linux/kernel/memremap.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 */
  13#include <linux/radix-tree.h>
  14#include <linux/memremap.h>
  15#include <linux/device.h>
  16#include <linux/types.h>
  17#include <linux/pfn_t.h>
  18#include <linux/io.h>
  19#include <linux/mm.h>
  20#include <linux/memory_hotplug.h>
  21
  22#ifndef ioremap_cache
  23/* temporary while we convert existing ioremap_cache users to memremap */
  24__weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
  25{
  26        return ioremap(offset, size);
  27}
  28#endif
  29
  30static void *try_ram_remap(resource_size_t offset, size_t size)
  31{
  32        unsigned long pfn = PHYS_PFN(offset);
  33
  34        /* In the simple case just return the existing linear address */
  35        if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)))
  36                return __va(offset);
  37        return NULL; /* fallback to ioremap_cache */
  38}
  39
  40/**
  41 * memremap() - remap an iomem_resource as cacheable memory
  42 * @offset: iomem resource start address
  43 * @size: size of remap
  44 * @flags: any of MEMREMAP_WB, MEMREMAP_WT and MEMREMAP_WC
  45 *
  46 * memremap() is "ioremap" for cases where it is known that the resource
  47 * being mapped does not have i/o side effects and the __iomem
  48 * annotation is not applicable. In the case of multiple flags, the different
  49 * mapping types will be attempted in the order listed below until one of
  50 * them succeeds.
  51 *
  52 * MEMREMAP_WB - matches the default mapping for System RAM on
  53 * the architecture.  This is usually a read-allocate write-back cache.
  54 * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM
  55 * memremap() will bypass establishing a new mapping and instead return
  56 * a pointer into the direct map.
  57 *
  58 * MEMREMAP_WT - establish a mapping whereby writes either bypass the
  59 * cache or are written through to memory and never exist in a
  60 * cache-dirty state with respect to program visibility.  Attempts to
  61 * map System RAM with this mapping type will fail.
  62 *
  63 * MEMREMAP_WC - establish a writecombine mapping, whereby writes may
  64 * be coalesced together (e.g. in the CPU's write buffers), but is otherwise
  65 * uncached. Attempts to map System RAM with this mapping type will fail.
  66 */
  67void *memremap(resource_size_t offset, size_t size, unsigned long flags)
  68{
  69        int is_ram = region_intersects(offset, size,
  70                                       IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
  71        void *addr = NULL;
  72
  73        if (!flags)
  74                return NULL;
  75
  76        if (is_ram == REGION_MIXED) {
  77                WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
  78                                &offset, (unsigned long) size);
  79                return NULL;
  80        }
  81
  82        /* Try all mapping types requested until one returns non-NULL */
  83        if (flags & MEMREMAP_WB) {
  84                /*
  85                 * MEMREMAP_WB is special in that it can be satisifed
  86                 * from the direct map.  Some archs depend on the
  87                 * capability of memremap() to autodetect cases where
  88                 * the requested range is potentially in System RAM.
  89                 */
  90                if (is_ram == REGION_INTERSECTS)
  91                        addr = try_ram_remap(offset, size);
  92                if (!addr)
  93                        addr = ioremap_cache(offset, size);
  94        }
  95
  96        /*
  97         * If we don't have a mapping yet and other request flags are
  98         * present then we will be attempting to establish a new virtual
  99         * address mapping.  Enforce that this mapping is not aliasing
 100         * System RAM.
 101         */
 102        if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) {
 103                WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
 104                                &offset, (unsigned long) size);
 105                return NULL;
 106        }
 107
 108        if (!addr && (flags & MEMREMAP_WT))
 109                addr = ioremap_wt(offset, size);
 110
 111        if (!addr && (flags & MEMREMAP_WC))
 112                addr = ioremap_wc(offset, size);
 113
 114        return addr;
 115}
 116EXPORT_SYMBOL(memremap);
 117
 118void memunmap(void *addr)
 119{
 120        if (is_vmalloc_addr(addr))
 121                iounmap((void __iomem *) addr);
 122}
 123EXPORT_SYMBOL(memunmap);
 124
 125static void devm_memremap_release(struct device *dev, void *res)
 126{
 127        memunmap(*(void **)res);
 128}
 129
 130static int devm_memremap_match(struct device *dev, void *res, void *match_data)
 131{
 132        return *(void **)res == match_data;
 133}
 134
 135void *devm_memremap(struct device *dev, resource_size_t offset,
 136                size_t size, unsigned long flags)
 137{
 138        void **ptr, *addr;
 139
 140        ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
 141                        dev_to_node(dev));
 142        if (!ptr)
 143                return ERR_PTR(-ENOMEM);
 144
 145        addr = memremap(offset, size, flags);
 146        if (addr) {
 147                *ptr = addr;
 148                devres_add(dev, ptr);
 149        } else {
 150                devres_free(ptr);
 151                return ERR_PTR(-ENXIO);
 152        }
 153
 154        return addr;
 155}
 156EXPORT_SYMBOL(devm_memremap);
 157
 158void devm_memunmap(struct device *dev, void *addr)
 159{
 160        WARN_ON(devres_release(dev, devm_memremap_release,
 161                                devm_memremap_match, addr));
 162}
 163EXPORT_SYMBOL(devm_memunmap);
 164
 165pfn_t phys_to_pfn_t(phys_addr_t addr, u64 flags)
 166{
 167        return __pfn_to_pfn_t(addr >> PAGE_SHIFT, flags);
 168}
 169EXPORT_SYMBOL(phys_to_pfn_t);
 170
 171#ifdef CONFIG_ZONE_DEVICE
 172static DEFINE_MUTEX(pgmap_lock);
 173static RADIX_TREE(pgmap_radix, GFP_KERNEL);
 174#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
 175#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
 176
 177struct page_map {
 178        struct resource res;
 179        struct percpu_ref *ref;
 180        struct dev_pagemap pgmap;
 181        struct vmem_altmap altmap;
 182};
 183
 184void get_zone_device_page(struct page *page)
 185{
 186        percpu_ref_get(page->pgmap->ref);
 187}
 188EXPORT_SYMBOL(get_zone_device_page);
 189
 190void put_zone_device_page(struct page *page)
 191{
 192        put_dev_pagemap(page->pgmap);
 193}
 194EXPORT_SYMBOL(put_zone_device_page);
 195
 196static void pgmap_radix_release(struct resource *res)
 197{
 198        resource_size_t key, align_start, align_size, align_end;
 199
 200        align_start = res->start & ~(SECTION_SIZE - 1);
 201        align_size = ALIGN(resource_size(res), SECTION_SIZE);
 202        align_end = align_start + align_size - 1;
 203
 204        mutex_lock(&pgmap_lock);
 205        for (key = res->start; key <= res->end; key += SECTION_SIZE)
 206                radix_tree_delete(&pgmap_radix, key >> PA_SECTION_SHIFT);
 207        mutex_unlock(&pgmap_lock);
 208}
 209
 210static unsigned long pfn_first(struct page_map *page_map)
 211{
 212        struct dev_pagemap *pgmap = &page_map->pgmap;
 213        const struct resource *res = &page_map->res;
 214        struct vmem_altmap *altmap = pgmap->altmap;
 215        unsigned long pfn;
 216
 217        pfn = res->start >> PAGE_SHIFT;
 218        if (altmap)
 219                pfn += vmem_altmap_offset(altmap);
 220        return pfn;
 221}
 222
 223static unsigned long pfn_end(struct page_map *page_map)
 224{
 225        const struct resource *res = &page_map->res;
 226
 227        return (res->start + resource_size(res)) >> PAGE_SHIFT;
 228}
 229
 230#define for_each_device_pfn(pfn, map) \
 231        for (pfn = pfn_first(map); pfn < pfn_end(map); pfn++)
 232
 233static void devm_memremap_pages_release(struct device *dev, void *data)
 234{
 235        struct page_map *page_map = data;
 236        struct resource *res = &page_map->res;
 237        resource_size_t align_start, align_size;
 238        struct dev_pagemap *pgmap = &page_map->pgmap;
 239
 240        if (percpu_ref_tryget_live(pgmap->ref)) {
 241                dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
 242                percpu_ref_put(pgmap->ref);
 243        }
 244
 245        /* pages are dead and unused, undo the arch mapping */
 246        align_start = res->start & ~(SECTION_SIZE - 1);
 247        align_size = ALIGN(resource_size(res), SECTION_SIZE);
 248        arch_remove_memory(align_start, align_size);
 249        pgmap_radix_release(res);
 250        dev_WARN_ONCE(dev, pgmap->altmap && pgmap->altmap->alloc,
 251                        "%s: failed to free all reserved pages\n", __func__);
 252}
 253
 254/* assumes rcu_read_lock() held at entry */
 255struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
 256{
 257        struct page_map *page_map;
 258
 259        WARN_ON_ONCE(!rcu_read_lock_held());
 260
 261        page_map = radix_tree_lookup(&pgmap_radix, phys >> PA_SECTION_SHIFT);
 262        return page_map ? &page_map->pgmap : NULL;
 263}
 264
 265/**
 266 * devm_memremap_pages - remap and provide memmap backing for the given resource
 267 * @dev: hosting device for @res
 268 * @res: "host memory" address range
 269 * @ref: a live per-cpu reference count
 270 * @altmap: optional descriptor for allocating the memmap from @res
 271 *
 272 * Notes:
 273 * 1/ @ref must be 'live' on entry and 'dead' before devm_memunmap_pages() time
 274 *    (or devm release event).
 275 *
 276 * 2/ @res is expected to be a host memory range that could feasibly be
 277 *    treated as a "System RAM" range, i.e. not a device mmio range, but
 278 *    this is not enforced.
 279 */
 280void *devm_memremap_pages(struct device *dev, struct resource *res,
 281                struct percpu_ref *ref, struct vmem_altmap *altmap)
 282{
 283        resource_size_t key, align_start, align_size, align_end;
 284        struct dev_pagemap *pgmap;
 285        struct page_map *page_map;
 286        int error, nid, is_ram;
 287        unsigned long pfn;
 288
 289        align_start = res->start & ~(SECTION_SIZE - 1);
 290        align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE)
 291                - align_start;
 292        is_ram = region_intersects(align_start, align_size,
 293                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
 294
 295        if (is_ram == REGION_MIXED) {
 296                WARN_ONCE(1, "%s attempted on mixed region %pr\n",
 297                                __func__, res);
 298                return ERR_PTR(-ENXIO);
 299        }
 300
 301        if (is_ram == REGION_INTERSECTS)
 302                return __va(res->start);
 303
 304        if (altmap && !IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) {
 305                dev_err(dev, "%s: altmap requires CONFIG_SPARSEMEM_VMEMMAP=y\n",
 306                                __func__);
 307                return ERR_PTR(-ENXIO);
 308        }
 309
 310        if (!ref)
 311                return ERR_PTR(-EINVAL);
 312
 313        page_map = devres_alloc_node(devm_memremap_pages_release,
 314                        sizeof(*page_map), GFP_KERNEL, dev_to_node(dev));
 315        if (!page_map)
 316                return ERR_PTR(-ENOMEM);
 317        pgmap = &page_map->pgmap;
 318
 319        memcpy(&page_map->res, res, sizeof(*res));
 320
 321        pgmap->dev = dev;
 322        if (altmap) {
 323                memcpy(&page_map->altmap, altmap, sizeof(*altmap));
 324                pgmap->altmap = &page_map->altmap;
 325        }
 326        pgmap->ref = ref;
 327        pgmap->res = &page_map->res;
 328
 329        mutex_lock(&pgmap_lock);
 330        error = 0;
 331        align_end = align_start + align_size - 1;
 332        for (key = align_start; key <= align_end; key += SECTION_SIZE) {
 333                struct dev_pagemap *dup;
 334
 335                rcu_read_lock();
 336                dup = find_dev_pagemap(key);
 337                rcu_read_unlock();
 338                if (dup) {
 339                        dev_err(dev, "%s: %pr collides with mapping for %s\n",
 340                                        __func__, res, dev_name(dup->dev));
 341                        error = -EBUSY;
 342                        break;
 343                }
 344                error = radix_tree_insert(&pgmap_radix, key >> PA_SECTION_SHIFT,
 345                                page_map);
 346                if (error) {
 347                        dev_err(dev, "%s: failed: %d\n", __func__, error);
 348                        break;
 349                }
 350        }
 351        mutex_unlock(&pgmap_lock);
 352        if (error)
 353                goto err_radix;
 354
 355        nid = dev_to_node(dev);
 356        if (nid < 0)
 357                nid = numa_mem_id();
 358
 359        error = arch_add_memory(nid, align_start, align_size, true);
 360        if (error)
 361                goto err_add_memory;
 362
 363        for_each_device_pfn(pfn, page_map) {
 364                struct page *page = pfn_to_page(pfn);
 365
 366                /*
 367                 * ZONE_DEVICE pages union ->lru with a ->pgmap back
 368                 * pointer.  It is a bug if a ZONE_DEVICE page is ever
 369                 * freed or placed on a driver-private list.  Seed the
 370                 * storage with LIST_POISON* values.
 371                 */
 372                list_del(&page->lru);
 373                page->pgmap = pgmap;
 374        }
 375        devres_add(dev, page_map);
 376        return __va(res->start);
 377
 378 err_add_memory:
 379 err_radix:
 380        pgmap_radix_release(res);
 381        devres_free(page_map);
 382        return ERR_PTR(error);
 383}
 384EXPORT_SYMBOL(devm_memremap_pages);
 385
 386unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
 387{
 388        /* number of pfns from base where pfn_to_page() is valid */
 389        return altmap->reserve + altmap->free;
 390}
 391
 392void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
 393{
 394        altmap->alloc -= nr_pfns;
 395}
 396
 397#ifdef CONFIG_SPARSEMEM_VMEMMAP
 398struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
 399{
 400        /*
 401         * 'memmap_start' is the virtual address for the first "struct
 402         * page" in this range of the vmemmap array.  In the case of
 403         * CONFIG_SPARSEMEM_VMEMMAP a page_to_pfn conversion is simple
 404         * pointer arithmetic, so we can perform this to_vmem_altmap()
 405         * conversion without concern for the initialization state of
 406         * the struct page fields.
 407         */
 408        struct page *page = (struct page *) memmap_start;
 409        struct dev_pagemap *pgmap;
 410
 411        /*
 412         * Unconditionally retrieve a dev_pagemap associated with the
 413         * given physical address, this is only for use in the
 414         * arch_{add|remove}_memory() for setting up and tearing down
 415         * the memmap.
 416         */
 417        rcu_read_lock();
 418        pgmap = find_dev_pagemap(__pfn_to_phys(page_to_pfn(page)));
 419        rcu_read_unlock();
 420
 421        return pgmap ? pgmap->altmap : NULL;
 422}
 423#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 424#endif /* CONFIG_ZONE_DEVICE */
 425