linux/kernel/kexec_core.c
<<
>>
Prefs
   1/*
   2 * kexec.c - kexec system call core code.
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/capability.h>
  12#include <linux/mm.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/fs.h>
  16#include <linux/kexec.h>
  17#include <linux/mutex.h>
  18#include <linux/list.h>
  19#include <linux/highmem.h>
  20#include <linux/syscalls.h>
  21#include <linux/reboot.h>
  22#include <linux/ioport.h>
  23#include <linux/hardirq.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/utsname.h>
  27#include <linux/numa.h>
  28#include <linux/suspend.h>
  29#include <linux/device.h>
  30#include <linux/freezer.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41
  42#include <asm/page.h>
  43#include <asm/sections.h>
  44
  45#include <crypto/hash.h>
  46#include <crypto/sha.h>
  47#include "kexec_internal.h"
  48
  49DEFINE_MUTEX(kexec_mutex);
  50
  51/* Per cpu memory for storing cpu states in case of system crash. */
  52note_buf_t __percpu *crash_notes;
  53
  54/* vmcoreinfo stuff */
  55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  57size_t vmcoreinfo_size;
  58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  59
  60/* Flag to indicate we are going to kexec a new kernel */
  61bool kexec_in_progress = false;
  62
  63
  64/* Location of the reserved area for the crash kernel */
  65struct resource crashk_res = {
  66        .name  = "Crash kernel",
  67        .start = 0,
  68        .end   = 0,
  69        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70        .desc  = IORES_DESC_CRASH_KERNEL
  71};
  72struct resource crashk_low_res = {
  73        .name  = "Crash kernel",
  74        .start = 0,
  75        .end   = 0,
  76        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  77        .desc  = IORES_DESC_CRASH_KERNEL
  78};
  79
  80int kexec_should_crash(struct task_struct *p)
  81{
  82        /*
  83         * If crash_kexec_post_notifiers is enabled, don't run
  84         * crash_kexec() here yet, which must be run after panic
  85         * notifiers in panic().
  86         */
  87        if (crash_kexec_post_notifiers)
  88                return 0;
  89        /*
  90         * There are 4 panic() calls in do_exit() path, each of which
  91         * corresponds to each of these 4 conditions.
  92         */
  93        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  94                return 1;
  95        return 0;
  96}
  97
  98/*
  99 * When kexec transitions to the new kernel there is a one-to-one
 100 * mapping between physical and virtual addresses.  On processors
 101 * where you can disable the MMU this is trivial, and easy.  For
 102 * others it is still a simple predictable page table to setup.
 103 *
 104 * In that environment kexec copies the new kernel to its final
 105 * resting place.  This means I can only support memory whose
 106 * physical address can fit in an unsigned long.  In particular
 107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 108 * If the assembly stub has more restrictive requirements
 109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 110 * defined more restrictively in <asm/kexec.h>.
 111 *
 112 * The code for the transition from the current kernel to the
 113 * the new kernel is placed in the control_code_buffer, whose size
 114 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 115 * page of memory is necessary, but some architectures require more.
 116 * Because this memory must be identity mapped in the transition from
 117 * virtual to physical addresses it must live in the range
 118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 119 * modifiable.
 120 *
 121 * The assembly stub in the control code buffer is passed a linked list
 122 * of descriptor pages detailing the source pages of the new kernel,
 123 * and the destination addresses of those source pages.  As this data
 124 * structure is not used in the context of the current OS, it must
 125 * be self-contained.
 126 *
 127 * The code has been made to work with highmem pages and will use a
 128 * destination page in its final resting place (if it happens
 129 * to allocate it).  The end product of this is that most of the
 130 * physical address space, and most of RAM can be used.
 131 *
 132 * Future directions include:
 133 *  - allocating a page table with the control code buffer identity
 134 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 135 *    reliable.
 136 */
 137
 138/*
 139 * KIMAGE_NO_DEST is an impossible destination address..., for
 140 * allocating pages whose destination address we do not care about.
 141 */
 142#define KIMAGE_NO_DEST (-1UL)
 143
 144static struct page *kimage_alloc_page(struct kimage *image,
 145                                       gfp_t gfp_mask,
 146                                       unsigned long dest);
 147
 148int sanity_check_segment_list(struct kimage *image)
 149{
 150        int result, i;
 151        unsigned long nr_segments = image->nr_segments;
 152
 153        /*
 154         * Verify we have good destination addresses.  The caller is
 155         * responsible for making certain we don't attempt to load
 156         * the new image into invalid or reserved areas of RAM.  This
 157         * just verifies it is an address we can use.
 158         *
 159         * Since the kernel does everything in page size chunks ensure
 160         * the destination addresses are page aligned.  Too many
 161         * special cases crop of when we don't do this.  The most
 162         * insidious is getting overlapping destination addresses
 163         * simply because addresses are changed to page size
 164         * granularity.
 165         */
 166        result = -EADDRNOTAVAIL;
 167        for (i = 0; i < nr_segments; i++) {
 168                unsigned long mstart, mend;
 169
 170                mstart = image->segment[i].mem;
 171                mend   = mstart + image->segment[i].memsz;
 172                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 173                        return result;
 174                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 175                        return result;
 176        }
 177
 178        /* Verify our destination addresses do not overlap.
 179         * If we alloed overlapping destination addresses
 180         * through very weird things can happen with no
 181         * easy explanation as one segment stops on another.
 182         */
 183        result = -EINVAL;
 184        for (i = 0; i < nr_segments; i++) {
 185                unsigned long mstart, mend;
 186                unsigned long j;
 187
 188                mstart = image->segment[i].mem;
 189                mend   = mstart + image->segment[i].memsz;
 190                for (j = 0; j < i; j++) {
 191                        unsigned long pstart, pend;
 192
 193                        pstart = image->segment[j].mem;
 194                        pend   = pstart + image->segment[j].memsz;
 195                        /* Do the segments overlap ? */
 196                        if ((mend > pstart) && (mstart < pend))
 197                                return result;
 198                }
 199        }
 200
 201        /* Ensure our buffer sizes are strictly less than
 202         * our memory sizes.  This should always be the case,
 203         * and it is easier to check up front than to be surprised
 204         * later on.
 205         */
 206        result = -EINVAL;
 207        for (i = 0; i < nr_segments; i++) {
 208                if (image->segment[i].bufsz > image->segment[i].memsz)
 209                        return result;
 210        }
 211
 212        /*
 213         * Verify we have good destination addresses.  Normally
 214         * the caller is responsible for making certain we don't
 215         * attempt to load the new image into invalid or reserved
 216         * areas of RAM.  But crash kernels are preloaded into a
 217         * reserved area of ram.  We must ensure the addresses
 218         * are in the reserved area otherwise preloading the
 219         * kernel could corrupt things.
 220         */
 221
 222        if (image->type == KEXEC_TYPE_CRASH) {
 223                result = -EADDRNOTAVAIL;
 224                for (i = 0; i < nr_segments; i++) {
 225                        unsigned long mstart, mend;
 226
 227                        mstart = image->segment[i].mem;
 228                        mend = mstart + image->segment[i].memsz - 1;
 229                        /* Ensure we are within the crash kernel limits */
 230                        if ((mstart < crashk_res.start) ||
 231                            (mend > crashk_res.end))
 232                                return result;
 233                }
 234        }
 235
 236        return 0;
 237}
 238
 239struct kimage *do_kimage_alloc_init(void)
 240{
 241        struct kimage *image;
 242
 243        /* Allocate a controlling structure */
 244        image = kzalloc(sizeof(*image), GFP_KERNEL);
 245        if (!image)
 246                return NULL;
 247
 248        image->head = 0;
 249        image->entry = &image->head;
 250        image->last_entry = &image->head;
 251        image->control_page = ~0; /* By default this does not apply */
 252        image->type = KEXEC_TYPE_DEFAULT;
 253
 254        /* Initialize the list of control pages */
 255        INIT_LIST_HEAD(&image->control_pages);
 256
 257        /* Initialize the list of destination pages */
 258        INIT_LIST_HEAD(&image->dest_pages);
 259
 260        /* Initialize the list of unusable pages */
 261        INIT_LIST_HEAD(&image->unusable_pages);
 262
 263        return image;
 264}
 265
 266int kimage_is_destination_range(struct kimage *image,
 267                                        unsigned long start,
 268                                        unsigned long end)
 269{
 270        unsigned long i;
 271
 272        for (i = 0; i < image->nr_segments; i++) {
 273                unsigned long mstart, mend;
 274
 275                mstart = image->segment[i].mem;
 276                mend = mstart + image->segment[i].memsz;
 277                if ((end > mstart) && (start < mend))
 278                        return 1;
 279        }
 280
 281        return 0;
 282}
 283
 284static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 285{
 286        struct page *pages;
 287
 288        pages = alloc_pages(gfp_mask, order);
 289        if (pages) {
 290                unsigned int count, i;
 291
 292                pages->mapping = NULL;
 293                set_page_private(pages, order);
 294                count = 1 << order;
 295                for (i = 0; i < count; i++)
 296                        SetPageReserved(pages + i);
 297        }
 298
 299        return pages;
 300}
 301
 302static void kimage_free_pages(struct page *page)
 303{
 304        unsigned int order, count, i;
 305
 306        order = page_private(page);
 307        count = 1 << order;
 308        for (i = 0; i < count; i++)
 309                ClearPageReserved(page + i);
 310        __free_pages(page, order);
 311}
 312
 313void kimage_free_page_list(struct list_head *list)
 314{
 315        struct page *page, *next;
 316
 317        list_for_each_entry_safe(page, next, list, lru) {
 318                list_del(&page->lru);
 319                kimage_free_pages(page);
 320        }
 321}
 322
 323static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 324                                                        unsigned int order)
 325{
 326        /* Control pages are special, they are the intermediaries
 327         * that are needed while we copy the rest of the pages
 328         * to their final resting place.  As such they must
 329         * not conflict with either the destination addresses
 330         * or memory the kernel is already using.
 331         *
 332         * The only case where we really need more than one of
 333         * these are for architectures where we cannot disable
 334         * the MMU and must instead generate an identity mapped
 335         * page table for all of the memory.
 336         *
 337         * At worst this runs in O(N) of the image size.
 338         */
 339        struct list_head extra_pages;
 340        struct page *pages;
 341        unsigned int count;
 342
 343        count = 1 << order;
 344        INIT_LIST_HEAD(&extra_pages);
 345
 346        /* Loop while I can allocate a page and the page allocated
 347         * is a destination page.
 348         */
 349        do {
 350                unsigned long pfn, epfn, addr, eaddr;
 351
 352                pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 353                if (!pages)
 354                        break;
 355                pfn   = page_to_pfn(pages);
 356                epfn  = pfn + count;
 357                addr  = pfn << PAGE_SHIFT;
 358                eaddr = epfn << PAGE_SHIFT;
 359                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 360                              kimage_is_destination_range(image, addr, eaddr)) {
 361                        list_add(&pages->lru, &extra_pages);
 362                        pages = NULL;
 363                }
 364        } while (!pages);
 365
 366        if (pages) {
 367                /* Remember the allocated page... */
 368                list_add(&pages->lru, &image->control_pages);
 369
 370                /* Because the page is already in it's destination
 371                 * location we will never allocate another page at
 372                 * that address.  Therefore kimage_alloc_pages
 373                 * will not return it (again) and we don't need
 374                 * to give it an entry in image->segment[].
 375                 */
 376        }
 377        /* Deal with the destination pages I have inadvertently allocated.
 378         *
 379         * Ideally I would convert multi-page allocations into single
 380         * page allocations, and add everything to image->dest_pages.
 381         *
 382         * For now it is simpler to just free the pages.
 383         */
 384        kimage_free_page_list(&extra_pages);
 385
 386        return pages;
 387}
 388
 389static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 390                                                      unsigned int order)
 391{
 392        /* Control pages are special, they are the intermediaries
 393         * that are needed while we copy the rest of the pages
 394         * to their final resting place.  As such they must
 395         * not conflict with either the destination addresses
 396         * or memory the kernel is already using.
 397         *
 398         * Control pages are also the only pags we must allocate
 399         * when loading a crash kernel.  All of the other pages
 400         * are specified by the segments and we just memcpy
 401         * into them directly.
 402         *
 403         * The only case where we really need more than one of
 404         * these are for architectures where we cannot disable
 405         * the MMU and must instead generate an identity mapped
 406         * page table for all of the memory.
 407         *
 408         * Given the low demand this implements a very simple
 409         * allocator that finds the first hole of the appropriate
 410         * size in the reserved memory region, and allocates all
 411         * of the memory up to and including the hole.
 412         */
 413        unsigned long hole_start, hole_end, size;
 414        struct page *pages;
 415
 416        pages = NULL;
 417        size = (1 << order) << PAGE_SHIFT;
 418        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 419        hole_end   = hole_start + size - 1;
 420        while (hole_end <= crashk_res.end) {
 421                unsigned long i;
 422
 423                if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 424                        break;
 425                /* See if I overlap any of the segments */
 426                for (i = 0; i < image->nr_segments; i++) {
 427                        unsigned long mstart, mend;
 428
 429                        mstart = image->segment[i].mem;
 430                        mend   = mstart + image->segment[i].memsz - 1;
 431                        if ((hole_end >= mstart) && (hole_start <= mend)) {
 432                                /* Advance the hole to the end of the segment */
 433                                hole_start = (mend + (size - 1)) & ~(size - 1);
 434                                hole_end   = hole_start + size - 1;
 435                                break;
 436                        }
 437                }
 438                /* If I don't overlap any segments I have found my hole! */
 439                if (i == image->nr_segments) {
 440                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 441                        image->control_page = hole_end;
 442                        break;
 443                }
 444        }
 445
 446        return pages;
 447}
 448
 449
 450struct page *kimage_alloc_control_pages(struct kimage *image,
 451                                         unsigned int order)
 452{
 453        struct page *pages = NULL;
 454
 455        switch (image->type) {
 456        case KEXEC_TYPE_DEFAULT:
 457                pages = kimage_alloc_normal_control_pages(image, order);
 458                break;
 459        case KEXEC_TYPE_CRASH:
 460                pages = kimage_alloc_crash_control_pages(image, order);
 461                break;
 462        }
 463
 464        return pages;
 465}
 466
 467static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 468{
 469        if (*image->entry != 0)
 470                image->entry++;
 471
 472        if (image->entry == image->last_entry) {
 473                kimage_entry_t *ind_page;
 474                struct page *page;
 475
 476                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 477                if (!page)
 478                        return -ENOMEM;
 479
 480                ind_page = page_address(page);
 481                *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
 482                image->entry = ind_page;
 483                image->last_entry = ind_page +
 484                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 485        }
 486        *image->entry = entry;
 487        image->entry++;
 488        *image->entry = 0;
 489
 490        return 0;
 491}
 492
 493static int kimage_set_destination(struct kimage *image,
 494                                   unsigned long destination)
 495{
 496        int result;
 497
 498        destination &= PAGE_MASK;
 499        result = kimage_add_entry(image, destination | IND_DESTINATION);
 500
 501        return result;
 502}
 503
 504
 505static int kimage_add_page(struct kimage *image, unsigned long page)
 506{
 507        int result;
 508
 509        page &= PAGE_MASK;
 510        result = kimage_add_entry(image, page | IND_SOURCE);
 511
 512        return result;
 513}
 514
 515
 516static void kimage_free_extra_pages(struct kimage *image)
 517{
 518        /* Walk through and free any extra destination pages I may have */
 519        kimage_free_page_list(&image->dest_pages);
 520
 521        /* Walk through and free any unusable pages I have cached */
 522        kimage_free_page_list(&image->unusable_pages);
 523
 524}
 525void kimage_terminate(struct kimage *image)
 526{
 527        if (*image->entry != 0)
 528                image->entry++;
 529
 530        *image->entry = IND_DONE;
 531}
 532
 533#define for_each_kimage_entry(image, ptr, entry) \
 534        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 535                ptr = (entry & IND_INDIRECTION) ? \
 536                        phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 537
 538static void kimage_free_entry(kimage_entry_t entry)
 539{
 540        struct page *page;
 541
 542        page = pfn_to_page(entry >> PAGE_SHIFT);
 543        kimage_free_pages(page);
 544}
 545
 546void kimage_free(struct kimage *image)
 547{
 548        kimage_entry_t *ptr, entry;
 549        kimage_entry_t ind = 0;
 550
 551        if (!image)
 552                return;
 553
 554        kimage_free_extra_pages(image);
 555        for_each_kimage_entry(image, ptr, entry) {
 556                if (entry & IND_INDIRECTION) {
 557                        /* Free the previous indirection page */
 558                        if (ind & IND_INDIRECTION)
 559                                kimage_free_entry(ind);
 560                        /* Save this indirection page until we are
 561                         * done with it.
 562                         */
 563                        ind = entry;
 564                } else if (entry & IND_SOURCE)
 565                        kimage_free_entry(entry);
 566        }
 567        /* Free the final indirection page */
 568        if (ind & IND_INDIRECTION)
 569                kimage_free_entry(ind);
 570
 571        /* Handle any machine specific cleanup */
 572        machine_kexec_cleanup(image);
 573
 574        /* Free the kexec control pages... */
 575        kimage_free_page_list(&image->control_pages);
 576
 577        /*
 578         * Free up any temporary buffers allocated. This might hit if
 579         * error occurred much later after buffer allocation.
 580         */
 581        if (image->file_mode)
 582                kimage_file_post_load_cleanup(image);
 583
 584        kfree(image);
 585}
 586
 587static kimage_entry_t *kimage_dst_used(struct kimage *image,
 588                                        unsigned long page)
 589{
 590        kimage_entry_t *ptr, entry;
 591        unsigned long destination = 0;
 592
 593        for_each_kimage_entry(image, ptr, entry) {
 594                if (entry & IND_DESTINATION)
 595                        destination = entry & PAGE_MASK;
 596                else if (entry & IND_SOURCE) {
 597                        if (page == destination)
 598                                return ptr;
 599                        destination += PAGE_SIZE;
 600                }
 601        }
 602
 603        return NULL;
 604}
 605
 606static struct page *kimage_alloc_page(struct kimage *image,
 607                                        gfp_t gfp_mask,
 608                                        unsigned long destination)
 609{
 610        /*
 611         * Here we implement safeguards to ensure that a source page
 612         * is not copied to its destination page before the data on
 613         * the destination page is no longer useful.
 614         *
 615         * To do this we maintain the invariant that a source page is
 616         * either its own destination page, or it is not a
 617         * destination page at all.
 618         *
 619         * That is slightly stronger than required, but the proof
 620         * that no problems will not occur is trivial, and the
 621         * implementation is simply to verify.
 622         *
 623         * When allocating all pages normally this algorithm will run
 624         * in O(N) time, but in the worst case it will run in O(N^2)
 625         * time.   If the runtime is a problem the data structures can
 626         * be fixed.
 627         */
 628        struct page *page;
 629        unsigned long addr;
 630
 631        /*
 632         * Walk through the list of destination pages, and see if I
 633         * have a match.
 634         */
 635        list_for_each_entry(page, &image->dest_pages, lru) {
 636                addr = page_to_pfn(page) << PAGE_SHIFT;
 637                if (addr == destination) {
 638                        list_del(&page->lru);
 639                        return page;
 640                }
 641        }
 642        page = NULL;
 643        while (1) {
 644                kimage_entry_t *old;
 645
 646                /* Allocate a page, if we run out of memory give up */
 647                page = kimage_alloc_pages(gfp_mask, 0);
 648                if (!page)
 649                        return NULL;
 650                /* If the page cannot be used file it away */
 651                if (page_to_pfn(page) >
 652                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 653                        list_add(&page->lru, &image->unusable_pages);
 654                        continue;
 655                }
 656                addr = page_to_pfn(page) << PAGE_SHIFT;
 657
 658                /* If it is the destination page we want use it */
 659                if (addr == destination)
 660                        break;
 661
 662                /* If the page is not a destination page use it */
 663                if (!kimage_is_destination_range(image, addr,
 664                                                  addr + PAGE_SIZE))
 665                        break;
 666
 667                /*
 668                 * I know that the page is someones destination page.
 669                 * See if there is already a source page for this
 670                 * destination page.  And if so swap the source pages.
 671                 */
 672                old = kimage_dst_used(image, addr);
 673                if (old) {
 674                        /* If so move it */
 675                        unsigned long old_addr;
 676                        struct page *old_page;
 677
 678                        old_addr = *old & PAGE_MASK;
 679                        old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
 680                        copy_highpage(page, old_page);
 681                        *old = addr | (*old & ~PAGE_MASK);
 682
 683                        /* The old page I have found cannot be a
 684                         * destination page, so return it if it's
 685                         * gfp_flags honor the ones passed in.
 686                         */
 687                        if (!(gfp_mask & __GFP_HIGHMEM) &&
 688                            PageHighMem(old_page)) {
 689                                kimage_free_pages(old_page);
 690                                continue;
 691                        }
 692                        addr = old_addr;
 693                        page = old_page;
 694                        break;
 695                }
 696                /* Place the page on the destination list, to be used later */
 697                list_add(&page->lru, &image->dest_pages);
 698        }
 699
 700        return page;
 701}
 702
 703static int kimage_load_normal_segment(struct kimage *image,
 704                                         struct kexec_segment *segment)
 705{
 706        unsigned long maddr;
 707        size_t ubytes, mbytes;
 708        int result;
 709        unsigned char __user *buf = NULL;
 710        unsigned char *kbuf = NULL;
 711
 712        result = 0;
 713        if (image->file_mode)
 714                kbuf = segment->kbuf;
 715        else
 716                buf = segment->buf;
 717        ubytes = segment->bufsz;
 718        mbytes = segment->memsz;
 719        maddr = segment->mem;
 720
 721        result = kimage_set_destination(image, maddr);
 722        if (result < 0)
 723                goto out;
 724
 725        while (mbytes) {
 726                struct page *page;
 727                char *ptr;
 728                size_t uchunk, mchunk;
 729
 730                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 731                if (!page) {
 732                        result  = -ENOMEM;
 733                        goto out;
 734                }
 735                result = kimage_add_page(image, page_to_pfn(page)
 736                                                                << PAGE_SHIFT);
 737                if (result < 0)
 738                        goto out;
 739
 740                ptr = kmap(page);
 741                /* Start with a clear page */
 742                clear_page(ptr);
 743                ptr += maddr & ~PAGE_MASK;
 744                mchunk = min_t(size_t, mbytes,
 745                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 746                uchunk = min(ubytes, mchunk);
 747
 748                /* For file based kexec, source pages are in kernel memory */
 749                if (image->file_mode)
 750                        memcpy(ptr, kbuf, uchunk);
 751                else
 752                        result = copy_from_user(ptr, buf, uchunk);
 753                kunmap(page);
 754                if (result) {
 755                        result = -EFAULT;
 756                        goto out;
 757                }
 758                ubytes -= uchunk;
 759                maddr  += mchunk;
 760                if (image->file_mode)
 761                        kbuf += mchunk;
 762                else
 763                        buf += mchunk;
 764                mbytes -= mchunk;
 765        }
 766out:
 767        return result;
 768}
 769
 770static int kimage_load_crash_segment(struct kimage *image,
 771                                        struct kexec_segment *segment)
 772{
 773        /* For crash dumps kernels we simply copy the data from
 774         * user space to it's destination.
 775         * We do things a page at a time for the sake of kmap.
 776         */
 777        unsigned long maddr;
 778        size_t ubytes, mbytes;
 779        int result;
 780        unsigned char __user *buf = NULL;
 781        unsigned char *kbuf = NULL;
 782
 783        result = 0;
 784        if (image->file_mode)
 785                kbuf = segment->kbuf;
 786        else
 787                buf = segment->buf;
 788        ubytes = segment->bufsz;
 789        mbytes = segment->memsz;
 790        maddr = segment->mem;
 791        while (mbytes) {
 792                struct page *page;
 793                char *ptr;
 794                size_t uchunk, mchunk;
 795
 796                page = pfn_to_page(maddr >> PAGE_SHIFT);
 797                if (!page) {
 798                        result  = -ENOMEM;
 799                        goto out;
 800                }
 801                ptr = kmap(page);
 802                ptr += maddr & ~PAGE_MASK;
 803                mchunk = min_t(size_t, mbytes,
 804                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 805                uchunk = min(ubytes, mchunk);
 806                if (mchunk > uchunk) {
 807                        /* Zero the trailing part of the page */
 808                        memset(ptr + uchunk, 0, mchunk - uchunk);
 809                }
 810
 811                /* For file based kexec, source pages are in kernel memory */
 812                if (image->file_mode)
 813                        memcpy(ptr, kbuf, uchunk);
 814                else
 815                        result = copy_from_user(ptr, buf, uchunk);
 816                kexec_flush_icache_page(page);
 817                kunmap(page);
 818                if (result) {
 819                        result = -EFAULT;
 820                        goto out;
 821                }
 822                ubytes -= uchunk;
 823                maddr  += mchunk;
 824                if (image->file_mode)
 825                        kbuf += mchunk;
 826                else
 827                        buf += mchunk;
 828                mbytes -= mchunk;
 829        }
 830out:
 831        return result;
 832}
 833
 834int kimage_load_segment(struct kimage *image,
 835                                struct kexec_segment *segment)
 836{
 837        int result = -ENOMEM;
 838
 839        switch (image->type) {
 840        case KEXEC_TYPE_DEFAULT:
 841                result = kimage_load_normal_segment(image, segment);
 842                break;
 843        case KEXEC_TYPE_CRASH:
 844                result = kimage_load_crash_segment(image, segment);
 845                break;
 846        }
 847
 848        return result;
 849}
 850
 851struct kimage *kexec_image;
 852struct kimage *kexec_crash_image;
 853int kexec_load_disabled;
 854
 855/*
 856 * No panic_cpu check version of crash_kexec().  This function is called
 857 * only when panic_cpu holds the current CPU number; this is the only CPU
 858 * which processes crash_kexec routines.
 859 */
 860void __crash_kexec(struct pt_regs *regs)
 861{
 862        /* Take the kexec_mutex here to prevent sys_kexec_load
 863         * running on one cpu from replacing the crash kernel
 864         * we are using after a panic on a different cpu.
 865         *
 866         * If the crash kernel was not located in a fixed area
 867         * of memory the xchg(&kexec_crash_image) would be
 868         * sufficient.  But since I reuse the memory...
 869         */
 870        if (mutex_trylock(&kexec_mutex)) {
 871                if (kexec_crash_image) {
 872                        struct pt_regs fixed_regs;
 873
 874                        crash_setup_regs(&fixed_regs, regs);
 875                        crash_save_vmcoreinfo();
 876                        machine_crash_shutdown(&fixed_regs);
 877                        machine_kexec(kexec_crash_image);
 878                }
 879                mutex_unlock(&kexec_mutex);
 880        }
 881}
 882
 883void crash_kexec(struct pt_regs *regs)
 884{
 885        int old_cpu, this_cpu;
 886
 887        /*
 888         * Only one CPU is allowed to execute the crash_kexec() code as with
 889         * panic().  Otherwise parallel calls of panic() and crash_kexec()
 890         * may stop each other.  To exclude them, we use panic_cpu here too.
 891         */
 892        this_cpu = raw_smp_processor_id();
 893        old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 894        if (old_cpu == PANIC_CPU_INVALID) {
 895                /* This is the 1st CPU which comes here, so go ahead. */
 896                __crash_kexec(regs);
 897
 898                /*
 899                 * Reset panic_cpu to allow another panic()/crash_kexec()
 900                 * call.
 901                 */
 902                atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 903        }
 904}
 905
 906size_t crash_get_memory_size(void)
 907{
 908        size_t size = 0;
 909
 910        mutex_lock(&kexec_mutex);
 911        if (crashk_res.end != crashk_res.start)
 912                size = resource_size(&crashk_res);
 913        mutex_unlock(&kexec_mutex);
 914        return size;
 915}
 916
 917void __weak crash_free_reserved_phys_range(unsigned long begin,
 918                                           unsigned long end)
 919{
 920        unsigned long addr;
 921
 922        for (addr = begin; addr < end; addr += PAGE_SIZE)
 923                free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
 924}
 925
 926int crash_shrink_memory(unsigned long new_size)
 927{
 928        int ret = 0;
 929        unsigned long start, end;
 930        unsigned long old_size;
 931        struct resource *ram_res;
 932
 933        mutex_lock(&kexec_mutex);
 934
 935        if (kexec_crash_image) {
 936                ret = -ENOENT;
 937                goto unlock;
 938        }
 939        start = crashk_res.start;
 940        end = crashk_res.end;
 941        old_size = (end == 0) ? 0 : end - start + 1;
 942        if (new_size >= old_size) {
 943                ret = (new_size == old_size) ? 0 : -EINVAL;
 944                goto unlock;
 945        }
 946
 947        ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
 948        if (!ram_res) {
 949                ret = -ENOMEM;
 950                goto unlock;
 951        }
 952
 953        start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
 954        end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
 955
 956        crash_map_reserved_pages();
 957        crash_free_reserved_phys_range(end, crashk_res.end);
 958
 959        if ((start == end) && (crashk_res.parent != NULL))
 960                release_resource(&crashk_res);
 961
 962        ram_res->start = end;
 963        ram_res->end = crashk_res.end;
 964        ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 965        ram_res->name = "System RAM";
 966
 967        crashk_res.end = end - 1;
 968
 969        insert_resource(&iomem_resource, ram_res);
 970        crash_unmap_reserved_pages();
 971
 972unlock:
 973        mutex_unlock(&kexec_mutex);
 974        return ret;
 975}
 976
 977static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
 978                            size_t data_len)
 979{
 980        struct elf_note note;
 981
 982        note.n_namesz = strlen(name) + 1;
 983        note.n_descsz = data_len;
 984        note.n_type   = type;
 985        memcpy(buf, &note, sizeof(note));
 986        buf += (sizeof(note) + 3)/4;
 987        memcpy(buf, name, note.n_namesz);
 988        buf += (note.n_namesz + 3)/4;
 989        memcpy(buf, data, note.n_descsz);
 990        buf += (note.n_descsz + 3)/4;
 991
 992        return buf;
 993}
 994
 995static void final_note(u32 *buf)
 996{
 997        struct elf_note note;
 998
 999        note.n_namesz = 0;
1000        note.n_descsz = 0;
1001        note.n_type   = 0;
1002        memcpy(buf, &note, sizeof(note));
1003}
1004
1005void crash_save_cpu(struct pt_regs *regs, int cpu)
1006{
1007        struct elf_prstatus prstatus;
1008        u32 *buf;
1009
1010        if ((cpu < 0) || (cpu >= nr_cpu_ids))
1011                return;
1012
1013        /* Using ELF notes here is opportunistic.
1014         * I need a well defined structure format
1015         * for the data I pass, and I need tags
1016         * on the data to indicate what information I have
1017         * squirrelled away.  ELF notes happen to provide
1018         * all of that, so there is no need to invent something new.
1019         */
1020        buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1021        if (!buf)
1022                return;
1023        memset(&prstatus, 0, sizeof(prstatus));
1024        prstatus.pr_pid = current->pid;
1025        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1026        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1027                              &prstatus, sizeof(prstatus));
1028        final_note(buf);
1029}
1030
1031static int __init crash_notes_memory_init(void)
1032{
1033        /* Allocate memory for saving cpu registers. */
1034        size_t size, align;
1035
1036        /*
1037         * crash_notes could be allocated across 2 vmalloc pages when percpu
1038         * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1039         * pages are also on 2 continuous physical pages. In this case the
1040         * 2nd part of crash_notes in 2nd page could be lost since only the
1041         * starting address and size of crash_notes are exported through sysfs.
1042         * Here round up the size of crash_notes to the nearest power of two
1043         * and pass it to __alloc_percpu as align value. This can make sure
1044         * crash_notes is allocated inside one physical page.
1045         */
1046        size = sizeof(note_buf_t);
1047        align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1048
1049        /*
1050         * Break compile if size is bigger than PAGE_SIZE since crash_notes
1051         * definitely will be in 2 pages with that.
1052         */
1053        BUILD_BUG_ON(size > PAGE_SIZE);
1054
1055        crash_notes = __alloc_percpu(size, align);
1056        if (!crash_notes) {
1057                pr_warn("Memory allocation for saving cpu register states failed\n");
1058                return -ENOMEM;
1059        }
1060        return 0;
1061}
1062subsys_initcall(crash_notes_memory_init);
1063
1064
1065/*
1066 * parsing the "crashkernel" commandline
1067 *
1068 * this code is intended to be called from architecture specific code
1069 */
1070
1071
1072/*
1073 * This function parses command lines in the format
1074 *
1075 *   crashkernel=ramsize-range:size[,...][@offset]
1076 *
1077 * The function returns 0 on success and -EINVAL on failure.
1078 */
1079static int __init parse_crashkernel_mem(char *cmdline,
1080                                        unsigned long long system_ram,
1081                                        unsigned long long *crash_size,
1082                                        unsigned long long *crash_base)
1083{
1084        char *cur = cmdline, *tmp;
1085
1086        /* for each entry of the comma-separated list */
1087        do {
1088                unsigned long long start, end = ULLONG_MAX, size;
1089
1090                /* get the start of the range */
1091                start = memparse(cur, &tmp);
1092                if (cur == tmp) {
1093                        pr_warn("crashkernel: Memory value expected\n");
1094                        return -EINVAL;
1095                }
1096                cur = tmp;
1097                if (*cur != '-') {
1098                        pr_warn("crashkernel: '-' expected\n");
1099                        return -EINVAL;
1100                }
1101                cur++;
1102
1103                /* if no ':' is here, than we read the end */
1104                if (*cur != ':') {
1105                        end = memparse(cur, &tmp);
1106                        if (cur == tmp) {
1107                                pr_warn("crashkernel: Memory value expected\n");
1108                                return -EINVAL;
1109                        }
1110                        cur = tmp;
1111                        if (end <= start) {
1112                                pr_warn("crashkernel: end <= start\n");
1113                                return -EINVAL;
1114                        }
1115                }
1116
1117                if (*cur != ':') {
1118                        pr_warn("crashkernel: ':' expected\n");
1119                        return -EINVAL;
1120                }
1121                cur++;
1122
1123                size = memparse(cur, &tmp);
1124                if (cur == tmp) {
1125                        pr_warn("Memory value expected\n");
1126                        return -EINVAL;
1127                }
1128                cur = tmp;
1129                if (size >= system_ram) {
1130                        pr_warn("crashkernel: invalid size\n");
1131                        return -EINVAL;
1132                }
1133
1134                /* match ? */
1135                if (system_ram >= start && system_ram < end) {
1136                        *crash_size = size;
1137                        break;
1138                }
1139        } while (*cur++ == ',');
1140
1141        if (*crash_size > 0) {
1142                while (*cur && *cur != ' ' && *cur != '@')
1143                        cur++;
1144                if (*cur == '@') {
1145                        cur++;
1146                        *crash_base = memparse(cur, &tmp);
1147                        if (cur == tmp) {
1148                                pr_warn("Memory value expected after '@'\n");
1149                                return -EINVAL;
1150                        }
1151                }
1152        }
1153
1154        return 0;
1155}
1156
1157/*
1158 * That function parses "simple" (old) crashkernel command lines like
1159 *
1160 *      crashkernel=size[@offset]
1161 *
1162 * It returns 0 on success and -EINVAL on failure.
1163 */
1164static int __init parse_crashkernel_simple(char *cmdline,
1165                                           unsigned long long *crash_size,
1166                                           unsigned long long *crash_base)
1167{
1168        char *cur = cmdline;
1169
1170        *crash_size = memparse(cmdline, &cur);
1171        if (cmdline == cur) {
1172                pr_warn("crashkernel: memory value expected\n");
1173                return -EINVAL;
1174        }
1175
1176        if (*cur == '@')
1177                *crash_base = memparse(cur+1, &cur);
1178        else if (*cur != ' ' && *cur != '\0') {
1179                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1180                return -EINVAL;
1181        }
1182
1183        return 0;
1184}
1185
1186#define SUFFIX_HIGH 0
1187#define SUFFIX_LOW  1
1188#define SUFFIX_NULL 2
1189static __initdata char *suffix_tbl[] = {
1190        [SUFFIX_HIGH] = ",high",
1191        [SUFFIX_LOW]  = ",low",
1192        [SUFFIX_NULL] = NULL,
1193};
1194
1195/*
1196 * That function parses "suffix"  crashkernel command lines like
1197 *
1198 *      crashkernel=size,[high|low]
1199 *
1200 * It returns 0 on success and -EINVAL on failure.
1201 */
1202static int __init parse_crashkernel_suffix(char *cmdline,
1203                                           unsigned long long   *crash_size,
1204                                           const char *suffix)
1205{
1206        char *cur = cmdline;
1207
1208        *crash_size = memparse(cmdline, &cur);
1209        if (cmdline == cur) {
1210                pr_warn("crashkernel: memory value expected\n");
1211                return -EINVAL;
1212        }
1213
1214        /* check with suffix */
1215        if (strncmp(cur, suffix, strlen(suffix))) {
1216                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1217                return -EINVAL;
1218        }
1219        cur += strlen(suffix);
1220        if (*cur != ' ' && *cur != '\0') {
1221                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1222                return -EINVAL;
1223        }
1224
1225        return 0;
1226}
1227
1228static __init char *get_last_crashkernel(char *cmdline,
1229                             const char *name,
1230                             const char *suffix)
1231{
1232        char *p = cmdline, *ck_cmdline = NULL;
1233
1234        /* find crashkernel and use the last one if there are more */
1235        p = strstr(p, name);
1236        while (p) {
1237                char *end_p = strchr(p, ' ');
1238                char *q;
1239
1240                if (!end_p)
1241                        end_p = p + strlen(p);
1242
1243                if (!suffix) {
1244                        int i;
1245
1246                        /* skip the one with any known suffix */
1247                        for (i = 0; suffix_tbl[i]; i++) {
1248                                q = end_p - strlen(suffix_tbl[i]);
1249                                if (!strncmp(q, suffix_tbl[i],
1250                                             strlen(suffix_tbl[i])))
1251                                        goto next;
1252                        }
1253                        ck_cmdline = p;
1254                } else {
1255                        q = end_p - strlen(suffix);
1256                        if (!strncmp(q, suffix, strlen(suffix)))
1257                                ck_cmdline = p;
1258                }
1259next:
1260                p = strstr(p+1, name);
1261        }
1262
1263        if (!ck_cmdline)
1264                return NULL;
1265
1266        return ck_cmdline;
1267}
1268
1269static int __init __parse_crashkernel(char *cmdline,
1270                             unsigned long long system_ram,
1271                             unsigned long long *crash_size,
1272                             unsigned long long *crash_base,
1273                             const char *name,
1274                             const char *suffix)
1275{
1276        char    *first_colon, *first_space;
1277        char    *ck_cmdline;
1278
1279        BUG_ON(!crash_size || !crash_base);
1280        *crash_size = 0;
1281        *crash_base = 0;
1282
1283        ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1284
1285        if (!ck_cmdline)
1286                return -EINVAL;
1287
1288        ck_cmdline += strlen(name);
1289
1290        if (suffix)
1291                return parse_crashkernel_suffix(ck_cmdline, crash_size,
1292                                suffix);
1293        /*
1294         * if the commandline contains a ':', then that's the extended
1295         * syntax -- if not, it must be the classic syntax
1296         */
1297        first_colon = strchr(ck_cmdline, ':');
1298        first_space = strchr(ck_cmdline, ' ');
1299        if (first_colon && (!first_space || first_colon < first_space))
1300                return parse_crashkernel_mem(ck_cmdline, system_ram,
1301                                crash_size, crash_base);
1302
1303        return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1304}
1305
1306/*
1307 * That function is the entry point for command line parsing and should be
1308 * called from the arch-specific code.
1309 */
1310int __init parse_crashkernel(char *cmdline,
1311                             unsigned long long system_ram,
1312                             unsigned long long *crash_size,
1313                             unsigned long long *crash_base)
1314{
1315        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1316                                        "crashkernel=", NULL);
1317}
1318
1319int __init parse_crashkernel_high(char *cmdline,
1320                             unsigned long long system_ram,
1321                             unsigned long long *crash_size,
1322                             unsigned long long *crash_base)
1323{
1324        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1325                                "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1326}
1327
1328int __init parse_crashkernel_low(char *cmdline,
1329                             unsigned long long system_ram,
1330                             unsigned long long *crash_size,
1331                             unsigned long long *crash_base)
1332{
1333        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1334                                "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1335}
1336
1337static void update_vmcoreinfo_note(void)
1338{
1339        u32 *buf = vmcoreinfo_note;
1340
1341        if (!vmcoreinfo_size)
1342                return;
1343        buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1344                              vmcoreinfo_size);
1345        final_note(buf);
1346}
1347
1348void crash_save_vmcoreinfo(void)
1349{
1350        vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1351        update_vmcoreinfo_note();
1352}
1353
1354void vmcoreinfo_append_str(const char *fmt, ...)
1355{
1356        va_list args;
1357        char buf[0x50];
1358        size_t r;
1359
1360        va_start(args, fmt);
1361        r = vscnprintf(buf, sizeof(buf), fmt, args);
1362        va_end(args);
1363
1364        r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1365
1366        memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1367
1368        vmcoreinfo_size += r;
1369}
1370
1371/*
1372 * provide an empty default implementation here -- architecture
1373 * code may override this
1374 */
1375void __weak arch_crash_save_vmcoreinfo(void)
1376{}
1377
1378unsigned long __weak paddr_vmcoreinfo_note(void)
1379{
1380        return __pa((unsigned long)(char *)&vmcoreinfo_note);
1381}
1382
1383static int __init crash_save_vmcoreinfo_init(void)
1384{
1385        VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1386        VMCOREINFO_PAGESIZE(PAGE_SIZE);
1387
1388        VMCOREINFO_SYMBOL(init_uts_ns);
1389        VMCOREINFO_SYMBOL(node_online_map);
1390#ifdef CONFIG_MMU
1391        VMCOREINFO_SYMBOL(swapper_pg_dir);
1392#endif
1393        VMCOREINFO_SYMBOL(_stext);
1394        VMCOREINFO_SYMBOL(vmap_area_list);
1395
1396#ifndef CONFIG_NEED_MULTIPLE_NODES
1397        VMCOREINFO_SYMBOL(mem_map);
1398        VMCOREINFO_SYMBOL(contig_page_data);
1399#endif
1400#ifdef CONFIG_SPARSEMEM
1401        VMCOREINFO_SYMBOL(mem_section);
1402        VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1403        VMCOREINFO_STRUCT_SIZE(mem_section);
1404        VMCOREINFO_OFFSET(mem_section, section_mem_map);
1405#endif
1406        VMCOREINFO_STRUCT_SIZE(page);
1407        VMCOREINFO_STRUCT_SIZE(pglist_data);
1408        VMCOREINFO_STRUCT_SIZE(zone);
1409        VMCOREINFO_STRUCT_SIZE(free_area);
1410        VMCOREINFO_STRUCT_SIZE(list_head);
1411        VMCOREINFO_SIZE(nodemask_t);
1412        VMCOREINFO_OFFSET(page, flags);
1413        VMCOREINFO_OFFSET(page, _count);
1414        VMCOREINFO_OFFSET(page, mapping);
1415        VMCOREINFO_OFFSET(page, lru);
1416        VMCOREINFO_OFFSET(page, _mapcount);
1417        VMCOREINFO_OFFSET(page, private);
1418        VMCOREINFO_OFFSET(page, compound_dtor);
1419        VMCOREINFO_OFFSET(page, compound_order);
1420        VMCOREINFO_OFFSET(page, compound_head);
1421        VMCOREINFO_OFFSET(pglist_data, node_zones);
1422        VMCOREINFO_OFFSET(pglist_data, nr_zones);
1423#ifdef CONFIG_FLAT_NODE_MEM_MAP
1424        VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1425#endif
1426        VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1427        VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1428        VMCOREINFO_OFFSET(pglist_data, node_id);
1429        VMCOREINFO_OFFSET(zone, free_area);
1430        VMCOREINFO_OFFSET(zone, vm_stat);
1431        VMCOREINFO_OFFSET(zone, spanned_pages);
1432        VMCOREINFO_OFFSET(free_area, free_list);
1433        VMCOREINFO_OFFSET(list_head, next);
1434        VMCOREINFO_OFFSET(list_head, prev);
1435        VMCOREINFO_OFFSET(vmap_area, va_start);
1436        VMCOREINFO_OFFSET(vmap_area, list);
1437        VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1438        log_buf_kexec_setup();
1439        VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1440        VMCOREINFO_NUMBER(NR_FREE_PAGES);
1441        VMCOREINFO_NUMBER(PG_lru);
1442        VMCOREINFO_NUMBER(PG_private);
1443        VMCOREINFO_NUMBER(PG_swapcache);
1444        VMCOREINFO_NUMBER(PG_slab);
1445#ifdef CONFIG_MEMORY_FAILURE
1446        VMCOREINFO_NUMBER(PG_hwpoison);
1447#endif
1448        VMCOREINFO_NUMBER(PG_head_mask);
1449        VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1450#ifdef CONFIG_X86
1451        VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1452#endif
1453#ifdef CONFIG_HUGETLB_PAGE
1454        VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
1455#endif
1456
1457        arch_crash_save_vmcoreinfo();
1458        update_vmcoreinfo_note();
1459
1460        return 0;
1461}
1462
1463subsys_initcall(crash_save_vmcoreinfo_init);
1464
1465/*
1466 * Move into place and start executing a preloaded standalone
1467 * executable.  If nothing was preloaded return an error.
1468 */
1469int kernel_kexec(void)
1470{
1471        int error = 0;
1472
1473        if (!mutex_trylock(&kexec_mutex))
1474                return -EBUSY;
1475        if (!kexec_image) {
1476                error = -EINVAL;
1477                goto Unlock;
1478        }
1479
1480#ifdef CONFIG_KEXEC_JUMP
1481        if (kexec_image->preserve_context) {
1482                lock_system_sleep();
1483                pm_prepare_console();
1484                error = freeze_processes();
1485                if (error) {
1486                        error = -EBUSY;
1487                        goto Restore_console;
1488                }
1489                suspend_console();
1490                error = dpm_suspend_start(PMSG_FREEZE);
1491                if (error)
1492                        goto Resume_console;
1493                /* At this point, dpm_suspend_start() has been called,
1494                 * but *not* dpm_suspend_end(). We *must* call
1495                 * dpm_suspend_end() now.  Otherwise, drivers for
1496                 * some devices (e.g. interrupt controllers) become
1497                 * desynchronized with the actual state of the
1498                 * hardware at resume time, and evil weirdness ensues.
1499                 */
1500                error = dpm_suspend_end(PMSG_FREEZE);
1501                if (error)
1502                        goto Resume_devices;
1503                error = disable_nonboot_cpus();
1504                if (error)
1505                        goto Enable_cpus;
1506                local_irq_disable();
1507                error = syscore_suspend();
1508                if (error)
1509                        goto Enable_irqs;
1510        } else
1511#endif
1512        {
1513                kexec_in_progress = true;
1514                kernel_restart_prepare(NULL);
1515                migrate_to_reboot_cpu();
1516
1517                /*
1518                 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1519                 * no further code needs to use CPU hotplug (which is true in
1520                 * the reboot case). However, the kexec path depends on using
1521                 * CPU hotplug again; so re-enable it here.
1522                 */
1523                cpu_hotplug_enable();
1524                pr_emerg("Starting new kernel\n");
1525                machine_shutdown();
1526        }
1527
1528        machine_kexec(kexec_image);
1529
1530#ifdef CONFIG_KEXEC_JUMP
1531        if (kexec_image->preserve_context) {
1532                syscore_resume();
1533 Enable_irqs:
1534                local_irq_enable();
1535 Enable_cpus:
1536                enable_nonboot_cpus();
1537                dpm_resume_start(PMSG_RESTORE);
1538 Resume_devices:
1539                dpm_resume_end(PMSG_RESTORE);
1540 Resume_console:
1541                resume_console();
1542                thaw_processes();
1543 Restore_console:
1544                pm_restore_console();
1545                unlock_system_sleep();
1546        }
1547#endif
1548
1549 Unlock:
1550        mutex_unlock(&kexec_mutex);
1551        return error;
1552}
1553
1554/*
1555 * Add and remove page tables for crashkernel memory
1556 *
1557 * Provide an empty default implementation here -- architecture
1558 * code may override this
1559 */
1560void __weak crash_map_reserved_pages(void)
1561{}
1562
1563void __weak crash_unmap_reserved_pages(void)
1564{}
1565