
1787/*
1788 * Create a kernel thread.
1789 */
1790pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1791{
1792        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1793                (unsigned long)arg, NULL, NULL, 0);
1794}
1795
1796#ifdef __ARCH_WANT_SYS_FORK
1797SYSCALL_DEFINE0(fork)
1798{
1799#ifdef CONFIG_MMU
1800        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1801#else
1802        /* can not support in nommu mode */
1803        return -EINVAL;
1804#endif
1805}
1806#endif
1807
1808#ifdef __ARCH_WANT_SYS_VFORK
1809SYSCALL_DEFINE0(vfork)
1810{
1811        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1812                        0, NULL, NULL, 0);
1813}
1814#endif
1815
1816#ifdef __ARCH_WANT_SYS_CLONE
1817#ifdef CONFIG_CLONE_BACKWARDS
1818SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1819                 int __user *, parent_tidptr,
1820                 unsigned long, tls,
1821                 int __user *, child_tidptr)
1822#elif defined(CONFIG_CLONE_BACKWARDS2)
1823SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1824                 int __user *, parent_tidptr,
1825                 int __user *, child_tidptr,
1826                 unsigned long, tls)
1827#elif defined(CONFIG_CLONE_BACKWARDS3)
1828SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1829                int, stack_size,
1830                int __user *, parent_tidptr,
1831                int __user *, child_tidptr,
1832                unsigned long, tls)
1833#else
1834SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1835                 int __user *, parent_tidptr,
1836                 int __user *, child_tidptr,
1837                 unsigned long, tls)
1838#endif
1839{
1840        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1841}
1842#endif
1843
1844#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1845#define ARCH_MIN_MMSTRUCT_ALIGN 0
1846#endif
1847
1848static void sighand_ctor(void *data)
1849{
1850        struct sighand_struct *sighand = data;
1851
1852        spin_lock_init(&sighand->siglock);
1853        init_waitqueue_head(&sighand->signalfd_wqh);
1854}
1855
1856void __init proc_caches_init(void)
1857{
1858        sighand_cachep = kmem_cache_create("sighand_cache",
1859                        sizeof(struct sighand_struct), 0,
1860                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1861                        SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1862        signal_cachep = kmem_cache_create("signal_cache",
1863                        sizeof(struct signal_struct), 0,
1864                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1865                        NULL);
1866        files_cachep = kmem_cache_create("files_cache",
1867                        sizeof(struct files_struct), 0,
1868                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1869                        NULL);
1870        fs_cachep = kmem_cache_create("fs_cache",
1871                        sizeof(struct fs_struct), 0,
1872                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1873                        NULL);
1874        /*
1875         * FIXME! The "sizeof(struct mm_struct)" currently includes the
1876         * whole struct cpumask for the OFFSTACK case. We could change
1877         * this to *only* allocate as much of it as required by the
1878         * maximum number of CPU's we can ever have.  The cpumask_allocation
1879         * is at the end of the structure, exactly for that reason.
1880         */
1881        mm_cachep = kmem_cache_create("mm_struct",
1882                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1883                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1884                        NULL);
1885        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1886        mmap_init();
1887        nsproxy_cache_init();
1888}
1889
1890/*
1891 * Check constraints on flags passed to the unshare system call.
1892 */
1893static int check_unshare_flags(unsigned long unshare_flags)
1894{
1895        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1896                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1897                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1898                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1899                return -EINVAL;
1900        /*
1901         * Not implemented, but pretend it works if there is nothing
1902         * to unshare.  Note that unsharing the address space or the
1903         * signal handlers also need to unshare the signal queues (aka
1904         * CLONE_THREAD).
1905         */
1906        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1907                if (!thread_group_empty(current))
1908                        return -EINVAL;
1909        }
1910        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1911                if (atomic_read(&current->sighand->count) > 1)
1912                        return -EINVAL;
1913        }
1914        if (unshare_flags & CLONE_VM) {
1915                if (!current_is_single_threaded())
1916                        return -EINVAL;
1917        }
1918
1919        return 0;
1920}
1921
1922/*
1923 * Unshare the filesystem structure if it is being shared
1924 */
1925static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1926{
1927        struct fs_struct *fs = current->fs;
1928
1929        if (!(unshare_flags & CLONE_FS) || !fs)
1930                return 0;
1931
1932        /* don't need lock here; in the worst case we'll do useless copy */
1933        if (fs->users == 1)
1934                return 0;
1935
1936        *new_fsp = copy_fs_struct(fs);
1937        if (!*new_fsp)
1938                return -ENOMEM;
1939
1940        return 0;
1941}
1942
1943/*
1944 * Unshare file descriptor table if it is being shared
1945 */
1946static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1947{
1948        struct files_struct *fd = current->files;
1949        int error = 0;
1950
1951        if ((unshare_flags & CLONE_FILES) &&
1952            (fd && atomic_read(&fd->count) > 1)) {
1953                *new_fdp = dup_fd(fd, &error);
1954                if (!*new_fdp)
1955                        return error;
1956        }
1957
1958        return 0;
1959}
1960
1961/*
1962 * unshare allows a process to 'unshare' part of the process
1963 * context which was originally shared using clone.  copy_*
1964 * functions used by do_fork() cannot be used here directly
1965 * because they modify an inactive task_struct that is being
1966 * constructed. Here we are modifying the current, active,
1967 * task_struct.
1968 */
1969SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1970{
1971        struct fs_struct *fs, *new_fs = NULL;
1972        struct files_struct *fd, *new_fd = NULL;
1973        struct cred *new_cred = NULL;
1974        struct nsproxy *new_nsproxy = NULL;
1975        int do_sysvsem = 0;
1976        int err;
1977
1978        /*
1979         * If unsharing a user namespace must also unshare the thread group
1980         * and unshare the filesystem root and working directories.
1981         */
1982        if (unshare_flags & CLONE_NEWUSER)
1983                unshare_flags |= CLONE_THREAD | CLONE_FS;
1984        /*
1985         * If unsharing vm, must also unshare signal handlers.
1986         */
1987        if (unshare_flags & CLONE_VM)
1988                unshare_flags |= CLONE_SIGHAND;
1989        /*
1990         * If unsharing a signal handlers, must also unshare the signal queues.
1991         */
1992        if (unshare_flags & CLONE_SIGHAND)
1993                unshare_flags |= CLONE_THREAD;
1994        /*
1995         * If unsharing namespace, must also unshare filesystem information.
1996         */
1997        if (unshare_flags & CLONE_NEWNS)
1998                unshare_flags |= CLONE_FS;
1999
2000        err = check_unshare_flags(unshare_flags);
2001        if (err)
2002                goto bad_unshare_out;
2003        /*
2004         * CLONE_NEWIPC must also detach from the undolist: after switching
2005         * to a new ipc namespace, the semaphore arrays from the old
2006         * namespace are unreachable.
2007         */
2008        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2009                do_sysvsem = 1;
2010        err = unshare_fs(unshare_flags, &new_fs);
2011        if (err)
2012                goto bad_unshare_out;
2013        err = unshare_fd(unshare_flags, &new_fd);
2014        if (err)
2015                goto bad_unshare_cleanup_fs;
2016        err = unshare_userns(unshare_flags, &new_cred);
2017        if (err)
2018                goto bad_unshare_cleanup_fd;
2019        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2020                                         new_cred, new_fs);
2021        if (err)
2022                goto bad_unshare_cleanup_cred;
2023
2024        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2025                if (do_sysvsem) {
2026                        /*
2027                         * CLONE_SYSVSEM is equivalent to sys_exit().
2028                         */
2029                        exit_sem(current);
2030                }
2031                if (unshare_flags & CLONE_NEWIPC) {
2032                        /* Orphan segments in old ns (see sem above). */
2033                        exit_shm(current);
2034                        shm_init_task(current);
2035                }
2036
2037                if (new_nsproxy)
2038                        switch_task_namespaces(current, new_nsproxy);
2039
2040                task_lock(current);
2041
2042                if (new_fs) {
2043                        fs = current->fs;
2044                        spin_lock(&fs->lock);
2045                        current->fs = new_fs;
2046                        if (--fs->users)
2047                                new_fs = NULL;
2048                        else
2049                                new_fs = fs;
2050                        spin_unlock(&fs->lock);
2051                }
2052
2053                if (new_fd) {
2054                        fd = current->files;
2055                        current->files = new_fd;
2056                        new_fd = fd;
2057                }
2058
2059                task_unlock(current);
2060
2061                if (new_cred) {
2062                        /* Install the new user namespace */
2063                        commit_creds(new_cred);
2064                        new_cred = NULL;
2065                }
2066        }
2067
2068bad_unshare_cleanup_cred:
2069        if (new_cred)
2070                put_cred(new_cred);
2071bad_unshare_cleanup_fd:
2072        if (new_fd)
2073                put_files_struct(new_fd);
2074
2075bad_unshare_cleanup_fs:
2076        if (new_fs)
2077                free_fs_struct(new_fs);
2078
2079bad_unshare_out:
2080        return err;
2081}
2082
2083/*
2084 *      Helper to unshare the files of the current task.
2085 *      We don't want to expose copy_files internals to
2086 *      the exec layer of the kernel.
2087 */
2088
2089int unshare_files(struct files_struct **displaced)
2090{
2091        struct task_struct *task = current;
2092        struct files_struct *copy = NULL;
2093        int error;
2094
2095        error = unshare_fd(CLONE_FILES, &copy);
2096        if (error || !copy) {
2097                *displaced = NULL;
2098                return error;
2099        }
2100        *displaced = task->files;
2101        task_lock(task);
2102        task->files = copy;
2103        task_unlock(task);
2104        return 0;
2105}
2106
2107int sysctl_max_threads(struct ctl_table *table, int write,
2108                       void __user *buffer, size_t *lenp, loff_t *ppos)
2109{
2110        struct ctl_table t;
2111        int ret;
2112        int threads = max_threads;
2113        int min = MIN_THREADS;
2114        int max = MAX_THREADS;
2115
2116        t = *table;
2117        t.data = &threads;
2118        t.extra1 = &min;
2119        t.extra2 = &max;
2120
2121        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2122        if (ret || !write)
2123                return ret;
2124
2125        set_max_threads(threads);
2126
2127        return 0;
2128}
2129