linux/kernel/pid.c
<<
>>
Prefs
   1/*
   2 * Generic pidhash and scalable, time-bounded PID allocator
   3 *
   4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
   5 * (C) 2004 Nadia Yvette Chambers, Oracle
   6 * (C) 2002-2004 Ingo Molnar, Red Hat
   7 *
   8 * pid-structures are backing objects for tasks sharing a given ID to chain
   9 * against. There is very little to them aside from hashing them and
  10 * parking tasks using given ID's on a list.
  11 *
  12 * The hash is always changed with the tasklist_lock write-acquired,
  13 * and the hash is only accessed with the tasklist_lock at least
  14 * read-acquired, so there's no additional SMP locking needed here.
  15 *
  16 * We have a list of bitmap pages, which bitmaps represent the PID space.
  17 * Allocating and freeing PIDs is completely lockless. The worst-case
  18 * allocation scenario when all but one out of 1 million PIDs possible are
  19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21 *
  22 * Pid namespaces:
  23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25 *     Many thanks to Oleg Nesterov for comments and help
  26 *
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/export.h>
  31#include <linux/slab.h>
  32#include <linux/init.h>
  33#include <linux/rculist.h>
  34#include <linux/bootmem.h>
  35#include <linux/hash.h>
  36#include <linux/pid_namespace.h>
  37#include <linux/init_task.h>
  38#include <linux/syscalls.h>
  39#include <linux/proc_ns.h>
  40#include <linux/proc_fs.h>
  41
  42#define pid_hashfn(nr, ns)      \
  43        hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  44static struct hlist_head *pid_hash;
  45static unsigned int pidhash_shift = 4;
  46struct pid init_struct_pid = INIT_STRUCT_PID;
  47
  48int pid_max = PID_MAX_DEFAULT;
  49
  50#define RESERVED_PIDS           300
  51
  52int pid_max_min = RESERVED_PIDS + 1;
  53int pid_max_max = PID_MAX_LIMIT;
  54
  55static inline int mk_pid(struct pid_namespace *pid_ns,
  56                struct pidmap *map, int off)
  57{
  58        return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  59}
  60
  61#define find_next_offset(map, off)                                      \
  62                find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  63
  64/*
  65 * PID-map pages start out as NULL, they get allocated upon
  66 * first use and are never deallocated. This way a low pid_max
  67 * value does not cause lots of bitmaps to be allocated, but
  68 * the scheme scales to up to 4 million PIDs, runtime.
  69 */
  70struct pid_namespace init_pid_ns = {
  71        .kref = {
  72                .refcount       = ATOMIC_INIT(2),
  73        },
  74        .pidmap = {
  75                [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  76        },
  77        .last_pid = 0,
  78        .nr_hashed = PIDNS_HASH_ADDING,
  79        .level = 0,
  80        .child_reaper = &init_task,
  81        .user_ns = &init_user_ns,
  82        .ns.inum = PROC_PID_INIT_INO,
  83#ifdef CONFIG_PID_NS
  84        .ns.ops = &pidns_operations,
  85#endif
  86};
  87EXPORT_SYMBOL_GPL(init_pid_ns);
  88
  89/*
  90 * Note: disable interrupts while the pidmap_lock is held as an
  91 * interrupt might come in and do read_lock(&tasklist_lock).
  92 *
  93 * If we don't disable interrupts there is a nasty deadlock between
  94 * detach_pid()->free_pid() and another cpu that does
  95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  96 * read_lock(&tasklist_lock);
  97 *
  98 * After we clean up the tasklist_lock and know there are no
  99 * irq handlers that take it we can leave the interrupts enabled.
 100 * For now it is easier to be safe than to prove it can't happen.
 101 */
 102
 103static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 104
 105static void free_pidmap(struct upid *upid)
 106{
 107        int nr = upid->nr;
 108        struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
 109        int offset = nr & BITS_PER_PAGE_MASK;
 110
 111        clear_bit(offset, map->page);
 112        atomic_inc(&map->nr_free);
 113}
 114
 115/*
 116 * If we started walking pids at 'base', is 'a' seen before 'b'?
 117 */
 118static int pid_before(int base, int a, int b)
 119{
 120        /*
 121         * This is the same as saying
 122         *
 123         * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
 124         * and that mapping orders 'a' and 'b' with respect to 'base'.
 125         */
 126        return (unsigned)(a - base) < (unsigned)(b - base);
 127}
 128
 129/*
 130 * We might be racing with someone else trying to set pid_ns->last_pid
 131 * at the pid allocation time (there's also a sysctl for this, but racing
 132 * with this one is OK, see comment in kernel/pid_namespace.c about it).
 133 * We want the winner to have the "later" value, because if the
 134 * "earlier" value prevails, then a pid may get reused immediately.
 135 *
 136 * Since pids rollover, it is not sufficient to just pick the bigger
 137 * value.  We have to consider where we started counting from.
 138 *
 139 * 'base' is the value of pid_ns->last_pid that we observed when
 140 * we started looking for a pid.
 141 *
 142 * 'pid' is the pid that we eventually found.
 143 */
 144static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
 145{
 146        int prev;
 147        int last_write = base;
 148        do {
 149                prev = last_write;
 150                last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
 151        } while ((prev != last_write) && (pid_before(base, last_write, pid)));
 152}
 153
 154static int alloc_pidmap(struct pid_namespace *pid_ns)
 155{
 156        int i, offset, max_scan, pid, last = pid_ns->last_pid;
 157        struct pidmap *map;
 158
 159        pid = last + 1;
 160        if (pid >= pid_max)
 161                pid = RESERVED_PIDS;
 162        offset = pid & BITS_PER_PAGE_MASK;
 163        map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
 164        /*
 165         * If last_pid points into the middle of the map->page we
 166         * want to scan this bitmap block twice, the second time
 167         * we start with offset == 0 (or RESERVED_PIDS).
 168         */
 169        max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
 170        for (i = 0; i <= max_scan; ++i) {
 171                if (unlikely(!map->page)) {
 172                        void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 173                        /*
 174                         * Free the page if someone raced with us
 175                         * installing it:
 176                         */
 177                        spin_lock_irq(&pidmap_lock);
 178                        if (!map->page) {
 179                                map->page = page;
 180                                page = NULL;
 181                        }
 182                        spin_unlock_irq(&pidmap_lock);
 183                        kfree(page);
 184                        if (unlikely(!map->page))
 185                                return -ENOMEM;
 186                }
 187                if (likely(atomic_read(&map->nr_free))) {
 188                        for ( ; ; ) {
 189                                if (!test_and_set_bit(offset, map->page)) {
 190                                        atomic_dec(&map->nr_free);
 191                                        set_last_pid(pid_ns, last, pid);
 192                                        return pid;
 193                                }
 194                                offset = find_next_offset(map, offset);
 195                                if (offset >= BITS_PER_PAGE)
 196                                        break;
 197                                pid = mk_pid(pid_ns, map, offset);
 198                                if (pid >= pid_max)
 199                                        break;
 200                        }
 201                }
 202                if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
 203                        ++map;
 204                        offset = 0;
 205                } else {
 206                        map = &pid_ns->pidmap[0];
 207                        offset = RESERVED_PIDS;
 208                        if (unlikely(last == offset))
 209                                break;
 210                }
 211                pid = mk_pid(pid_ns, map, offset);
 212        }
 213        return -EAGAIN;
 214}
 215
 216int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
 217{
 218        int offset;
 219        struct pidmap *map, *end;
 220
 221        if (last >= PID_MAX_LIMIT)
 222                return -1;
 223
 224        offset = (last + 1) & BITS_PER_PAGE_MASK;
 225        map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
 226        end = &pid_ns->pidmap[PIDMAP_ENTRIES];
 227        for (; map < end; map++, offset = 0) {
 228                if (unlikely(!map->page))
 229                        continue;
 230                offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
 231                if (offset < BITS_PER_PAGE)
 232                        return mk_pid(pid_ns, map, offset);
 233        }
 234        return -1;
 235}
 236
 237void put_pid(struct pid *pid)
 238{
 239        struct pid_namespace *ns;
 240
 241        if (!pid)
 242                return;
 243
 244        ns = pid->numbers[pid->level].ns;
 245        if ((atomic_read(&pid->count) == 1) ||
 246             atomic_dec_and_test(&pid->count)) {
 247                kmem_cache_free(ns->pid_cachep, pid);
 248                put_pid_ns(ns);
 249        }
 250}
 251EXPORT_SYMBOL_GPL(put_pid);
 252
 253static void delayed_put_pid(struct rcu_head *rhp)
 254{
 255        struct pid *pid = container_of(rhp, struct pid, rcu);
 256        put_pid(pid);
 257}
 258
 259void free_pid(struct pid *pid)
 260{
 261        /* We can be called with write_lock_irq(&tasklist_lock) held */
 262        int i;
 263        unsigned long flags;
 264
 265        spin_lock_irqsave(&pidmap_lock, flags);
 266        for (i = 0; i <= pid->level; i++) {
 267                struct upid *upid = pid->numbers + i;
 268                struct pid_namespace *ns = upid->ns;
 269                hlist_del_rcu(&upid->pid_chain);
 270                switch(--ns->nr_hashed) {
 271                case 2:
 272                case 1:
 273                        /* When all that is left in the pid namespace
 274                         * is the reaper wake up the reaper.  The reaper
 275                         * may be sleeping in zap_pid_ns_processes().
 276                         */
 277                        wake_up_process(ns->child_reaper);
 278                        break;
 279                case PIDNS_HASH_ADDING:
 280                        /* Handle a fork failure of the first process */
 281                        WARN_ON(ns->child_reaper);
 282                        ns->nr_hashed = 0;
 283                        /* fall through */
 284                case 0:
 285                        schedule_work(&ns->proc_work);
 286                        break;
 287                }
 288        }
 289        spin_unlock_irqrestore(&pidmap_lock, flags);
 290
 291        for (i = 0; i <= pid->level; i++)
 292                free_pidmap(pid->numbers + i);
 293
 294        call_rcu(&pid->rcu, delayed_put_pid);
 295}
 296
 297struct pid *alloc_pid(struct pid_namespace *ns)
 298{
 299        struct pid *pid;
 300        enum pid_type type;
 301        int i, nr;
 302        struct pid_namespace *tmp;
 303        struct upid *upid;
 304        int retval = -ENOMEM;
 305
 306        pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 307        if (!pid)
 308                return ERR_PTR(retval);
 309
 310        tmp = ns;
 311        pid->level = ns->level;
 312        for (i = ns->level; i >= 0; i--) {
 313                nr = alloc_pidmap(tmp);
 314                if (IS_ERR_VALUE(nr)) {
 315                        retval = nr;
 316                        goto out_free;
 317                }
 318
 319                pid->numbers[i].nr = nr;
 320                pid->numbers[i].ns = tmp;
 321                tmp = tmp->parent;
 322        }
 323
 324        if (unlikely(is_child_reaper(pid))) {
 325                if (pid_ns_prepare_proc(ns))
 326                        goto out_free;
 327        }
 328
 329        get_pid_ns(ns);
 330        atomic_set(&pid->count, 1);
 331        for (type = 0; type < PIDTYPE_MAX; ++type)
 332                INIT_HLIST_HEAD(&pid->tasks[type]);
 333
 334        upid = pid->numbers + ns->level;
 335        spin_lock_irq(&pidmap_lock);
 336        if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
 337                goto out_unlock;
 338        for ( ; upid >= pid->numbers; --upid) {
 339                hlist_add_head_rcu(&upid->pid_chain,
 340                                &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 341                upid->ns->nr_hashed++;
 342        }
 343        spin_unlock_irq(&pidmap_lock);
 344
 345        return pid;
 346
 347out_unlock:
 348        spin_unlock_irq(&pidmap_lock);
 349        put_pid_ns(ns);
 350
 351out_free:
 352        while (++i <= ns->level)
 353                free_pidmap(pid->numbers + i);
 354
 355        kmem_cache_free(ns->pid_cachep, pid);
 356        return ERR_PTR(retval);
 357}
 358
 359void disable_pid_allocation(struct pid_namespace *ns)
 360{
 361        spin_lock_irq(&pidmap_lock);
 362        ns->nr_hashed &= ~PIDNS_HASH_ADDING;
 363        spin_unlock_irq(&pidmap_lock);
 364}
 365
 366struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 367{
 368        struct upid *pnr;
 369
 370        hlist_for_each_entry_rcu(pnr,
 371                        &pid_hash[pid_hashfn(nr, ns)], pid_chain)
 372                if (pnr->nr == nr && pnr->ns == ns)
 373                        return container_of(pnr, struct pid,
 374                                        numbers[ns->level]);
 375
 376        return NULL;
 377}
 378EXPORT_SYMBOL_GPL(find_pid_ns);
 379
 380struct pid *find_vpid(int nr)
 381{
 382        return find_pid_ns(nr, task_active_pid_ns(current));
 383}
 384EXPORT_SYMBOL_GPL(find_vpid);
 385
 386/*
 387 * attach_pid() must be called with the tasklist_lock write-held.
 388 */
 389void attach_pid(struct task_struct *task, enum pid_type type)
 390{
 391        struct pid_link *link = &task->pids[type];
 392        hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
 393}
 394
 395static void __change_pid(struct task_struct *task, enum pid_type type,
 396                        struct pid *new)
 397{
 398        struct pid_link *link;
 399        struct pid *pid;
 400        int tmp;
 401
 402        link = &task->pids[type];
 403        pid = link->pid;
 404
 405        hlist_del_rcu(&link->node);
 406        link->pid = new;
 407
 408        for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 409                if (!hlist_empty(&pid->tasks[tmp]))
 410                        return;
 411
 412        free_pid(pid);
 413}
 414
 415void detach_pid(struct task_struct *task, enum pid_type type)
 416{
 417        __change_pid(task, type, NULL);
 418}
 419
 420void change_pid(struct task_struct *task, enum pid_type type,
 421                struct pid *pid)
 422{
 423        __change_pid(task, type, pid);
 424        attach_pid(task, type);
 425}
 426
 427/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 428void transfer_pid(struct task_struct *old, struct task_struct *new,
 429                           enum pid_type type)
 430{
 431        new->pids[type].pid = old->pids[type].pid;
 432        hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 433}
 434
 435struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 436{
 437        struct task_struct *result = NULL;
 438        if (pid) {
 439                struct hlist_node *first;
 440                first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 441                                              lockdep_tasklist_lock_is_held());
 442                if (first)
 443                        result = hlist_entry(first, struct task_struct, pids[(type)].node);
 444        }
 445        return result;
 446}
 447EXPORT_SYMBOL(pid_task);
 448
 449/*
 450 * Must be called under rcu_read_lock().
 451 */
 452struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 453{
 454        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
 455                         "find_task_by_pid_ns() needs rcu_read_lock() protection");
 456        return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 457}
 458
 459struct task_struct *find_task_by_vpid(pid_t vnr)
 460{
 461        return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 462}
 463
 464struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 465{
 466        struct pid *pid;
 467        rcu_read_lock();
 468        if (type != PIDTYPE_PID)
 469                task = task->group_leader;
 470        pid = get_pid(rcu_dereference(task->pids[type].pid));
 471        rcu_read_unlock();
 472        return pid;
 473}
 474EXPORT_SYMBOL_GPL(get_task_pid);
 475
 476struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 477{
 478        struct task_struct *result;
 479        rcu_read_lock();
 480        result = pid_task(pid, type);
 481        if (result)
 482                get_task_struct(result);
 483        rcu_read_unlock();
 484        return result;
 485}
 486EXPORT_SYMBOL_GPL(get_pid_task);
 487
 488struct pid *find_get_pid(pid_t nr)
 489{
 490        struct pid *pid;
 491
 492        rcu_read_lock();
 493        pid = get_pid(find_vpid(nr));
 494        rcu_read_unlock();
 495
 496        return pid;
 497}
 498EXPORT_SYMBOL_GPL(find_get_pid);
 499
 500pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 501{
 502        struct upid *upid;
 503        pid_t nr = 0;
 504
 505        if (pid && ns->level <= pid->level) {
 506                upid = &pid->numbers[ns->level];
 507                if (upid->ns == ns)
 508                        nr = upid->nr;
 509        }
 510        return nr;
 511}
 512EXPORT_SYMBOL_GPL(pid_nr_ns);
 513
 514pid_t pid_vnr(struct pid *pid)
 515{
 516        return pid_nr_ns(pid, task_active_pid_ns(current));
 517}
 518EXPORT_SYMBOL_GPL(pid_vnr);
 519
 520pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 521                        struct pid_namespace *ns)
 522{
 523        pid_t nr = 0;
 524
 525        rcu_read_lock();
 526        if (!ns)
 527                ns = task_active_pid_ns(current);
 528        if (likely(pid_alive(task))) {
 529                if (type != PIDTYPE_PID)
 530                        task = task->group_leader;
 531                nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
 532        }
 533        rcu_read_unlock();
 534
 535        return nr;
 536}
 537EXPORT_SYMBOL(__task_pid_nr_ns);
 538
 539pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
 540{
 541        return pid_nr_ns(task_tgid(tsk), ns);
 542}
 543EXPORT_SYMBOL(task_tgid_nr_ns);
 544
 545struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 546{
 547        return ns_of_pid(task_pid(tsk));
 548}
 549EXPORT_SYMBOL_GPL(task_active_pid_ns);
 550
 551/*
 552 * Used by proc to find the first pid that is greater than or equal to nr.
 553 *
 554 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 555 */
 556struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 557{
 558        struct pid *pid;
 559
 560        do {
 561                pid = find_pid_ns(nr, ns);
 562                if (pid)
 563                        break;
 564                nr = next_pidmap(ns, nr);
 565        } while (nr > 0);
 566
 567        return pid;
 568}
 569
 570/*
 571 * The pid hash table is scaled according to the amount of memory in the
 572 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 573 * more.
 574 */
 575void __init pidhash_init(void)
 576{
 577        unsigned int i, pidhash_size;
 578
 579        pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
 580                                           HASH_EARLY | HASH_SMALL,
 581                                           &pidhash_shift, NULL,
 582                                           0, 4096);
 583        pidhash_size = 1U << pidhash_shift;
 584
 585        for (i = 0; i < pidhash_size; i++)
 586                INIT_HLIST_HEAD(&pid_hash[i]);
 587}
 588
 589void __init pidmap_init(void)
 590{
 591        /* Verify no one has done anything silly: */
 592        BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
 593
 594        /* bump default and minimum pid_max based on number of cpus */
 595        pid_max = min(pid_max_max, max_t(int, pid_max,
 596                                PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 597        pid_max_min = max_t(int, pid_max_min,
 598                                PIDS_PER_CPU_MIN * num_possible_cpus());
 599        pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 600
 601        init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 602        /* Reserve PID 0. We never call free_pidmap(0) */
 603        set_bit(0, init_pid_ns.pidmap[0].page);
 604        atomic_dec(&init_pid_ns.pidmap[0].nr_free);
 605
 606        init_pid_ns.pid_cachep = KMEM_CACHE(pid,
 607                        SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 608}
 609