linux/kernel/printk/printk.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *      01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>                    /* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/syscalls.h>
  36#include <linux/kexec.h>
  37#include <linux/kdb.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/notifier.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/utsname.h>
  47#include <linux/ctype.h>
  48#include <linux/uio.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm-generic/sections.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/printk.h>
  55
  56#include "console_cmdline.h"
  57#include "braille.h"
  58
  59int console_printk[4] = {
  60        CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
  61        MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
  62        CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
  63        CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */
  64};
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84        .name = "console_lock"
  85};
  86#endif
  87
  88/*
  89 * Number of registered extended console drivers.
  90 *
  91 * If extended consoles are present, in-kernel cont reassembly is disabled
  92 * and each fragment is stored as a separate log entry with proper
  93 * continuation flag so that every emitted message has full metadata.  This
  94 * doesn't change the result for regular consoles or /proc/kmsg.  For
  95 * /dev/kmsg, as long as the reader concatenates messages according to
  96 * consecutive continuation flags, the end result should be the same too.
  97 */
  98static int nr_ext_console_drivers;
  99
 100/*
 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 102 * macros instead of functions so that _RET_IP_ contains useful information.
 103 */
 104#define down_console_sem() do { \
 105        down(&console_sem);\
 106        mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 107} while (0)
 108
 109static int __down_trylock_console_sem(unsigned long ip)
 110{
 111        if (down_trylock(&console_sem))
 112                return 1;
 113        mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 114        return 0;
 115}
 116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 117
 118#define up_console_sem() do { \
 119        mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 120        up(&console_sem);\
 121} while (0)
 122
 123/*
 124 * This is used for debugging the mess that is the VT code by
 125 * keeping track if we have the console semaphore held. It's
 126 * definitely not the perfect debug tool (we don't know if _WE_
 127 * hold it and are racing, but it helps tracking those weird code
 128 * paths in the console code where we end up in places I want
 129 * locked without the console sempahore held).
 130 */
 131static int console_locked, console_suspended;
 132
 133/*
 134 * If exclusive_console is non-NULL then only this console is to be printed to.
 135 */
 136static struct console *exclusive_console;
 137
 138/*
 139 *      Array of consoles built from command line options (console=)
 140 */
 141
 142#define MAX_CMDLINECONSOLES 8
 143
 144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 145
 146static int selected_console = -1;
 147static int preferred_console = -1;
 148int console_set_on_cmdline;
 149EXPORT_SYMBOL(console_set_on_cmdline);
 150
 151/* Flag: console code may call schedule() */
 152static int console_may_schedule;
 153
 154/*
 155 * The printk log buffer consists of a chain of concatenated variable
 156 * length records. Every record starts with a record header, containing
 157 * the overall length of the record.
 158 *
 159 * The heads to the first and last entry in the buffer, as well as the
 160 * sequence numbers of these entries are maintained when messages are
 161 * stored.
 162 *
 163 * If the heads indicate available messages, the length in the header
 164 * tells the start next message. A length == 0 for the next message
 165 * indicates a wrap-around to the beginning of the buffer.
 166 *
 167 * Every record carries the monotonic timestamp in microseconds, as well as
 168 * the standard userspace syslog level and syslog facility. The usual
 169 * kernel messages use LOG_KERN; userspace-injected messages always carry
 170 * a matching syslog facility, by default LOG_USER. The origin of every
 171 * message can be reliably determined that way.
 172 *
 173 * The human readable log message directly follows the message header. The
 174 * length of the message text is stored in the header, the stored message
 175 * is not terminated.
 176 *
 177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 178 * to provide userspace with a machine-readable message context.
 179 *
 180 * Examples for well-defined, commonly used property names are:
 181 *   DEVICE=b12:8               device identifier
 182 *                                b12:8         block dev_t
 183 *                                c127:3        char dev_t
 184 *                                n8            netdev ifindex
 185 *                                +sound:card0  subsystem:devname
 186 *   SUBSYSTEM=pci              driver-core subsystem name
 187 *
 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 189 * follows directly after a '=' character. Every property is terminated by
 190 * a '\0' character. The last property is not terminated.
 191 *
 192 * Example of a message structure:
 193 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 194 *   0008  34 00                        record is 52 bytes long
 195 *   000a        0b 00                  text is 11 bytes long
 196 *   000c              1f 00            dictionary is 23 bytes long
 197 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 198 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 199 *         69 6e 65                     "ine"
 200 *   001b           44 45 56 49 43      "DEVIC"
 201 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 202 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 203 *         67                           "g"
 204 *   0032     00 00 00                  padding to next message header
 205 *
 206 * The 'struct printk_log' buffer header must never be directly exported to
 207 * userspace, it is a kernel-private implementation detail that might
 208 * need to be changed in the future, when the requirements change.
 209 *
 210 * /dev/kmsg exports the structured data in the following line format:
 211 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 212 *
 213 * Users of the export format should ignore possible additional values
 214 * separated by ',', and find the message after the ';' character.
 215 *
 216 * The optional key/value pairs are attached as continuation lines starting
 217 * with a space character and terminated by a newline. All possible
 218 * non-prinatable characters are escaped in the "\xff" notation.
 219 */
 220
 221enum log_flags {
 222        LOG_NOCONS      = 1,    /* already flushed, do not print to console */
 223        LOG_NEWLINE     = 2,    /* text ended with a newline */
 224        LOG_PREFIX      = 4,    /* text started with a prefix */
 225        LOG_CONT        = 8,    /* text is a fragment of a continuation line */
 226};
 227
 228struct printk_log {
 229        u64 ts_nsec;            /* timestamp in nanoseconds */
 230        u16 len;                /* length of entire record */
 231        u16 text_len;           /* length of text buffer */
 232        u16 dict_len;           /* length of dictionary buffer */
 233        u8 facility;            /* syslog facility */
 234        u8 flags:5;             /* internal record flags */
 235        u8 level:3;             /* syslog level */
 236}
 237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 238__packed __aligned(4)
 239#endif
 240;
 241
 242/*
 243 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 244 * within the scheduler's rq lock. It must be released before calling
 245 * console_unlock() or anything else that might wake up a process.
 246 */
 247static DEFINE_RAW_SPINLOCK(logbuf_lock);
 248
 249#ifdef CONFIG_PRINTK
 250DECLARE_WAIT_QUEUE_HEAD(log_wait);
 251/* the next printk record to read by syslog(READ) or /proc/kmsg */
 252static u64 syslog_seq;
 253static u32 syslog_idx;
 254static enum log_flags syslog_prev;
 255static size_t syslog_partial;
 256
 257/* index and sequence number of the first record stored in the buffer */
 258static u64 log_first_seq;
 259static u32 log_first_idx;
 260
 261/* index and sequence number of the next record to store in the buffer */
 262static u64 log_next_seq;
 263static u32 log_next_idx;
 264
 265/* the next printk record to write to the console */
 266static u64 console_seq;
 267static u32 console_idx;
 268static enum log_flags console_prev;
 269
 270/* the next printk record to read after the last 'clear' command */
 271static u64 clear_seq;
 272static u32 clear_idx;
 273
 274#define PREFIX_MAX              32
 275#define LOG_LINE_MAX            (1024 - PREFIX_MAX)
 276
 277#define LOG_LEVEL(v)            ((v) & 0x07)
 278#define LOG_FACILITY(v)         ((v) >> 3 & 0xff)
 279
 280/* record buffer */
 281#define LOG_ALIGN __alignof__(struct printk_log)
 282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 284static char *log_buf = __log_buf;
 285static u32 log_buf_len = __LOG_BUF_LEN;
 286
 287/* Return log buffer address */
 288char *log_buf_addr_get(void)
 289{
 290        return log_buf;
 291}
 292
 293/* Return log buffer size */
 294u32 log_buf_len_get(void)
 295{
 296        return log_buf_len;
 297}
 298
 299/* human readable text of the record */
 300static char *log_text(const struct printk_log *msg)
 301{
 302        return (char *)msg + sizeof(struct printk_log);
 303}
 304
 305/* optional key/value pair dictionary attached to the record */
 306static char *log_dict(const struct printk_log *msg)
 307{
 308        return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 309}
 310
 311/* get record by index; idx must point to valid msg */
 312static struct printk_log *log_from_idx(u32 idx)
 313{
 314        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 315
 316        /*
 317         * A length == 0 record is the end of buffer marker. Wrap around and
 318         * read the message at the start of the buffer.
 319         */
 320        if (!msg->len)
 321                return (struct printk_log *)log_buf;
 322        return msg;
 323}
 324
 325/* get next record; idx must point to valid msg */
 326static u32 log_next(u32 idx)
 327{
 328        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 329
 330        /* length == 0 indicates the end of the buffer; wrap */
 331        /*
 332         * A length == 0 record is the end of buffer marker. Wrap around and
 333         * read the message at the start of the buffer as *this* one, and
 334         * return the one after that.
 335         */
 336        if (!msg->len) {
 337                msg = (struct printk_log *)log_buf;
 338                return msg->len;
 339        }
 340        return idx + msg->len;
 341}
 342
 343/*
 344 * Check whether there is enough free space for the given message.
 345 *
 346 * The same values of first_idx and next_idx mean that the buffer
 347 * is either empty or full.
 348 *
 349 * If the buffer is empty, we must respect the position of the indexes.
 350 * They cannot be reset to the beginning of the buffer.
 351 */
 352static int logbuf_has_space(u32 msg_size, bool empty)
 353{
 354        u32 free;
 355
 356        if (log_next_idx > log_first_idx || empty)
 357                free = max(log_buf_len - log_next_idx, log_first_idx);
 358        else
 359                free = log_first_idx - log_next_idx;
 360
 361        /*
 362         * We need space also for an empty header that signalizes wrapping
 363         * of the buffer.
 364         */
 365        return free >= msg_size + sizeof(struct printk_log);
 366}
 367
 368static int log_make_free_space(u32 msg_size)
 369{
 370        while (log_first_seq < log_next_seq &&
 371               !logbuf_has_space(msg_size, false)) {
 372                /* drop old messages until we have enough contiguous space */
 373                log_first_idx = log_next(log_first_idx);
 374                log_first_seq++;
 375        }
 376
 377        if (clear_seq < log_first_seq) {
 378                clear_seq = log_first_seq;
 379                clear_idx = log_first_idx;
 380        }
 381
 382        /* sequence numbers are equal, so the log buffer is empty */
 383        if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 384                return 0;
 385
 386        return -ENOMEM;
 387}
 388
 389/* compute the message size including the padding bytes */
 390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 391{
 392        u32 size;
 393
 394        size = sizeof(struct printk_log) + text_len + dict_len;
 395        *pad_len = (-size) & (LOG_ALIGN - 1);
 396        size += *pad_len;
 397
 398        return size;
 399}
 400
 401/*
 402 * Define how much of the log buffer we could take at maximum. The value
 403 * must be greater than two. Note that only half of the buffer is available
 404 * when the index points to the middle.
 405 */
 406#define MAX_LOG_TAKE_PART 4
 407static const char trunc_msg[] = "<truncated>";
 408
 409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 410                        u16 *dict_len, u32 *pad_len)
 411{
 412        /*
 413         * The message should not take the whole buffer. Otherwise, it might
 414         * get removed too soon.
 415         */
 416        u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 417        if (*text_len > max_text_len)
 418                *text_len = max_text_len;
 419        /* enable the warning message */
 420        *trunc_msg_len = strlen(trunc_msg);
 421        /* disable the "dict" completely */
 422        *dict_len = 0;
 423        /* compute the size again, count also the warning message */
 424        return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 425}
 426
 427/* insert record into the buffer, discard old ones, update heads */
 428static int log_store(int facility, int level,
 429                     enum log_flags flags, u64 ts_nsec,
 430                     const char *dict, u16 dict_len,
 431                     const char *text, u16 text_len)
 432{
 433        struct printk_log *msg;
 434        u32 size, pad_len;
 435        u16 trunc_msg_len = 0;
 436
 437        /* number of '\0' padding bytes to next message */
 438        size = msg_used_size(text_len, dict_len, &pad_len);
 439
 440        if (log_make_free_space(size)) {
 441                /* truncate the message if it is too long for empty buffer */
 442                size = truncate_msg(&text_len, &trunc_msg_len,
 443                                    &dict_len, &pad_len);
 444                /* survive when the log buffer is too small for trunc_msg */
 445                if (log_make_free_space(size))
 446                        return 0;
 447        }
 448
 449        if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 450                /*
 451                 * This message + an additional empty header does not fit
 452                 * at the end of the buffer. Add an empty header with len == 0
 453                 * to signify a wrap around.
 454                 */
 455                memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 456                log_next_idx = 0;
 457        }
 458
 459        /* fill message */
 460        msg = (struct printk_log *)(log_buf + log_next_idx);
 461        memcpy(log_text(msg), text, text_len);
 462        msg->text_len = text_len;
 463        if (trunc_msg_len) {
 464                memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 465                msg->text_len += trunc_msg_len;
 466        }
 467        memcpy(log_dict(msg), dict, dict_len);
 468        msg->dict_len = dict_len;
 469        msg->facility = facility;
 470        msg->level = level & 7;
 471        msg->flags = flags & 0x1f;
 472        if (ts_nsec > 0)
 473                msg->ts_nsec = ts_nsec;
 474        else
 475                msg->ts_nsec = local_clock();
 476        memset(log_dict(msg) + dict_len, 0, pad_len);
 477        msg->len = size;
 478
 479        /* insert message */
 480        log_next_idx += msg->len;
 481        log_next_seq++;
 482
 483        return msg->text_len;
 484}
 485
 486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 487
 488static int syslog_action_restricted(int type)
 489{
 490        if (dmesg_restrict)
 491                return 1;
 492        /*
 493         * Unless restricted, we allow "read all" and "get buffer size"
 494         * for everybody.
 495         */
 496        return type != SYSLOG_ACTION_READ_ALL &&
 497               type != SYSLOG_ACTION_SIZE_BUFFER;
 498}
 499
 500int check_syslog_permissions(int type, int source)
 501{
 502        /*
 503         * If this is from /proc/kmsg and we've already opened it, then we've
 504         * already done the capabilities checks at open time.
 505         */
 506        if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 507                goto ok;
 508
 509        if (syslog_action_restricted(type)) {
 510                if (capable(CAP_SYSLOG))
 511                        goto ok;
 512                /*
 513                 * For historical reasons, accept CAP_SYS_ADMIN too, with
 514                 * a warning.
 515                 */
 516                if (capable(CAP_SYS_ADMIN)) {
 517                        pr_warn_once("%s (%d): Attempt to access syslog with "
 518                                     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 519                                     "(deprecated).\n",
 520                                 current->comm, task_pid_nr(current));
 521                        goto ok;
 522                }
 523                return -EPERM;
 524        }
 525ok:
 526        return security_syslog(type);
 527}
 528EXPORT_SYMBOL_GPL(check_syslog_permissions);
 529
 530static void append_char(char **pp, char *e, char c)
 531{
 532        if (*pp < e)
 533                *(*pp)++ = c;
 534}
 535
 536static ssize_t msg_print_ext_header(char *buf, size_t size,
 537                                    struct printk_log *msg, u64 seq,
 538                                    enum log_flags prev_flags)
 539{
 540        u64 ts_usec = msg->ts_nsec;
 541        char cont = '-';
 542
 543        do_div(ts_usec, 1000);
 544
 545        /*
 546         * If we couldn't merge continuation line fragments during the print,
 547         * export the stored flags to allow an optional external merge of the
 548         * records. Merging the records isn't always neccessarily correct, like
 549         * when we hit a race during printing. In most cases though, it produces
 550         * better readable output. 'c' in the record flags mark the first
 551         * fragment of a line, '+' the following.
 552         */
 553        if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 554                cont = 'c';
 555        else if ((msg->flags & LOG_CONT) ||
 556                 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 557                cont = '+';
 558
 559        return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 560                       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 561}
 562
 563static ssize_t msg_print_ext_body(char *buf, size_t size,
 564                                  char *dict, size_t dict_len,
 565                                  char *text, size_t text_len)
 566{
 567        char *p = buf, *e = buf + size;
 568        size_t i;
 569
 570        /* escape non-printable characters */
 571        for (i = 0; i < text_len; i++) {
 572                unsigned char c = text[i];
 573
 574                if (c < ' ' || c >= 127 || c == '\\')
 575                        p += scnprintf(p, e - p, "\\x%02x", c);
 576                else
 577                        append_char(&p, e, c);
 578        }
 579        append_char(&p, e, '\n');
 580
 581        if (dict_len) {
 582                bool line = true;
 583
 584                for (i = 0; i < dict_len; i++) {
 585                        unsigned char c = dict[i];
 586
 587                        if (line) {
 588                                append_char(&p, e, ' ');
 589                                line = false;
 590                        }
 591
 592                        if (c == '\0') {
 593                                append_char(&p, e, '\n');
 594                                line = true;
 595                                continue;
 596                        }
 597
 598                        if (c < ' ' || c >= 127 || c == '\\') {
 599                                p += scnprintf(p, e - p, "\\x%02x", c);
 600                                continue;
 601                        }
 602
 603                        append_char(&p, e, c);
 604                }
 605                append_char(&p, e, '\n');
 606        }
 607
 608        return p - buf;
 609}
 610
 611/* /dev/kmsg - userspace message inject/listen interface */
 612struct devkmsg_user {
 613        u64 seq;
 614        u32 idx;
 615        enum log_flags prev;
 616        struct mutex lock;
 617        char buf[CONSOLE_EXT_LOG_MAX];
 618};
 619
 620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 621{
 622        char *buf, *line;
 623        int level = default_message_loglevel;
 624        int facility = 1;       /* LOG_USER */
 625        size_t len = iov_iter_count(from);
 626        ssize_t ret = len;
 627
 628        if (len > LOG_LINE_MAX)
 629                return -EINVAL;
 630        buf = kmalloc(len+1, GFP_KERNEL);
 631        if (buf == NULL)
 632                return -ENOMEM;
 633
 634        buf[len] = '\0';
 635        if (copy_from_iter(buf, len, from) != len) {
 636                kfree(buf);
 637                return -EFAULT;
 638        }
 639
 640        /*
 641         * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 642         * the decimal value represents 32bit, the lower 3 bit are the log
 643         * level, the rest are the log facility.
 644         *
 645         * If no prefix or no userspace facility is specified, we
 646         * enforce LOG_USER, to be able to reliably distinguish
 647         * kernel-generated messages from userspace-injected ones.
 648         */
 649        line = buf;
 650        if (line[0] == '<') {
 651                char *endp = NULL;
 652                unsigned int u;
 653
 654                u = simple_strtoul(line + 1, &endp, 10);
 655                if (endp && endp[0] == '>') {
 656                        level = LOG_LEVEL(u);
 657                        if (LOG_FACILITY(u) != 0)
 658                                facility = LOG_FACILITY(u);
 659                        endp++;
 660                        len -= endp - line;
 661                        line = endp;
 662                }
 663        }
 664
 665        printk_emit(facility, level, NULL, 0, "%s", line);
 666        kfree(buf);
 667        return ret;
 668}
 669
 670static ssize_t devkmsg_read(struct file *file, char __user *buf,
 671                            size_t count, loff_t *ppos)
 672{
 673        struct devkmsg_user *user = file->private_data;
 674        struct printk_log *msg;
 675        size_t len;
 676        ssize_t ret;
 677
 678        if (!user)
 679                return -EBADF;
 680
 681        ret = mutex_lock_interruptible(&user->lock);
 682        if (ret)
 683                return ret;
 684        raw_spin_lock_irq(&logbuf_lock);
 685        while (user->seq == log_next_seq) {
 686                if (file->f_flags & O_NONBLOCK) {
 687                        ret = -EAGAIN;
 688                        raw_spin_unlock_irq(&logbuf_lock);
 689                        goto out;
 690                }
 691
 692                raw_spin_unlock_irq(&logbuf_lock);
 693                ret = wait_event_interruptible(log_wait,
 694                                               user->seq != log_next_seq);
 695                if (ret)
 696                        goto out;
 697                raw_spin_lock_irq(&logbuf_lock);
 698        }
 699
 700        if (user->seq < log_first_seq) {
 701                /* our last seen message is gone, return error and reset */
 702                user->idx = log_first_idx;
 703                user->seq = log_first_seq;
 704                ret = -EPIPE;
 705                raw_spin_unlock_irq(&logbuf_lock);
 706                goto out;
 707        }
 708
 709        msg = log_from_idx(user->idx);
 710        len = msg_print_ext_header(user->buf, sizeof(user->buf),
 711                                   msg, user->seq, user->prev);
 712        len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 713                                  log_dict(msg), msg->dict_len,
 714                                  log_text(msg), msg->text_len);
 715
 716        user->prev = msg->flags;
 717        user->idx = log_next(user->idx);
 718        user->seq++;
 719        raw_spin_unlock_irq(&logbuf_lock);
 720
 721        if (len > count) {
 722                ret = -EINVAL;
 723                goto out;
 724        }
 725
 726        if (copy_to_user(buf, user->buf, len)) {
 727                ret = -EFAULT;
 728                goto out;
 729        }
 730        ret = len;
 731out:
 732        mutex_unlock(&user->lock);
 733        return ret;
 734}
 735
 736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 737{
 738        struct devkmsg_user *user = file->private_data;
 739        loff_t ret = 0;
 740
 741        if (!user)
 742                return -EBADF;
 743        if (offset)
 744                return -ESPIPE;
 745
 746        raw_spin_lock_irq(&logbuf_lock);
 747        switch (whence) {
 748        case SEEK_SET:
 749                /* the first record */
 750                user->idx = log_first_idx;
 751                user->seq = log_first_seq;
 752                break;
 753        case SEEK_DATA:
 754                /*
 755                 * The first record after the last SYSLOG_ACTION_CLEAR,
 756                 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 757                 * changes no global state, and does not clear anything.
 758                 */
 759                user->idx = clear_idx;
 760                user->seq = clear_seq;
 761                break;
 762        case SEEK_END:
 763                /* after the last record */
 764                user->idx = log_next_idx;
 765                user->seq = log_next_seq;
 766                break;
 767        default:
 768                ret = -EINVAL;
 769        }
 770        raw_spin_unlock_irq(&logbuf_lock);
 771        return ret;
 772}
 773
 774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 775{
 776        struct devkmsg_user *user = file->private_data;
 777        int ret = 0;
 778
 779        if (!user)
 780                return POLLERR|POLLNVAL;
 781
 782        poll_wait(file, &log_wait, wait);
 783
 784        raw_spin_lock_irq(&logbuf_lock);
 785        if (user->seq < log_next_seq) {
 786                /* return error when data has vanished underneath us */
 787                if (user->seq < log_first_seq)
 788                        ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 789                else
 790                        ret = POLLIN|POLLRDNORM;
 791        }
 792        raw_spin_unlock_irq(&logbuf_lock);
 793
 794        return ret;
 795}
 796
 797static int devkmsg_open(struct inode *inode, struct file *file)
 798{
 799        struct devkmsg_user *user;
 800        int err;
 801
 802        /* write-only does not need any file context */
 803        if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 804                return 0;
 805
 806        err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 807                                       SYSLOG_FROM_READER);
 808        if (err)
 809                return err;
 810
 811        user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 812        if (!user)
 813                return -ENOMEM;
 814
 815        mutex_init(&user->lock);
 816
 817        raw_spin_lock_irq(&logbuf_lock);
 818        user->idx = log_first_idx;
 819        user->seq = log_first_seq;
 820        raw_spin_unlock_irq(&logbuf_lock);
 821
 822        file->private_data = user;
 823        return 0;
 824}
 825
 826static int devkmsg_release(struct inode *inode, struct file *file)
 827{
 828        struct devkmsg_user *user = file->private_data;
 829
 830        if (!user)
 831                return 0;
 832
 833        mutex_destroy(&user->lock);
 834        kfree(user);
 835        return 0;
 836}
 837
 838const struct file_operations kmsg_fops = {
 839        .open = devkmsg_open,
 840        .read = devkmsg_read,
 841        .write_iter = devkmsg_write,
 842        .llseek = devkmsg_llseek,
 843        .poll = devkmsg_poll,
 844        .release = devkmsg_release,
 845};
 846
 847#ifdef CONFIG_KEXEC_CORE
 848/*
 849 * This appends the listed symbols to /proc/vmcore
 850 *
 851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 852 * obtain access to symbols that are otherwise very difficult to locate.  These
 853 * symbols are specifically used so that utilities can access and extract the
 854 * dmesg log from a vmcore file after a crash.
 855 */
 856void log_buf_kexec_setup(void)
 857{
 858        VMCOREINFO_SYMBOL(log_buf);
 859        VMCOREINFO_SYMBOL(log_buf_len);
 860        VMCOREINFO_SYMBOL(log_first_idx);
 861        VMCOREINFO_SYMBOL(clear_idx);
 862        VMCOREINFO_SYMBOL(log_next_idx);
 863        /*
 864         * Export struct printk_log size and field offsets. User space tools can
 865         * parse it and detect any changes to structure down the line.
 866         */
 867        VMCOREINFO_STRUCT_SIZE(printk_log);
 868        VMCOREINFO_OFFSET(printk_log, ts_nsec);
 869        VMCOREINFO_OFFSET(printk_log, len);
 870        VMCOREINFO_OFFSET(printk_log, text_len);
 871        VMCOREINFO_OFFSET(printk_log, dict_len);
 872}
 873#endif
 874
 875/* requested log_buf_len from kernel cmdline */
 876static unsigned long __initdata new_log_buf_len;
 877
 878/* we practice scaling the ring buffer by powers of 2 */
 879static void __init log_buf_len_update(unsigned size)
 880{
 881        if (size)
 882                size = roundup_pow_of_two(size);
 883        if (size > log_buf_len)
 884                new_log_buf_len = size;
 885}
 886
 887/* save requested log_buf_len since it's too early to process it */
 888static int __init log_buf_len_setup(char *str)
 889{
 890        unsigned size = memparse(str, &str);
 891
 892        log_buf_len_update(size);
 893
 894        return 0;
 895}
 896early_param("log_buf_len", log_buf_len_setup);
 897
 898#ifdef CONFIG_SMP
 899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
 900
 901static void __init log_buf_add_cpu(void)
 902{
 903        unsigned int cpu_extra;
 904
 905        /*
 906         * archs should set up cpu_possible_bits properly with
 907         * set_cpu_possible() after setup_arch() but just in
 908         * case lets ensure this is valid.
 909         */
 910        if (num_possible_cpus() == 1)
 911                return;
 912
 913        cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
 914
 915        /* by default this will only continue through for large > 64 CPUs */
 916        if (cpu_extra <= __LOG_BUF_LEN / 2)
 917                return;
 918
 919        pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
 920                __LOG_CPU_MAX_BUF_LEN);
 921        pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
 922                cpu_extra);
 923        pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
 924
 925        log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
 926}
 927#else /* !CONFIG_SMP */
 928static inline void log_buf_add_cpu(void) {}
 929#endif /* CONFIG_SMP */
 930
 931void __init setup_log_buf(int early)
 932{
 933        unsigned long flags;
 934        char *new_log_buf;
 935        int free;
 936
 937        if (log_buf != __log_buf)
 938                return;
 939
 940        if (!early && !new_log_buf_len)
 941                log_buf_add_cpu();
 942
 943        if (!new_log_buf_len)
 944                return;
 945
 946        if (early) {
 947                new_log_buf =
 948                        memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
 949        } else {
 950                new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
 951                                                          LOG_ALIGN);
 952        }
 953
 954        if (unlikely(!new_log_buf)) {
 955                pr_err("log_buf_len: %ld bytes not available\n",
 956                        new_log_buf_len);
 957                return;
 958        }
 959
 960        raw_spin_lock_irqsave(&logbuf_lock, flags);
 961        log_buf_len = new_log_buf_len;
 962        log_buf = new_log_buf;
 963        new_log_buf_len = 0;
 964        free = __LOG_BUF_LEN - log_next_idx;
 965        memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 966        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 967
 968        pr_info("log_buf_len: %d bytes\n", log_buf_len);
 969        pr_info("early log buf free: %d(%d%%)\n",
 970                free, (free * 100) / __LOG_BUF_LEN);
 971}
 972
 973static bool __read_mostly ignore_loglevel;
 974
 975static int __init ignore_loglevel_setup(char *str)
 976{
 977        ignore_loglevel = true;
 978        pr_info("debug: ignoring loglevel setting.\n");
 979
 980        return 0;
 981}
 982
 983early_param("ignore_loglevel", ignore_loglevel_setup);
 984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 985MODULE_PARM_DESC(ignore_loglevel,
 986                 "ignore loglevel setting (prints all kernel messages to the console)");
 987
 988#ifdef CONFIG_BOOT_PRINTK_DELAY
 989
 990static int boot_delay; /* msecs delay after each printk during bootup */
 991static unsigned long long loops_per_msec;       /* based on boot_delay */
 992
 993static int __init boot_delay_setup(char *str)
 994{
 995        unsigned long lpj;
 996
 997        lpj = preset_lpj ? preset_lpj : 1000000;        /* some guess */
 998        loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 999
1000        get_option(&str, &boot_delay);
1001        if (boot_delay > 10 * 1000)
1002                boot_delay = 0;
1003
1004        pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005                "HZ: %d, loops_per_msec: %llu\n",
1006                boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007        return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013        unsigned long long k;
1014        unsigned long timeout;
1015
1016        if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017                || (level >= console_loglevel && !ignore_loglevel)) {
1018                return;
1019        }
1020
1021        k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023        timeout = jiffies + msecs_to_jiffies(boot_delay);
1024        while (k) {
1025                k--;
1026                cpu_relax();
1027                /*
1028                 * use (volatile) jiffies to prevent
1029                 * compiler reduction; loop termination via jiffies
1030                 * is secondary and may or may not happen.
1031                 */
1032                if (time_after(jiffies, timeout))
1033                        break;
1034                touch_nmi_watchdog();
1035        }
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048        unsigned long rem_nsec;
1049
1050        if (!printk_time)
1051                return 0;
1052
1053        rem_nsec = do_div(ts, 1000000000);
1054
1055        if (!buf)
1056                return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1057
1058        return sprintf(buf, "[%5lu.%06lu] ",
1059                       (unsigned long)ts, rem_nsec / 1000);
1060}
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1063{
1064        size_t len = 0;
1065        unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067        if (syslog) {
1068                if (buf) {
1069                        len += sprintf(buf, "<%u>", prefix);
1070                } else {
1071                        len += 3;
1072                        if (prefix > 999)
1073                                len += 3;
1074                        else if (prefix > 99)
1075                                len += 2;
1076                        else if (prefix > 9)
1077                                len++;
1078                }
1079        }
1080
1081        len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082        return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086                             bool syslog, char *buf, size_t size)
1087{
1088        const char *text = log_text(msg);
1089        size_t text_size = msg->text_len;
1090        bool prefix = true;
1091        bool newline = true;
1092        size_t len = 0;
1093
1094        if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095                prefix = false;
1096
1097        if (msg->flags & LOG_CONT) {
1098                if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099                        prefix = false;
1100
1101                if (!(msg->flags & LOG_NEWLINE))
1102                        newline = false;
1103        }
1104
1105        do {
1106                const char *next = memchr(text, '\n', text_size);
1107                size_t text_len;
1108
1109                if (next) {
1110                        text_len = next - text;
1111                        next++;
1112                        text_size -= next - text;
1113                } else {
1114                        text_len = text_size;
1115                }
1116
1117                if (buf) {
1118                        if (print_prefix(msg, syslog, NULL) +
1119                            text_len + 1 >= size - len)
1120                                break;
1121
1122                        if (prefix)
1123                                len += print_prefix(msg, syslog, buf + len);
1124                        memcpy(buf + len, text, text_len);
1125                        len += text_len;
1126                        if (next || newline)
1127                                buf[len++] = '\n';
1128                } else {
1129                        /* SYSLOG_ACTION_* buffer size only calculation */
1130                        if (prefix)
1131                                len += print_prefix(msg, syslog, NULL);
1132                        len += text_len;
1133                        if (next || newline)
1134                                len++;
1135                }
1136
1137                prefix = true;
1138                text = next;
1139        } while (text);
1140
1141        return len;
1142}
1143
1144static int syslog_print(char __user *buf, int size)
1145{
1146        char *text;
1147        struct printk_log *msg;
1148        int len = 0;
1149
1150        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151        if (!text)
1152                return -ENOMEM;
1153
1154        while (size > 0) {
1155                size_t n;
1156                size_t skip;
1157
1158                raw_spin_lock_irq(&logbuf_lock);
1159                if (syslog_seq < log_first_seq) {
1160                        /* messages are gone, move to first one */
1161                        syslog_seq = log_first_seq;
1162                        syslog_idx = log_first_idx;
1163                        syslog_prev = 0;
1164                        syslog_partial = 0;
1165                }
1166                if (syslog_seq == log_next_seq) {
1167                        raw_spin_unlock_irq(&logbuf_lock);
1168                        break;
1169                }
1170
1171                skip = syslog_partial;
1172                msg = log_from_idx(syslog_idx);
1173                n = msg_print_text(msg, syslog_prev, true, text,
1174                                   LOG_LINE_MAX + PREFIX_MAX);
1175                if (n - syslog_partial <= size) {
1176                        /* message fits into buffer, move forward */
1177                        syslog_idx = log_next(syslog_idx);
1178                        syslog_seq++;
1179                        syslog_prev = msg->flags;
1180                        n -= syslog_partial;
1181                        syslog_partial = 0;
1182                } else if (!len){
1183                        /* partial read(), remember position */
1184                        n = size;
1185                        syslog_partial += n;
1186                } else
1187                        n = 0;
1188                raw_spin_unlock_irq(&logbuf_lock);
1189
1190                if (!n)
1191                        break;
1192
1193                if (copy_to_user(buf, text + skip, n)) {
1194                        if (!len)
1195                                len = -EFAULT;
1196                        break;
1197                }
1198
1199                len += n;
1200                size -= n;
1201                buf += n;
1202        }
1203
1204        kfree(text);
1205        return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
1210        char *text;
1211        int len = 0;
1212
1213        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214        if (!text)
1215                return -ENOMEM;
1216
1217        raw_spin_lock_irq(&logbuf_lock);
1218        if (buf) {
1219                u64 next_seq;
1220                u64 seq;
1221                u32 idx;
1222                enum log_flags prev;
1223
1224                /*
1225                 * Find first record that fits, including all following records,
1226                 * into the user-provided buffer for this dump.
1227                 */
1228                seq = clear_seq;
1229                idx = clear_idx;
1230                prev = 0;
1231                while (seq < log_next_seq) {
1232                        struct printk_log *msg = log_from_idx(idx);
1233
1234                        len += msg_print_text(msg, prev, true, NULL, 0);
1235                        prev = msg->flags;
1236                        idx = log_next(idx);
1237                        seq++;
1238                }
1239
1240                /* move first record forward until length fits into the buffer */
1241                seq = clear_seq;
1242                idx = clear_idx;
1243                prev = 0;
1244                while (len > size && seq < log_next_seq) {
1245                        struct printk_log *msg = log_from_idx(idx);
1246
1247                        len -= msg_print_text(msg, prev, true, NULL, 0);
1248                        prev = msg->flags;
1249                        idx = log_next(idx);
1250                        seq++;
1251                }
1252
1253                /* last message fitting into this dump */
1254                next_seq = log_next_seq;
1255
1256                len = 0;
1257                while (len >= 0 && seq < next_seq) {
1258                        struct printk_log *msg = log_from_idx(idx);
1259                        int textlen;
1260
1261                        textlen = msg_print_text(msg, prev, true, text,
1262                                                 LOG_LINE_MAX + PREFIX_MAX);
1263                        if (textlen < 0) {
1264                                len = textlen;
1265                                break;
1266                        }
1267                        idx = log_next(idx);
1268                        seq++;
1269                        prev = msg->flags;
1270
1271                        raw_spin_unlock_irq(&logbuf_lock);
1272                        if (copy_to_user(buf + len, text, textlen))
1273                                len = -EFAULT;
1274                        else
1275                                len += textlen;
1276                        raw_spin_lock_irq(&logbuf_lock);
1277
1278                        if (seq < log_first_seq) {
1279                                /* messages are gone, move to next one */
1280                                seq = log_first_seq;
1281                                idx = log_first_idx;
1282                                prev = 0;
1283                        }
1284                }
1285        }
1286
1287        if (clear) {
1288                clear_seq = log_next_seq;
1289                clear_idx = log_next_idx;
1290        }
1291        raw_spin_unlock_irq(&logbuf_lock);
1292
1293        kfree(text);
1294        return len;
1295}
1296
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
1299        bool clear = false;
1300        static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301        int error;
1302
1303        error = check_syslog_permissions(type, source);
1304        if (error)
1305                goto out;
1306
1307        switch (type) {
1308        case SYSLOG_ACTION_CLOSE:       /* Close log */
1309                break;
1310        case SYSLOG_ACTION_OPEN:        /* Open log */
1311                break;
1312        case SYSLOG_ACTION_READ:        /* Read from log */
1313                error = -EINVAL;
1314                if (!buf || len < 0)
1315                        goto out;
1316                error = 0;
1317                if (!len)
1318                        goto out;
1319                if (!access_ok(VERIFY_WRITE, buf, len)) {
1320                        error = -EFAULT;
1321                        goto out;
1322                }
1323                error = wait_event_interruptible(log_wait,
1324                                                 syslog_seq != log_next_seq);
1325                if (error)
1326                        goto out;
1327                error = syslog_print(buf, len);
1328                break;
1329        /* Read/clear last kernel messages */
1330        case SYSLOG_ACTION_READ_CLEAR:
1331                clear = true;
1332                /* FALL THRU */
1333        /* Read last kernel messages */
1334        case SYSLOG_ACTION_READ_ALL:
1335                error = -EINVAL;
1336                if (!buf || len < 0)
1337                        goto out;
1338                error = 0;
1339                if (!len)
1340                        goto out;
1341                if (!access_ok(VERIFY_WRITE, buf, len)) {
1342                        error = -EFAULT;
1343                        goto out;
1344                }
1345                error = syslog_print_all(buf, len, clear);
1346                break;
1347        /* Clear ring buffer */
1348        case SYSLOG_ACTION_CLEAR:
1349                syslog_print_all(NULL, 0, true);
1350                break;
1351        /* Disable logging to console */
1352        case SYSLOG_ACTION_CONSOLE_OFF:
1353                if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354                        saved_console_loglevel = console_loglevel;
1355                console_loglevel = minimum_console_loglevel;
1356                break;
1357        /* Enable logging to console */
1358        case SYSLOG_ACTION_CONSOLE_ON:
1359                if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360                        console_loglevel = saved_console_loglevel;
1361                        saved_console_loglevel = LOGLEVEL_DEFAULT;
1362                }
1363                break;
1364        /* Set level of messages printed to console */
1365        case SYSLOG_ACTION_CONSOLE_LEVEL:
1366                error = -EINVAL;
1367                if (len < 1 || len > 8)
1368                        goto out;
1369                if (len < minimum_console_loglevel)
1370                        len = minimum_console_loglevel;
1371                console_loglevel = len;
1372                /* Implicitly re-enable logging to console */
1373                saved_console_loglevel = LOGLEVEL_DEFAULT;
1374                error = 0;
1375                break;
1376        /* Number of chars in the log buffer */
1377        case SYSLOG_ACTION_SIZE_UNREAD:
1378                raw_spin_lock_irq(&logbuf_lock);
1379                if (syslog_seq < log_first_seq) {
1380                        /* messages are gone, move to first one */
1381                        syslog_seq = log_first_seq;
1382                        syslog_idx = log_first_idx;
1383                        syslog_prev = 0;
1384                        syslog_partial = 0;
1385                }
1386                if (source == SYSLOG_FROM_PROC) {
1387                        /*
1388                         * Short-cut for poll(/"proc/kmsg") which simply checks
1389                         * for pending data, not the size; return the count of
1390                         * records, not the length.
1391                         */
1392                        error = log_next_seq - syslog_seq;
1393                } else {
1394                        u64 seq = syslog_seq;
1395                        u32 idx = syslog_idx;
1396                        enum log_flags prev = syslog_prev;
1397
1398                        error = 0;
1399                        while (seq < log_next_seq) {
1400                                struct printk_log *msg = log_from_idx(idx);
1401
1402                                error += msg_print_text(msg, prev, true, NULL, 0);
1403                                idx = log_next(idx);
1404                                seq++;
1405                                prev = msg->flags;
1406                        }
1407                        error -= syslog_partial;
1408                }
1409                raw_spin_unlock_irq(&logbuf_lock);
1410                break;
1411        /* Size of the log buffer */
1412        case SYSLOG_ACTION_SIZE_BUFFER:
1413                error = log_buf_len;
1414                break;
1415        default:
1416                error = -EINVAL;
1417                break;
1418        }
1419out:
1420        return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425        return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434                                 const char *ext_text, size_t ext_len,
1435                                 const char *text, size_t len)
1436{
1437        struct console *con;
1438
1439        trace_console(text, len);
1440
1441        if (level >= console_loglevel && !ignore_loglevel)
1442                return;
1443        if (!console_drivers)
1444                return;
1445
1446        for_each_console(con) {
1447                if (exclusive_console && con != exclusive_console)
1448                        continue;
1449                if (!(con->flags & CON_ENABLED))
1450                        continue;
1451                if (!con->write)
1452                        continue;
1453                if (!cpu_online(smp_processor_id()) &&
1454                    !(con->flags & CON_ANYTIME))
1455                        continue;
1456                if (con->flags & CON_EXTENDED)
1457                        con->write(con, ext_text, ext_len);
1458                else
1459                        con->write(con, text, len);
1460        }
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468static void zap_locks(void)
1469{
1470        static unsigned long oops_timestamp;
1471
1472        if (time_after_eq(jiffies, oops_timestamp) &&
1473            !time_after(jiffies, oops_timestamp + 30 * HZ))
1474                return;
1475
1476        oops_timestamp = jiffies;
1477
1478        debug_locks_off();
1479        /* If a crash is occurring, make sure we can't deadlock */
1480        raw_spin_lock_init(&logbuf_lock);
1481        /* And make sure that we print immediately */
1482        sema_init(&console_sem, 1);
1483}
1484
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
1489        if (unlikely(printk_delay_msec)) {
1490                int m = printk_delay_msec;
1491
1492                while (m--) {
1493                        mdelay(1);
1494                        touch_nmi_watchdog();
1495                }
1496        }
1497}
1498
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506        char buf[LOG_LINE_MAX];
1507        size_t len;                     /* length == 0 means unused buffer */
1508        size_t cons;                    /* bytes written to console */
1509        struct task_struct *owner;      /* task of first print*/
1510        u64 ts_nsec;                    /* time of first print */
1511        u8 level;                       /* log level of first message */
1512        u8 facility;                    /* log facility of first message */
1513        enum log_flags flags;           /* prefix, newline flags */
1514        bool flushed:1;                 /* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
1518{
1519        if (cont.flushed)
1520                return;
1521        if (cont.len == 0)
1522                return;
1523
1524        if (cont.cons) {
1525                /*
1526                 * If a fragment of this line was directly flushed to the
1527                 * console; wait for the console to pick up the rest of the
1528                 * line. LOG_NOCONS suppresses a duplicated output.
1529                 */
1530                log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531                          cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532                cont.flags = flags;
1533                cont.flushed = true;
1534        } else {
1535                /*
1536                 * If no fragment of this line ever reached the console,
1537                 * just submit it to the store and free the buffer.
1538                 */
1539                log_store(cont.facility, cont.level, flags, 0,
1540                          NULL, 0, cont.buf, cont.len);
1541                cont.len = 0;
1542        }
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
1546{
1547        if (cont.len && cont.flushed)
1548                return false;
1549
1550        /*
1551         * If ext consoles are present, flush and skip in-kernel
1552         * continuation.  See nr_ext_console_drivers definition.  Also, if
1553         * the line gets too long, split it up in separate records.
1554         */
1555        if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556                cont_flush(LOG_CONT);
1557                return false;
1558        }
1559
1560        if (!cont.len) {
1561                cont.facility = facility;
1562                cont.level = level;
1563                cont.owner = current;
1564                cont.ts_nsec = local_clock();
1565                cont.flags = 0;
1566                cont.cons = 0;
1567                cont.flushed = false;
1568        }
1569
1570        memcpy(cont.buf + cont.len, text, len);
1571        cont.len += len;
1572
1573        if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574                cont_flush(LOG_CONT);
1575
1576        return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581        size_t textlen = 0;
1582        size_t len;
1583
1584        if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585                textlen += print_time(cont.ts_nsec, text);
1586                size -= textlen;
1587        }
1588
1589        len = cont.len - cont.cons;
1590        if (len > 0) {
1591                if (len+1 > size)
1592                        len = size-1;
1593                memcpy(text + textlen, cont.buf + cont.cons, len);
1594                textlen += len;
1595                cont.cons = cont.len;
1596        }
1597
1598        if (cont.flushed) {
1599                if (cont.flags & LOG_NEWLINE)
1600                        text[textlen++] = '\n';
1601                /* got everything, release buffer */
1602                cont.len = 0;
1603        }
1604        return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608                            const char *dict, size_t dictlen,
1609                            const char *fmt, va_list args)
1610{
1611        static bool recursion_bug;
1612        static char textbuf[LOG_LINE_MAX];
1613        char *text = textbuf;
1614        size_t text_len = 0;
1615        enum log_flags lflags = 0;
1616        unsigned long flags;
1617        int this_cpu;
1618        int printed_len = 0;
1619        bool in_sched = false;
1620        /* cpu currently holding logbuf_lock in this function */
1621        static unsigned int logbuf_cpu = UINT_MAX;
1622
1623        if (level == LOGLEVEL_SCHED) {
1624                level = LOGLEVEL_DEFAULT;
1625                in_sched = true;
1626        }
1627
1628        boot_delay_msec(level);
1629        printk_delay();
1630
1631        local_irq_save(flags);
1632        this_cpu = smp_processor_id();
1633
1634        /*
1635         * Ouch, printk recursed into itself!
1636         */
1637        if (unlikely(logbuf_cpu == this_cpu)) {
1638                /*
1639                 * If a crash is occurring during printk() on this CPU,
1640                 * then try to get the crash message out but make sure
1641                 * we can't deadlock. Otherwise just return to avoid the
1642                 * recursion and return - but flag the recursion so that
1643                 * it can be printed at the next appropriate moment:
1644                 */
1645                if (!oops_in_progress && !lockdep_recursing(current)) {
1646                        recursion_bug = true;
1647                        local_irq_restore(flags);
1648                        return 0;
1649                }
1650                zap_locks();
1651        }
1652
1653        lockdep_off();
1654        /* This stops the holder of console_sem just where we want him */
1655        raw_spin_lock(&logbuf_lock);
1656        logbuf_cpu = this_cpu;
1657
1658        if (unlikely(recursion_bug)) {
1659                static const char recursion_msg[] =
1660                        "BUG: recent printk recursion!";
1661
1662                recursion_bug = false;
1663                /* emit KERN_CRIT message */
1664                printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665                                         NULL, 0, recursion_msg,
1666                                         strlen(recursion_msg));
1667        }
1668
1669        /*
1670         * The printf needs to come first; we need the syslog
1671         * prefix which might be passed-in as a parameter.
1672         */
1673        text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675        /* mark and strip a trailing newline */
1676        if (text_len && text[text_len-1] == '\n') {
1677                text_len--;
1678                lflags |= LOG_NEWLINE;
1679        }
1680
1681        /* strip kernel syslog prefix and extract log level or control flags */
1682        if (facility == 0) {
1683                int kern_level = printk_get_level(text);
1684
1685                if (kern_level) {
1686                        const char *end_of_header = printk_skip_level(text);
1687                        switch (kern_level) {
1688                        case '0' ... '7':
1689                                if (level == LOGLEVEL_DEFAULT)
1690                                        level = kern_level - '0';
1691                                /* fallthrough */
1692                        case 'd':       /* KERN_DEFAULT */
1693                                lflags |= LOG_PREFIX;
1694                        }
1695                        /*
1696                         * No need to check length here because vscnprintf
1697                         * put '\0' at the end of the string. Only valid and
1698                         * newly printed level is detected.
1699                         */
1700                        text_len -= end_of_header - text;
1701                        text = (char *)end_of_header;
1702                }
1703        }
1704
1705        if (level == LOGLEVEL_DEFAULT)
1706                level = default_message_loglevel;
1707
1708        if (dict)
1709                lflags |= LOG_PREFIX|LOG_NEWLINE;
1710
1711        if (!(lflags & LOG_NEWLINE)) {
1712                /*
1713                 * Flush the conflicting buffer. An earlier newline was missing,
1714                 * or another task also prints continuation lines.
1715                 */
1716                if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717                        cont_flush(LOG_NEWLINE);
1718
1719                /* buffer line if possible, otherwise store it right away */
1720                if (cont_add(facility, level, text, text_len))
1721                        printed_len += text_len;
1722                else
1723                        printed_len += log_store(facility, level,
1724                                                 lflags | LOG_CONT, 0,
1725                                                 dict, dictlen, text, text_len);
1726        } else {
1727                bool stored = false;
1728
1729                /*
1730                 * If an earlier newline was missing and it was the same task,
1731                 * either merge it with the current buffer and flush, or if
1732                 * there was a race with interrupts (prefix == true) then just
1733                 * flush it out and store this line separately.
1734                 * If the preceding printk was from a different task and missed
1735                 * a newline, flush and append the newline.
1736                 */
1737                if (cont.len) {
1738                        if (cont.owner == current && !(lflags & LOG_PREFIX))
1739                                stored = cont_add(facility, level, text,
1740                                                  text_len);
1741                        cont_flush(LOG_NEWLINE);
1742                }
1743
1744                if (stored)
1745                        printed_len += text_len;
1746                else
1747                        printed_len += log_store(facility, level, lflags, 0,
1748                                                 dict, dictlen, text, text_len);
1749        }
1750
1751        logbuf_cpu = UINT_MAX;
1752        raw_spin_unlock(&logbuf_lock);
1753        lockdep_on();
1754        local_irq_restore(flags);
1755
1756        /* If called from the scheduler, we can not call up(). */
1757        if (!in_sched) {
1758                lockdep_off();
1759                /*
1760                 * Try to acquire and then immediately release the console
1761                 * semaphore.  The release will print out buffers and wake up
1762                 * /dev/kmsg and syslog() users.
1763                 */
1764                if (console_trylock())
1765                        console_unlock();
1766                lockdep_on();
1767        }
1768
1769        return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775        return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780                           const char *dict, size_t dictlen,
1781                           const char *fmt, ...)
1782{
1783        va_list args;
1784        int r;
1785
1786        va_start(args, fmt);
1787        r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788        va_end(args);
1789
1790        return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796        int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799        if (unlikely(kdb_trap_printk)) {
1800                r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801                return r;
1802        }
1803#endif
1804        r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806        return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers.  If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841        printk_func_t vprintk_func;
1842        va_list args;
1843        int r;
1844
1845        va_start(args, fmt);
1846
1847        /*
1848         * If a caller overrides the per_cpu printk_func, then it needs
1849         * to disable preemption when calling printk(). Otherwise
1850         * the printk_func should be set to the default. No need to
1851         * disable preemption here.
1852         */
1853        vprintk_func = this_cpu_read(printk_func);
1854        r = vprintk_func(fmt, args);
1855
1856        va_end(args);
1857
1858        return r;
1859}
1860EXPORT_SYMBOL(printk);
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX            0
1865#define PREFIX_MAX              0
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877        size_t len;
1878        size_t cons;
1879        u8 level;
1880        bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887                                    struct printk_log *msg, u64 seq,
1888                                    enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890                                  char *dict, size_t dict_len,
1891                                  char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893                                 const char *ext_text, size_t ext_len,
1894                                 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896                             bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909        va_list ap;
1910        char buf[512];
1911        int n;
1912
1913        if (!early_console)
1914                return;
1915
1916        va_start(ap, fmt);
1917        n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918        va_end(ap);
1919
1920        early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925                                   char *brl_options)
1926{
1927        struct console_cmdline *c;
1928        int i;
1929
1930        /*
1931         *      See if this tty is not yet registered, and
1932         *      if we have a slot free.
1933         */
1934        for (i = 0, c = console_cmdline;
1935             i < MAX_CMDLINECONSOLES && c->name[0];
1936             i++, c++) {
1937                if (strcmp(c->name, name) == 0 && c->index == idx) {
1938                        if (!brl_options)
1939                                selected_console = i;
1940                        return 0;
1941                }
1942        }
1943        if (i == MAX_CMDLINECONSOLES)
1944                return -E2BIG;
1945        if (!brl_options)
1946                selected_console = i;
1947        strlcpy(c->name, name, sizeof(c->name));
1948        c->options = options;
1949        braille_set_options(c, brl_options);
1950
1951        c->index = idx;
1952        return 0;
1953}
1954/*
1955 * Set up a console.  Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960        char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961        char *s, *options, *brl_options = NULL;
1962        int idx;
1963
1964        if (_braille_console_setup(&str, &brl_options))
1965                return 1;
1966
1967        /*
1968         * Decode str into name, index, options.
1969         */
1970        if (str[0] >= '0' && str[0] <= '9') {
1971                strcpy(buf, "ttyS");
1972                strncpy(buf + 4, str, sizeof(buf) - 5);
1973        } else {
1974                strncpy(buf, str, sizeof(buf) - 1);
1975        }
1976        buf[sizeof(buf) - 1] = 0;
1977        options = strchr(str, ',');
1978        if (options)
1979                *(options++) = 0;
1980#ifdef __sparc__
1981        if (!strcmp(str, "ttya"))
1982                strcpy(buf, "ttyS0");
1983        if (!strcmp(str, "ttyb"))
1984                strcpy(buf, "ttyS1");
1985#endif
1986        for (s = buf; *s; s++)
1987                if (isdigit(*s) || *s == ',')
1988                        break;
1989        idx = simple_strtoul(s, NULL, 10);
1990        *s = 0;
1991
1992        __add_preferred_console(buf, idx, options, brl_options);
1993        console_set_on_cmdline = 1;
1994        return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init.  Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013        return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021        console_suspend_enabled = false;
2022        return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026                bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028        " and hibernate operations");
2029
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
2037        if (!console_suspend_enabled)
2038                return;
2039        printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040        console_lock();
2041        console_suspended = 1;
2042        up_console_sem();
2043}
2044
2045void resume_console(void)
2046{
2047        if (!console_suspend_enabled)
2048                return;
2049        down_console_sem();
2050        console_suspended = 0;
2051        console_unlock();
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console.  This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066        unsigned long action, void *hcpu)
2067{
2068        switch (action) {
2069        case CPU_ONLINE:
2070        case CPU_DEAD:
2071        case CPU_DOWN_FAILED:
2072        case CPU_UP_CANCELED:
2073                console_lock();
2074                console_unlock();
2075        }
2076        return NOTIFY_OK;
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089        might_sleep();
2090
2091        down_console_sem();
2092        if (console_suspended)
2093                return;
2094        console_locked = 1;
2095        console_may_schedule = 1;
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109        if (down_trylock_console_sem())
2110                return 0;
2111        if (console_suspended) {
2112                up_console_sem();
2113                return 0;
2114        }
2115        console_locked = 1;
2116        /*
2117         * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118         * safe to schedule (e.g. calling printk while holding a spin_lock),
2119         * because preempt_disable()/preempt_enable() are just barriers there
2120         * and preempt_count() is always 0.
2121         *
2122         * RCU read sections have a separate preemption counter when
2123         * PREEMPT_RCU enabled thus we must take extra care and check
2124         * rcu_preempt_depth(), otherwise RCU read sections modify
2125         * preempt_count().
2126         */
2127        console_may_schedule = !oops_in_progress &&
2128                        preemptible() &&
2129                        !rcu_preempt_depth();
2130        return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136        return console_locked;
2137}
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2142 */
2143static int have_callable_console(void)
2144{
2145        struct console *con;
2146
2147        for_each_console(con)
2148                if ((con->flags & CON_ENABLED) &&
2149                                (con->flags & CON_ANYTIME))
2150                        return 1;
2151
2152        return 0;
2153}
2154
2155/*
2156 * Can we actually use the console at this time on this cpu?
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2161 */
2162static inline int can_use_console(void)
2163{
2164        return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
2168{
2169        unsigned long flags;
2170        size_t len;
2171
2172        raw_spin_lock_irqsave(&logbuf_lock, flags);
2173
2174        if (!cont.len)
2175                goto out;
2176
2177        /*
2178         * We still queue earlier records, likely because the console was
2179         * busy. The earlier ones need to be printed before this one, we
2180         * did not flush any fragment so far, so just let it queue up.
2181         */
2182        if (console_seq < log_next_seq && !cont.cons)
2183                goto out;
2184
2185        len = cont_print_text(text, size);
2186        raw_spin_unlock(&logbuf_lock);
2187        stop_critical_timings();
2188        call_console_drivers(cont.level, NULL, 0, text, len);
2189        start_critical_timings();
2190        local_irq_restore(flags);
2191        return;
2192out:
2193        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk().  If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212        static char ext_text[CONSOLE_EXT_LOG_MAX];
2213        static char text[LOG_LINE_MAX + PREFIX_MAX];
2214        static u64 seen_seq;
2215        unsigned long flags;
2216        bool wake_klogd = false;
2217        bool do_cond_resched, retry;
2218
2219        if (console_suspended) {
2220                up_console_sem();
2221                return;
2222        }
2223
2224        /*
2225         * Console drivers are called under logbuf_lock, so
2226         * @console_may_schedule should be cleared before; however, we may
2227         * end up dumping a lot of lines, for example, if called from
2228         * console registration path, and should invoke cond_resched()
2229         * between lines if allowable.  Not doing so can cause a very long
2230         * scheduling stall on a slow console leading to RCU stall and
2231         * softlockup warnings which exacerbate the issue with more
2232         * messages practically incapacitating the system.
2233         */
2234        do_cond_resched = console_may_schedule;
2235        console_may_schedule = 0;
2236
2237again:
2238        /*
2239         * We released the console_sem lock, so we need to recheck if
2240         * cpu is online and (if not) is there at least one CON_ANYTIME
2241         * console.
2242         */
2243        if (!can_use_console()) {
2244                console_locked = 0;
2245                up_console_sem();
2246                return;
2247        }
2248
2249        /* flush buffered message fragment immediately to console */
2250        console_cont_flush(text, sizeof(text));
2251
2252        for (;;) {
2253                struct printk_log *msg;
2254                size_t ext_len = 0;
2255                size_t len;
2256                int level;
2257
2258                raw_spin_lock_irqsave(&logbuf_lock, flags);
2259                if (seen_seq != log_next_seq) {
2260                        wake_klogd = true;
2261                        seen_seq = log_next_seq;
2262                }
2263
2264                if (console_seq < log_first_seq) {
2265                        len = sprintf(text, "** %u printk messages dropped ** ",
2266                                      (unsigned)(log_first_seq - console_seq));
2267
2268                        /* messages are gone, move to first one */
2269                        console_seq = log_first_seq;
2270                        console_idx = log_first_idx;
2271                        console_prev = 0;
2272                } else {
2273                        len = 0;
2274                }
2275skip:
2276                if (console_seq == log_next_seq)
2277                        break;
2278
2279                msg = log_from_idx(console_idx);
2280                if (msg->flags & LOG_NOCONS) {
2281                        /*
2282                         * Skip record we have buffered and already printed
2283                         * directly to the console when we received it.
2284                         */
2285                        console_idx = log_next(console_idx);
2286                        console_seq++;
2287                        /*
2288                         * We will get here again when we register a new
2289                         * CON_PRINTBUFFER console. Clear the flag so we
2290                         * will properly dump everything later.
2291                         */
2292                        msg->flags &= ~LOG_NOCONS;
2293                        console_prev = msg->flags;
2294                        goto skip;
2295                }
2296
2297                level = msg->level;
2298                len += msg_print_text(msg, console_prev, false,
2299                                      text + len, sizeof(text) - len);
2300                if (nr_ext_console_drivers) {
2301                        ext_len = msg_print_ext_header(ext_text,
2302                                                sizeof(ext_text),
2303                                                msg, console_seq, console_prev);
2304                        ext_len += msg_print_ext_body(ext_text + ext_len,
2305                                                sizeof(ext_text) - ext_len,
2306                                                log_dict(msg), msg->dict_len,
2307                                                log_text(msg), msg->text_len);
2308                }
2309                console_idx = log_next(console_idx);
2310                console_seq++;
2311                console_prev = msg->flags;
2312                raw_spin_unlock(&logbuf_lock);
2313
2314                stop_critical_timings();        /* don't trace print latency */
2315                call_console_drivers(level, ext_text, ext_len, text, len);
2316                start_critical_timings();
2317                local_irq_restore(flags);
2318
2319                if (do_cond_resched)
2320                        cond_resched();
2321        }
2322        console_locked = 0;
2323
2324        /* Release the exclusive_console once it is used */
2325        if (unlikely(exclusive_console))
2326                exclusive_console = NULL;
2327
2328        raw_spin_unlock(&logbuf_lock);
2329
2330        up_console_sem();
2331
2332        /*
2333         * Someone could have filled up the buffer again, so re-check if there's
2334         * something to flush. In case we cannot trylock the console_sem again,
2335         * there's a new owner and the console_unlock() from them will do the
2336         * flush, no worries.
2337         */
2338        raw_spin_lock(&logbuf_lock);
2339        retry = console_seq != log_next_seq;
2340        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2341
2342        if (retry && console_trylock())
2343                goto again;
2344
2345        if (wake_klogd)
2346                wake_up_klogd();
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361        if (console_may_schedule)
2362                cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
2368        struct console *c;
2369
2370        /*
2371         * console_unblank can no longer be called in interrupt context unless
2372         * oops_in_progress is set to 1..
2373         */
2374        if (oops_in_progress) {
2375                if (down_trylock_console_sem() != 0)
2376                        return;
2377        } else
2378                console_lock();
2379
2380        console_locked = 1;
2381        console_may_schedule = 0;
2382        for_each_console(c)
2383                if ((c->flags & CON_ENABLED) && c->unblank)
2384                        c->unblank();
2385        console_unlock();
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
2395        /*
2396         * If someone else is holding the console lock, trylock will fail
2397         * and may_schedule may be set.  Ignore and proceed to unlock so
2398         * that messages are flushed out.  As this can be called from any
2399         * context and we don't want to get preempted while flushing,
2400         * ensure may_schedule is cleared.
2401         */
2402        console_trylock();
2403        console_may_schedule = 0;
2404        console_unlock();
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412        struct console *c;
2413        struct tty_driver *driver = NULL;
2414
2415        console_lock();
2416        for_each_console(c) {
2417                if (!c->device)
2418                        continue;
2419                driver = c->device(c, index);
2420                if (driver)
2421                        break;
2422        }
2423        console_unlock();
2424        return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434        console_lock();
2435        console->flags &= ~CON_ENABLED;
2436        console_unlock();
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442        console_lock();
2443        console->flags |= CON_ENABLED;
2444        console_unlock();
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452        keep_bootcon = 1;
2453        pr_info("debug: skip boot console de-registration.\n");
2454
2455        return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 *  - Any number of bootconsoles can be registered at any time.
2474 *  - As soon as a "real" console is registered, all bootconsoles
2475 *    will be unregistered automatically.
2476 *  - Once a "real" console is registered, any attempt to register a
2477 *    bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481        int i;
2482        unsigned long flags;
2483        struct console *bcon = NULL;
2484        struct console_cmdline *c;
2485
2486        if (console_drivers)
2487                for_each_console(bcon)
2488                        if (WARN(bcon == newcon,
2489                                        "console '%s%d' already registered\n",
2490                                        bcon->name, bcon->index))
2491                                return;
2492
2493        /*
2494         * before we register a new CON_BOOT console, make sure we don't
2495         * already have a valid console
2496         */
2497        if (console_drivers && newcon->flags & CON_BOOT) {
2498                /* find the last or real console */
2499                for_each_console(bcon) {
2500                        if (!(bcon->flags & CON_BOOT)) {
2501                                pr_info("Too late to register bootconsole %s%d\n",
2502                                        newcon->name, newcon->index);
2503                                return;
2504                        }
2505                }
2506        }
2507
2508        if (console_drivers && console_drivers->flags & CON_BOOT)
2509                bcon = console_drivers;
2510
2511        if (preferred_console < 0 || bcon || !console_drivers)
2512                preferred_console = selected_console;
2513
2514        /*
2515         *      See if we want to use this console driver. If we
2516         *      didn't select a console we take the first one
2517         *      that registers here.
2518         */
2519        if (preferred_console < 0) {
2520                if (newcon->index < 0)
2521                        newcon->index = 0;
2522                if (newcon->setup == NULL ||
2523                    newcon->setup(newcon, NULL) == 0) {
2524                        newcon->flags |= CON_ENABLED;
2525                        if (newcon->device) {
2526                                newcon->flags |= CON_CONSDEV;
2527                                preferred_console = 0;
2528                        }
2529                }
2530        }
2531
2532        /*
2533         *      See if this console matches one we selected on
2534         *      the command line.
2535         */
2536        for (i = 0, c = console_cmdline;
2537             i < MAX_CMDLINECONSOLES && c->name[0];
2538             i++, c++) {
2539                if (!newcon->match ||
2540                    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541                        /* default matching */
2542                        BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543                        if (strcmp(c->name, newcon->name) != 0)
2544                                continue;
2545                        if (newcon->index >= 0 &&
2546                            newcon->index != c->index)
2547                                continue;
2548                        if (newcon->index < 0)
2549                                newcon->index = c->index;
2550
2551                        if (_braille_register_console(newcon, c))
2552                                return;
2553
2554                        if (newcon->setup &&
2555                            newcon->setup(newcon, c->options) != 0)
2556                                break;
2557                }
2558
2559                newcon->flags |= CON_ENABLED;
2560                if (i == selected_console) {
2561                        newcon->flags |= CON_CONSDEV;
2562                        preferred_console = selected_console;
2563                }
2564                break;
2565        }
2566
2567        if (!(newcon->flags & CON_ENABLED))
2568                return;
2569
2570        /*
2571         * If we have a bootconsole, and are switching to a real console,
2572         * don't print everything out again, since when the boot console, and
2573         * the real console are the same physical device, it's annoying to
2574         * see the beginning boot messages twice
2575         */
2576        if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577                newcon->flags &= ~CON_PRINTBUFFER;
2578
2579        /*
2580         *      Put this console in the list - keep the
2581         *      preferred driver at the head of the list.
2582         */
2583        console_lock();
2584        if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585                newcon->next = console_drivers;
2586                console_drivers = newcon;
2587                if (newcon->next)
2588                        newcon->next->flags &= ~CON_CONSDEV;
2589        } else {
2590                newcon->next = console_drivers->next;
2591                console_drivers->next = newcon;
2592        }
2593
2594        if (newcon->flags & CON_EXTENDED)
2595                if (!nr_ext_console_drivers++)
2596                        pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597
2598        if (newcon->flags & CON_PRINTBUFFER) {
2599                /*
2600                 * console_unlock(); will print out the buffered messages
2601                 * for us.
2602                 */
2603                raw_spin_lock_irqsave(&logbuf_lock, flags);
2604                console_seq = syslog_seq;
2605                console_idx = syslog_idx;
2606                console_prev = syslog_prev;
2607                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608                /*
2609                 * We're about to replay the log buffer.  Only do this to the
2610                 * just-registered console to avoid excessive message spam to
2611                 * the already-registered consoles.
2612                 */
2613                exclusive_console = newcon;
2614        }
2615        console_unlock();
2616        console_sysfs_notify();
2617
2618        /*
2619         * By unregistering the bootconsoles after we enable the real console
2620         * we get the "console xxx enabled" message on all the consoles -
2621         * boot consoles, real consoles, etc - this is to ensure that end
2622         * users know there might be something in the kernel's log buffer that
2623         * went to the bootconsole (that they do not see on the real console)
2624         */
2625        pr_info("%sconsole [%s%d] enabled\n",
2626                (newcon->flags & CON_BOOT) ? "boot" : "" ,
2627                newcon->name, newcon->index);
2628        if (bcon &&
2629            ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630            !keep_bootcon) {
2631                /* We need to iterate through all boot consoles, to make
2632                 * sure we print everything out, before we unregister them.
2633                 */
2634                for_each_console(bcon)
2635                        if (bcon->flags & CON_BOOT)
2636                                unregister_console(bcon);
2637        }
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
2642{
2643        struct console *a, *b;
2644        int res;
2645
2646        pr_info("%sconsole [%s%d] disabled\n",
2647                (console->flags & CON_BOOT) ? "boot" : "" ,
2648                console->name, console->index);
2649
2650        res = _braille_unregister_console(console);
2651        if (res)
2652                return res;
2653
2654        res = 1;
2655        console_lock();
2656        if (console_drivers == console) {
2657                console_drivers=console->next;
2658                res = 0;
2659        } else if (console_drivers) {
2660                for (a=console_drivers->next, b=console_drivers ;
2661                     a; b=a, a=b->next) {
2662                        if (a == console) {
2663                                b->next = a->next;
2664                                res = 0;
2665                                break;
2666                        }
2667                }
2668        }
2669
2670        if (!res && (console->flags & CON_EXTENDED))
2671                nr_ext_console_drivers--;
2672
2673        /*
2674         * If this isn't the last console and it has CON_CONSDEV set, we
2675         * need to set it on the next preferred console.
2676         */
2677        if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678                console_drivers->flags |= CON_CONSDEV;
2679
2680        console->flags &= ~CON_ENABLED;
2681        console_unlock();
2682        console_sysfs_notify();
2683        return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
2687/*
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
2704        struct console *con;
2705
2706        for_each_console(con) {
2707                if (!keep_bootcon && con->flags & CON_BOOT) {
2708                        /*
2709                         * Make sure to unregister boot consoles whose data
2710                         * resides in the init section before the init section
2711                         * is discarded. Boot consoles whose data will stick
2712                         * around will automatically be unregistered when the
2713                         * proper console replaces them.
2714                         */
2715                        if (init_section_intersects(con, sizeof(*con)))
2716                                unregister_console(con);
2717                }
2718        }
2719        hotcpu_notifier(console_cpu_notify, 0);
2720        return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
2728#define PRINTK_PENDING_WAKEUP   0x01
2729#define PRINTK_PENDING_OUTPUT   0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735        int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737        if (pending & PRINTK_PENDING_OUTPUT) {
2738                /* If trylock fails, someone else is doing the printing */
2739                if (console_trylock())
2740                        console_unlock();
2741        }
2742
2743        if (pending & PRINTK_PENDING_WAKEUP)
2744                wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748        .func = wake_up_klogd_work_func,
2749        .flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
2754        preempt_disable();
2755        if (waitqueue_active(&log_wait)) {
2756                this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757                irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758        }
2759        preempt_enable();
2760}
2761
2762int printk_deferred(const char *fmt, ...)
2763{
2764        va_list args;
2765        int r;
2766
2767        preempt_disable();
2768        va_start(args, fmt);
2769        r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770        va_end(args);
2771
2772        __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773        irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774        preempt_enable();
2775
2776        return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789        return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803                        unsigned int interval_msecs)
2804{
2805        unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807        if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808                return false;
2809
2810        *caller_jiffies = jiffies;
2811        return true;
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828        unsigned long flags;
2829        int err = -EBUSY;
2830
2831        /* The dump callback needs to be set */
2832        if (!dumper->dump)
2833                return -EINVAL;
2834
2835        spin_lock_irqsave(&dump_list_lock, flags);
2836        /* Don't allow registering multiple times */
2837        if (!dumper->registered) {
2838                dumper->registered = 1;
2839                list_add_tail_rcu(&dumper->list, &dump_list);
2840                err = 0;
2841        }
2842        spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844        return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857        unsigned long flags;
2858        int err = -EINVAL;
2859
2860        spin_lock_irqsave(&dump_list_lock, flags);
2861        if (dumper->registered) {
2862                dumper->registered = 0;
2863                list_del_rcu(&dumper->list);
2864                err = 0;
2865        }
2866        spin_unlock_irqrestore(&dump_list_lock, flags);
2867        synchronize_rcu();
2868
2869        return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886        struct kmsg_dumper *dumper;
2887        unsigned long flags;
2888
2889        if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890                return;
2891
2892        rcu_read_lock();
2893        list_for_each_entry_rcu(dumper, &dump_list, list) {
2894                if (dumper->max_reason && reason > dumper->max_reason)
2895                        continue;
2896
2897                /* initialize iterator with data about the stored records */
2898                dumper->active = true;
2899
2900                raw_spin_lock_irqsave(&logbuf_lock, flags);
2901                dumper->cur_seq = clear_seq;
2902                dumper->cur_idx = clear_idx;
2903                dumper->next_seq = log_next_seq;
2904                dumper->next_idx = log_next_idx;
2905                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906
2907                /* invoke dumper which will iterate over records */
2908                dumper->dump(dumper, reason);
2909
2910                /* reset iterator */
2911                dumper->active = false;
2912        }
2913        rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936                               char *line, size_t size, size_t *len)
2937{
2938        struct printk_log *msg;
2939        size_t l = 0;
2940        bool ret = false;
2941
2942        if (!dumper->active)
2943                goto out;
2944
2945        if (dumper->cur_seq < log_first_seq) {
2946                /* messages are gone, move to first available one */
2947                dumper->cur_seq = log_first_seq;
2948                dumper->cur_idx = log_first_idx;
2949        }
2950
2951        /* last entry */
2952        if (dumper->cur_seq >= log_next_seq)
2953                goto out;
2954
2955        msg = log_from_idx(dumper->cur_idx);
2956        l = msg_print_text(msg, 0, syslog, line, size);
2957
2958        dumper->cur_idx = log_next(dumper->cur_idx);
2959        dumper->cur_seq++;
2960        ret = true;
2961out:
2962        if (len)
2963                *len = l;
2964        return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985                        char *line, size_t size, size_t *len)
2986{
2987        unsigned long flags;
2988        bool ret;
2989
2990        raw_spin_lock_irqsave(&logbuf_lock, flags);
2991        ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994        return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018                          char *buf, size_t size, size_t *len)
3019{
3020        unsigned long flags;
3021        u64 seq;
3022        u32 idx;
3023        u64 next_seq;
3024        u32 next_idx;
3025        enum log_flags prev;
3026        size_t l = 0;
3027        bool ret = false;
3028
3029        if (!dumper->active)
3030                goto out;
3031
3032        raw_spin_lock_irqsave(&logbuf_lock, flags);
3033        if (dumper->cur_seq < log_first_seq) {
3034                /* messages are gone, move to first available one */
3035                dumper->cur_seq = log_first_seq;
3036                dumper->cur_idx = log_first_idx;
3037        }
3038
3039        /* last entry */
3040        if (dumper->cur_seq >= dumper->next_seq) {
3041                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042                goto out;
3043        }
3044
3045        /* calculate length of entire buffer */
3046        seq = dumper->cur_seq;
3047        idx = dumper->cur_idx;
3048        prev = 0;
3049        while (seq < dumper->next_seq) {
3050                struct printk_log *msg = log_from_idx(idx);
3051
3052                l += msg_print_text(msg, prev, true, NULL, 0);
3053                idx = log_next(idx);
3054                seq++;
3055                prev = msg->flags;
3056        }
3057
3058        /* move first record forward until length fits into the buffer */
3059        seq = dumper->cur_seq;
3060        idx = dumper->cur_idx;
3061        prev = 0;
3062        while (l > size && seq < dumper->next_seq) {
3063                struct printk_log *msg = log_from_idx(idx);
3064
3065                l -= msg_print_text(msg, prev, true, NULL, 0);
3066                idx = log_next(idx);
3067                seq++;
3068                prev = msg->flags;
3069        }
3070
3071        /* last message in next interation */
3072        next_seq = seq;
3073        next_idx = idx;
3074
3075        l = 0;
3076        while (seq < dumper->next_seq) {
3077                struct printk_log *msg = log_from_idx(idx);
3078
3079                l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080                idx = log_next(idx);
3081                seq++;
3082                prev = msg->flags;
3083        }
3084
3085        dumper->next_seq = next_seq;
3086        dumper->next_idx = next_idx;
3087        ret = true;
3088        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090        if (len)
3091                *len = l;
3092        return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108        dumper->cur_seq = clear_seq;
3109        dumper->cur_idx = clear_idx;
3110        dumper->next_seq = log_next_seq;
3111        dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124        unsigned long flags;
3125
3126        raw_spin_lock_irqsave(&logbuf_lock, flags);
3127        kmsg_dump_rewind_nolock(dumper);
3128        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps.  Usually used to add arch-specific system identifiers.  If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146        va_list args;
3147
3148        va_start(args, fmt);
3149        vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150                  fmt, args);
3151        va_end(args);
3152}
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163        printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164               log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165               print_tainted(), init_utsname()->release,
3166               (int)strcspn(init_utsname()->version, " "),
3167               init_utsname()->version);
3168
3169        if (dump_stack_arch_desc_str[0] != '\0')
3170                printk("%sHardware name: %s\n",
3171                       log_lvl, dump_stack_arch_desc_str);
3172
3173        print_worker_info(log_lvl, current);
3174}
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185        dump_stack_print_info(log_lvl);
3186
3187        printk("%stask: %p ti: %p task.ti: %p\n",
3188               log_lvl, current, current_thread_info(),
3189               task_thread_info(current));
3190}
3191
3192#endif
3193