linux/kernel/pid_namespace.c
<<
>>
Prefs
   1/*
   2 * Pid namespaces
   3 *
   4 * Authors:
   5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   7 *     Many thanks to Oleg Nesterov for comments and help
   8 *
   9 */
  10
  11#include <linux/pid.h>
  12#include <linux/pid_namespace.h>
  13#include <linux/user_namespace.h>
  14#include <linux/syscalls.h>
  15#include <linux/err.h>
  16#include <linux/acct.h>
  17#include <linux/slab.h>
  18#include <linux/proc_ns.h>
  19#include <linux/reboot.h>
  20#include <linux/export.h>
  21
  22struct pid_cache {
  23        int nr_ids;
  24        char name[16];
  25        struct kmem_cache *cachep;
  26        struct list_head list;
  27};
  28
  29static LIST_HEAD(pid_caches_lh);
  30static DEFINE_MUTEX(pid_caches_mutex);
  31static struct kmem_cache *pid_ns_cachep;
  32
  33/*
  34 * creates the kmem cache to allocate pids from.
  35 * @nr_ids: the number of numerical ids this pid will have to carry
  36 */
  37
  38static struct kmem_cache *create_pid_cachep(int nr_ids)
  39{
  40        struct pid_cache *pcache;
  41        struct kmem_cache *cachep;
  42
  43        mutex_lock(&pid_caches_mutex);
  44        list_for_each_entry(pcache, &pid_caches_lh, list)
  45                if (pcache->nr_ids == nr_ids)
  46                        goto out;
  47
  48        pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  49        if (pcache == NULL)
  50                goto err_alloc;
  51
  52        snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  53        cachep = kmem_cache_create(pcache->name,
  54                        sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  55                        0, SLAB_HWCACHE_ALIGN, NULL);
  56        if (cachep == NULL)
  57                goto err_cachep;
  58
  59        pcache->nr_ids = nr_ids;
  60        pcache->cachep = cachep;
  61        list_add(&pcache->list, &pid_caches_lh);
  62out:
  63        mutex_unlock(&pid_caches_mutex);
  64        return pcache->cachep;
  65
  66err_cachep:
  67        kfree(pcache);
  68err_alloc:
  69        mutex_unlock(&pid_caches_mutex);
  70        return NULL;
  71}
  72
  73static void proc_cleanup_work(struct work_struct *work)
  74{
  75        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  76        pid_ns_release_proc(ns);
  77}
  78
  79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  80#define MAX_PID_NS_LEVEL 32
  81
  82static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  83        struct pid_namespace *parent_pid_ns)
  84{
  85        struct pid_namespace *ns;
  86        unsigned int level = parent_pid_ns->level + 1;
  87        int i;
  88        int err;
  89
  90        if (level > MAX_PID_NS_LEVEL) {
  91                err = -EINVAL;
  92                goto out;
  93        }
  94
  95        err = -ENOMEM;
  96        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  97        if (ns == NULL)
  98                goto out;
  99
 100        ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 101        if (!ns->pidmap[0].page)
 102                goto out_free;
 103
 104        ns->pid_cachep = create_pid_cachep(level + 1);
 105        if (ns->pid_cachep == NULL)
 106                goto out_free_map;
 107
 108        err = ns_alloc_inum(&ns->ns);
 109        if (err)
 110                goto out_free_map;
 111        ns->ns.ops = &pidns_operations;
 112
 113        kref_init(&ns->kref);
 114        ns->level = level;
 115        ns->parent = get_pid_ns(parent_pid_ns);
 116        ns->user_ns = get_user_ns(user_ns);
 117        ns->nr_hashed = PIDNS_HASH_ADDING;
 118        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 119
 120        set_bit(0, ns->pidmap[0].page);
 121        atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 122
 123        for (i = 1; i < PIDMAP_ENTRIES; i++)
 124                atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 125
 126        return ns;
 127
 128out_free_map:
 129        kfree(ns->pidmap[0].page);
 130out_free:
 131        kmem_cache_free(pid_ns_cachep, ns);
 132out:
 133        return ERR_PTR(err);
 134}
 135
 136static void delayed_free_pidns(struct rcu_head *p)
 137{
 138        kmem_cache_free(pid_ns_cachep,
 139                        container_of(p, struct pid_namespace, rcu));
 140}
 141
 142static void destroy_pid_namespace(struct pid_namespace *ns)
 143{
 144        int i;
 145
 146        ns_free_inum(&ns->ns);
 147        for (i = 0; i < PIDMAP_ENTRIES; i++)
 148                kfree(ns->pidmap[i].page);
 149        put_user_ns(ns->user_ns);
 150        call_rcu(&ns->rcu, delayed_free_pidns);
 151}
 152
 153struct pid_namespace *copy_pid_ns(unsigned long flags,
 154        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 155{
 156        if (!(flags & CLONE_NEWPID))
 157                return get_pid_ns(old_ns);
 158        if (task_active_pid_ns(current) != old_ns)
 159                return ERR_PTR(-EINVAL);
 160        return create_pid_namespace(user_ns, old_ns);
 161}
 162
 163static void free_pid_ns(struct kref *kref)
 164{
 165        struct pid_namespace *ns;
 166
 167        ns = container_of(kref, struct pid_namespace, kref);
 168        destroy_pid_namespace(ns);
 169}
 170
 171void put_pid_ns(struct pid_namespace *ns)
 172{
 173        struct pid_namespace *parent;
 174
 175        while (ns != &init_pid_ns) {
 176                parent = ns->parent;
 177                if (!kref_put(&ns->kref, free_pid_ns))
 178                        break;
 179                ns = parent;
 180        }
 181}
 182EXPORT_SYMBOL_GPL(put_pid_ns);
 183
 184void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 185{
 186        int nr;
 187        int rc;
 188        struct task_struct *task, *me = current;
 189        int init_pids = thread_group_leader(me) ? 1 : 2;
 190
 191        /* Don't allow any more processes into the pid namespace */
 192        disable_pid_allocation(pid_ns);
 193
 194        /*
 195         * Ignore SIGCHLD causing any terminated children to autoreap.
 196         * This speeds up the namespace shutdown, plus see the comment
 197         * below.
 198         */
 199        spin_lock_irq(&me->sighand->siglock);
 200        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 201        spin_unlock_irq(&me->sighand->siglock);
 202
 203        /*
 204         * The last thread in the cgroup-init thread group is terminating.
 205         * Find remaining pid_ts in the namespace, signal and wait for them
 206         * to exit.
 207         *
 208         * Note:  This signals each threads in the namespace - even those that
 209         *        belong to the same thread group, To avoid this, we would have
 210         *        to walk the entire tasklist looking a processes in this
 211         *        namespace, but that could be unnecessarily expensive if the
 212         *        pid namespace has just a few processes. Or we need to
 213         *        maintain a tasklist for each pid namespace.
 214         *
 215         */
 216        read_lock(&tasklist_lock);
 217        nr = next_pidmap(pid_ns, 1);
 218        while (nr > 0) {
 219                rcu_read_lock();
 220
 221                task = pid_task(find_vpid(nr), PIDTYPE_PID);
 222                if (task && !__fatal_signal_pending(task))
 223                        send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 224
 225                rcu_read_unlock();
 226
 227                nr = next_pidmap(pid_ns, nr);
 228        }
 229        read_unlock(&tasklist_lock);
 230
 231        /*
 232         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 233         * sys_wait4() will also block until our children traced from the
 234         * parent namespace are detached and become EXIT_DEAD.
 235         */
 236        do {
 237                clear_thread_flag(TIF_SIGPENDING);
 238                rc = sys_wait4(-1, NULL, __WALL, NULL);
 239        } while (rc != -ECHILD);
 240
 241        /*
 242         * sys_wait4() above can't reap the EXIT_DEAD children but we do not
 243         * really care, we could reparent them to the global init. We could
 244         * exit and reap ->child_reaper even if it is not the last thread in
 245         * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
 246         * pid_ns can not go away until proc_kill_sb() drops the reference.
 247         *
 248         * But this ns can also have other tasks injected by setns()+fork().
 249         * Again, ignoring the user visible semantics we do not really need
 250         * to wait until they are all reaped, but they can be reparented to
 251         * us and thus we need to ensure that pid->child_reaper stays valid
 252         * until they all go away. See free_pid()->wake_up_process().
 253         *
 254         * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 255         * if reparented.
 256         */
 257        for (;;) {
 258                set_current_state(TASK_UNINTERRUPTIBLE);
 259                if (pid_ns->nr_hashed == init_pids)
 260                        break;
 261                schedule();
 262        }
 263        __set_current_state(TASK_RUNNING);
 264
 265        if (pid_ns->reboot)
 266                current->signal->group_exit_code = pid_ns->reboot;
 267
 268        acct_exit_ns(pid_ns);
 269        return;
 270}
 271
 272#ifdef CONFIG_CHECKPOINT_RESTORE
 273static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 274                void __user *buffer, size_t *lenp, loff_t *ppos)
 275{
 276        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 277        struct ctl_table tmp = *table;
 278
 279        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 280                return -EPERM;
 281
 282        /*
 283         * Writing directly to ns' last_pid field is OK, since this field
 284         * is volatile in a living namespace anyway and a code writing to
 285         * it should synchronize its usage with external means.
 286         */
 287
 288        tmp.data = &pid_ns->last_pid;
 289        return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 290}
 291
 292extern int pid_max;
 293static int zero = 0;
 294static struct ctl_table pid_ns_ctl_table[] = {
 295        {
 296                .procname = "ns_last_pid",
 297                .maxlen = sizeof(int),
 298                .mode = 0666, /* permissions are checked in the handler */
 299                .proc_handler = pid_ns_ctl_handler,
 300                .extra1 = &zero,
 301                .extra2 = &pid_max,
 302        },
 303        { }
 304};
 305static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 306#endif  /* CONFIG_CHECKPOINT_RESTORE */
 307
 308int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 309{
 310        if (pid_ns == &init_pid_ns)
 311                return 0;
 312
 313        switch (cmd) {
 314        case LINUX_REBOOT_CMD_RESTART2:
 315        case LINUX_REBOOT_CMD_RESTART:
 316                pid_ns->reboot = SIGHUP;
 317                break;
 318
 319        case LINUX_REBOOT_CMD_POWER_OFF:
 320        case LINUX_REBOOT_CMD_HALT:
 321                pid_ns->reboot = SIGINT;
 322                break;
 323        default:
 324                return -EINVAL;
 325        }
 326
 327        read_lock(&tasklist_lock);
 328        force_sig(SIGKILL, pid_ns->child_reaper);
 329        read_unlock(&tasklist_lock);
 330
 331        do_exit(0);
 332
 333        /* Not reached */
 334        return 0;
 335}
 336
 337static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 338{
 339        return container_of(ns, struct pid_namespace, ns);
 340}
 341
 342static struct ns_common *pidns_get(struct task_struct *task)
 343{
 344        struct pid_namespace *ns;
 345
 346        rcu_read_lock();
 347        ns = task_active_pid_ns(task);
 348        if (ns)
 349                get_pid_ns(ns);
 350        rcu_read_unlock();
 351
 352        return ns ? &ns->ns : NULL;
 353}
 354
 355static void pidns_put(struct ns_common *ns)
 356{
 357        put_pid_ns(to_pid_ns(ns));
 358}
 359
 360static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 361{
 362        struct pid_namespace *active = task_active_pid_ns(current);
 363        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 364
 365        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 366            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 367                return -EPERM;
 368
 369        /*
 370         * Only allow entering the current active pid namespace
 371         * or a child of the current active pid namespace.
 372         *
 373         * This is required for fork to return a usable pid value and
 374         * this maintains the property that processes and their
 375         * children can not escape their current pid namespace.
 376         */
 377        if (new->level < active->level)
 378                return -EINVAL;
 379
 380        ancestor = new;
 381        while (ancestor->level > active->level)
 382                ancestor = ancestor->parent;
 383        if (ancestor != active)
 384                return -EINVAL;
 385
 386        put_pid_ns(nsproxy->pid_ns_for_children);
 387        nsproxy->pid_ns_for_children = get_pid_ns(new);
 388        return 0;
 389}
 390
 391const struct proc_ns_operations pidns_operations = {
 392        .name           = "pid",
 393        .type           = CLONE_NEWPID,
 394        .get            = pidns_get,
 395        .put            = pidns_put,
 396        .install        = pidns_install,
 397};
 398
 399static __init int pid_namespaces_init(void)
 400{
 401        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 402
 403#ifdef CONFIG_CHECKPOINT_RESTORE
 404        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 405#endif
 406        return 0;
 407}
 408
 409__initcall(pid_namespaces_init);
 410