linux/kernel/kexec_file.c
<<
>>
Prefs
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/syscalls.h>
  25#include <linux/vmalloc.h>
  26#include "kexec_internal.h"
  27
  28/*
  29 * Declare these symbols weak so that if architecture provides a purgatory,
  30 * these will be overridden.
  31 */
  32char __weak kexec_purgatory[0];
  33size_t __weak kexec_purgatory_size = 0;
  34
  35static int kexec_calculate_store_digests(struct kimage *image);
  36
  37/* Architectures can provide this probe function */
  38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  39                                         unsigned long buf_len)
  40{
  41        return -ENOEXEC;
  42}
  43
  44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  45{
  46        return ERR_PTR(-ENOEXEC);
  47}
  48
  49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  50{
  51        return -EINVAL;
  52}
  53
  54#ifdef CONFIG_KEXEC_VERIFY_SIG
  55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  56                                        unsigned long buf_len)
  57{
  58        return -EKEYREJECTED;
  59}
  60#endif
  61
  62/* Apply relocations of type RELA */
  63int __weak
  64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  65                                 unsigned int relsec)
  66{
  67        pr_err("RELA relocation unsupported.\n");
  68        return -ENOEXEC;
  69}
  70
  71/* Apply relocations of type REL */
  72int __weak
  73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  74                             unsigned int relsec)
  75{
  76        pr_err("REL relocation unsupported.\n");
  77        return -ENOEXEC;
  78}
  79
  80/*
  81 * Free up memory used by kernel, initrd, and command line. This is temporary
  82 * memory allocation which is not needed any more after these buffers have
  83 * been loaded into separate segments and have been copied elsewhere.
  84 */
  85void kimage_file_post_load_cleanup(struct kimage *image)
  86{
  87        struct purgatory_info *pi = &image->purgatory_info;
  88
  89        vfree(image->kernel_buf);
  90        image->kernel_buf = NULL;
  91
  92        vfree(image->initrd_buf);
  93        image->initrd_buf = NULL;
  94
  95        kfree(image->cmdline_buf);
  96        image->cmdline_buf = NULL;
  97
  98        vfree(pi->purgatory_buf);
  99        pi->purgatory_buf = NULL;
 100
 101        vfree(pi->sechdrs);
 102        pi->sechdrs = NULL;
 103
 104        /* See if architecture has anything to cleanup post load */
 105        arch_kimage_file_post_load_cleanup(image);
 106
 107        /*
 108         * Above call should have called into bootloader to free up
 109         * any data stored in kimage->image_loader_data. It should
 110         * be ok now to free it up.
 111         */
 112        kfree(image->image_loader_data);
 113        image->image_loader_data = NULL;
 114}
 115
 116/*
 117 * In file mode list of segments is prepared by kernel. Copy relevant
 118 * data from user space, do error checking, prepare segment list
 119 */
 120static int
 121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 122                             const char __user *cmdline_ptr,
 123                             unsigned long cmdline_len, unsigned flags)
 124{
 125        int ret = 0;
 126        void *ldata;
 127        loff_t size;
 128
 129        ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 130                                       &size, INT_MAX, READING_KEXEC_IMAGE);
 131        if (ret)
 132                return ret;
 133        image->kernel_buf_len = size;
 134
 135        /* Call arch image probe handlers */
 136        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 137                                            image->kernel_buf_len);
 138        if (ret)
 139                goto out;
 140
 141#ifdef CONFIG_KEXEC_VERIFY_SIG
 142        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 143                                           image->kernel_buf_len);
 144        if (ret) {
 145                pr_debug("kernel signature verification failed.\n");
 146                goto out;
 147        }
 148        pr_debug("kernel signature verification successful.\n");
 149#endif
 150        /* It is possible that there no initramfs is being loaded */
 151        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 152                ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 153                                               &size, INT_MAX,
 154                                               READING_KEXEC_INITRAMFS);
 155                if (ret)
 156                        goto out;
 157                image->initrd_buf_len = size;
 158        }
 159
 160        if (cmdline_len) {
 161                image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 162                if (!image->cmdline_buf) {
 163                        ret = -ENOMEM;
 164                        goto out;
 165                }
 166
 167                ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 168                                     cmdline_len);
 169                if (ret) {
 170                        ret = -EFAULT;
 171                        goto out;
 172                }
 173
 174                image->cmdline_buf_len = cmdline_len;
 175
 176                /* command line should be a string with last byte null */
 177                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 178                        ret = -EINVAL;
 179                        goto out;
 180                }
 181        }
 182
 183        /* Call arch image load handlers */
 184        ldata = arch_kexec_kernel_image_load(image);
 185
 186        if (IS_ERR(ldata)) {
 187                ret = PTR_ERR(ldata);
 188                goto out;
 189        }
 190
 191        image->image_loader_data = ldata;
 192out:
 193        /* In case of error, free up all allocated memory in this function */
 194        if (ret)
 195                kimage_file_post_load_cleanup(image);
 196        return ret;
 197}
 198
 199static int
 200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 201                       int initrd_fd, const char __user *cmdline_ptr,
 202                       unsigned long cmdline_len, unsigned long flags)
 203{
 204        int ret;
 205        struct kimage *image;
 206        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 207
 208        image = do_kimage_alloc_init();
 209        if (!image)
 210                return -ENOMEM;
 211
 212        image->file_mode = 1;
 213
 214        if (kexec_on_panic) {
 215                /* Enable special crash kernel control page alloc policy. */
 216                image->control_page = crashk_res.start;
 217                image->type = KEXEC_TYPE_CRASH;
 218        }
 219
 220        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 221                                           cmdline_ptr, cmdline_len, flags);
 222        if (ret)
 223                goto out_free_image;
 224
 225        ret = sanity_check_segment_list(image);
 226        if (ret)
 227                goto out_free_post_load_bufs;
 228
 229        ret = -ENOMEM;
 230        image->control_code_page = kimage_alloc_control_pages(image,
 231                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 232        if (!image->control_code_page) {
 233                pr_err("Could not allocate control_code_buffer\n");
 234                goto out_free_post_load_bufs;
 235        }
 236
 237        if (!kexec_on_panic) {
 238                image->swap_page = kimage_alloc_control_pages(image, 0);
 239                if (!image->swap_page) {
 240                        pr_err("Could not allocate swap buffer\n");
 241                        goto out_free_control_pages;
 242                }
 243        }
 244
 245        *rimage = image;
 246        return 0;
 247out_free_control_pages:
 248        kimage_free_page_list(&image->control_pages);
 249out_free_post_load_bufs:
 250        kimage_file_post_load_cleanup(image);
 251out_free_image:
 252        kfree(image);
 253        return ret;
 254}
 255
 256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 257                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 258                unsigned long, flags)
 259{
 260        int ret = 0, i;
 261        struct kimage **dest_image, *image;
 262
 263        /* We only trust the superuser with rebooting the system. */
 264        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 265                return -EPERM;
 266
 267        /* Make sure we have a legal set of flags */
 268        if (flags != (flags & KEXEC_FILE_FLAGS))
 269                return -EINVAL;
 270
 271        image = NULL;
 272
 273        if (!mutex_trylock(&kexec_mutex))
 274                return -EBUSY;
 275
 276        dest_image = &kexec_image;
 277        if (flags & KEXEC_FILE_ON_CRASH)
 278                dest_image = &kexec_crash_image;
 279
 280        if (flags & KEXEC_FILE_UNLOAD)
 281                goto exchange;
 282
 283        /*
 284         * In case of crash, new kernel gets loaded in reserved region. It is
 285         * same memory where old crash kernel might be loaded. Free any
 286         * current crash dump kernel before we corrupt it.
 287         */
 288        if (flags & KEXEC_FILE_ON_CRASH)
 289                kimage_free(xchg(&kexec_crash_image, NULL));
 290
 291        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 292                                     cmdline_len, flags);
 293        if (ret)
 294                goto out;
 295
 296        ret = machine_kexec_prepare(image);
 297        if (ret)
 298                goto out;
 299
 300        ret = kexec_calculate_store_digests(image);
 301        if (ret)
 302                goto out;
 303
 304        for (i = 0; i < image->nr_segments; i++) {
 305                struct kexec_segment *ksegment;
 306
 307                ksegment = &image->segment[i];
 308                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 309                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 310                         ksegment->memsz);
 311
 312                ret = kimage_load_segment(image, &image->segment[i]);
 313                if (ret)
 314                        goto out;
 315        }
 316
 317        kimage_terminate(image);
 318
 319        /*
 320         * Free up any temporary buffers allocated which are not needed
 321         * after image has been loaded
 322         */
 323        kimage_file_post_load_cleanup(image);
 324exchange:
 325        image = xchg(dest_image, image);
 326out:
 327        mutex_unlock(&kexec_mutex);
 328        kimage_free(image);
 329        return ret;
 330}
 331
 332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 333                                    struct kexec_buf *kbuf)
 334{
 335        struct kimage *image = kbuf->image;
 336        unsigned long temp_start, temp_end;
 337
 338        temp_end = min(end, kbuf->buf_max);
 339        temp_start = temp_end - kbuf->memsz;
 340
 341        do {
 342                /* align down start */
 343                temp_start = temp_start & (~(kbuf->buf_align - 1));
 344
 345                if (temp_start < start || temp_start < kbuf->buf_min)
 346                        return 0;
 347
 348                temp_end = temp_start + kbuf->memsz - 1;
 349
 350                /*
 351                 * Make sure this does not conflict with any of existing
 352                 * segments
 353                 */
 354                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 355                        temp_start = temp_start - PAGE_SIZE;
 356                        continue;
 357                }
 358
 359                /* We found a suitable memory range */
 360                break;
 361        } while (1);
 362
 363        /* If we are here, we found a suitable memory range */
 364        kbuf->mem = temp_start;
 365
 366        /* Success, stop navigating through remaining System RAM ranges */
 367        return 1;
 368}
 369
 370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 371                                     struct kexec_buf *kbuf)
 372{
 373        struct kimage *image = kbuf->image;
 374        unsigned long temp_start, temp_end;
 375
 376        temp_start = max(start, kbuf->buf_min);
 377
 378        do {
 379                temp_start = ALIGN(temp_start, kbuf->buf_align);
 380                temp_end = temp_start + kbuf->memsz - 1;
 381
 382                if (temp_end > end || temp_end > kbuf->buf_max)
 383                        return 0;
 384                /*
 385                 * Make sure this does not conflict with any of existing
 386                 * segments
 387                 */
 388                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 389                        temp_start = temp_start + PAGE_SIZE;
 390                        continue;
 391                }
 392
 393                /* We found a suitable memory range */
 394                break;
 395        } while (1);
 396
 397        /* If we are here, we found a suitable memory range */
 398        kbuf->mem = temp_start;
 399
 400        /* Success, stop navigating through remaining System RAM ranges */
 401        return 1;
 402}
 403
 404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 405{
 406        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 407        unsigned long sz = end - start + 1;
 408
 409        /* Returning 0 will take to next memory range */
 410        if (sz < kbuf->memsz)
 411                return 0;
 412
 413        if (end < kbuf->buf_min || start > kbuf->buf_max)
 414                return 0;
 415
 416        /*
 417         * Allocate memory top down with-in ram range. Otherwise bottom up
 418         * allocation.
 419         */
 420        if (kbuf->top_down)
 421                return locate_mem_hole_top_down(start, end, kbuf);
 422        return locate_mem_hole_bottom_up(start, end, kbuf);
 423}
 424
 425/*
 426 * Helper function for placing a buffer in a kexec segment. This assumes
 427 * that kexec_mutex is held.
 428 */
 429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
 430                     unsigned long memsz, unsigned long buf_align,
 431                     unsigned long buf_min, unsigned long buf_max,
 432                     bool top_down, unsigned long *load_addr)
 433{
 434
 435        struct kexec_segment *ksegment;
 436        struct kexec_buf buf, *kbuf;
 437        int ret;
 438
 439        /* Currently adding segment this way is allowed only in file mode */
 440        if (!image->file_mode)
 441                return -EINVAL;
 442
 443        if (image->nr_segments >= KEXEC_SEGMENT_MAX)
 444                return -EINVAL;
 445
 446        /*
 447         * Make sure we are not trying to add buffer after allocating
 448         * control pages. All segments need to be placed first before
 449         * any control pages are allocated. As control page allocation
 450         * logic goes through list of segments to make sure there are
 451         * no destination overlaps.
 452         */
 453        if (!list_empty(&image->control_pages)) {
 454                WARN_ON(1);
 455                return -EINVAL;
 456        }
 457
 458        memset(&buf, 0, sizeof(struct kexec_buf));
 459        kbuf = &buf;
 460        kbuf->image = image;
 461        kbuf->buffer = buffer;
 462        kbuf->bufsz = bufsz;
 463
 464        kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
 465        kbuf->buf_align = max(buf_align, PAGE_SIZE);
 466        kbuf->buf_min = buf_min;
 467        kbuf->buf_max = buf_max;
 468        kbuf->top_down = top_down;
 469
 470        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 471        if (image->type == KEXEC_TYPE_CRASH)
 472                ret = walk_iomem_res_desc(crashk_res.desc,
 473                                IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 474                                crashk_res.start, crashk_res.end, kbuf,
 475                                locate_mem_hole_callback);
 476        else
 477                ret = walk_system_ram_res(0, -1, kbuf,
 478                                          locate_mem_hole_callback);
 479        if (ret != 1) {
 480                /* A suitable memory range could not be found for buffer */
 481                return -EADDRNOTAVAIL;
 482        }
 483
 484        /* Found a suitable memory range */
 485        ksegment = &image->segment[image->nr_segments];
 486        ksegment->kbuf = kbuf->buffer;
 487        ksegment->bufsz = kbuf->bufsz;
 488        ksegment->mem = kbuf->mem;
 489        ksegment->memsz = kbuf->memsz;
 490        image->nr_segments++;
 491        *load_addr = ksegment->mem;
 492        return 0;
 493}
 494
 495/* Calculate and store the digest of segments */
 496static int kexec_calculate_store_digests(struct kimage *image)
 497{
 498        struct crypto_shash *tfm;
 499        struct shash_desc *desc;
 500        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 501        size_t desc_size, nullsz;
 502        char *digest;
 503        void *zero_buf;
 504        struct kexec_sha_region *sha_regions;
 505        struct purgatory_info *pi = &image->purgatory_info;
 506
 507        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 508        zero_buf_sz = PAGE_SIZE;
 509
 510        tfm = crypto_alloc_shash("sha256", 0, 0);
 511        if (IS_ERR(tfm)) {
 512                ret = PTR_ERR(tfm);
 513                goto out;
 514        }
 515
 516        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 517        desc = kzalloc(desc_size, GFP_KERNEL);
 518        if (!desc) {
 519                ret = -ENOMEM;
 520                goto out_free_tfm;
 521        }
 522
 523        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 524        sha_regions = vzalloc(sha_region_sz);
 525        if (!sha_regions)
 526                goto out_free_desc;
 527
 528        desc->tfm   = tfm;
 529        desc->flags = 0;
 530
 531        ret = crypto_shash_init(desc);
 532        if (ret < 0)
 533                goto out_free_sha_regions;
 534
 535        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 536        if (!digest) {
 537                ret = -ENOMEM;
 538                goto out_free_sha_regions;
 539        }
 540
 541        for (j = i = 0; i < image->nr_segments; i++) {
 542                struct kexec_segment *ksegment;
 543
 544                ksegment = &image->segment[i];
 545                /*
 546                 * Skip purgatory as it will be modified once we put digest
 547                 * info in purgatory.
 548                 */
 549                if (ksegment->kbuf == pi->purgatory_buf)
 550                        continue;
 551
 552                ret = crypto_shash_update(desc, ksegment->kbuf,
 553                                          ksegment->bufsz);
 554                if (ret)
 555                        break;
 556
 557                /*
 558                 * Assume rest of the buffer is filled with zero and
 559                 * update digest accordingly.
 560                 */
 561                nullsz = ksegment->memsz - ksegment->bufsz;
 562                while (nullsz) {
 563                        unsigned long bytes = nullsz;
 564
 565                        if (bytes > zero_buf_sz)
 566                                bytes = zero_buf_sz;
 567                        ret = crypto_shash_update(desc, zero_buf, bytes);
 568                        if (ret)
 569                                break;
 570                        nullsz -= bytes;
 571                }
 572
 573                if (ret)
 574                        break;
 575
 576                sha_regions[j].start = ksegment->mem;
 577                sha_regions[j].len = ksegment->memsz;
 578                j++;
 579        }
 580
 581        if (!ret) {
 582                ret = crypto_shash_final(desc, digest);
 583                if (ret)
 584                        goto out_free_digest;
 585                ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 586                                                sha_regions, sha_region_sz, 0);
 587                if (ret)
 588                        goto out_free_digest;
 589
 590                ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 591                                                digest, SHA256_DIGEST_SIZE, 0);
 592                if (ret)
 593                        goto out_free_digest;
 594        }
 595
 596out_free_digest:
 597        kfree(digest);
 598out_free_sha_regions:
 599        vfree(sha_regions);
 600out_free_desc:
 601        kfree(desc);
 602out_free_tfm:
 603        kfree(tfm);
 604out:
 605        return ret;
 606}
 607
 608/* Actually load purgatory. Lot of code taken from kexec-tools */
 609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 610                                  unsigned long max, int top_down)
 611{
 612        struct purgatory_info *pi = &image->purgatory_info;
 613        unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
 614        unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
 615        unsigned char *buf_addr, *src;
 616        int i, ret = 0, entry_sidx = -1;
 617        const Elf_Shdr *sechdrs_c;
 618        Elf_Shdr *sechdrs = NULL;
 619        void *purgatory_buf = NULL;
 620
 621        /*
 622         * sechdrs_c points to section headers in purgatory and are read
 623         * only. No modifications allowed.
 624         */
 625        sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 626
 627        /*
 628         * We can not modify sechdrs_c[] and its fields. It is read only.
 629         * Copy it over to a local copy where one can store some temporary
 630         * data and free it at the end. We need to modify ->sh_addr and
 631         * ->sh_offset fields to keep track of permanent and temporary
 632         * locations of sections.
 633         */
 634        sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 635        if (!sechdrs)
 636                return -ENOMEM;
 637
 638        memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 639
 640        /*
 641         * We seem to have multiple copies of sections. First copy is which
 642         * is embedded in kernel in read only section. Some of these sections
 643         * will be copied to a temporary buffer and relocated. And these
 644         * sections will finally be copied to their final destination at
 645         * segment load time.
 646         *
 647         * Use ->sh_offset to reflect section address in memory. It will
 648         * point to original read only copy if section is not allocatable.
 649         * Otherwise it will point to temporary copy which will be relocated.
 650         *
 651         * Use ->sh_addr to contain final address of the section where it
 652         * will go during execution time.
 653         */
 654        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 655                if (sechdrs[i].sh_type == SHT_NOBITS)
 656                        continue;
 657
 658                sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 659                                                sechdrs[i].sh_offset;
 660        }
 661
 662        /*
 663         * Identify entry point section and make entry relative to section
 664         * start.
 665         */
 666        entry = pi->ehdr->e_entry;
 667        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 668                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 669                        continue;
 670
 671                if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 672                        continue;
 673
 674                /* Make entry section relative */
 675                if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 676                    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 677                     pi->ehdr->e_entry)) {
 678                        entry_sidx = i;
 679                        entry -= sechdrs[i].sh_addr;
 680                        break;
 681                }
 682        }
 683
 684        /* Determine how much memory is needed to load relocatable object. */
 685        buf_align = 1;
 686        bss_align = 1;
 687        buf_sz = 0;
 688        bss_sz = 0;
 689
 690        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 691                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 692                        continue;
 693
 694                align = sechdrs[i].sh_addralign;
 695                if (sechdrs[i].sh_type != SHT_NOBITS) {
 696                        if (buf_align < align)
 697                                buf_align = align;
 698                        buf_sz = ALIGN(buf_sz, align);
 699                        buf_sz += sechdrs[i].sh_size;
 700                } else {
 701                        /* bss section */
 702                        if (bss_align < align)
 703                                bss_align = align;
 704                        bss_sz = ALIGN(bss_sz, align);
 705                        bss_sz += sechdrs[i].sh_size;
 706                }
 707        }
 708
 709        /* Determine the bss padding required to align bss properly */
 710        bss_pad = 0;
 711        if (buf_sz & (bss_align - 1))
 712                bss_pad = bss_align - (buf_sz & (bss_align - 1));
 713
 714        memsz = buf_sz + bss_pad + bss_sz;
 715
 716        /* Allocate buffer for purgatory */
 717        purgatory_buf = vzalloc(buf_sz);
 718        if (!purgatory_buf) {
 719                ret = -ENOMEM;
 720                goto out;
 721        }
 722
 723        if (buf_align < bss_align)
 724                buf_align = bss_align;
 725
 726        /* Add buffer to segment list */
 727        ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
 728                                buf_align, min, max, top_down,
 729                                &pi->purgatory_load_addr);
 730        if (ret)
 731                goto out;
 732
 733        /* Load SHF_ALLOC sections */
 734        buf_addr = purgatory_buf;
 735        load_addr = curr_load_addr = pi->purgatory_load_addr;
 736        bss_addr = load_addr + buf_sz + bss_pad;
 737
 738        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 739                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 740                        continue;
 741
 742                align = sechdrs[i].sh_addralign;
 743                if (sechdrs[i].sh_type != SHT_NOBITS) {
 744                        curr_load_addr = ALIGN(curr_load_addr, align);
 745                        offset = curr_load_addr - load_addr;
 746                        /* We already modifed ->sh_offset to keep src addr */
 747                        src = (char *) sechdrs[i].sh_offset;
 748                        memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 749
 750                        /* Store load address and source address of section */
 751                        sechdrs[i].sh_addr = curr_load_addr;
 752
 753                        /*
 754                         * This section got copied to temporary buffer. Update
 755                         * ->sh_offset accordingly.
 756                         */
 757                        sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 758
 759                        /* Advance to the next address */
 760                        curr_load_addr += sechdrs[i].sh_size;
 761                } else {
 762                        bss_addr = ALIGN(bss_addr, align);
 763                        sechdrs[i].sh_addr = bss_addr;
 764                        bss_addr += sechdrs[i].sh_size;
 765                }
 766        }
 767
 768        /* Update entry point based on load address of text section */
 769        if (entry_sidx >= 0)
 770                entry += sechdrs[entry_sidx].sh_addr;
 771
 772        /* Make kernel jump to purgatory after shutdown */
 773        image->start = entry;
 774
 775        /* Used later to get/set symbol values */
 776        pi->sechdrs = sechdrs;
 777
 778        /*
 779         * Used later to identify which section is purgatory and skip it
 780         * from checksumming.
 781         */
 782        pi->purgatory_buf = purgatory_buf;
 783        return ret;
 784out:
 785        vfree(sechdrs);
 786        vfree(purgatory_buf);
 787        return ret;
 788}
 789
 790static int kexec_apply_relocations(struct kimage *image)
 791{
 792        int i, ret;
 793        struct purgatory_info *pi = &image->purgatory_info;
 794        Elf_Shdr *sechdrs = pi->sechdrs;
 795
 796        /* Apply relocations */
 797        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 798                Elf_Shdr *section, *symtab;
 799
 800                if (sechdrs[i].sh_type != SHT_RELA &&
 801                    sechdrs[i].sh_type != SHT_REL)
 802                        continue;
 803
 804                /*
 805                 * For section of type SHT_RELA/SHT_REL,
 806                 * ->sh_link contains section header index of associated
 807                 * symbol table. And ->sh_info contains section header
 808                 * index of section to which relocations apply.
 809                 */
 810                if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 811                    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 812                        return -ENOEXEC;
 813
 814                section = &sechdrs[sechdrs[i].sh_info];
 815                symtab = &sechdrs[sechdrs[i].sh_link];
 816
 817                if (!(section->sh_flags & SHF_ALLOC))
 818                        continue;
 819
 820                /*
 821                 * symtab->sh_link contain section header index of associated
 822                 * string table.
 823                 */
 824                if (symtab->sh_link >= pi->ehdr->e_shnum)
 825                        /* Invalid section number? */
 826                        continue;
 827
 828                /*
 829                 * Respective architecture needs to provide support for applying
 830                 * relocations of type SHT_RELA/SHT_REL.
 831                 */
 832                if (sechdrs[i].sh_type == SHT_RELA)
 833                        ret = arch_kexec_apply_relocations_add(pi->ehdr,
 834                                                               sechdrs, i);
 835                else if (sechdrs[i].sh_type == SHT_REL)
 836                        ret = arch_kexec_apply_relocations(pi->ehdr,
 837                                                           sechdrs, i);
 838                if (ret)
 839                        return ret;
 840        }
 841
 842        return 0;
 843}
 844
 845/* Load relocatable purgatory object and relocate it appropriately */
 846int kexec_load_purgatory(struct kimage *image, unsigned long min,
 847                         unsigned long max, int top_down,
 848                         unsigned long *load_addr)
 849{
 850        struct purgatory_info *pi = &image->purgatory_info;
 851        int ret;
 852
 853        if (kexec_purgatory_size <= 0)
 854                return -EINVAL;
 855
 856        if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 857                return -ENOEXEC;
 858
 859        pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 860
 861        if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 862            || pi->ehdr->e_type != ET_REL
 863            || !elf_check_arch(pi->ehdr)
 864            || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 865                return -ENOEXEC;
 866
 867        if (pi->ehdr->e_shoff >= kexec_purgatory_size
 868            || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 869            kexec_purgatory_size - pi->ehdr->e_shoff))
 870                return -ENOEXEC;
 871
 872        ret = __kexec_load_purgatory(image, min, max, top_down);
 873        if (ret)
 874                return ret;
 875
 876        ret = kexec_apply_relocations(image);
 877        if (ret)
 878                goto out;
 879
 880        *load_addr = pi->purgatory_load_addr;
 881        return 0;
 882out:
 883        vfree(pi->sechdrs);
 884        vfree(pi->purgatory_buf);
 885        return ret;
 886}
 887
 888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 889                                            const char *name)
 890{
 891        Elf_Sym *syms;
 892        Elf_Shdr *sechdrs;
 893        Elf_Ehdr *ehdr;
 894        int i, k;
 895        const char *strtab;
 896
 897        if (!pi->sechdrs || !pi->ehdr)
 898                return NULL;
 899
 900        sechdrs = pi->sechdrs;
 901        ehdr = pi->ehdr;
 902
 903        for (i = 0; i < ehdr->e_shnum; i++) {
 904                if (sechdrs[i].sh_type != SHT_SYMTAB)
 905                        continue;
 906
 907                if (sechdrs[i].sh_link >= ehdr->e_shnum)
 908                        /* Invalid strtab section number */
 909                        continue;
 910                strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 911                syms = (Elf_Sym *)sechdrs[i].sh_offset;
 912
 913                /* Go through symbols for a match */
 914                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 915                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 916                                continue;
 917
 918                        if (strcmp(strtab + syms[k].st_name, name) != 0)
 919                                continue;
 920
 921                        if (syms[k].st_shndx == SHN_UNDEF ||
 922                            syms[k].st_shndx >= ehdr->e_shnum) {
 923                                pr_debug("Symbol: %s has bad section index %d.\n",
 924                                                name, syms[k].st_shndx);
 925                                return NULL;
 926                        }
 927
 928                        /* Found the symbol we are looking for */
 929                        return &syms[k];
 930                }
 931        }
 932
 933        return NULL;
 934}
 935
 936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 937{
 938        struct purgatory_info *pi = &image->purgatory_info;
 939        Elf_Sym *sym;
 940        Elf_Shdr *sechdr;
 941
 942        sym = kexec_purgatory_find_symbol(pi, name);
 943        if (!sym)
 944                return ERR_PTR(-EINVAL);
 945
 946        sechdr = &pi->sechdrs[sym->st_shndx];
 947
 948        /*
 949         * Returns the address where symbol will finally be loaded after
 950         * kexec_load_segment()
 951         */
 952        return (void *)(sechdr->sh_addr + sym->st_value);
 953}
 954
 955/*
 956 * Get or set value of a symbol. If "get_value" is true, symbol value is
 957 * returned in buf otherwise symbol value is set based on value in buf.
 958 */
 959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 960                                   void *buf, unsigned int size, bool get_value)
 961{
 962        Elf_Sym *sym;
 963        Elf_Shdr *sechdrs;
 964        struct purgatory_info *pi = &image->purgatory_info;
 965        char *sym_buf;
 966
 967        sym = kexec_purgatory_find_symbol(pi, name);
 968        if (!sym)
 969                return -EINVAL;
 970
 971        if (sym->st_size != size) {
 972                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
 973                       name, (unsigned long)sym->st_size, size);
 974                return -EINVAL;
 975        }
 976
 977        sechdrs = pi->sechdrs;
 978
 979        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
 980                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
 981                       get_value ? "get" : "set");
 982                return -EINVAL;
 983        }
 984
 985        sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
 986                                        sym->st_value;
 987
 988        if (get_value)
 989                memcpy((void *)buf, sym_buf, size);
 990        else
 991                memcpy((void *)sym_buf, buf, size);
 992
 993        return 0;
 994}
 995