linux/kernel/locking/rtmutex.c
<<
>>
Prefs
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/locking/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/sched.h>
  16#include <linux/sched/rt.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/timer.h>
  19
  20#include "rtmutex_common.h"
  21
  22/*
  23 * lock->owner state tracking:
  24 *
  25 * lock->owner holds the task_struct pointer of the owner. Bit 0
  26 * is used to keep track of the "lock has waiters" state.
  27 *
  28 * owner        bit0
  29 * NULL         0       lock is free (fast acquire possible)
  30 * NULL         1       lock is free and has waiters and the top waiter
  31 *                              is going to take the lock*
  32 * taskpointer  0       lock is held (fast release possible)
  33 * taskpointer  1       lock is held and has waiters**
  34 *
  35 * The fast atomic compare exchange based acquire and release is only
  36 * possible when bit 0 of lock->owner is 0.
  37 *
  38 * (*) It also can be a transitional state when grabbing the lock
  39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  40 * we need to set the bit0 before looking at the lock, and the owner may be
  41 * NULL in this small time, hence this can be a transitional state.
  42 *
  43 * (**) There is a small time when bit 0 is set but there are no
  44 * waiters. This can happen when grabbing the lock in the slow path.
  45 * To prevent a cmpxchg of the owner releasing the lock, we need to
  46 * set this bit before looking at the lock.
  47 */
  48
  49static void
  50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  51{
  52        unsigned long val = (unsigned long)owner;
  53
  54        if (rt_mutex_has_waiters(lock))
  55                val |= RT_MUTEX_HAS_WAITERS;
  56
  57        lock->owner = (struct task_struct *)val;
  58}
  59
  60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  61{
  62        lock->owner = (struct task_struct *)
  63                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  64}
  65
  66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  67{
  68        if (!rt_mutex_has_waiters(lock))
  69                clear_rt_mutex_waiters(lock);
  70}
  71
  72/*
  73 * We can speed up the acquire/release, if there's no debugging state to be
  74 * set up.
  75 */
  76#ifndef CONFIG_DEBUG_RT_MUTEXES
  77# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
  78# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
  79# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
  80
  81/*
  82 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
  83 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
  84 * relaxed semantics suffice.
  85 */
  86static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  87{
  88        unsigned long owner, *p = (unsigned long *) &lock->owner;
  89
  90        do {
  91                owner = *p;
  92        } while (cmpxchg_relaxed(p, owner,
  93                                 owner | RT_MUTEX_HAS_WAITERS) != owner);
  94}
  95
  96/*
  97 * Safe fastpath aware unlock:
  98 * 1) Clear the waiters bit
  99 * 2) Drop lock->wait_lock
 100 * 3) Try to unlock the lock with cmpxchg
 101 */
 102static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 103                                        unsigned long flags)
 104        __releases(lock->wait_lock)
 105{
 106        struct task_struct *owner = rt_mutex_owner(lock);
 107
 108        clear_rt_mutex_waiters(lock);
 109        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 110        /*
 111         * If a new waiter comes in between the unlock and the cmpxchg
 112         * we have two situations:
 113         *
 114         * unlock(wait_lock);
 115         *                                      lock(wait_lock);
 116         * cmpxchg(p, owner, 0) == owner
 117         *                                      mark_rt_mutex_waiters(lock);
 118         *                                      acquire(lock);
 119         * or:
 120         *
 121         * unlock(wait_lock);
 122         *                                      lock(wait_lock);
 123         *                                      mark_rt_mutex_waiters(lock);
 124         *
 125         * cmpxchg(p, owner, 0) != owner
 126         *                                      enqueue_waiter();
 127         *                                      unlock(wait_lock);
 128         * lock(wait_lock);
 129         * wake waiter();
 130         * unlock(wait_lock);
 131         *                                      lock(wait_lock);
 132         *                                      acquire(lock);
 133         */
 134        return rt_mutex_cmpxchg_release(lock, owner, NULL);
 135}
 136
 137#else
 138# define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
 139# define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
 140# define rt_mutex_cmpxchg_release(l,c,n)        (0)
 141
 142static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 143{
 144        lock->owner = (struct task_struct *)
 145                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
 146}
 147
 148/*
 149 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 150 */
 151static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 152                                        unsigned long flags)
 153        __releases(lock->wait_lock)
 154{
 155        lock->owner = NULL;
 156        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 157        return true;
 158}
 159#endif
 160
 161static inline int
 162rt_mutex_waiter_less(struct rt_mutex_waiter *left,
 163                     struct rt_mutex_waiter *right)
 164{
 165        if (left->prio < right->prio)
 166                return 1;
 167
 168        /*
 169         * If both waiters have dl_prio(), we check the deadlines of the
 170         * associated tasks.
 171         * If left waiter has a dl_prio(), and we didn't return 1 above,
 172         * then right waiter has a dl_prio() too.
 173         */
 174        if (dl_prio(left->prio))
 175                return dl_time_before(left->task->dl.deadline,
 176                                      right->task->dl.deadline);
 177
 178        return 0;
 179}
 180
 181static void
 182rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 183{
 184        struct rb_node **link = &lock->waiters.rb_node;
 185        struct rb_node *parent = NULL;
 186        struct rt_mutex_waiter *entry;
 187        int leftmost = 1;
 188
 189        while (*link) {
 190                parent = *link;
 191                entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 192                if (rt_mutex_waiter_less(waiter, entry)) {
 193                        link = &parent->rb_left;
 194                } else {
 195                        link = &parent->rb_right;
 196                        leftmost = 0;
 197                }
 198        }
 199
 200        if (leftmost)
 201                lock->waiters_leftmost = &waiter->tree_entry;
 202
 203        rb_link_node(&waiter->tree_entry, parent, link);
 204        rb_insert_color(&waiter->tree_entry, &lock->waiters);
 205}
 206
 207static void
 208rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 209{
 210        if (RB_EMPTY_NODE(&waiter->tree_entry))
 211                return;
 212
 213        if (lock->waiters_leftmost == &waiter->tree_entry)
 214                lock->waiters_leftmost = rb_next(&waiter->tree_entry);
 215
 216        rb_erase(&waiter->tree_entry, &lock->waiters);
 217        RB_CLEAR_NODE(&waiter->tree_entry);
 218}
 219
 220static void
 221rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 222{
 223        struct rb_node **link = &task->pi_waiters.rb_node;
 224        struct rb_node *parent = NULL;
 225        struct rt_mutex_waiter *entry;
 226        int leftmost = 1;
 227
 228        while (*link) {
 229                parent = *link;
 230                entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 231                if (rt_mutex_waiter_less(waiter, entry)) {
 232                        link = &parent->rb_left;
 233                } else {
 234                        link = &parent->rb_right;
 235                        leftmost = 0;
 236                }
 237        }
 238
 239        if (leftmost)
 240                task->pi_waiters_leftmost = &waiter->pi_tree_entry;
 241
 242        rb_link_node(&waiter->pi_tree_entry, parent, link);
 243        rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
 244}
 245
 246static void
 247rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 248{
 249        if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 250                return;
 251
 252        if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
 253                task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
 254
 255        rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
 256        RB_CLEAR_NODE(&waiter->pi_tree_entry);
 257}
 258
 259/*
 260 * Calculate task priority from the waiter tree priority
 261 *
 262 * Return task->normal_prio when the waiter tree is empty or when
 263 * the waiter is not allowed to do priority boosting
 264 */
 265int rt_mutex_getprio(struct task_struct *task)
 266{
 267        if (likely(!task_has_pi_waiters(task)))
 268                return task->normal_prio;
 269
 270        return min(task_top_pi_waiter(task)->prio,
 271                   task->normal_prio);
 272}
 273
 274struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
 275{
 276        if (likely(!task_has_pi_waiters(task)))
 277                return NULL;
 278
 279        return task_top_pi_waiter(task)->task;
 280}
 281
 282/*
 283 * Called by sched_setscheduler() to get the priority which will be
 284 * effective after the change.
 285 */
 286int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
 287{
 288        if (!task_has_pi_waiters(task))
 289                return newprio;
 290
 291        if (task_top_pi_waiter(task)->task->prio <= newprio)
 292                return task_top_pi_waiter(task)->task->prio;
 293        return newprio;
 294}
 295
 296/*
 297 * Adjust the priority of a task, after its pi_waiters got modified.
 298 *
 299 * This can be both boosting and unboosting. task->pi_lock must be held.
 300 */
 301static void __rt_mutex_adjust_prio(struct task_struct *task)
 302{
 303        int prio = rt_mutex_getprio(task);
 304
 305        if (task->prio != prio || dl_prio(prio))
 306                rt_mutex_setprio(task, prio);
 307}
 308
 309/*
 310 * Adjust task priority (undo boosting). Called from the exit path of
 311 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 312 *
 313 * (Note: We do this outside of the protection of lock->wait_lock to
 314 * allow the lock to be taken while or before we readjust the priority
 315 * of task. We do not use the spin_xx_mutex() variants here as we are
 316 * outside of the debug path.)
 317 */
 318void rt_mutex_adjust_prio(struct task_struct *task)
 319{
 320        unsigned long flags;
 321
 322        raw_spin_lock_irqsave(&task->pi_lock, flags);
 323        __rt_mutex_adjust_prio(task);
 324        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 325}
 326
 327/*
 328 * Deadlock detection is conditional:
 329 *
 330 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 331 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 332 *
 333 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 334 * conducted independent of the detect argument.
 335 *
 336 * If the waiter argument is NULL this indicates the deboost path and
 337 * deadlock detection is disabled independent of the detect argument
 338 * and the config settings.
 339 */
 340static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
 341                                          enum rtmutex_chainwalk chwalk)
 342{
 343        /*
 344         * This is just a wrapper function for the following call,
 345         * because debug_rt_mutex_detect_deadlock() smells like a magic
 346         * debug feature and I wanted to keep the cond function in the
 347         * main source file along with the comments instead of having
 348         * two of the same in the headers.
 349         */
 350        return debug_rt_mutex_detect_deadlock(waiter, chwalk);
 351}
 352
 353/*
 354 * Max number of times we'll walk the boosting chain:
 355 */
 356int max_lock_depth = 1024;
 357
 358static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
 359{
 360        return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
 361}
 362
 363/*
 364 * Adjust the priority chain. Also used for deadlock detection.
 365 * Decreases task's usage by one - may thus free the task.
 366 *
 367 * @task:       the task owning the mutex (owner) for which a chain walk is
 368 *              probably needed
 369 * @chwalk:     do we have to carry out deadlock detection?
 370 * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
 371 *              things for a task that has just got its priority adjusted, and
 372 *              is waiting on a mutex)
 373 * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
 374 *              we dropped its pi_lock. Is never dereferenced, only used for
 375 *              comparison to detect lock chain changes.
 376 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 377 *              its priority to the mutex owner (can be NULL in the case
 378 *              depicted above or if the top waiter is gone away and we are
 379 *              actually deboosting the owner)
 380 * @top_task:   the current top waiter
 381 *
 382 * Returns 0 or -EDEADLK.
 383 *
 384 * Chain walk basics and protection scope
 385 *
 386 * [R] refcount on task
 387 * [P] task->pi_lock held
 388 * [L] rtmutex->wait_lock held
 389 *
 390 * Step Description                             Protected by
 391 *      function arguments:
 392 *      @task                                   [R]
 393 *      @orig_lock if != NULL                   @top_task is blocked on it
 394 *      @next_lock                              Unprotected. Cannot be
 395 *                                              dereferenced. Only used for
 396 *                                              comparison.
 397 *      @orig_waiter if != NULL                 @top_task is blocked on it
 398 *      @top_task                               current, or in case of proxy
 399 *                                              locking protected by calling
 400 *                                              code
 401 *      again:
 402 *        loop_sanity_check();
 403 *      retry:
 404 * [1]    lock(task->pi_lock);                  [R] acquire [P]
 405 * [2]    waiter = task->pi_blocked_on;         [P]
 406 * [3]    check_exit_conditions_1();            [P]
 407 * [4]    lock = waiter->lock;                  [P]
 408 * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
 409 *          unlock(task->pi_lock);              release [P]
 410 *          goto retry;
 411 *        }
 412 * [6]    check_exit_conditions_2();            [P] + [L]
 413 * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
 414 * [8]    unlock(task->pi_lock);                release [P]
 415 *        put_task_struct(task);                release [R]
 416 * [9]    check_exit_conditions_3();            [L]
 417 * [10]   task = owner(lock);                   [L]
 418 *        get_task_struct(task);                [L] acquire [R]
 419 *        lock(task->pi_lock);                  [L] acquire [P]
 420 * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 421 * [12]   check_exit_conditions_4();            [P] + [L]
 422 * [13]   unlock(task->pi_lock);                release [P]
 423 *        unlock(lock->wait_lock);              release [L]
 424 *        goto again;
 425 */
 426static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 427                                      enum rtmutex_chainwalk chwalk,
 428                                      struct rt_mutex *orig_lock,
 429                                      struct rt_mutex *next_lock,
 430                                      struct rt_mutex_waiter *orig_waiter,
 431                                      struct task_struct *top_task)
 432{
 433        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 434        struct rt_mutex_waiter *prerequeue_top_waiter;
 435        int ret = 0, depth = 0;
 436        struct rt_mutex *lock;
 437        bool detect_deadlock;
 438        bool requeue = true;
 439
 440        detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
 441
 442        /*
 443         * The (de)boosting is a step by step approach with a lot of
 444         * pitfalls. We want this to be preemptible and we want hold a
 445         * maximum of two locks per step. So we have to check
 446         * carefully whether things change under us.
 447         */
 448 again:
 449        /*
 450         * We limit the lock chain length for each invocation.
 451         */
 452        if (++depth > max_lock_depth) {
 453                static int prev_max;
 454
 455                /*
 456                 * Print this only once. If the admin changes the limit,
 457                 * print a new message when reaching the limit again.
 458                 */
 459                if (prev_max != max_lock_depth) {
 460                        prev_max = max_lock_depth;
 461                        printk(KERN_WARNING "Maximum lock depth %d reached "
 462                               "task: %s (%d)\n", max_lock_depth,
 463                               top_task->comm, task_pid_nr(top_task));
 464                }
 465                put_task_struct(task);
 466
 467                return -EDEADLK;
 468        }
 469
 470        /*
 471         * We are fully preemptible here and only hold the refcount on
 472         * @task. So everything can have changed under us since the
 473         * caller or our own code below (goto retry/again) dropped all
 474         * locks.
 475         */
 476 retry:
 477        /*
 478         * [1] Task cannot go away as we did a get_task() before !
 479         */
 480        raw_spin_lock_irq(&task->pi_lock);
 481
 482        /*
 483         * [2] Get the waiter on which @task is blocked on.
 484         */
 485        waiter = task->pi_blocked_on;
 486
 487        /*
 488         * [3] check_exit_conditions_1() protected by task->pi_lock.
 489         */
 490
 491        /*
 492         * Check whether the end of the boosting chain has been
 493         * reached or the state of the chain has changed while we
 494         * dropped the locks.
 495         */
 496        if (!waiter)
 497                goto out_unlock_pi;
 498
 499        /*
 500         * Check the orig_waiter state. After we dropped the locks,
 501         * the previous owner of the lock might have released the lock.
 502         */
 503        if (orig_waiter && !rt_mutex_owner(orig_lock))
 504                goto out_unlock_pi;
 505
 506        /*
 507         * We dropped all locks after taking a refcount on @task, so
 508         * the task might have moved on in the lock chain or even left
 509         * the chain completely and blocks now on an unrelated lock or
 510         * on @orig_lock.
 511         *
 512         * We stored the lock on which @task was blocked in @next_lock,
 513         * so we can detect the chain change.
 514         */
 515        if (next_lock != waiter->lock)
 516                goto out_unlock_pi;
 517
 518        /*
 519         * Drop out, when the task has no waiters. Note,
 520         * top_waiter can be NULL, when we are in the deboosting
 521         * mode!
 522         */
 523        if (top_waiter) {
 524                if (!task_has_pi_waiters(task))
 525                        goto out_unlock_pi;
 526                /*
 527                 * If deadlock detection is off, we stop here if we
 528                 * are not the top pi waiter of the task. If deadlock
 529                 * detection is enabled we continue, but stop the
 530                 * requeueing in the chain walk.
 531                 */
 532                if (top_waiter != task_top_pi_waiter(task)) {
 533                        if (!detect_deadlock)
 534                                goto out_unlock_pi;
 535                        else
 536                                requeue = false;
 537                }
 538        }
 539
 540        /*
 541         * If the waiter priority is the same as the task priority
 542         * then there is no further priority adjustment necessary.  If
 543         * deadlock detection is off, we stop the chain walk. If its
 544         * enabled we continue, but stop the requeueing in the chain
 545         * walk.
 546         */
 547        if (waiter->prio == task->prio) {
 548                if (!detect_deadlock)
 549                        goto out_unlock_pi;
 550                else
 551                        requeue = false;
 552        }
 553
 554        /*
 555         * [4] Get the next lock
 556         */
 557        lock = waiter->lock;
 558        /*
 559         * [5] We need to trylock here as we are holding task->pi_lock,
 560         * which is the reverse lock order versus the other rtmutex
 561         * operations.
 562         */
 563        if (!raw_spin_trylock(&lock->wait_lock)) {
 564                raw_spin_unlock_irq(&task->pi_lock);
 565                cpu_relax();
 566                goto retry;
 567        }
 568
 569        /*
 570         * [6] check_exit_conditions_2() protected by task->pi_lock and
 571         * lock->wait_lock.
 572         *
 573         * Deadlock detection. If the lock is the same as the original
 574         * lock which caused us to walk the lock chain or if the
 575         * current lock is owned by the task which initiated the chain
 576         * walk, we detected a deadlock.
 577         */
 578        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 579                debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
 580                raw_spin_unlock(&lock->wait_lock);
 581                ret = -EDEADLK;
 582                goto out_unlock_pi;
 583        }
 584
 585        /*
 586         * If we just follow the lock chain for deadlock detection, no
 587         * need to do all the requeue operations. To avoid a truckload
 588         * of conditionals around the various places below, just do the
 589         * minimum chain walk checks.
 590         */
 591        if (!requeue) {
 592                /*
 593                 * No requeue[7] here. Just release @task [8]
 594                 */
 595                raw_spin_unlock(&task->pi_lock);
 596                put_task_struct(task);
 597
 598                /*
 599                 * [9] check_exit_conditions_3 protected by lock->wait_lock.
 600                 * If there is no owner of the lock, end of chain.
 601                 */
 602                if (!rt_mutex_owner(lock)) {
 603                        raw_spin_unlock_irq(&lock->wait_lock);
 604                        return 0;
 605                }
 606
 607                /* [10] Grab the next task, i.e. owner of @lock */
 608                task = rt_mutex_owner(lock);
 609                get_task_struct(task);
 610                raw_spin_lock(&task->pi_lock);
 611
 612                /*
 613                 * No requeue [11] here. We just do deadlock detection.
 614                 *
 615                 * [12] Store whether owner is blocked
 616                 * itself. Decision is made after dropping the locks
 617                 */
 618                next_lock = task_blocked_on_lock(task);
 619                /*
 620                 * Get the top waiter for the next iteration
 621                 */
 622                top_waiter = rt_mutex_top_waiter(lock);
 623
 624                /* [13] Drop locks */
 625                raw_spin_unlock(&task->pi_lock);
 626                raw_spin_unlock_irq(&lock->wait_lock);
 627
 628                /* If owner is not blocked, end of chain. */
 629                if (!next_lock)
 630                        goto out_put_task;
 631                goto again;
 632        }
 633
 634        /*
 635         * Store the current top waiter before doing the requeue
 636         * operation on @lock. We need it for the boost/deboost
 637         * decision below.
 638         */
 639        prerequeue_top_waiter = rt_mutex_top_waiter(lock);
 640
 641        /* [7] Requeue the waiter in the lock waiter tree. */
 642        rt_mutex_dequeue(lock, waiter);
 643        waiter->prio = task->prio;
 644        rt_mutex_enqueue(lock, waiter);
 645
 646        /* [8] Release the task */
 647        raw_spin_unlock(&task->pi_lock);
 648        put_task_struct(task);
 649
 650        /*
 651         * [9] check_exit_conditions_3 protected by lock->wait_lock.
 652         *
 653         * We must abort the chain walk if there is no lock owner even
 654         * in the dead lock detection case, as we have nothing to
 655         * follow here. This is the end of the chain we are walking.
 656         */
 657        if (!rt_mutex_owner(lock)) {
 658                /*
 659                 * If the requeue [7] above changed the top waiter,
 660                 * then we need to wake the new top waiter up to try
 661                 * to get the lock.
 662                 */
 663                if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
 664                        wake_up_process(rt_mutex_top_waiter(lock)->task);
 665                raw_spin_unlock_irq(&lock->wait_lock);
 666                return 0;
 667        }
 668
 669        /* [10] Grab the next task, i.e. the owner of @lock */
 670        task = rt_mutex_owner(lock);
 671        get_task_struct(task);
 672        raw_spin_lock(&task->pi_lock);
 673
 674        /* [11] requeue the pi waiters if necessary */
 675        if (waiter == rt_mutex_top_waiter(lock)) {
 676                /*
 677                 * The waiter became the new top (highest priority)
 678                 * waiter on the lock. Replace the previous top waiter
 679                 * in the owner tasks pi waiters tree with this waiter
 680                 * and adjust the priority of the owner.
 681                 */
 682                rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
 683                rt_mutex_enqueue_pi(task, waiter);
 684                __rt_mutex_adjust_prio(task);
 685
 686        } else if (prerequeue_top_waiter == waiter) {
 687                /*
 688                 * The waiter was the top waiter on the lock, but is
 689                 * no longer the top prority waiter. Replace waiter in
 690                 * the owner tasks pi waiters tree with the new top
 691                 * (highest priority) waiter and adjust the priority
 692                 * of the owner.
 693                 * The new top waiter is stored in @waiter so that
 694                 * @waiter == @top_waiter evaluates to true below and
 695                 * we continue to deboost the rest of the chain.
 696                 */
 697                rt_mutex_dequeue_pi(task, waiter);
 698                waiter = rt_mutex_top_waiter(lock);
 699                rt_mutex_enqueue_pi(task, waiter);
 700                __rt_mutex_adjust_prio(task);
 701        } else {
 702                /*
 703                 * Nothing changed. No need to do any priority
 704                 * adjustment.
 705                 */
 706        }
 707
 708        /*
 709         * [12] check_exit_conditions_4() protected by task->pi_lock
 710         * and lock->wait_lock. The actual decisions are made after we
 711         * dropped the locks.
 712         *
 713         * Check whether the task which owns the current lock is pi
 714         * blocked itself. If yes we store a pointer to the lock for
 715         * the lock chain change detection above. After we dropped
 716         * task->pi_lock next_lock cannot be dereferenced anymore.
 717         */
 718        next_lock = task_blocked_on_lock(task);
 719        /*
 720         * Store the top waiter of @lock for the end of chain walk
 721         * decision below.
 722         */
 723        top_waiter = rt_mutex_top_waiter(lock);
 724
 725        /* [13] Drop the locks */
 726        raw_spin_unlock(&task->pi_lock);
 727        raw_spin_unlock_irq(&lock->wait_lock);
 728
 729        /*
 730         * Make the actual exit decisions [12], based on the stored
 731         * values.
 732         *
 733         * We reached the end of the lock chain. Stop right here. No
 734         * point to go back just to figure that out.
 735         */
 736        if (!next_lock)
 737                goto out_put_task;
 738
 739        /*
 740         * If the current waiter is not the top waiter on the lock,
 741         * then we can stop the chain walk here if we are not in full
 742         * deadlock detection mode.
 743         */
 744        if (!detect_deadlock && waiter != top_waiter)
 745                goto out_put_task;
 746
 747        goto again;
 748
 749 out_unlock_pi:
 750        raw_spin_unlock_irq(&task->pi_lock);
 751 out_put_task:
 752        put_task_struct(task);
 753
 754        return ret;
 755}
 756
 757/*
 758 * Try to take an rt-mutex
 759 *
 760 * Must be called with lock->wait_lock held and interrupts disabled
 761 *
 762 * @lock:   The lock to be acquired.
 763 * @task:   The task which wants to acquire the lock
 764 * @waiter: The waiter that is queued to the lock's wait tree if the
 765 *          callsite called task_blocked_on_lock(), otherwise NULL
 766 */
 767static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 768                                struct rt_mutex_waiter *waiter)
 769{
 770        /*
 771         * Before testing whether we can acquire @lock, we set the
 772         * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
 773         * other tasks which try to modify @lock into the slow path
 774         * and they serialize on @lock->wait_lock.
 775         *
 776         * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
 777         * as explained at the top of this file if and only if:
 778         *
 779         * - There is a lock owner. The caller must fixup the
 780         *   transient state if it does a trylock or leaves the lock
 781         *   function due to a signal or timeout.
 782         *
 783         * - @task acquires the lock and there are no other
 784         *   waiters. This is undone in rt_mutex_set_owner(@task) at
 785         *   the end of this function.
 786         */
 787        mark_rt_mutex_waiters(lock);
 788
 789        /*
 790         * If @lock has an owner, give up.
 791         */
 792        if (rt_mutex_owner(lock))
 793                return 0;
 794
 795        /*
 796         * If @waiter != NULL, @task has already enqueued the waiter
 797         * into @lock waiter tree. If @waiter == NULL then this is a
 798         * trylock attempt.
 799         */
 800        if (waiter) {
 801                /*
 802                 * If waiter is not the highest priority waiter of
 803                 * @lock, give up.
 804                 */
 805                if (waiter != rt_mutex_top_waiter(lock))
 806                        return 0;
 807
 808                /*
 809                 * We can acquire the lock. Remove the waiter from the
 810                 * lock waiters tree.
 811                 */
 812                rt_mutex_dequeue(lock, waiter);
 813
 814        } else {
 815                /*
 816                 * If the lock has waiters already we check whether @task is
 817                 * eligible to take over the lock.
 818                 *
 819                 * If there are no other waiters, @task can acquire
 820                 * the lock.  @task->pi_blocked_on is NULL, so it does
 821                 * not need to be dequeued.
 822                 */
 823                if (rt_mutex_has_waiters(lock)) {
 824                        /*
 825                         * If @task->prio is greater than or equal to
 826                         * the top waiter priority (kernel view),
 827                         * @task lost.
 828                         */
 829                        if (task->prio >= rt_mutex_top_waiter(lock)->prio)
 830                                return 0;
 831
 832                        /*
 833                         * The current top waiter stays enqueued. We
 834                         * don't have to change anything in the lock
 835                         * waiters order.
 836                         */
 837                } else {
 838                        /*
 839                         * No waiters. Take the lock without the
 840                         * pi_lock dance.@task->pi_blocked_on is NULL
 841                         * and we have no waiters to enqueue in @task
 842                         * pi waiters tree.
 843                         */
 844                        goto takeit;
 845                }
 846        }
 847
 848        /*
 849         * Clear @task->pi_blocked_on. Requires protection by
 850         * @task->pi_lock. Redundant operation for the @waiter == NULL
 851         * case, but conditionals are more expensive than a redundant
 852         * store.
 853         */
 854        raw_spin_lock(&task->pi_lock);
 855        task->pi_blocked_on = NULL;
 856        /*
 857         * Finish the lock acquisition. @task is the new owner. If
 858         * other waiters exist we have to insert the highest priority
 859         * waiter into @task->pi_waiters tree.
 860         */
 861        if (rt_mutex_has_waiters(lock))
 862                rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
 863        raw_spin_unlock(&task->pi_lock);
 864
 865takeit:
 866        /* We got the lock. */
 867        debug_rt_mutex_lock(lock);
 868
 869        /*
 870         * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
 871         * are still waiters or clears it.
 872         */
 873        rt_mutex_set_owner(lock, task);
 874
 875        rt_mutex_deadlock_account_lock(lock, task);
 876
 877        return 1;
 878}
 879
 880/*
 881 * Task blocks on lock.
 882 *
 883 * Prepare waiter and propagate pi chain
 884 *
 885 * This must be called with lock->wait_lock held and interrupts disabled
 886 */
 887static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 888                                   struct rt_mutex_waiter *waiter,
 889                                   struct task_struct *task,
 890                                   enum rtmutex_chainwalk chwalk)
 891{
 892        struct task_struct *owner = rt_mutex_owner(lock);
 893        struct rt_mutex_waiter *top_waiter = waiter;
 894        struct rt_mutex *next_lock;
 895        int chain_walk = 0, res;
 896
 897        /*
 898         * Early deadlock detection. We really don't want the task to
 899         * enqueue on itself just to untangle the mess later. It's not
 900         * only an optimization. We drop the locks, so another waiter
 901         * can come in before the chain walk detects the deadlock. So
 902         * the other will detect the deadlock and return -EDEADLOCK,
 903         * which is wrong, as the other waiter is not in a deadlock
 904         * situation.
 905         */
 906        if (owner == task)
 907                return -EDEADLK;
 908
 909        raw_spin_lock(&task->pi_lock);
 910        __rt_mutex_adjust_prio(task);
 911        waiter->task = task;
 912        waiter->lock = lock;
 913        waiter->prio = task->prio;
 914
 915        /* Get the top priority waiter on the lock */
 916        if (rt_mutex_has_waiters(lock))
 917                top_waiter = rt_mutex_top_waiter(lock);
 918        rt_mutex_enqueue(lock, waiter);
 919
 920        task->pi_blocked_on = waiter;
 921
 922        raw_spin_unlock(&task->pi_lock);
 923
 924        if (!owner)
 925                return 0;
 926
 927        raw_spin_lock(&owner->pi_lock);
 928        if (waiter == rt_mutex_top_waiter(lock)) {
 929                rt_mutex_dequeue_pi(owner, top_waiter);
 930                rt_mutex_enqueue_pi(owner, waiter);
 931
 932                __rt_mutex_adjust_prio(owner);
 933                if (owner->pi_blocked_on)
 934                        chain_walk = 1;
 935        } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
 936                chain_walk = 1;
 937        }
 938
 939        /* Store the lock on which owner is blocked or NULL */
 940        next_lock = task_blocked_on_lock(owner);
 941
 942        raw_spin_unlock(&owner->pi_lock);
 943        /*
 944         * Even if full deadlock detection is on, if the owner is not
 945         * blocked itself, we can avoid finding this out in the chain
 946         * walk.
 947         */
 948        if (!chain_walk || !next_lock)
 949                return 0;
 950
 951        /*
 952         * The owner can't disappear while holding a lock,
 953         * so the owner struct is protected by wait_lock.
 954         * Gets dropped in rt_mutex_adjust_prio_chain()!
 955         */
 956        get_task_struct(owner);
 957
 958        raw_spin_unlock_irq(&lock->wait_lock);
 959
 960        res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
 961                                         next_lock, waiter, task);
 962
 963        raw_spin_lock_irq(&lock->wait_lock);
 964
 965        return res;
 966}
 967
 968/*
 969 * Remove the top waiter from the current tasks pi waiter tree and
 970 * queue it up.
 971 *
 972 * Called with lock->wait_lock held and interrupts disabled.
 973 */
 974static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
 975                                    struct rt_mutex *lock)
 976{
 977        struct rt_mutex_waiter *waiter;
 978
 979        raw_spin_lock(&current->pi_lock);
 980
 981        waiter = rt_mutex_top_waiter(lock);
 982
 983        /*
 984         * Remove it from current->pi_waiters. We do not adjust a
 985         * possible priority boost right now. We execute wakeup in the
 986         * boosted mode and go back to normal after releasing
 987         * lock->wait_lock.
 988         */
 989        rt_mutex_dequeue_pi(current, waiter);
 990
 991        /*
 992         * As we are waking up the top waiter, and the waiter stays
 993         * queued on the lock until it gets the lock, this lock
 994         * obviously has waiters. Just set the bit here and this has
 995         * the added benefit of forcing all new tasks into the
 996         * slow path making sure no task of lower priority than
 997         * the top waiter can steal this lock.
 998         */
 999        lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1000
1001        raw_spin_unlock(&current->pi_lock);
1002
1003        wake_q_add(wake_q, waiter->task);
1004}
1005
1006/*
1007 * Remove a waiter from a lock and give up
1008 *
1009 * Must be called with lock->wait_lock held and interrupts disabled. I must
1010 * have just failed to try_to_take_rt_mutex().
1011 */
1012static void remove_waiter(struct rt_mutex *lock,
1013                          struct rt_mutex_waiter *waiter)
1014{
1015        bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1016        struct task_struct *owner = rt_mutex_owner(lock);
1017        struct rt_mutex *next_lock;
1018
1019        raw_spin_lock(&current->pi_lock);
1020        rt_mutex_dequeue(lock, waiter);
1021        current->pi_blocked_on = NULL;
1022        raw_spin_unlock(&current->pi_lock);
1023
1024        /*
1025         * Only update priority if the waiter was the highest priority
1026         * waiter of the lock and there is an owner to update.
1027         */
1028        if (!owner || !is_top_waiter)
1029                return;
1030
1031        raw_spin_lock(&owner->pi_lock);
1032
1033        rt_mutex_dequeue_pi(owner, waiter);
1034
1035        if (rt_mutex_has_waiters(lock))
1036                rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1037
1038        __rt_mutex_adjust_prio(owner);
1039
1040        /* Store the lock on which owner is blocked or NULL */
1041        next_lock = task_blocked_on_lock(owner);
1042
1043        raw_spin_unlock(&owner->pi_lock);
1044
1045        /*
1046         * Don't walk the chain, if the owner task is not blocked
1047         * itself.
1048         */
1049        if (!next_lock)
1050                return;
1051
1052        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1053        get_task_struct(owner);
1054
1055        raw_spin_unlock_irq(&lock->wait_lock);
1056
1057        rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1058                                   next_lock, NULL, current);
1059
1060        raw_spin_lock_irq(&lock->wait_lock);
1061}
1062
1063/*
1064 * Recheck the pi chain, in case we got a priority setting
1065 *
1066 * Called from sched_setscheduler
1067 */
1068void rt_mutex_adjust_pi(struct task_struct *task)
1069{
1070        struct rt_mutex_waiter *waiter;
1071        struct rt_mutex *next_lock;
1072        unsigned long flags;
1073
1074        raw_spin_lock_irqsave(&task->pi_lock, flags);
1075
1076        waiter = task->pi_blocked_on;
1077        if (!waiter || (waiter->prio == task->prio &&
1078                        !dl_prio(task->prio))) {
1079                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1080                return;
1081        }
1082        next_lock = waiter->lock;
1083        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1084
1085        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1086        get_task_struct(task);
1087
1088        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1089                                   next_lock, NULL, task);
1090}
1091
1092/**
1093 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1094 * @lock:                the rt_mutex to take
1095 * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1096 *                       or TASK_UNINTERRUPTIBLE)
1097 * @timeout:             the pre-initialized and started timer, or NULL for none
1098 * @waiter:              the pre-initialized rt_mutex_waiter
1099 *
1100 * Must be called with lock->wait_lock held and interrupts disabled
1101 */
1102static int __sched
1103__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1104                    struct hrtimer_sleeper *timeout,
1105                    struct rt_mutex_waiter *waiter)
1106{
1107        int ret = 0;
1108
1109        for (;;) {
1110                /* Try to acquire the lock: */
1111                if (try_to_take_rt_mutex(lock, current, waiter))
1112                        break;
1113
1114                /*
1115                 * TASK_INTERRUPTIBLE checks for signals and
1116                 * timeout. Ignored otherwise.
1117                 */
1118                if (unlikely(state == TASK_INTERRUPTIBLE)) {
1119                        /* Signal pending? */
1120                        if (signal_pending(current))
1121                                ret = -EINTR;
1122                        if (timeout && !timeout->task)
1123                                ret = -ETIMEDOUT;
1124                        if (ret)
1125                                break;
1126                }
1127
1128                raw_spin_unlock_irq(&lock->wait_lock);
1129
1130                debug_rt_mutex_print_deadlock(waiter);
1131
1132                schedule();
1133
1134                raw_spin_lock_irq(&lock->wait_lock);
1135                set_current_state(state);
1136        }
1137
1138        __set_current_state(TASK_RUNNING);
1139        return ret;
1140}
1141
1142static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1143                                     struct rt_mutex_waiter *w)
1144{
1145        /*
1146         * If the result is not -EDEADLOCK or the caller requested
1147         * deadlock detection, nothing to do here.
1148         */
1149        if (res != -EDEADLOCK || detect_deadlock)
1150                return;
1151
1152        /*
1153         * Yell lowdly and stop the task right here.
1154         */
1155        rt_mutex_print_deadlock(w);
1156        while (1) {
1157                set_current_state(TASK_INTERRUPTIBLE);
1158                schedule();
1159        }
1160}
1161
1162/*
1163 * Slow path lock function:
1164 */
1165static int __sched
1166rt_mutex_slowlock(struct rt_mutex *lock, int state,
1167                  struct hrtimer_sleeper *timeout,
1168                  enum rtmutex_chainwalk chwalk)
1169{
1170        struct rt_mutex_waiter waiter;
1171        unsigned long flags;
1172        int ret = 0;
1173
1174        debug_rt_mutex_init_waiter(&waiter);
1175        RB_CLEAR_NODE(&waiter.pi_tree_entry);
1176        RB_CLEAR_NODE(&waiter.tree_entry);
1177
1178        /*
1179         * Technically we could use raw_spin_[un]lock_irq() here, but this can
1180         * be called in early boot if the cmpxchg() fast path is disabled
1181         * (debug, no architecture support). In this case we will acquire the
1182         * rtmutex with lock->wait_lock held. But we cannot unconditionally
1183         * enable interrupts in that early boot case. So we need to use the
1184         * irqsave/restore variants.
1185         */
1186        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1187
1188        /* Try to acquire the lock again: */
1189        if (try_to_take_rt_mutex(lock, current, NULL)) {
1190                raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1191                return 0;
1192        }
1193
1194        set_current_state(state);
1195
1196        /* Setup the timer, when timeout != NULL */
1197        if (unlikely(timeout))
1198                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1199
1200        ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1201
1202        if (likely(!ret))
1203                /* sleep on the mutex */
1204                ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1205
1206        if (unlikely(ret)) {
1207                __set_current_state(TASK_RUNNING);
1208                if (rt_mutex_has_waiters(lock))
1209                        remove_waiter(lock, &waiter);
1210                rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1211        }
1212
1213        /*
1214         * try_to_take_rt_mutex() sets the waiter bit
1215         * unconditionally. We might have to fix that up.
1216         */
1217        fixup_rt_mutex_waiters(lock);
1218
1219        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1220
1221        /* Remove pending timer: */
1222        if (unlikely(timeout))
1223                hrtimer_cancel(&timeout->timer);
1224
1225        debug_rt_mutex_free_waiter(&waiter);
1226
1227        return ret;
1228}
1229
1230/*
1231 * Slow path try-lock function:
1232 */
1233static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1234{
1235        unsigned long flags;
1236        int ret;
1237
1238        /*
1239         * If the lock already has an owner we fail to get the lock.
1240         * This can be done without taking the @lock->wait_lock as
1241         * it is only being read, and this is a trylock anyway.
1242         */
1243        if (rt_mutex_owner(lock))
1244                return 0;
1245
1246        /*
1247         * The mutex has currently no owner. Lock the wait lock and try to
1248         * acquire the lock. We use irqsave here to support early boot calls.
1249         */
1250        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252        ret = try_to_take_rt_mutex(lock, current, NULL);
1253
1254        /*
1255         * try_to_take_rt_mutex() sets the lock waiters bit
1256         * unconditionally. Clean this up.
1257         */
1258        fixup_rt_mutex_waiters(lock);
1259
1260        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261
1262        return ret;
1263}
1264
1265/*
1266 * Slow path to release a rt-mutex.
1267 * Return whether the current task needs to undo a potential priority boosting.
1268 */
1269static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1270                                        struct wake_q_head *wake_q)
1271{
1272        unsigned long flags;
1273
1274        /* irqsave required to support early boot calls */
1275        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1276
1277        debug_rt_mutex_unlock(lock);
1278
1279        rt_mutex_deadlock_account_unlock(current);
1280
1281        /*
1282         * We must be careful here if the fast path is enabled. If we
1283         * have no waiters queued we cannot set owner to NULL here
1284         * because of:
1285         *
1286         * foo->lock->owner = NULL;
1287         *                      rtmutex_lock(foo->lock);   <- fast path
1288         *                      free = atomic_dec_and_test(foo->refcnt);
1289         *                      rtmutex_unlock(foo->lock); <- fast path
1290         *                      if (free)
1291         *                              kfree(foo);
1292         * raw_spin_unlock(foo->lock->wait_lock);
1293         *
1294         * So for the fastpath enabled kernel:
1295         *
1296         * Nothing can set the waiters bit as long as we hold
1297         * lock->wait_lock. So we do the following sequence:
1298         *
1299         *      owner = rt_mutex_owner(lock);
1300         *      clear_rt_mutex_waiters(lock);
1301         *      raw_spin_unlock(&lock->wait_lock);
1302         *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1303         *              return;
1304         *      goto retry;
1305         *
1306         * The fastpath disabled variant is simple as all access to
1307         * lock->owner is serialized by lock->wait_lock:
1308         *
1309         *      lock->owner = NULL;
1310         *      raw_spin_unlock(&lock->wait_lock);
1311         */
1312        while (!rt_mutex_has_waiters(lock)) {
1313                /* Drops lock->wait_lock ! */
1314                if (unlock_rt_mutex_safe(lock, flags) == true)
1315                        return false;
1316                /* Relock the rtmutex and try again */
1317                raw_spin_lock_irqsave(&lock->wait_lock, flags);
1318        }
1319
1320        /*
1321         * The wakeup next waiter path does not suffer from the above
1322         * race. See the comments there.
1323         *
1324         * Queue the next waiter for wakeup once we release the wait_lock.
1325         */
1326        mark_wakeup_next_waiter(wake_q, lock);
1327
1328        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1329
1330        /* check PI boosting */
1331        return true;
1332}
1333
1334/*
1335 * debug aware fast / slowpath lock,trylock,unlock
1336 *
1337 * The atomic acquire/release ops are compiled away, when either the
1338 * architecture does not support cmpxchg or when debugging is enabled.
1339 */
1340static inline int
1341rt_mutex_fastlock(struct rt_mutex *lock, int state,
1342                  int (*slowfn)(struct rt_mutex *lock, int state,
1343                                struct hrtimer_sleeper *timeout,
1344                                enum rtmutex_chainwalk chwalk))
1345{
1346        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1347                rt_mutex_deadlock_account_lock(lock, current);
1348                return 0;
1349        } else
1350                return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1351}
1352
1353static inline int
1354rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1355                        struct hrtimer_sleeper *timeout,
1356                        enum rtmutex_chainwalk chwalk,
1357                        int (*slowfn)(struct rt_mutex *lock, int state,
1358                                      struct hrtimer_sleeper *timeout,
1359                                      enum rtmutex_chainwalk chwalk))
1360{
1361        if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1362            likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1363                rt_mutex_deadlock_account_lock(lock, current);
1364                return 0;
1365        } else
1366                return slowfn(lock, state, timeout, chwalk);
1367}
1368
1369static inline int
1370rt_mutex_fasttrylock(struct rt_mutex *lock,
1371                     int (*slowfn)(struct rt_mutex *lock))
1372{
1373        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1374                rt_mutex_deadlock_account_lock(lock, current);
1375                return 1;
1376        }
1377        return slowfn(lock);
1378}
1379
1380static inline void
1381rt_mutex_fastunlock(struct rt_mutex *lock,
1382                    bool (*slowfn)(struct rt_mutex *lock,
1383                                   struct wake_q_head *wqh))
1384{
1385        WAKE_Q(wake_q);
1386
1387        if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1388                rt_mutex_deadlock_account_unlock(current);
1389
1390        } else {
1391                bool deboost = slowfn(lock, &wake_q);
1392
1393                wake_up_q(&wake_q);
1394
1395                /* Undo pi boosting if necessary: */
1396                if (deboost)
1397                        rt_mutex_adjust_prio(current);
1398        }
1399}
1400
1401/**
1402 * rt_mutex_lock - lock a rt_mutex
1403 *
1404 * @lock: the rt_mutex to be locked
1405 */
1406void __sched rt_mutex_lock(struct rt_mutex *lock)
1407{
1408        might_sleep();
1409
1410        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1411}
1412EXPORT_SYMBOL_GPL(rt_mutex_lock);
1413
1414/**
1415 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1416 *
1417 * @lock:               the rt_mutex to be locked
1418 *
1419 * Returns:
1420 *  0           on success
1421 * -EINTR       when interrupted by a signal
1422 */
1423int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1424{
1425        might_sleep();
1426
1427        return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1428}
1429EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1430
1431/*
1432 * Futex variant with full deadlock detection.
1433 */
1434int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1435                              struct hrtimer_sleeper *timeout)
1436{
1437        might_sleep();
1438
1439        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1440                                       RT_MUTEX_FULL_CHAINWALK,
1441                                       rt_mutex_slowlock);
1442}
1443
1444/**
1445 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1446 *                      the timeout structure is provided
1447 *                      by the caller
1448 *
1449 * @lock:               the rt_mutex to be locked
1450 * @timeout:            timeout structure or NULL (no timeout)
1451 *
1452 * Returns:
1453 *  0           on success
1454 * -EINTR       when interrupted by a signal
1455 * -ETIMEDOUT   when the timeout expired
1456 */
1457int
1458rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1459{
1460        might_sleep();
1461
1462        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1463                                       RT_MUTEX_MIN_CHAINWALK,
1464                                       rt_mutex_slowlock);
1465}
1466EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1467
1468/**
1469 * rt_mutex_trylock - try to lock a rt_mutex
1470 *
1471 * @lock:       the rt_mutex to be locked
1472 *
1473 * This function can only be called in thread context. It's safe to
1474 * call it from atomic regions, but not from hard interrupt or soft
1475 * interrupt context.
1476 *
1477 * Returns 1 on success and 0 on contention
1478 */
1479int __sched rt_mutex_trylock(struct rt_mutex *lock)
1480{
1481        if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1482                return 0;
1483
1484        return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1485}
1486EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1487
1488/**
1489 * rt_mutex_unlock - unlock a rt_mutex
1490 *
1491 * @lock: the rt_mutex to be unlocked
1492 */
1493void __sched rt_mutex_unlock(struct rt_mutex *lock)
1494{
1495        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1496}
1497EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1498
1499/**
1500 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1501 * @lock: the rt_mutex to be unlocked
1502 *
1503 * Returns: true/false indicating whether priority adjustment is
1504 * required or not.
1505 */
1506bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1507                                   struct wake_q_head *wqh)
1508{
1509        if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1510                rt_mutex_deadlock_account_unlock(current);
1511                return false;
1512        }
1513        return rt_mutex_slowunlock(lock, wqh);
1514}
1515
1516/**
1517 * rt_mutex_destroy - mark a mutex unusable
1518 * @lock: the mutex to be destroyed
1519 *
1520 * This function marks the mutex uninitialized, and any subsequent
1521 * use of the mutex is forbidden. The mutex must not be locked when
1522 * this function is called.
1523 */
1524void rt_mutex_destroy(struct rt_mutex *lock)
1525{
1526        WARN_ON(rt_mutex_is_locked(lock));
1527#ifdef CONFIG_DEBUG_RT_MUTEXES
1528        lock->magic = NULL;
1529#endif
1530}
1531
1532EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1533
1534/**
1535 * __rt_mutex_init - initialize the rt lock
1536 *
1537 * @lock: the rt lock to be initialized
1538 *
1539 * Initialize the rt lock to unlocked state.
1540 *
1541 * Initializing of a locked rt lock is not allowed
1542 */
1543void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1544{
1545        lock->owner = NULL;
1546        raw_spin_lock_init(&lock->wait_lock);
1547        lock->waiters = RB_ROOT;
1548        lock->waiters_leftmost = NULL;
1549
1550        debug_rt_mutex_init(lock, name);
1551}
1552EXPORT_SYMBOL_GPL(__rt_mutex_init);
1553
1554/**
1555 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1556 *                              proxy owner
1557 *
1558 * @lock:       the rt_mutex to be locked
1559 * @proxy_owner:the task to set as owner
1560 *
1561 * No locking. Caller has to do serializing itself
1562 * Special API call for PI-futex support
1563 */
1564void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1565                                struct task_struct *proxy_owner)
1566{
1567        __rt_mutex_init(lock, NULL);
1568        debug_rt_mutex_proxy_lock(lock, proxy_owner);
1569        rt_mutex_set_owner(lock, proxy_owner);
1570        rt_mutex_deadlock_account_lock(lock, proxy_owner);
1571}
1572
1573/**
1574 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1575 *
1576 * @lock:       the rt_mutex to be locked
1577 *
1578 * No locking. Caller has to do serializing itself
1579 * Special API call for PI-futex support
1580 */
1581void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1582                           struct task_struct *proxy_owner)
1583{
1584        debug_rt_mutex_proxy_unlock(lock);
1585        rt_mutex_set_owner(lock, NULL);
1586        rt_mutex_deadlock_account_unlock(proxy_owner);
1587}
1588
1589/**
1590 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1591 * @lock:               the rt_mutex to take
1592 * @waiter:             the pre-initialized rt_mutex_waiter
1593 * @task:               the task to prepare
1594 *
1595 * Returns:
1596 *  0 - task blocked on lock
1597 *  1 - acquired the lock for task, caller should wake it up
1598 * <0 - error
1599 *
1600 * Special API call for FUTEX_REQUEUE_PI support.
1601 */
1602int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1603                              struct rt_mutex_waiter *waiter,
1604                              struct task_struct *task)
1605{
1606        int ret;
1607
1608        raw_spin_lock_irq(&lock->wait_lock);
1609
1610        if (try_to_take_rt_mutex(lock, task, NULL)) {
1611                raw_spin_unlock_irq(&lock->wait_lock);
1612                return 1;
1613        }
1614
1615        /* We enforce deadlock detection for futexes */
1616        ret = task_blocks_on_rt_mutex(lock, waiter, task,
1617                                      RT_MUTEX_FULL_CHAINWALK);
1618
1619        if (ret && !rt_mutex_owner(lock)) {
1620                /*
1621                 * Reset the return value. We might have
1622                 * returned with -EDEADLK and the owner
1623                 * released the lock while we were walking the
1624                 * pi chain.  Let the waiter sort it out.
1625                 */
1626                ret = 0;
1627        }
1628
1629        if (unlikely(ret))
1630                remove_waiter(lock, waiter);
1631
1632        raw_spin_unlock_irq(&lock->wait_lock);
1633
1634        debug_rt_mutex_print_deadlock(waiter);
1635
1636        return ret;
1637}
1638
1639/**
1640 * rt_mutex_next_owner - return the next owner of the lock
1641 *
1642 * @lock: the rt lock query
1643 *
1644 * Returns the next owner of the lock or NULL
1645 *
1646 * Caller has to serialize against other accessors to the lock
1647 * itself.
1648 *
1649 * Special API call for PI-futex support
1650 */
1651struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1652{
1653        if (!rt_mutex_has_waiters(lock))
1654                return NULL;
1655
1656        return rt_mutex_top_waiter(lock)->task;
1657}
1658
1659/**
1660 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1661 * @lock:               the rt_mutex we were woken on
1662 * @to:                 the timeout, null if none. hrtimer should already have
1663 *                      been started.
1664 * @waiter:             the pre-initialized rt_mutex_waiter
1665 *
1666 * Complete the lock acquisition started our behalf by another thread.
1667 *
1668 * Returns:
1669 *  0 - success
1670 * <0 - error, one of -EINTR, -ETIMEDOUT
1671 *
1672 * Special API call for PI-futex requeue support
1673 */
1674int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1675                               struct hrtimer_sleeper *to,
1676                               struct rt_mutex_waiter *waiter)
1677{
1678        int ret;
1679
1680        raw_spin_lock_irq(&lock->wait_lock);
1681
1682        set_current_state(TASK_INTERRUPTIBLE);
1683
1684        /* sleep on the mutex */
1685        ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1686
1687        if (unlikely(ret))
1688                remove_waiter(lock, waiter);
1689
1690        /*
1691         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1692         * have to fix that up.
1693         */
1694        fixup_rt_mutex_waiters(lock);
1695
1696        raw_spin_unlock_irq(&lock->wait_lock);
1697
1698        return ret;
1699}
1700