linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      Nadia Yvette Chambers, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
  14 *      Oracle, 2004
  15 */
  16
  17#include <linux/export.h>
  18#include <linux/profile.h>
  19#include <linux/bootmem.h>
  20#include <linux/notifier.h>
  21#include <linux/mm.h>
  22#include <linux/cpumask.h>
  23#include <linux/cpu.h>
  24#include <linux/highmem.h>
  25#include <linux/mutex.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <asm/sections.h>
  29#include <asm/irq_regs.h>
  30#include <asm/ptrace.h>
  31
  32struct profile_hit {
  33        u32 pc, hits;
  34};
  35#define PROFILE_GRPSHIFT        3
  36#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  37#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  38#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  39
  40static atomic_t *prof_buffer;
  41static unsigned long prof_len, prof_shift;
  42
  43int prof_on __read_mostly;
  44EXPORT_SYMBOL_GPL(prof_on);
  45
  46static cpumask_var_t prof_cpu_mask;
  47#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
  48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  49static DEFINE_PER_CPU(int, cpu_profile_flip);
  50static DEFINE_MUTEX(profile_flip_mutex);
  51#endif /* CONFIG_SMP */
  52
  53int profile_setup(char *str)
  54{
  55        static const char schedstr[] = "schedule";
  56        static const char sleepstr[] = "sleep";
  57        static const char kvmstr[] = "kvm";
  58        int par;
  59
  60        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  61#ifdef CONFIG_SCHEDSTATS
  62                force_schedstat_enabled();
  63                prof_on = SLEEP_PROFILING;
  64                if (str[strlen(sleepstr)] == ',')
  65                        str += strlen(sleepstr) + 1;
  66                if (get_option(&str, &par))
  67                        prof_shift = par;
  68                pr_info("kernel sleep profiling enabled (shift: %ld)\n",
  69                        prof_shift);
  70#else
  71                pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  72#endif /* CONFIG_SCHEDSTATS */
  73        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  74                prof_on = SCHED_PROFILING;
  75                if (str[strlen(schedstr)] == ',')
  76                        str += strlen(schedstr) + 1;
  77                if (get_option(&str, &par))
  78                        prof_shift = par;
  79                pr_info("kernel schedule profiling enabled (shift: %ld)\n",
  80                        prof_shift);
  81        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  82                prof_on = KVM_PROFILING;
  83                if (str[strlen(kvmstr)] == ',')
  84                        str += strlen(kvmstr) + 1;
  85                if (get_option(&str, &par))
  86                        prof_shift = par;
  87                pr_info("kernel KVM profiling enabled (shift: %ld)\n",
  88                        prof_shift);
  89        } else if (get_option(&str, &par)) {
  90                prof_shift = par;
  91                prof_on = CPU_PROFILING;
  92                pr_info("kernel profiling enabled (shift: %ld)\n",
  93                        prof_shift);
  94        }
  95        return 1;
  96}
  97__setup("profile=", profile_setup);
  98
  99
 100int __ref profile_init(void)
 101{
 102        int buffer_bytes;
 103        if (!prof_on)
 104                return 0;
 105
 106        /* only text is profiled */
 107        prof_len = (_etext - _stext) >> prof_shift;
 108        buffer_bytes = prof_len*sizeof(atomic_t);
 109
 110        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 111                return -ENOMEM;
 112
 113        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 114
 115        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 116        if (prof_buffer)
 117                return 0;
 118
 119        prof_buffer = alloc_pages_exact(buffer_bytes,
 120                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 121        if (prof_buffer)
 122                return 0;
 123
 124        prof_buffer = vzalloc(buffer_bytes);
 125        if (prof_buffer)
 126                return 0;
 127
 128        free_cpumask_var(prof_cpu_mask);
 129        return -ENOMEM;
 130}
 131
 132/* Profile event notifications */
 133
 134static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 135static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 136static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 137
 138void profile_task_exit(struct task_struct *task)
 139{
 140        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 141}
 142
 143int profile_handoff_task(struct task_struct *task)
 144{
 145        int ret;
 146        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 147        return (ret == NOTIFY_OK) ? 1 : 0;
 148}
 149
 150void profile_munmap(unsigned long addr)
 151{
 152        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 153}
 154
 155int task_handoff_register(struct notifier_block *n)
 156{
 157        return atomic_notifier_chain_register(&task_free_notifier, n);
 158}
 159EXPORT_SYMBOL_GPL(task_handoff_register);
 160
 161int task_handoff_unregister(struct notifier_block *n)
 162{
 163        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 164}
 165EXPORT_SYMBOL_GPL(task_handoff_unregister);
 166
 167int profile_event_register(enum profile_type type, struct notifier_block *n)
 168{
 169        int err = -EINVAL;
 170
 171        switch (type) {
 172        case PROFILE_TASK_EXIT:
 173                err = blocking_notifier_chain_register(
 174                                &task_exit_notifier, n);
 175                break;
 176        case PROFILE_MUNMAP:
 177                err = blocking_notifier_chain_register(
 178                                &munmap_notifier, n);
 179                break;
 180        }
 181
 182        return err;
 183}
 184EXPORT_SYMBOL_GPL(profile_event_register);
 185
 186int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 187{
 188        int err = -EINVAL;
 189
 190        switch (type) {
 191        case PROFILE_TASK_EXIT:
 192                err = blocking_notifier_chain_unregister(
 193                                &task_exit_notifier, n);
 194                break;
 195        case PROFILE_MUNMAP:
 196                err = blocking_notifier_chain_unregister(
 197                                &munmap_notifier, n);
 198                break;
 199        }
 200
 201        return err;
 202}
 203EXPORT_SYMBOL_GPL(profile_event_unregister);
 204
 205#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 206/*
 207 * Each cpu has a pair of open-addressed hashtables for pending
 208 * profile hits. read_profile() IPI's all cpus to request them
 209 * to flip buffers and flushes their contents to prof_buffer itself.
 210 * Flip requests are serialized by the profile_flip_mutex. The sole
 211 * use of having a second hashtable is for avoiding cacheline
 212 * contention that would otherwise happen during flushes of pending
 213 * profile hits required for the accuracy of reported profile hits
 214 * and so resurrect the interrupt livelock issue.
 215 *
 216 * The open-addressed hashtables are indexed by profile buffer slot
 217 * and hold the number of pending hits to that profile buffer slot on
 218 * a cpu in an entry. When the hashtable overflows, all pending hits
 219 * are accounted to their corresponding profile buffer slots with
 220 * atomic_add() and the hashtable emptied. As numerous pending hits
 221 * may be accounted to a profile buffer slot in a hashtable entry,
 222 * this amortizes a number of atomic profile buffer increments likely
 223 * to be far larger than the number of entries in the hashtable,
 224 * particularly given that the number of distinct profile buffer
 225 * positions to which hits are accounted during short intervals (e.g.
 226 * several seconds) is usually very small. Exclusion from buffer
 227 * flipping is provided by interrupt disablement (note that for
 228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 229 * process context).
 230 * The hash function is meant to be lightweight as opposed to strong,
 231 * and was vaguely inspired by ppc64 firmware-supported inverted
 232 * pagetable hash functions, but uses a full hashtable full of finite
 233 * collision chains, not just pairs of them.
 234 *
 235 * -- nyc
 236 */
 237static void __profile_flip_buffers(void *unused)
 238{
 239        int cpu = smp_processor_id();
 240
 241        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 242}
 243
 244static void profile_flip_buffers(void)
 245{
 246        int i, j, cpu;
 247
 248        mutex_lock(&profile_flip_mutex);
 249        j = per_cpu(cpu_profile_flip, get_cpu());
 250        put_cpu();
 251        on_each_cpu(__profile_flip_buffers, NULL, 1);
 252        for_each_online_cpu(cpu) {
 253                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 254                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 255                        if (!hits[i].hits) {
 256                                if (hits[i].pc)
 257                                        hits[i].pc = 0;
 258                                continue;
 259                        }
 260                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 261                        hits[i].hits = hits[i].pc = 0;
 262                }
 263        }
 264        mutex_unlock(&profile_flip_mutex);
 265}
 266
 267static void profile_discard_flip_buffers(void)
 268{
 269        int i, cpu;
 270
 271        mutex_lock(&profile_flip_mutex);
 272        i = per_cpu(cpu_profile_flip, get_cpu());
 273        put_cpu();
 274        on_each_cpu(__profile_flip_buffers, NULL, 1);
 275        for_each_online_cpu(cpu) {
 276                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 277                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 278        }
 279        mutex_unlock(&profile_flip_mutex);
 280}
 281
 282static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 283{
 284        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 285        int i, j, cpu;
 286        struct profile_hit *hits;
 287
 288        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 289        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 290        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 291        cpu = get_cpu();
 292        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 293        if (!hits) {
 294                put_cpu();
 295                return;
 296        }
 297        /*
 298         * We buffer the global profiler buffer into a per-CPU
 299         * queue and thus reduce the number of global (and possibly
 300         * NUMA-alien) accesses. The write-queue is self-coalescing:
 301         */
 302        local_irq_save(flags);
 303        do {
 304                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 305                        if (hits[i + j].pc == pc) {
 306                                hits[i + j].hits += nr_hits;
 307                                goto out;
 308                        } else if (!hits[i + j].hits) {
 309                                hits[i + j].pc = pc;
 310                                hits[i + j].hits = nr_hits;
 311                                goto out;
 312                        }
 313                }
 314                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 315        } while (i != primary);
 316
 317        /*
 318         * Add the current hit(s) and flush the write-queue out
 319         * to the global buffer:
 320         */
 321        atomic_add(nr_hits, &prof_buffer[pc]);
 322        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 323                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 324                hits[i].pc = hits[i].hits = 0;
 325        }
 326out:
 327        local_irq_restore(flags);
 328        put_cpu();
 329}
 330
 331static int profile_cpu_callback(struct notifier_block *info,
 332                                        unsigned long action, void *__cpu)
 333{
 334        int node, cpu = (unsigned long)__cpu;
 335        struct page *page;
 336
 337        switch (action) {
 338        case CPU_UP_PREPARE:
 339        case CPU_UP_PREPARE_FROZEN:
 340                node = cpu_to_mem(cpu);
 341                per_cpu(cpu_profile_flip, cpu) = 0;
 342                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 343                        page = __alloc_pages_node(node,
 344                                        GFP_KERNEL | __GFP_ZERO,
 345                                        0);
 346                        if (!page)
 347                                return notifier_from_errno(-ENOMEM);
 348                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 349                }
 350                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 351                        page = __alloc_pages_node(node,
 352                                        GFP_KERNEL | __GFP_ZERO,
 353                                        0);
 354                        if (!page)
 355                                goto out_free;
 356                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 357                }
 358                break;
 359out_free:
 360                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 361                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 362                __free_page(page);
 363                return notifier_from_errno(-ENOMEM);
 364        case CPU_ONLINE:
 365        case CPU_ONLINE_FROZEN:
 366                if (prof_cpu_mask != NULL)
 367                        cpumask_set_cpu(cpu, prof_cpu_mask);
 368                break;
 369        case CPU_UP_CANCELED:
 370        case CPU_UP_CANCELED_FROZEN:
 371        case CPU_DEAD:
 372        case CPU_DEAD_FROZEN:
 373                if (prof_cpu_mask != NULL)
 374                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 375                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 376                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 377                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 378                        __free_page(page);
 379                }
 380                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 381                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 382                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 383                        __free_page(page);
 384                }
 385                break;
 386        }
 387        return NOTIFY_OK;
 388}
 389#else /* !CONFIG_SMP */
 390#define profile_flip_buffers()          do { } while (0)
 391#define profile_discard_flip_buffers()  do { } while (0)
 392#define profile_cpu_callback            NULL
 393
 394static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 395{
 396        unsigned long pc;
 397        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 398        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 399}
 400#endif /* !CONFIG_SMP */
 401
 402void profile_hits(int type, void *__pc, unsigned int nr_hits)
 403{
 404        if (prof_on != type || !prof_buffer)
 405                return;
 406        do_profile_hits(type, __pc, nr_hits);
 407}
 408EXPORT_SYMBOL_GPL(profile_hits);
 409
 410void profile_tick(int type)
 411{
 412        struct pt_regs *regs = get_irq_regs();
 413
 414        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 415            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 416                profile_hit(type, (void *)profile_pc(regs));
 417}
 418
 419#ifdef CONFIG_PROC_FS
 420#include <linux/proc_fs.h>
 421#include <linux/seq_file.h>
 422#include <asm/uaccess.h>
 423
 424static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 425{
 426        seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
 427        return 0;
 428}
 429
 430static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 431{
 432        return single_open(file, prof_cpu_mask_proc_show, NULL);
 433}
 434
 435static ssize_t prof_cpu_mask_proc_write(struct file *file,
 436        const char __user *buffer, size_t count, loff_t *pos)
 437{
 438        cpumask_var_t new_value;
 439        int err;
 440
 441        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 442                return -ENOMEM;
 443
 444        err = cpumask_parse_user(buffer, count, new_value);
 445        if (!err) {
 446                cpumask_copy(prof_cpu_mask, new_value);
 447                err = count;
 448        }
 449        free_cpumask_var(new_value);
 450        return err;
 451}
 452
 453static const struct file_operations prof_cpu_mask_proc_fops = {
 454        .open           = prof_cpu_mask_proc_open,
 455        .read           = seq_read,
 456        .llseek         = seq_lseek,
 457        .release        = single_release,
 458        .write          = prof_cpu_mask_proc_write,
 459};
 460
 461void create_prof_cpu_mask(void)
 462{
 463        /* create /proc/irq/prof_cpu_mask */
 464        proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
 465}
 466
 467/*
 468 * This function accesses profiling information. The returned data is
 469 * binary: the sampling step and the actual contents of the profile
 470 * buffer. Use of the program readprofile is recommended in order to
 471 * get meaningful info out of these data.
 472 */
 473static ssize_t
 474read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 475{
 476        unsigned long p = *ppos;
 477        ssize_t read;
 478        char *pnt;
 479        unsigned int sample_step = 1 << prof_shift;
 480
 481        profile_flip_buffers();
 482        if (p >= (prof_len+1)*sizeof(unsigned int))
 483                return 0;
 484        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 485                count = (prof_len+1)*sizeof(unsigned int) - p;
 486        read = 0;
 487
 488        while (p < sizeof(unsigned int) && count > 0) {
 489                if (put_user(*((char *)(&sample_step)+p), buf))
 490                        return -EFAULT;
 491                buf++; p++; count--; read++;
 492        }
 493        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 494        if (copy_to_user(buf, (void *)pnt, count))
 495                return -EFAULT;
 496        read += count;
 497        *ppos += read;
 498        return read;
 499}
 500
 501/*
 502 * Writing to /proc/profile resets the counters
 503 *
 504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 505 * interrupt frequency, on architectures that support this.
 506 */
 507static ssize_t write_profile(struct file *file, const char __user *buf,
 508                             size_t count, loff_t *ppos)
 509{
 510#ifdef CONFIG_SMP
 511        extern int setup_profiling_timer(unsigned int multiplier);
 512
 513        if (count == sizeof(int)) {
 514                unsigned int multiplier;
 515
 516                if (copy_from_user(&multiplier, buf, sizeof(int)))
 517                        return -EFAULT;
 518
 519                if (setup_profiling_timer(multiplier))
 520                        return -EINVAL;
 521        }
 522#endif
 523        profile_discard_flip_buffers();
 524        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 525        return count;
 526}
 527
 528static const struct file_operations proc_profile_operations = {
 529        .read           = read_profile,
 530        .write          = write_profile,
 531        .llseek         = default_llseek,
 532};
 533
 534#ifdef CONFIG_SMP
 535static void profile_nop(void *unused)
 536{
 537}
 538
 539static int create_hash_tables(void)
 540{
 541        int cpu;
 542
 543        for_each_online_cpu(cpu) {
 544                int node = cpu_to_mem(cpu);
 545                struct page *page;
 546
 547                page = __alloc_pages_node(node,
 548                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 549                                0);
 550                if (!page)
 551                        goto out_cleanup;
 552                per_cpu(cpu_profile_hits, cpu)[1]
 553                                = (struct profile_hit *)page_address(page);
 554                page = __alloc_pages_node(node,
 555                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 556                                0);
 557                if (!page)
 558                        goto out_cleanup;
 559                per_cpu(cpu_profile_hits, cpu)[0]
 560                                = (struct profile_hit *)page_address(page);
 561        }
 562        return 0;
 563out_cleanup:
 564        prof_on = 0;
 565        smp_mb();
 566        on_each_cpu(profile_nop, NULL, 1);
 567        for_each_online_cpu(cpu) {
 568                struct page *page;
 569
 570                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 571                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 572                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 573                        __free_page(page);
 574                }
 575                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 576                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 577                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 578                        __free_page(page);
 579                }
 580        }
 581        return -1;
 582}
 583#else
 584#define create_hash_tables()                    ({ 0; })
 585#endif
 586
 587int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 588{
 589        struct proc_dir_entry *entry;
 590        int err = 0;
 591
 592        if (!prof_on)
 593                return 0;
 594
 595        cpu_notifier_register_begin();
 596
 597        if (create_hash_tables()) {
 598                err = -ENOMEM;
 599                goto out;
 600        }
 601
 602        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 603                            NULL, &proc_profile_operations);
 604        if (!entry)
 605                goto out;
 606        proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 607        __hotcpu_notifier(profile_cpu_callback, 0);
 608
 609out:
 610        cpu_notifier_register_done();
 611        return err;
 612}
 613subsys_initcall(create_proc_profile);
 614#endif /* CONFIG_PROC_FS */
 615