linux/kernel/sched/fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21 */
  22
  23#include <linux/sched.h>
  24#include <linux/latencytop.h>
  25#include <linux/cpumask.h>
  26#include <linux/cpuidle.h>
  27#include <linux/slab.h>
  28#include <linux/profile.h>
  29#include <linux/interrupt.h>
  30#include <linux/mempolicy.h>
  31#include <linux/migrate.h>
  32#include <linux/task_work.h>
  33
  34#include <trace/events/sched.h>
  35
  36#include "sched.h"
  37
  38/*
  39 * Targeted preemption latency for CPU-bound tasks:
  40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  41 *
  42 * NOTE: this latency value is not the same as the concept of
  43 * 'timeslice length' - timeslices in CFS are of variable length
  44 * and have no persistent notion like in traditional, time-slice
  45 * based scheduling concepts.
  46 *
  47 * (to see the precise effective timeslice length of your workload,
  48 *  run vmstat and monitor the context-switches (cs) field)
  49 */
  50unsigned int sysctl_sched_latency = 6000000ULL;
  51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  52
  53/*
  54 * The initial- and re-scaling of tunables is configurable
  55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  56 *
  57 * Options are:
  58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  61 */
  62enum sched_tunable_scaling sysctl_sched_tunable_scaling
  63        = SCHED_TUNABLESCALING_LOG;
  64
  65/*
  66 * Minimal preemption granularity for CPU-bound tasks:
  67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68 */
  69unsigned int sysctl_sched_min_granularity = 750000ULL;
  70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  71
  72/*
  73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  74 */
  75static unsigned int sched_nr_latency = 8;
  76
  77/*
  78 * After fork, child runs first. If set to 0 (default) then
  79 * parent will (try to) run first.
  80 */
  81unsigned int sysctl_sched_child_runs_first __read_mostly;
  82
  83/*
  84 * SCHED_OTHER wake-up granularity.
  85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  86 *
  87 * This option delays the preemption effects of decoupled workloads
  88 * and reduces their over-scheduling. Synchronous workloads will still
  89 * have immediate wakeup/sleep latencies.
  90 */
  91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  93
  94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  95
  96/*
  97 * The exponential sliding  window over which load is averaged for shares
  98 * distribution.
  99 * (default: 10msec)
 100 */
 101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 102
 103#ifdef CONFIG_CFS_BANDWIDTH
 104/*
 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 106 * each time a cfs_rq requests quota.
 107 *
 108 * Note: in the case that the slice exceeds the runtime remaining (either due
 109 * to consumption or the quota being specified to be smaller than the slice)
 110 * we will always only issue the remaining available time.
 111 *
 112 * default: 5 msec, units: microseconds
 113  */
 114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 115#endif
 116
 117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 118{
 119        lw->weight += inc;
 120        lw->inv_weight = 0;
 121}
 122
 123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 124{
 125        lw->weight -= dec;
 126        lw->inv_weight = 0;
 127}
 128
 129static inline void update_load_set(struct load_weight *lw, unsigned long w)
 130{
 131        lw->weight = w;
 132        lw->inv_weight = 0;
 133}
 134
 135/*
 136 * Increase the granularity value when there are more CPUs,
 137 * because with more CPUs the 'effective latency' as visible
 138 * to users decreases. But the relationship is not linear,
 139 * so pick a second-best guess by going with the log2 of the
 140 * number of CPUs.
 141 *
 142 * This idea comes from the SD scheduler of Con Kolivas:
 143 */
 144static unsigned int get_update_sysctl_factor(void)
 145{
 146        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 147        unsigned int factor;
 148
 149        switch (sysctl_sched_tunable_scaling) {
 150        case SCHED_TUNABLESCALING_NONE:
 151                factor = 1;
 152                break;
 153        case SCHED_TUNABLESCALING_LINEAR:
 154                factor = cpus;
 155                break;
 156        case SCHED_TUNABLESCALING_LOG:
 157        default:
 158                factor = 1 + ilog2(cpus);
 159                break;
 160        }
 161
 162        return factor;
 163}
 164
 165static void update_sysctl(void)
 166{
 167        unsigned int factor = get_update_sysctl_factor();
 168
 169#define SET_SYSCTL(name) \
 170        (sysctl_##name = (factor) * normalized_sysctl_##name)
 171        SET_SYSCTL(sched_min_granularity);
 172        SET_SYSCTL(sched_latency);
 173        SET_SYSCTL(sched_wakeup_granularity);
 174#undef SET_SYSCTL
 175}
 176
 177void sched_init_granularity(void)
 178{
 179        update_sysctl();
 180}
 181
 182#define WMULT_CONST     (~0U)
 183#define WMULT_SHIFT     32
 184
 185static void __update_inv_weight(struct load_weight *lw)
 186{
 187        unsigned long w;
 188
 189        if (likely(lw->inv_weight))
 190                return;
 191
 192        w = scale_load_down(lw->weight);
 193
 194        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 195                lw->inv_weight = 1;
 196        else if (unlikely(!w))
 197                lw->inv_weight = WMULT_CONST;
 198        else
 199                lw->inv_weight = WMULT_CONST / w;
 200}
 201
 202/*
 203 * delta_exec * weight / lw.weight
 204 *   OR
 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 206 *
 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 210 *
 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 213 */
 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 215{
 216        u64 fact = scale_load_down(weight);
 217        int shift = WMULT_SHIFT;
 218
 219        __update_inv_weight(lw);
 220
 221        if (unlikely(fact >> 32)) {
 222                while (fact >> 32) {
 223                        fact >>= 1;
 224                        shift--;
 225                }
 226        }
 227
 228        /* hint to use a 32x32->64 mul */
 229        fact = (u64)(u32)fact * lw->inv_weight;
 230
 231        while (fact >> 32) {
 232                fact >>= 1;
 233                shift--;
 234        }
 235
 236        return mul_u64_u32_shr(delta_exec, fact, shift);
 237}
 238
 239
 240const struct sched_class fair_sched_class;
 241
 242/**************************************************************
 243 * CFS operations on generic schedulable entities:
 244 */
 245
 246#ifdef CONFIG_FAIR_GROUP_SCHED
 247
 248/* cpu runqueue to which this cfs_rq is attached */
 249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 250{
 251        return cfs_rq->rq;
 252}
 253
 254/* An entity is a task if it doesn't "own" a runqueue */
 255#define entity_is_task(se)      (!se->my_q)
 256
 257static inline struct task_struct *task_of(struct sched_entity *se)
 258{
 259#ifdef CONFIG_SCHED_DEBUG
 260        WARN_ON_ONCE(!entity_is_task(se));
 261#endif
 262        return container_of(se, struct task_struct, se);
 263}
 264
 265/* Walk up scheduling entities hierarchy */
 266#define for_each_sched_entity(se) \
 267                for (; se; se = se->parent)
 268
 269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 270{
 271        return p->se.cfs_rq;
 272}
 273
 274/* runqueue on which this entity is (to be) queued */
 275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 276{
 277        return se->cfs_rq;
 278}
 279
 280/* runqueue "owned" by this group */
 281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 282{
 283        return grp->my_q;
 284}
 285
 286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 287{
 288        if (!cfs_rq->on_list) {
 289                /*
 290                 * Ensure we either appear before our parent (if already
 291                 * enqueued) or force our parent to appear after us when it is
 292                 * enqueued.  The fact that we always enqueue bottom-up
 293                 * reduces this to two cases.
 294                 */
 295                if (cfs_rq->tg->parent &&
 296                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 297                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 298                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 299                } else {
 300                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 301                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 302                }
 303
 304                cfs_rq->on_list = 1;
 305        }
 306}
 307
 308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 309{
 310        if (cfs_rq->on_list) {
 311                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 312                cfs_rq->on_list = 0;
 313        }
 314}
 315
 316/* Iterate thr' all leaf cfs_rq's on a runqueue */
 317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 318        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 319
 320/* Do the two (enqueued) entities belong to the same group ? */
 321static inline struct cfs_rq *
 322is_same_group(struct sched_entity *se, struct sched_entity *pse)
 323{
 324        if (se->cfs_rq == pse->cfs_rq)
 325                return se->cfs_rq;
 326
 327        return NULL;
 328}
 329
 330static inline struct sched_entity *parent_entity(struct sched_entity *se)
 331{
 332        return se->parent;
 333}
 334
 335static void
 336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 337{
 338        int se_depth, pse_depth;
 339
 340        /*
 341         * preemption test can be made between sibling entities who are in the
 342         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 343         * both tasks until we find their ancestors who are siblings of common
 344         * parent.
 345         */
 346
 347        /* First walk up until both entities are at same depth */
 348        se_depth = (*se)->depth;
 349        pse_depth = (*pse)->depth;
 350
 351        while (se_depth > pse_depth) {
 352                se_depth--;
 353                *se = parent_entity(*se);
 354        }
 355
 356        while (pse_depth > se_depth) {
 357                pse_depth--;
 358                *pse = parent_entity(*pse);
 359        }
 360
 361        while (!is_same_group(*se, *pse)) {
 362                *se = parent_entity(*se);
 363                *pse = parent_entity(*pse);
 364        }
 365}
 366
 367#else   /* !CONFIG_FAIR_GROUP_SCHED */
 368
 369static inline struct task_struct *task_of(struct sched_entity *se)
 370{
 371        return container_of(se, struct task_struct, se);
 372}
 373
 374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 375{
 376        return container_of(cfs_rq, struct rq, cfs);
 377}
 378
 379#define entity_is_task(se)      1
 380
 381#define for_each_sched_entity(se) \
 382                for (; se; se = NULL)
 383
 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 385{
 386        return &task_rq(p)->cfs;
 387}
 388
 389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 390{
 391        struct task_struct *p = task_of(se);
 392        struct rq *rq = task_rq(p);
 393
 394        return &rq->cfs;
 395}
 396
 397/* runqueue "owned" by this group */
 398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 399{
 400        return NULL;
 401}
 402
 403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 404{
 405}
 406
 407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 408{
 409}
 410
 411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 412                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 413
 414static inline struct sched_entity *parent_entity(struct sched_entity *se)
 415{
 416        return NULL;
 417}
 418
 419static inline void
 420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 421{
 422}
 423
 424#endif  /* CONFIG_FAIR_GROUP_SCHED */
 425
 426static __always_inline
 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 428
 429/**************************************************************
 430 * Scheduling class tree data structure manipulation methods:
 431 */
 432
 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 434{
 435        s64 delta = (s64)(vruntime - max_vruntime);
 436        if (delta > 0)
 437                max_vruntime = vruntime;
 438
 439        return max_vruntime;
 440}
 441
 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 443{
 444        s64 delta = (s64)(vruntime - min_vruntime);
 445        if (delta < 0)
 446                min_vruntime = vruntime;
 447
 448        return min_vruntime;
 449}
 450
 451static inline int entity_before(struct sched_entity *a,
 452                                struct sched_entity *b)
 453{
 454        return (s64)(a->vruntime - b->vruntime) < 0;
 455}
 456
 457static void update_min_vruntime(struct cfs_rq *cfs_rq)
 458{
 459        u64 vruntime = cfs_rq->min_vruntime;
 460
 461        if (cfs_rq->curr)
 462                vruntime = cfs_rq->curr->vruntime;
 463
 464        if (cfs_rq->rb_leftmost) {
 465                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 466                                                   struct sched_entity,
 467                                                   run_node);
 468
 469                if (!cfs_rq->curr)
 470                        vruntime = se->vruntime;
 471                else
 472                        vruntime = min_vruntime(vruntime, se->vruntime);
 473        }
 474
 475        /* ensure we never gain time by being placed backwards. */
 476        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 477#ifndef CONFIG_64BIT
 478        smp_wmb();
 479        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 480#endif
 481}
 482
 483/*
 484 * Enqueue an entity into the rb-tree:
 485 */
 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 487{
 488        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 489        struct rb_node *parent = NULL;
 490        struct sched_entity *entry;
 491        int leftmost = 1;
 492
 493        /*
 494         * Find the right place in the rbtree:
 495         */
 496        while (*link) {
 497                parent = *link;
 498                entry = rb_entry(parent, struct sched_entity, run_node);
 499                /*
 500                 * We dont care about collisions. Nodes with
 501                 * the same key stay together.
 502                 */
 503                if (entity_before(se, entry)) {
 504                        link = &parent->rb_left;
 505                } else {
 506                        link = &parent->rb_right;
 507                        leftmost = 0;
 508                }
 509        }
 510
 511        /*
 512         * Maintain a cache of leftmost tree entries (it is frequently
 513         * used):
 514         */
 515        if (leftmost)
 516                cfs_rq->rb_leftmost = &se->run_node;
 517
 518        rb_link_node(&se->run_node, parent, link);
 519        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 520}
 521
 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 523{
 524        if (cfs_rq->rb_leftmost == &se->run_node) {
 525                struct rb_node *next_node;
 526
 527                next_node = rb_next(&se->run_node);
 528                cfs_rq->rb_leftmost = next_node;
 529        }
 530
 531        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 532}
 533
 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 535{
 536        struct rb_node *left = cfs_rq->rb_leftmost;
 537
 538        if (!left)
 539                return NULL;
 540
 541        return rb_entry(left, struct sched_entity, run_node);
 542}
 543
 544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 545{
 546        struct rb_node *next = rb_next(&se->run_node);
 547
 548        if (!next)
 549                return NULL;
 550
 551        return rb_entry(next, struct sched_entity, run_node);
 552}
 553
 554#ifdef CONFIG_SCHED_DEBUG
 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 556{
 557        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 558
 559        if (!last)
 560                return NULL;
 561
 562        return rb_entry(last, struct sched_entity, run_node);
 563}
 564
 565/**************************************************************
 566 * Scheduling class statistics methods:
 567 */
 568
 569int sched_proc_update_handler(struct ctl_table *table, int write,
 570                void __user *buffer, size_t *lenp,
 571                loff_t *ppos)
 572{
 573        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 574        unsigned int factor = get_update_sysctl_factor();
 575
 576        if (ret || !write)
 577                return ret;
 578
 579        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 580                                        sysctl_sched_min_granularity);
 581
 582#define WRT_SYSCTL(name) \
 583        (normalized_sysctl_##name = sysctl_##name / (factor))
 584        WRT_SYSCTL(sched_min_granularity);
 585        WRT_SYSCTL(sched_latency);
 586        WRT_SYSCTL(sched_wakeup_granularity);
 587#undef WRT_SYSCTL
 588
 589        return 0;
 590}
 591#endif
 592
 593/*
 594 * delta /= w
 595 */
 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 597{
 598        if (unlikely(se->load.weight != NICE_0_LOAD))
 599                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 600
 601        return delta;
 602}
 603
 604/*
 605 * The idea is to set a period in which each task runs once.
 606 *
 607 * When there are too many tasks (sched_nr_latency) we have to stretch
 608 * this period because otherwise the slices get too small.
 609 *
 610 * p = (nr <= nl) ? l : l*nr/nl
 611 */
 612static u64 __sched_period(unsigned long nr_running)
 613{
 614        if (unlikely(nr_running > sched_nr_latency))
 615                return nr_running * sysctl_sched_min_granularity;
 616        else
 617                return sysctl_sched_latency;
 618}
 619
 620/*
 621 * We calculate the wall-time slice from the period by taking a part
 622 * proportional to the weight.
 623 *
 624 * s = p*P[w/rw]
 625 */
 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 627{
 628        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 629
 630        for_each_sched_entity(se) {
 631                struct load_weight *load;
 632                struct load_weight lw;
 633
 634                cfs_rq = cfs_rq_of(se);
 635                load = &cfs_rq->load;
 636
 637                if (unlikely(!se->on_rq)) {
 638                        lw = cfs_rq->load;
 639
 640                        update_load_add(&lw, se->load.weight);
 641                        load = &lw;
 642                }
 643                slice = __calc_delta(slice, se->load.weight, load);
 644        }
 645        return slice;
 646}
 647
 648/*
 649 * We calculate the vruntime slice of a to-be-inserted task.
 650 *
 651 * vs = s/w
 652 */
 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 654{
 655        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 656}
 657
 658#ifdef CONFIG_SMP
 659static int select_idle_sibling(struct task_struct *p, int cpu);
 660static unsigned long task_h_load(struct task_struct *p);
 661
 662/*
 663 * We choose a half-life close to 1 scheduling period.
 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 665 * dependent on this value.
 666 */
 667#define LOAD_AVG_PERIOD 32
 668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
 670
 671/* Give new sched_entity start runnable values to heavy its load in infant time */
 672void init_entity_runnable_average(struct sched_entity *se)
 673{
 674        struct sched_avg *sa = &se->avg;
 675
 676        sa->last_update_time = 0;
 677        /*
 678         * sched_avg's period_contrib should be strictly less then 1024, so
 679         * we give it 1023 to make sure it is almost a period (1024us), and
 680         * will definitely be update (after enqueue).
 681         */
 682        sa->period_contrib = 1023;
 683        sa->load_avg = scale_load_down(se->load.weight);
 684        sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
 685        sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
 686        sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
 687        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 688}
 689
 690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
 691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
 692#else
 693void init_entity_runnable_average(struct sched_entity *se)
 694{
 695}
 696#endif
 697
 698/*
 699 * Update the current task's runtime statistics.
 700 */
 701static void update_curr(struct cfs_rq *cfs_rq)
 702{
 703        struct sched_entity *curr = cfs_rq->curr;
 704        u64 now = rq_clock_task(rq_of(cfs_rq));
 705        u64 delta_exec;
 706
 707        if (unlikely(!curr))
 708                return;
 709
 710        delta_exec = now - curr->exec_start;
 711        if (unlikely((s64)delta_exec <= 0))
 712                return;
 713
 714        curr->exec_start = now;
 715
 716        schedstat_set(curr->statistics.exec_max,
 717                      max(delta_exec, curr->statistics.exec_max));
 718
 719        curr->sum_exec_runtime += delta_exec;
 720        schedstat_add(cfs_rq, exec_clock, delta_exec);
 721
 722        curr->vruntime += calc_delta_fair(delta_exec, curr);
 723        update_min_vruntime(cfs_rq);
 724
 725        if (entity_is_task(curr)) {
 726                struct task_struct *curtask = task_of(curr);
 727
 728                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 729                cpuacct_charge(curtask, delta_exec);
 730                account_group_exec_runtime(curtask, delta_exec);
 731        }
 732
 733        account_cfs_rq_runtime(cfs_rq, delta_exec);
 734}
 735
 736static void update_curr_fair(struct rq *rq)
 737{
 738        update_curr(cfs_rq_of(&rq->curr->se));
 739}
 740
 741#ifdef CONFIG_SCHEDSTATS
 742static inline void
 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 744{
 745        u64 wait_start = rq_clock(rq_of(cfs_rq));
 746
 747        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 748            likely(wait_start > se->statistics.wait_start))
 749                wait_start -= se->statistics.wait_start;
 750
 751        se->statistics.wait_start = wait_start;
 752}
 753
 754static void
 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 756{
 757        struct task_struct *p;
 758        u64 delta;
 759
 760        delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
 761
 762        if (entity_is_task(se)) {
 763                p = task_of(se);
 764                if (task_on_rq_migrating(p)) {
 765                        /*
 766                         * Preserve migrating task's wait time so wait_start
 767                         * time stamp can be adjusted to accumulate wait time
 768                         * prior to migration.
 769                         */
 770                        se->statistics.wait_start = delta;
 771                        return;
 772                }
 773                trace_sched_stat_wait(p, delta);
 774        }
 775
 776        se->statistics.wait_max = max(se->statistics.wait_max, delta);
 777        se->statistics.wait_count++;
 778        se->statistics.wait_sum += delta;
 779        se->statistics.wait_start = 0;
 780}
 781
 782/*
 783 * Task is being enqueued - update stats:
 784 */
 785static inline void
 786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 787{
 788        /*
 789         * Are we enqueueing a waiting task? (for current tasks
 790         * a dequeue/enqueue event is a NOP)
 791         */
 792        if (se != cfs_rq->curr)
 793                update_stats_wait_start(cfs_rq, se);
 794}
 795
 796static inline void
 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 798{
 799        /*
 800         * Mark the end of the wait period if dequeueing a
 801         * waiting task:
 802         */
 803        if (se != cfs_rq->curr)
 804                update_stats_wait_end(cfs_rq, se);
 805
 806        if (flags & DEQUEUE_SLEEP) {
 807                if (entity_is_task(se)) {
 808                        struct task_struct *tsk = task_of(se);
 809
 810                        if (tsk->state & TASK_INTERRUPTIBLE)
 811                                se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
 812                        if (tsk->state & TASK_UNINTERRUPTIBLE)
 813                                se->statistics.block_start = rq_clock(rq_of(cfs_rq));
 814                }
 815        }
 816
 817}
 818#else
 819static inline void
 820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 821{
 822}
 823
 824static inline void
 825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 826{
 827}
 828
 829static inline void
 830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 831{
 832}
 833
 834static inline void
 835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 836{
 837}
 838#endif
 839
 840/*
 841 * We are picking a new current task - update its stats:
 842 */
 843static inline void
 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 845{
 846        /*
 847         * We are starting a new run period:
 848         */
 849        se->exec_start = rq_clock_task(rq_of(cfs_rq));
 850}
 851
 852/**************************************************
 853 * Scheduling class queueing methods:
 854 */
 855
 856#ifdef CONFIG_NUMA_BALANCING
 857/*
 858 * Approximate time to scan a full NUMA task in ms. The task scan period is
 859 * calculated based on the tasks virtual memory size and
 860 * numa_balancing_scan_size.
 861 */
 862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 864
 865/* Portion of address space to scan in MB */
 866unsigned int sysctl_numa_balancing_scan_size = 256;
 867
 868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 869unsigned int sysctl_numa_balancing_scan_delay = 1000;
 870
 871static unsigned int task_nr_scan_windows(struct task_struct *p)
 872{
 873        unsigned long rss = 0;
 874        unsigned long nr_scan_pages;
 875
 876        /*
 877         * Calculations based on RSS as non-present and empty pages are skipped
 878         * by the PTE scanner and NUMA hinting faults should be trapped based
 879         * on resident pages
 880         */
 881        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 882        rss = get_mm_rss(p->mm);
 883        if (!rss)
 884                rss = nr_scan_pages;
 885
 886        rss = round_up(rss, nr_scan_pages);
 887        return rss / nr_scan_pages;
 888}
 889
 890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 891#define MAX_SCAN_WINDOW 2560
 892
 893static unsigned int task_scan_min(struct task_struct *p)
 894{
 895        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 896        unsigned int scan, floor;
 897        unsigned int windows = 1;
 898
 899        if (scan_size < MAX_SCAN_WINDOW)
 900                windows = MAX_SCAN_WINDOW / scan_size;
 901        floor = 1000 / windows;
 902
 903        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 904        return max_t(unsigned int, floor, scan);
 905}
 906
 907static unsigned int task_scan_max(struct task_struct *p)
 908{
 909        unsigned int smin = task_scan_min(p);
 910        unsigned int smax;
 911
 912        /* Watch for min being lower than max due to floor calculations */
 913        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 914        return max(smin, smax);
 915}
 916
 917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 918{
 919        rq->nr_numa_running += (p->numa_preferred_nid != -1);
 920        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 921}
 922
 923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 924{
 925        rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 926        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 927}
 928
 929struct numa_group {
 930        atomic_t refcount;
 931
 932        spinlock_t lock; /* nr_tasks, tasks */
 933        int nr_tasks;
 934        pid_t gid;
 935        int active_nodes;
 936
 937        struct rcu_head rcu;
 938        unsigned long total_faults;
 939        unsigned long max_faults_cpu;
 940        /*
 941         * Faults_cpu is used to decide whether memory should move
 942         * towards the CPU. As a consequence, these stats are weighted
 943         * more by CPU use than by memory faults.
 944         */
 945        unsigned long *faults_cpu;
 946        unsigned long faults[0];
 947};
 948
 949/* Shared or private faults. */
 950#define NR_NUMA_HINT_FAULT_TYPES 2
 951
 952/* Memory and CPU locality */
 953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 954
 955/* Averaged statistics, and temporary buffers. */
 956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 957
 958pid_t task_numa_group_id(struct task_struct *p)
 959{
 960        return p->numa_group ? p->numa_group->gid : 0;
 961}
 962
 963/*
 964 * The averaged statistics, shared & private, memory & cpu,
 965 * occupy the first half of the array. The second half of the
 966 * array is for current counters, which are averaged into the
 967 * first set by task_numa_placement.
 968 */
 969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 970{
 971        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 972}
 973
 974static inline unsigned long task_faults(struct task_struct *p, int nid)
 975{
 976        if (!p->numa_faults)
 977                return 0;
 978
 979        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 980                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 981}
 982
 983static inline unsigned long group_faults(struct task_struct *p, int nid)
 984{
 985        if (!p->numa_group)
 986                return 0;
 987
 988        return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 989                p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 990}
 991
 992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 993{
 994        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 995                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 996}
 997
 998/*
 999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012                                        int maxdist, bool task)
1013{
1014        unsigned long score = 0;
1015        int node;
1016
1017        /*
1018         * All nodes are directly connected, and the same distance
1019         * from each other. No need for fancy placement algorithms.
1020         */
1021        if (sched_numa_topology_type == NUMA_DIRECT)
1022                return 0;
1023
1024        /*
1025         * This code is called for each node, introducing N^2 complexity,
1026         * which should be ok given the number of nodes rarely exceeds 8.
1027         */
1028        for_each_online_node(node) {
1029                unsigned long faults;
1030                int dist = node_distance(nid, node);
1031
1032                /*
1033                 * The furthest away nodes in the system are not interesting
1034                 * for placement; nid was already counted.
1035                 */
1036                if (dist == sched_max_numa_distance || node == nid)
1037                        continue;
1038
1039                /*
1040                 * On systems with a backplane NUMA topology, compare groups
1041                 * of nodes, and move tasks towards the group with the most
1042                 * memory accesses. When comparing two nodes at distance
1043                 * "hoplimit", only nodes closer by than "hoplimit" are part
1044                 * of each group. Skip other nodes.
1045                 */
1046                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047                                        dist > maxdist)
1048                        continue;
1049
1050                /* Add up the faults from nearby nodes. */
1051                if (task)
1052                        faults = task_faults(p, node);
1053                else
1054                        faults = group_faults(p, node);
1055
1056                /*
1057                 * On systems with a glueless mesh NUMA topology, there are
1058                 * no fixed "groups of nodes". Instead, nodes that are not
1059                 * directly connected bounce traffic through intermediate
1060                 * nodes; a numa_group can occupy any set of nodes.
1061                 * The further away a node is, the less the faults count.
1062                 * This seems to result in good task placement.
1063                 */
1064                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065                        faults *= (sched_max_numa_distance - dist);
1066                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067                }
1068
1069                score += faults;
1070        }
1071
1072        return score;
1073}
1074
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node.  The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082                                        int dist)
1083{
1084        unsigned long faults, total_faults;
1085
1086        if (!p->numa_faults)
1087                return 0;
1088
1089        total_faults = p->total_numa_faults;
1090
1091        if (!total_faults)
1092                return 0;
1093
1094        faults = task_faults(p, nid);
1095        faults += score_nearby_nodes(p, nid, dist, true);
1096
1097        return 1000 * faults / total_faults;
1098}
1099
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101                                         int dist)
1102{
1103        unsigned long faults, total_faults;
1104
1105        if (!p->numa_group)
1106                return 0;
1107
1108        total_faults = p->numa_group->total_faults;
1109
1110        if (!total_faults)
1111                return 0;
1112
1113        faults = group_faults(p, nid);
1114        faults += score_nearby_nodes(p, nid, dist, false);
1115
1116        return 1000 * faults / total_faults;
1117}
1118
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120                                int src_nid, int dst_cpu)
1121{
1122        struct numa_group *ng = p->numa_group;
1123        int dst_nid = cpu_to_node(dst_cpu);
1124        int last_cpupid, this_cpupid;
1125
1126        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128        /*
1129         * Multi-stage node selection is used in conjunction with a periodic
1130         * migration fault to build a temporal task<->page relation. By using
1131         * a two-stage filter we remove short/unlikely relations.
1132         *
1133         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134         * a task's usage of a particular page (n_p) per total usage of this
1135         * page (n_t) (in a given time-span) to a probability.
1136         *
1137         * Our periodic faults will sample this probability and getting the
1138         * same result twice in a row, given these samples are fully
1139         * independent, is then given by P(n)^2, provided our sample period
1140         * is sufficiently short compared to the usage pattern.
1141         *
1142         * This quadric squishes small probabilities, making it less likely we
1143         * act on an unlikely task<->page relation.
1144         */
1145        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146        if (!cpupid_pid_unset(last_cpupid) &&
1147                                cpupid_to_nid(last_cpupid) != dst_nid)
1148                return false;
1149
1150        /* Always allow migrate on private faults */
1151        if (cpupid_match_pid(p, last_cpupid))
1152                return true;
1153
1154        /* A shared fault, but p->numa_group has not been set up yet. */
1155        if (!ng)
1156                return true;
1157
1158        /*
1159         * Destination node is much more heavily used than the source
1160         * node? Allow migration.
1161         */
1162        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163                                        ACTIVE_NODE_FRACTION)
1164                return true;
1165
1166        /*
1167         * Distribute memory according to CPU & memory use on each node,
1168         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169         *
1170         * faults_cpu(dst)   3   faults_cpu(src)
1171         * --------------- * - > ---------------
1172         * faults_mem(dst)   4   faults_mem(src)
1173         */
1174        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176}
1177
1178static unsigned long weighted_cpuload(const int cpu);
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
1181static unsigned long capacity_of(int cpu);
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184/* Cached statistics for all CPUs within a node */
1185struct numa_stats {
1186        unsigned long nr_running;
1187        unsigned long load;
1188
1189        /* Total compute capacity of CPUs on a node */
1190        unsigned long compute_capacity;
1191
1192        /* Approximate capacity in terms of runnable tasks on a node */
1193        unsigned long task_capacity;
1194        int has_free_capacity;
1195};
1196
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
1202        int smt, cpu, cpus = 0;
1203        unsigned long capacity;
1204
1205        memset(ns, 0, sizeof(*ns));
1206        for_each_cpu(cpu, cpumask_of_node(nid)) {
1207                struct rq *rq = cpu_rq(cpu);
1208
1209                ns->nr_running += rq->nr_running;
1210                ns->load += weighted_cpuload(cpu);
1211                ns->compute_capacity += capacity_of(cpu);
1212
1213                cpus++;
1214        }
1215
1216        /*
1217         * If we raced with hotplug and there are no CPUs left in our mask
1218         * the @ns structure is NULL'ed and task_numa_compare() will
1219         * not find this node attractive.
1220         *
1221         * We'll either bail at !has_free_capacity, or we'll detect a huge
1222         * imbalance and bail there.
1223         */
1224        if (!cpus)
1225                return;
1226
1227        /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228        smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229        capacity = cpus / smt; /* cores */
1230
1231        ns->task_capacity = min_t(unsigned, capacity,
1232                DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233        ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234}
1235
1236struct task_numa_env {
1237        struct task_struct *p;
1238
1239        int src_cpu, src_nid;
1240        int dst_cpu, dst_nid;
1241
1242        struct numa_stats src_stats, dst_stats;
1243
1244        int imbalance_pct;
1245        int dist;
1246
1247        struct task_struct *best_task;
1248        long best_imp;
1249        int best_cpu;
1250};
1251
1252static void task_numa_assign(struct task_numa_env *env,
1253                             struct task_struct *p, long imp)
1254{
1255        if (env->best_task)
1256                put_task_struct(env->best_task);
1257
1258        env->best_task = p;
1259        env->best_imp = imp;
1260        env->best_cpu = env->dst_cpu;
1261}
1262
1263static bool load_too_imbalanced(long src_load, long dst_load,
1264                                struct task_numa_env *env)
1265{
1266        long imb, old_imb;
1267        long orig_src_load, orig_dst_load;
1268        long src_capacity, dst_capacity;
1269
1270        /*
1271         * The load is corrected for the CPU capacity available on each node.
1272         *
1273         * src_load        dst_load
1274         * ------------ vs ---------
1275         * src_capacity    dst_capacity
1276         */
1277        src_capacity = env->src_stats.compute_capacity;
1278        dst_capacity = env->dst_stats.compute_capacity;
1279
1280        /* We care about the slope of the imbalance, not the direction. */
1281        if (dst_load < src_load)
1282                swap(dst_load, src_load);
1283
1284        /* Is the difference below the threshold? */
1285        imb = dst_load * src_capacity * 100 -
1286              src_load * dst_capacity * env->imbalance_pct;
1287        if (imb <= 0)
1288                return false;
1289
1290        /*
1291         * The imbalance is above the allowed threshold.
1292         * Compare it with the old imbalance.
1293         */
1294        orig_src_load = env->src_stats.load;
1295        orig_dst_load = env->dst_stats.load;
1296
1297        if (orig_dst_load < orig_src_load)
1298                swap(orig_dst_load, orig_src_load);
1299
1300        old_imb = orig_dst_load * src_capacity * 100 -
1301                  orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303        /* Would this change make things worse? */
1304        return (imb > old_imb);
1305}
1306
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313static void task_numa_compare(struct task_numa_env *env,
1314                              long taskimp, long groupimp)
1315{
1316        struct rq *src_rq = cpu_rq(env->src_cpu);
1317        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318        struct task_struct *cur;
1319        long src_load, dst_load;
1320        long load;
1321        long imp = env->p->numa_group ? groupimp : taskimp;
1322        long moveimp = imp;
1323        int dist = env->dist;
1324        bool assigned = false;
1325
1326        rcu_read_lock();
1327
1328        raw_spin_lock_irq(&dst_rq->lock);
1329        cur = dst_rq->curr;
1330        /*
1331         * No need to move the exiting task or idle task.
1332         */
1333        if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334                cur = NULL;
1335        else {
1336                /*
1337                 * The task_struct must be protected here to protect the
1338                 * p->numa_faults access in the task_weight since the
1339                 * numa_faults could already be freed in the following path:
1340                 * finish_task_switch()
1341                 *     --> put_task_struct()
1342                 *         --> __put_task_struct()
1343                 *             --> task_numa_free()
1344                 */
1345                get_task_struct(cur);
1346        }
1347
1348        raw_spin_unlock_irq(&dst_rq->lock);
1349
1350        /*
1351         * Because we have preemption enabled we can get migrated around and
1352         * end try selecting ourselves (current == env->p) as a swap candidate.
1353         */
1354        if (cur == env->p)
1355                goto unlock;
1356
1357        /*
1358         * "imp" is the fault differential for the source task between the
1359         * source and destination node. Calculate the total differential for
1360         * the source task and potential destination task. The more negative
1361         * the value is, the more rmeote accesses that would be expected to
1362         * be incurred if the tasks were swapped.
1363         */
1364        if (cur) {
1365                /* Skip this swap candidate if cannot move to the source cpu */
1366                if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367                        goto unlock;
1368
1369                /*
1370                 * If dst and source tasks are in the same NUMA group, or not
1371                 * in any group then look only at task weights.
1372                 */
1373                if (cur->numa_group == env->p->numa_group) {
1374                        imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375                              task_weight(cur, env->dst_nid, dist);
1376                        /*
1377                         * Add some hysteresis to prevent swapping the
1378                         * tasks within a group over tiny differences.
1379                         */
1380                        if (cur->numa_group)
1381                                imp -= imp/16;
1382                } else {
1383                        /*
1384                         * Compare the group weights. If a task is all by
1385                         * itself (not part of a group), use the task weight
1386                         * instead.
1387                         */
1388                        if (cur->numa_group)
1389                                imp += group_weight(cur, env->src_nid, dist) -
1390                                       group_weight(cur, env->dst_nid, dist);
1391                        else
1392                                imp += task_weight(cur, env->src_nid, dist) -
1393                                       task_weight(cur, env->dst_nid, dist);
1394                }
1395        }
1396
1397        if (imp <= env->best_imp && moveimp <= env->best_imp)
1398                goto unlock;
1399
1400        if (!cur) {
1401                /* Is there capacity at our destination? */
1402                if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403                    !env->dst_stats.has_free_capacity)
1404                        goto unlock;
1405
1406                goto balance;
1407        }
1408
1409        /* Balance doesn't matter much if we're running a task per cpu */
1410        if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411                        dst_rq->nr_running == 1)
1412                goto assign;
1413
1414        /*
1415         * In the overloaded case, try and keep the load balanced.
1416         */
1417balance:
1418        load = task_h_load(env->p);
1419        dst_load = env->dst_stats.load + load;
1420        src_load = env->src_stats.load - load;
1421
1422        if (moveimp > imp && moveimp > env->best_imp) {
1423                /*
1424                 * If the improvement from just moving env->p direction is
1425                 * better than swapping tasks around, check if a move is
1426                 * possible. Store a slightly smaller score than moveimp,
1427                 * so an actually idle CPU will win.
1428                 */
1429                if (!load_too_imbalanced(src_load, dst_load, env)) {
1430                        imp = moveimp - 1;
1431                        put_task_struct(cur);
1432                        cur = NULL;
1433                        goto assign;
1434                }
1435        }
1436
1437        if (imp <= env->best_imp)
1438                goto unlock;
1439
1440        if (cur) {
1441                load = task_h_load(cur);
1442                dst_load -= load;
1443                src_load += load;
1444        }
1445
1446        if (load_too_imbalanced(src_load, dst_load, env))
1447                goto unlock;
1448
1449        /*
1450         * One idle CPU per node is evaluated for a task numa move.
1451         * Call select_idle_sibling to maybe find a better one.
1452         */
1453        if (!cur)
1454                env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456assign:
1457        assigned = true;
1458        task_numa_assign(env, cur, imp);
1459unlock:
1460        rcu_read_unlock();
1461        /*
1462         * The dst_rq->curr isn't assigned. The protection for task_struct is
1463         * finished.
1464         */
1465        if (cur && !assigned)
1466                put_task_struct(cur);
1467}
1468
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470                                long taskimp, long groupimp)
1471{
1472        int cpu;
1473
1474        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475                /* Skip this CPU if the source task cannot migrate */
1476                if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477                        continue;
1478
1479                env->dst_cpu = cpu;
1480                task_numa_compare(env, taskimp, groupimp);
1481        }
1482}
1483
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487        struct numa_stats *src = &env->src_stats;
1488        struct numa_stats *dst = &env->dst_stats;
1489
1490        if (src->has_free_capacity && !dst->has_free_capacity)
1491                return false;
1492
1493        /*
1494         * Only consider a task move if the source has a higher load
1495         * than the destination, corrected for CPU capacity on each node.
1496         *
1497         *      src->load                dst->load
1498         * --------------------- vs ---------------------
1499         * src->compute_capacity    dst->compute_capacity
1500         */
1501        if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503            dst->load * src->compute_capacity * 100)
1504                return true;
1505
1506        return false;
1507}
1508
1509static int task_numa_migrate(struct task_struct *p)
1510{
1511        struct task_numa_env env = {
1512                .p = p,
1513
1514                .src_cpu = task_cpu(p),
1515                .src_nid = task_node(p),
1516
1517                .imbalance_pct = 112,
1518
1519                .best_task = NULL,
1520                .best_imp = 0,
1521                .best_cpu = -1,
1522        };
1523        struct sched_domain *sd;
1524        unsigned long taskweight, groupweight;
1525        int nid, ret, dist;
1526        long taskimp, groupimp;
1527
1528        /*
1529         * Pick the lowest SD_NUMA domain, as that would have the smallest
1530         * imbalance and would be the first to start moving tasks about.
1531         *
1532         * And we want to avoid any moving of tasks about, as that would create
1533         * random movement of tasks -- counter the numa conditions we're trying
1534         * to satisfy here.
1535         */
1536        rcu_read_lock();
1537        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538        if (sd)
1539                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540        rcu_read_unlock();
1541
1542        /*
1543         * Cpusets can break the scheduler domain tree into smaller
1544         * balance domains, some of which do not cross NUMA boundaries.
1545         * Tasks that are "trapped" in such domains cannot be migrated
1546         * elsewhere, so there is no point in (re)trying.
1547         */
1548        if (unlikely(!sd)) {
1549                p->numa_preferred_nid = task_node(p);
1550                return -EINVAL;
1551        }
1552
1553        env.dst_nid = p->numa_preferred_nid;
1554        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555        taskweight = task_weight(p, env.src_nid, dist);
1556        groupweight = group_weight(p, env.src_nid, dist);
1557        update_numa_stats(&env.src_stats, env.src_nid);
1558        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560        update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562        /* Try to find a spot on the preferred nid. */
1563        if (numa_has_capacity(&env))
1564                task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566        /*
1567         * Look at other nodes in these cases:
1568         * - there is no space available on the preferred_nid
1569         * - the task is part of a numa_group that is interleaved across
1570         *   multiple NUMA nodes; in order to better consolidate the group,
1571         *   we need to check other locations.
1572         */
1573        if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574                for_each_online_node(nid) {
1575                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576                                continue;
1577
1578                        dist = node_distance(env.src_nid, env.dst_nid);
1579                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580                                                dist != env.dist) {
1581                                taskweight = task_weight(p, env.src_nid, dist);
1582                                groupweight = group_weight(p, env.src_nid, dist);
1583                        }
1584
1585                        /* Only consider nodes where both task and groups benefit */
1586                        taskimp = task_weight(p, nid, dist) - taskweight;
1587                        groupimp = group_weight(p, nid, dist) - groupweight;
1588                        if (taskimp < 0 && groupimp < 0)
1589                                continue;
1590
1591                        env.dist = dist;
1592                        env.dst_nid = nid;
1593                        update_numa_stats(&env.dst_stats, env.dst_nid);
1594                        if (numa_has_capacity(&env))
1595                                task_numa_find_cpu(&env, taskimp, groupimp);
1596                }
1597        }
1598
1599        /*
1600         * If the task is part of a workload that spans multiple NUMA nodes,
1601         * and is migrating into one of the workload's active nodes, remember
1602         * this node as the task's preferred numa node, so the workload can
1603         * settle down.
1604         * A task that migrated to a second choice node will be better off
1605         * trying for a better one later. Do not set the preferred node here.
1606         */
1607        if (p->numa_group) {
1608                struct numa_group *ng = p->numa_group;
1609
1610                if (env.best_cpu == -1)
1611                        nid = env.src_nid;
1612                else
1613                        nid = env.dst_nid;
1614
1615                if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616                        sched_setnuma(p, env.dst_nid);
1617        }
1618
1619        /* No better CPU than the current one was found. */
1620        if (env.best_cpu == -1)
1621                return -EAGAIN;
1622
1623        /*
1624         * Reset the scan period if the task is being rescheduled on an
1625         * alternative node to recheck if the tasks is now properly placed.
1626         */
1627        p->numa_scan_period = task_scan_min(p);
1628
1629        if (env.best_task == NULL) {
1630                ret = migrate_task_to(p, env.best_cpu);
1631                if (ret != 0)
1632                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633                return ret;
1634        }
1635
1636        ret = migrate_swap(p, env.best_task);
1637        if (ret != 0)
1638                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639        put_task_struct(env.best_task);
1640        return ret;
1641}
1642
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
1646        unsigned long interval = HZ;
1647
1648        /* This task has no NUMA fault statistics yet */
1649        if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650                return;
1651
1652        /* Periodically retry migrating the task to the preferred node */
1653        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654        p->numa_migrate_retry = jiffies + interval;
1655
1656        /* Success if task is already running on preferred CPU */
1657        if (task_node(p) == p->numa_preferred_nid)
1658                return;
1659
1660        /* Otherwise, try migrate to a CPU on the preferred node */
1661        task_numa_migrate(p);
1662}
1663
1664/*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
1669 */
1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671{
1672        unsigned long faults, max_faults = 0;
1673        int nid, active_nodes = 0;
1674
1675        for_each_online_node(nid) {
1676                faults = group_faults_cpu(numa_group, nid);
1677                if (faults > max_faults)
1678                        max_faults = faults;
1679        }
1680
1681        for_each_online_node(nid) {
1682                faults = group_faults_cpu(numa_group, nid);
1683                if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684                        active_nodes++;
1685        }
1686
1687        numa_group->max_faults_cpu = max_faults;
1688        numa_group->active_nodes = active_nodes;
1689}
1690
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698#define NUMA_PERIOD_SLOTS 10
1699#define NUMA_PERIOD_THRESHOLD 7
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708                        unsigned long shared, unsigned long private)
1709{
1710        unsigned int period_slot;
1711        int ratio;
1712        int diff;
1713
1714        unsigned long remote = p->numa_faults_locality[0];
1715        unsigned long local = p->numa_faults_locality[1];
1716
1717        /*
1718         * If there were no record hinting faults then either the task is
1719         * completely idle or all activity is areas that are not of interest
1720         * to automatic numa balancing. Related to that, if there were failed
1721         * migration then it implies we are migrating too quickly or the local
1722         * node is overloaded. In either case, scan slower
1723         */
1724        if (local + shared == 0 || p->numa_faults_locality[2]) {
1725                p->numa_scan_period = min(p->numa_scan_period_max,
1726                        p->numa_scan_period << 1);
1727
1728                p->mm->numa_next_scan = jiffies +
1729                        msecs_to_jiffies(p->numa_scan_period);
1730
1731                return;
1732        }
1733
1734        /*
1735         * Prepare to scale scan period relative to the current period.
1736         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1737         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739         */
1740        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741        ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742        if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743                int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744                if (!slot)
1745                        slot = 1;
1746                diff = slot * period_slot;
1747        } else {
1748                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750                /*
1751                 * Scale scan rate increases based on sharing. There is an
1752                 * inverse relationship between the degree of sharing and
1753                 * the adjustment made to the scanning period. Broadly
1754                 * speaking the intent is that there is little point
1755                 * scanning faster if shared accesses dominate as it may
1756                 * simply bounce migrations uselessly
1757                 */
1758                ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759                diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760        }
1761
1762        p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763                        task_scan_min(p), task_scan_max(p));
1764        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776        u64 runtime, delta, now;
1777        /* Use the start of this time slice to avoid calculations. */
1778        now = p->se.exec_start;
1779        runtime = p->se.sum_exec_runtime;
1780
1781        if (p->last_task_numa_placement) {
1782                delta = runtime - p->last_sum_exec_runtime;
1783                *period = now - p->last_task_numa_placement;
1784        } else {
1785                delta = p->se.avg.load_sum / p->se.load.weight;
1786                *period = LOAD_AVG_MAX;
1787        }
1788
1789        p->last_sum_exec_runtime = runtime;
1790        p->last_task_numa_placement = now;
1791
1792        return delta;
1793}
1794
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802        nodemask_t nodes;
1803        int dist;
1804
1805        /* Direct connections between all NUMA nodes. */
1806        if (sched_numa_topology_type == NUMA_DIRECT)
1807                return nid;
1808
1809        /*
1810         * On a system with glueless mesh NUMA topology, group_weight
1811         * scores nodes according to the number of NUMA hinting faults on
1812         * both the node itself, and on nearby nodes.
1813         */
1814        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815                unsigned long score, max_score = 0;
1816                int node, max_node = nid;
1817
1818                dist = sched_max_numa_distance;
1819
1820                for_each_online_node(node) {
1821                        score = group_weight(p, node, dist);
1822                        if (score > max_score) {
1823                                max_score = score;
1824                                max_node = node;
1825                        }
1826                }
1827                return max_node;
1828        }
1829
1830        /*
1831         * Finding the preferred nid in a system with NUMA backplane
1832         * interconnect topology is more involved. The goal is to locate
1833         * tasks from numa_groups near each other in the system, and
1834         * untangle workloads from different sides of the system. This requires
1835         * searching down the hierarchy of node groups, recursively searching
1836         * inside the highest scoring group of nodes. The nodemask tricks
1837         * keep the complexity of the search down.
1838         */
1839        nodes = node_online_map;
1840        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841                unsigned long max_faults = 0;
1842                nodemask_t max_group = NODE_MASK_NONE;
1843                int a, b;
1844
1845                /* Are there nodes at this distance from each other? */
1846                if (!find_numa_distance(dist))
1847                        continue;
1848
1849                for_each_node_mask(a, nodes) {
1850                        unsigned long faults = 0;
1851                        nodemask_t this_group;
1852                        nodes_clear(this_group);
1853
1854                        /* Sum group's NUMA faults; includes a==b case. */
1855                        for_each_node_mask(b, nodes) {
1856                                if (node_distance(a, b) < dist) {
1857                                        faults += group_faults(p, b);
1858                                        node_set(b, this_group);
1859                                        node_clear(b, nodes);
1860                                }
1861                        }
1862
1863                        /* Remember the top group. */
1864                        if (faults > max_faults) {
1865                                max_faults = faults;
1866                                max_group = this_group;
1867                                /*
1868                                 * subtle: at the smallest distance there is
1869                                 * just one node left in each "group", the
1870                                 * winner is the preferred nid.
1871                                 */
1872                                nid = a;
1873                        }
1874                }
1875                /* Next round, evaluate the nodes within max_group. */
1876                if (!max_faults)
1877                        break;
1878                nodes = max_group;
1879        }
1880        return nid;
1881}
1882
1883static void task_numa_placement(struct task_struct *p)
1884{
1885        int seq, nid, max_nid = -1, max_group_nid = -1;
1886        unsigned long max_faults = 0, max_group_faults = 0;
1887        unsigned long fault_types[2] = { 0, 0 };
1888        unsigned long total_faults;
1889        u64 runtime, period;
1890        spinlock_t *group_lock = NULL;
1891
1892        /*
1893         * The p->mm->numa_scan_seq field gets updated without
1894         * exclusive access. Use READ_ONCE() here to ensure
1895         * that the field is read in a single access:
1896         */
1897        seq = READ_ONCE(p->mm->numa_scan_seq);
1898        if (p->numa_scan_seq == seq)
1899                return;
1900        p->numa_scan_seq = seq;
1901        p->numa_scan_period_max = task_scan_max(p);
1902
1903        total_faults = p->numa_faults_locality[0] +
1904                       p->numa_faults_locality[1];
1905        runtime = numa_get_avg_runtime(p, &period);
1906
1907        /* If the task is part of a group prevent parallel updates to group stats */
1908        if (p->numa_group) {
1909                group_lock = &p->numa_group->lock;
1910                spin_lock_irq(group_lock);
1911        }
1912
1913        /* Find the node with the highest number of faults */
1914        for_each_online_node(nid) {
1915                /* Keep track of the offsets in numa_faults array */
1916                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917                unsigned long faults = 0, group_faults = 0;
1918                int priv;
1919
1920                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921                        long diff, f_diff, f_weight;
1922
1923                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928                        /* Decay existing window, copy faults since last scan */
1929                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930                        fault_types[priv] += p->numa_faults[membuf_idx];
1931                        p->numa_faults[membuf_idx] = 0;
1932
1933                        /*
1934                         * Normalize the faults_from, so all tasks in a group
1935                         * count according to CPU use, instead of by the raw
1936                         * number of faults. Tasks with little runtime have
1937                         * little over-all impact on throughput, and thus their
1938                         * faults are less important.
1939                         */
1940                        f_weight = div64_u64(runtime << 16, period + 1);
1941                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942                                   (total_faults + 1);
1943                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944                        p->numa_faults[cpubuf_idx] = 0;
1945
1946                        p->numa_faults[mem_idx] += diff;
1947                        p->numa_faults[cpu_idx] += f_diff;
1948                        faults += p->numa_faults[mem_idx];
1949                        p->total_numa_faults += diff;
1950                        if (p->numa_group) {
1951                                /*
1952                                 * safe because we can only change our own group
1953                                 *
1954                                 * mem_idx represents the offset for a given
1955                                 * nid and priv in a specific region because it
1956                                 * is at the beginning of the numa_faults array.
1957                                 */
1958                                p->numa_group->faults[mem_idx] += diff;
1959                                p->numa_group->faults_cpu[mem_idx] += f_diff;
1960                                p->numa_group->total_faults += diff;
1961                                group_faults += p->numa_group->faults[mem_idx];
1962                        }
1963                }
1964
1965                if (faults > max_faults) {
1966                        max_faults = faults;
1967                        max_nid = nid;
1968                }
1969
1970                if (group_faults > max_group_faults) {
1971                        max_group_faults = group_faults;
1972                        max_group_nid = nid;
1973                }
1974        }
1975
1976        update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978        if (p->numa_group) {
1979                numa_group_count_active_nodes(p->numa_group);
1980                spin_unlock_irq(group_lock);
1981                max_nid = preferred_group_nid(p, max_group_nid);
1982        }
1983
1984        if (max_faults) {
1985                /* Set the new preferred node */
1986                if (max_nid != p->numa_preferred_nid)
1987                        sched_setnuma(p, max_nid);
1988
1989                if (task_node(p) != p->numa_preferred_nid)
1990                        numa_migrate_preferred(p);
1991        }
1992}
1993
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996        return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001        if (atomic_dec_and_test(&grp->refcount))
2002                kfree_rcu(grp, rcu);
2003}
2004
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006                        int *priv)
2007{
2008        struct numa_group *grp, *my_grp;
2009        struct task_struct *tsk;
2010        bool join = false;
2011        int cpu = cpupid_to_cpu(cpupid);
2012        int i;
2013
2014        if (unlikely(!p->numa_group)) {
2015                unsigned int size = sizeof(struct numa_group) +
2016                                    4*nr_node_ids*sizeof(unsigned long);
2017
2018                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019                if (!grp)
2020                        return;
2021
2022                atomic_set(&grp->refcount, 1);
2023                grp->active_nodes = 1;
2024                grp->max_faults_cpu = 0;
2025                spin_lock_init(&grp->lock);
2026                grp->gid = p->pid;
2027                /* Second half of the array tracks nids where faults happen */
2028                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029                                                nr_node_ids;
2030
2031                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032                        grp->faults[i] = p->numa_faults[i];
2033
2034                grp->total_faults = p->total_numa_faults;
2035
2036                grp->nr_tasks++;
2037                rcu_assign_pointer(p->numa_group, grp);
2038        }
2039
2040        rcu_read_lock();
2041        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043        if (!cpupid_match_pid(tsk, cpupid))
2044                goto no_join;
2045
2046        grp = rcu_dereference(tsk->numa_group);
2047        if (!grp)
2048                goto no_join;
2049
2050        my_grp = p->numa_group;
2051        if (grp == my_grp)
2052                goto no_join;
2053
2054        /*
2055         * Only join the other group if its bigger; if we're the bigger group,
2056         * the other task will join us.
2057         */
2058        if (my_grp->nr_tasks > grp->nr_tasks)
2059                goto no_join;
2060
2061        /*
2062         * Tie-break on the grp address.
2063         */
2064        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065                goto no_join;
2066
2067        /* Always join threads in the same process. */
2068        if (tsk->mm == current->mm)
2069                join = true;
2070
2071        /* Simple filter to avoid false positives due to PID collisions */
2072        if (flags & TNF_SHARED)
2073                join = true;
2074
2075        /* Update priv based on whether false sharing was detected */
2076        *priv = !join;
2077
2078        if (join && !get_numa_group(grp))
2079                goto no_join;
2080
2081        rcu_read_unlock();
2082
2083        if (!join)
2084                return;
2085
2086        BUG_ON(irqs_disabled());
2087        double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090                my_grp->faults[i] -= p->numa_faults[i];
2091                grp->faults[i] += p->numa_faults[i];
2092        }
2093        my_grp->total_faults -= p->total_numa_faults;
2094        grp->total_faults += p->total_numa_faults;
2095
2096        my_grp->nr_tasks--;
2097        grp->nr_tasks++;
2098
2099        spin_unlock(&my_grp->lock);
2100        spin_unlock_irq(&grp->lock);
2101
2102        rcu_assign_pointer(p->numa_group, grp);
2103
2104        put_numa_group(my_grp);
2105        return;
2106
2107no_join:
2108        rcu_read_unlock();
2109        return;
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114        struct numa_group *grp = p->numa_group;
2115        void *numa_faults = p->numa_faults;
2116        unsigned long flags;
2117        int i;
2118
2119        if (grp) {
2120                spin_lock_irqsave(&grp->lock, flags);
2121                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122                        grp->faults[i] -= p->numa_faults[i];
2123                grp->total_faults -= p->total_numa_faults;
2124
2125                grp->nr_tasks--;
2126                spin_unlock_irqrestore(&grp->lock, flags);
2127                RCU_INIT_POINTER(p->numa_group, NULL);
2128                put_numa_group(grp);
2129        }
2130
2131        p->numa_faults = NULL;
2132        kfree(numa_faults);
2133}
2134
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139{
2140        struct task_struct *p = current;
2141        bool migrated = flags & TNF_MIGRATED;
2142        int cpu_node = task_node(current);
2143        int local = !!(flags & TNF_FAULT_LOCAL);
2144        struct numa_group *ng;
2145        int priv;
2146
2147        if (!static_branch_likely(&sched_numa_balancing))
2148                return;
2149
2150        /* for example, ksmd faulting in a user's mm */
2151        if (!p->mm)
2152                return;
2153
2154        /* Allocate buffer to track faults on a per-node basis */
2155        if (unlikely(!p->numa_faults)) {
2156                int size = sizeof(*p->numa_faults) *
2157                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160                if (!p->numa_faults)
2161                        return;
2162
2163                p->total_numa_faults = 0;
2164                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165        }
2166
2167        /*
2168         * First accesses are treated as private, otherwise consider accesses
2169         * to be private if the accessing pid has not changed
2170         */
2171        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172                priv = 1;
2173        } else {
2174                priv = cpupid_match_pid(p, last_cpupid);
2175                if (!priv && !(flags & TNF_NO_GROUP))
2176                        task_numa_group(p, last_cpupid, flags, &priv);
2177        }
2178
2179        /*
2180         * If a workload spans multiple NUMA nodes, a shared fault that
2181         * occurs wholly within the set of nodes that the workload is
2182         * actively using should be counted as local. This allows the
2183         * scan rate to slow down when a workload has settled down.
2184         */
2185        ng = p->numa_group;
2186        if (!priv && !local && ng && ng->active_nodes > 1 &&
2187                                numa_is_active_node(cpu_node, ng) &&
2188                                numa_is_active_node(mem_node, ng))
2189                local = 1;
2190
2191        task_numa_placement(p);
2192
2193        /*
2194         * Retry task to preferred node migration periodically, in case it
2195         * case it previously failed, or the scheduler moved us.
2196         */
2197        if (time_after(jiffies, p->numa_migrate_retry))
2198                numa_migrate_preferred(p);
2199
2200        if (migrated)
2201                p->numa_pages_migrated += pages;
2202        if (flags & TNF_MIGRATE_FAIL)
2203                p->numa_faults_locality[2] += pages;
2204
2205        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207        p->numa_faults_locality[local] += pages;
2208}
2209
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
2212        /*
2213         * We only did a read acquisition of the mmap sem, so
2214         * p->mm->numa_scan_seq is written to without exclusive access
2215         * and the update is not guaranteed to be atomic. That's not
2216         * much of an issue though, since this is just used for
2217         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218         * expensive, to avoid any form of compiler optimizations:
2219         */
2220        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221        p->mm->numa_scan_offset = 0;
2222}
2223
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230        unsigned long migrate, next_scan, now = jiffies;
2231        struct task_struct *p = current;
2232        struct mm_struct *mm = p->mm;
2233        u64 runtime = p->se.sum_exec_runtime;
2234        struct vm_area_struct *vma;
2235        unsigned long start, end;
2236        unsigned long nr_pte_updates = 0;
2237        long pages, virtpages;
2238
2239        WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241        work->next = work; /* protect against double add */
2242        /*
2243         * Who cares about NUMA placement when they're dying.
2244         *
2245         * NOTE: make sure not to dereference p->mm before this check,
2246         * exit_task_work() happens _after_ exit_mm() so we could be called
2247         * without p->mm even though we still had it when we enqueued this
2248         * work.
2249         */
2250        if (p->flags & PF_EXITING)
2251                return;
2252
2253        if (!mm->numa_next_scan) {
2254                mm->numa_next_scan = now +
2255                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256        }
2257
2258        /*
2259         * Enforce maximal scan/migration frequency..
2260         */
2261        migrate = mm->numa_next_scan;
2262        if (time_before(now, migrate))
2263                return;
2264
2265        if (p->numa_scan_period == 0) {
2266                p->numa_scan_period_max = task_scan_max(p);
2267                p->numa_scan_period = task_scan_min(p);
2268        }
2269
2270        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272                return;
2273
2274        /*
2275         * Delay this task enough that another task of this mm will likely win
2276         * the next time around.
2277         */
2278        p->node_stamp += 2 * TICK_NSEC;
2279
2280        start = mm->numa_scan_offset;
2281        pages = sysctl_numa_balancing_scan_size;
2282        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283        virtpages = pages * 8;     /* Scan up to this much virtual space */
2284        if (!pages)
2285                return;
2286
2287
2288        down_read(&mm->mmap_sem);
2289        vma = find_vma(mm, start);
2290        if (!vma) {
2291                reset_ptenuma_scan(p);
2292                start = 0;
2293                vma = mm->mmap;
2294        }
2295        for (; vma; vma = vma->vm_next) {
2296                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298                        continue;
2299                }
2300
2301                /*
2302                 * Shared library pages mapped by multiple processes are not
2303                 * migrated as it is expected they are cache replicated. Avoid
2304                 * hinting faults in read-only file-backed mappings or the vdso
2305                 * as migrating the pages will be of marginal benefit.
2306                 */
2307                if (!vma->vm_mm ||
2308                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309                        continue;
2310
2311                /*
2312                 * Skip inaccessible VMAs to avoid any confusion between
2313                 * PROT_NONE and NUMA hinting ptes
2314                 */
2315                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316                        continue;
2317
2318                do {
2319                        start = max(start, vma->vm_start);
2320                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321                        end = min(end, vma->vm_end);
2322                        nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324                        /*
2325                         * Try to scan sysctl_numa_balancing_size worth of
2326                         * hpages that have at least one present PTE that
2327                         * is not already pte-numa. If the VMA contains
2328                         * areas that are unused or already full of prot_numa
2329                         * PTEs, scan up to virtpages, to skip through those
2330                         * areas faster.
2331                         */
2332                        if (nr_pte_updates)
2333                                pages -= (end - start) >> PAGE_SHIFT;
2334                        virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336                        start = end;
2337                        if (pages <= 0 || virtpages <= 0)
2338                                goto out;
2339
2340                        cond_resched();
2341                } while (end != vma->vm_end);
2342        }
2343
2344out:
2345        /*
2346         * It is possible to reach the end of the VMA list but the last few
2347         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348         * would find the !migratable VMA on the next scan but not reset the
2349         * scanner to the start so check it now.
2350         */
2351        if (vma)
2352                mm->numa_scan_offset = start;
2353        else
2354                reset_ptenuma_scan(p);
2355        up_read(&mm->mmap_sem);
2356
2357        /*
2358         * Make sure tasks use at least 32x as much time to run other code
2359         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360         * Usually update_task_scan_period slows down scanning enough; on an
2361         * overloaded system we need to limit overhead on a per task basis.
2362         */
2363        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364                u64 diff = p->se.sum_exec_runtime - runtime;
2365                p->node_stamp += 32 * diff;
2366        }
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374        struct callback_head *work = &curr->numa_work;
2375        u64 period, now;
2376
2377        /*
2378         * We don't care about NUMA placement if we don't have memory.
2379         */
2380        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381                return;
2382
2383        /*
2384         * Using runtime rather than walltime has the dual advantage that
2385         * we (mostly) drive the selection from busy threads and that the
2386         * task needs to have done some actual work before we bother with
2387         * NUMA placement.
2388         */
2389        now = curr->se.sum_exec_runtime;
2390        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392        if (now > curr->node_stamp + period) {
2393                if (!curr->node_stamp)
2394                        curr->numa_scan_period = task_scan_min(curr);
2395                curr->node_stamp += period;
2396
2397                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399                        task_work_add(curr, work, true);
2400                }
2401        }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
2415#endif /* CONFIG_NUMA_BALANCING */
2416
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420        update_load_add(&cfs_rq->load, se->load.weight);
2421        if (!parent_entity(se))
2422                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423#ifdef CONFIG_SMP
2424        if (entity_is_task(se)) {
2425                struct rq *rq = rq_of(cfs_rq);
2426
2427                account_numa_enqueue(rq, task_of(se));
2428                list_add(&se->group_node, &rq->cfs_tasks);
2429        }
2430#endif
2431        cfs_rq->nr_running++;
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437        update_load_sub(&cfs_rq->load, se->load.weight);
2438        if (!parent_entity(se))
2439                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440        if (entity_is_task(se)) {
2441                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442                list_del_init(&se->group_node);
2443        }
2444        cfs_rq->nr_running--;
2445}
2446
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451        long tg_weight;
2452
2453        /*
2454         * Use this CPU's real-time load instead of the last load contribution
2455         * as the updating of the contribution is delayed, and we will use the
2456         * the real-time load to calc the share. See update_tg_load_avg().
2457         */
2458        tg_weight = atomic_long_read(&tg->load_avg);
2459        tg_weight -= cfs_rq->tg_load_avg_contrib;
2460        tg_weight += cfs_rq->load.weight;
2461
2462        return tg_weight;
2463}
2464
2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466{
2467        long tg_weight, load, shares;
2468
2469        tg_weight = calc_tg_weight(tg, cfs_rq);
2470        load = cfs_rq->load.weight;
2471
2472        shares = (tg->shares * load);
2473        if (tg_weight)
2474                shares /= tg_weight;
2475
2476        if (shares < MIN_SHARES)
2477                shares = MIN_SHARES;
2478        if (shares > tg->shares)
2479                shares = tg->shares;
2480
2481        return shares;
2482}
2483# else /* CONFIG_SMP */
2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485{
2486        return tg->shares;
2487}
2488# endif /* CONFIG_SMP */
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490                            unsigned long weight)
2491{
2492        if (se->on_rq) {
2493                /* commit outstanding execution time */
2494                if (cfs_rq->curr == se)
2495                        update_curr(cfs_rq);
2496                account_entity_dequeue(cfs_rq, se);
2497        }
2498
2499        update_load_set(&se->load, weight);
2500
2501        if (se->on_rq)
2502                account_entity_enqueue(cfs_rq, se);
2503}
2504
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508{
2509        struct task_group *tg;
2510        struct sched_entity *se;
2511        long shares;
2512
2513        tg = cfs_rq->tg;
2514        se = tg->se[cpu_of(rq_of(cfs_rq))];
2515        if (!se || throttled_hierarchy(cfs_rq))
2516                return;
2517#ifndef CONFIG_SMP
2518        if (likely(se->load.weight == tg->shares))
2519                return;
2520#endif
2521        shares = calc_cfs_shares(cfs_rq, tg);
2522
2523        reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531#ifdef CONFIG_SMP
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539        0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
2552/*
2553 * Approximate:
2554 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
2558        unsigned int local_n;
2559
2560        if (!n)
2561                return val;
2562        else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563                return 0;
2564
2565        /* after bounds checking we can collapse to 32-bit */
2566        local_n = n;
2567
2568        /*
2569         * As y^PERIOD = 1/2, we can combine
2570         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571         * With a look-up table which covers y^n (n<PERIOD)
2572         *
2573         * To achieve constant time decay_load.
2574         */
2575        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576                val >>= local_n / LOAD_AVG_PERIOD;
2577                local_n %= LOAD_AVG_PERIOD;
2578        }
2579
2580        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581        return val;
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593        u32 contrib = 0;
2594
2595        if (likely(n <= LOAD_AVG_PERIOD))
2596                return runnable_avg_yN_sum[n];
2597        else if (unlikely(n >= LOAD_AVG_MAX_N))
2598                return LOAD_AVG_MAX;
2599
2600        /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601        do {
2602                contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603                contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605                n -= LOAD_AVG_PERIOD;
2606        } while (n > LOAD_AVG_PERIOD);
2607
2608        contrib = decay_load(contrib, n);
2609        return contrib + runnable_avg_yN_sum[n];
2610}
2611
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series.  To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 *      p0            p1           p2
2626 *     (now)       (~1ms ago)  (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 *   y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648                  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649{
2650        u64 delta, scaled_delta, periods;
2651        u32 contrib;
2652        unsigned int delta_w, scaled_delta_w, decayed = 0;
2653        unsigned long scale_freq, scale_cpu;
2654
2655        delta = now - sa->last_update_time;
2656        /*
2657         * This should only happen when time goes backwards, which it
2658         * unfortunately does during sched clock init when we swap over to TSC.
2659         */
2660        if ((s64)delta < 0) {
2661                sa->last_update_time = now;
2662                return 0;
2663        }
2664
2665        /*
2666         * Use 1024ns as the unit of measurement since it's a reasonable
2667         * approximation of 1us and fast to compute.
2668         */
2669        delta >>= 10;
2670        if (!delta)
2671                return 0;
2672        sa->last_update_time = now;
2673
2674        scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675        scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677        /* delta_w is the amount already accumulated against our next period */
2678        delta_w = sa->period_contrib;
2679        if (delta + delta_w >= 1024) {
2680                decayed = 1;
2681
2682                /* how much left for next period will start over, we don't know yet */
2683                sa->period_contrib = 0;
2684
2685                /*
2686                 * Now that we know we're crossing a period boundary, figure
2687                 * out how much from delta we need to complete the current
2688                 * period and accrue it.
2689                 */
2690                delta_w = 1024 - delta_w;
2691                scaled_delta_w = cap_scale(delta_w, scale_freq);
2692                if (weight) {
2693                        sa->load_sum += weight * scaled_delta_w;
2694                        if (cfs_rq) {
2695                                cfs_rq->runnable_load_sum +=
2696                                                weight * scaled_delta_w;
2697                        }
2698                }
2699                if (running)
2700                        sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702                delta -= delta_w;
2703
2704                /* Figure out how many additional periods this update spans */
2705                periods = delta / 1024;
2706                delta %= 1024;
2707
2708                sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709                if (cfs_rq) {
2710                        cfs_rq->runnable_load_sum =
2711                                decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712                }
2713                sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716                contrib = __compute_runnable_contrib(periods);
2717                contrib = cap_scale(contrib, scale_freq);
2718                if (weight) {
2719                        sa->load_sum += weight * contrib;
2720                        if (cfs_rq)
2721                                cfs_rq->runnable_load_sum += weight * contrib;
2722                }
2723                if (running)
2724                        sa->util_sum += contrib * scale_cpu;
2725        }
2726
2727        /* Remainder of delta accrued against u_0` */
2728        scaled_delta = cap_scale(delta, scale_freq);
2729        if (weight) {
2730                sa->load_sum += weight * scaled_delta;
2731                if (cfs_rq)
2732                        cfs_rq->runnable_load_sum += weight * scaled_delta;
2733        }
2734        if (running)
2735                sa->util_sum += scaled_delta * scale_cpu;
2736
2737        sa->period_contrib += delta;
2738
2739        if (decayed) {
2740                sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741                if (cfs_rq) {
2742                        cfs_rq->runnable_load_avg =
2743                                div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744                }
2745                sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746        }
2747
2748        return decayed;
2749}
2750
2751#ifdef CONFIG_FAIR_GROUP_SCHED
2752/*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757{
2758        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759
2760        /*
2761         * No need to update load_avg for root_task_group as it is not used.
2762         */
2763        if (cfs_rq->tg == &root_task_group)
2764                return;
2765
2766        if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767                atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769        }
2770}
2771
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778                      struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780        if (!sched_feat(ATTACH_AGE_LOAD))
2781                return;
2782
2783        /*
2784         * We are supposed to update the task to "current" time, then its up to
2785         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786         * getting what current time is, so simply throw away the out-of-date
2787         * time. This will result in the wakee task is less decayed, but giving
2788         * the wakee more load sounds not bad.
2789         */
2790        if (se->avg.last_update_time && prev) {
2791                u64 p_last_update_time;
2792                u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795                u64 p_last_update_time_copy;
2796                u64 n_last_update_time_copy;
2797
2798                do {
2799                        p_last_update_time_copy = prev->load_last_update_time_copy;
2800                        n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802                        smp_rmb();
2803
2804                        p_last_update_time = prev->avg.last_update_time;
2805                        n_last_update_time = next->avg.last_update_time;
2806
2807                } while (p_last_update_time != p_last_update_time_copy ||
2808                         n_last_update_time != n_last_update_time_copy);
2809#else
2810                p_last_update_time = prev->avg.last_update_time;
2811                n_last_update_time = next->avg.last_update_time;
2812#endif
2813                __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814                                  &se->avg, 0, 0, NULL);
2815                se->avg.last_update_time = n_last_update_time;
2816        }
2817}
2818#else /* CONFIG_FAIR_GROUP_SCHED */
2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820#endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826{
2827        struct sched_avg *sa = &cfs_rq->avg;
2828        int decayed, removed = 0;
2829
2830        if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831                s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832                sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833                sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834                removed = 1;
2835        }
2836
2837        if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838                long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839                sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840                sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841        }
2842
2843        decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844                scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845
2846#ifndef CONFIG_64BIT
2847        smp_wmb();
2848        cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
2850
2851        return decayed || removed;
2852}
2853
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856{
2857        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858        u64 now = cfs_rq_clock_task(cfs_rq);
2859        struct rq *rq = rq_of(cfs_rq);
2860        int cpu = cpu_of(rq);
2861
2862        /*
2863         * Track task load average for carrying it to new CPU after migrated, and
2864         * track group sched_entity load average for task_h_load calc in migration
2865         */
2866        __update_load_avg(now, cpu, &se->avg,
2867                          se->on_rq * scale_load_down(se->load.weight),
2868                          cfs_rq->curr == se, NULL);
2869
2870        if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871                update_tg_load_avg(cfs_rq, 0);
2872
2873        if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874                unsigned long max = rq->cpu_capacity_orig;
2875
2876                /*
2877                 * There are a few boundary cases this might miss but it should
2878                 * get called often enough that that should (hopefully) not be
2879                 * a real problem -- added to that it only calls on the local
2880                 * CPU, so if we enqueue remotely we'll miss an update, but
2881                 * the next tick/schedule should update.
2882                 *
2883                 * It will not get called when we go idle, because the idle
2884                 * thread is a different class (!fair), nor will the utilization
2885                 * number include things like RT tasks.
2886                 *
2887                 * As is, the util number is not freq-invariant (we'd have to
2888                 * implement arch_scale_freq_capacity() for that).
2889                 *
2890                 * See cpu_util().
2891                 */
2892                cpufreq_update_util(rq_clock(rq),
2893                                    min(cfs_rq->avg.util_avg, max), max);
2894        }
2895}
2896
2897static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898{
2899        if (!sched_feat(ATTACH_AGE_LOAD))
2900                goto skip_aging;
2901
2902        /*
2903         * If we got migrated (either between CPUs or between cgroups) we'll
2904         * have aged the average right before clearing @last_update_time.
2905         */
2906        if (se->avg.last_update_time) {
2907                __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908                                  &se->avg, 0, 0, NULL);
2909
2910                /*
2911                 * XXX: we could have just aged the entire load away if we've been
2912                 * absent from the fair class for too long.
2913                 */
2914        }
2915
2916skip_aging:
2917        se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918        cfs_rq->avg.load_avg += se->avg.load_avg;
2919        cfs_rq->avg.load_sum += se->avg.load_sum;
2920        cfs_rq->avg.util_avg += se->avg.util_avg;
2921        cfs_rq->avg.util_sum += se->avg.util_sum;
2922}
2923
2924static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925{
2926        __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927                          &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928                          cfs_rq->curr == se, NULL);
2929
2930        cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931        cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932        cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933        cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934}
2935
2936/* Add the load generated by se into cfs_rq's load average */
2937static inline void
2938enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939{
2940        struct sched_avg *sa = &se->avg;
2941        u64 now = cfs_rq_clock_task(cfs_rq);
2942        int migrated, decayed;
2943
2944        migrated = !sa->last_update_time;
2945        if (!migrated) {
2946                __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947                        se->on_rq * scale_load_down(se->load.weight),
2948                        cfs_rq->curr == se, NULL);
2949        }
2950
2951        decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952
2953        cfs_rq->runnable_load_avg += sa->load_avg;
2954        cfs_rq->runnable_load_sum += sa->load_sum;
2955
2956        if (migrated)
2957                attach_entity_load_avg(cfs_rq, se);
2958
2959        if (decayed || migrated)
2960                update_tg_load_avg(cfs_rq, 0);
2961}
2962
2963/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964static inline void
2965dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966{
2967        update_load_avg(se, 1);
2968
2969        cfs_rq->runnable_load_avg =
2970                max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971        cfs_rq->runnable_load_sum =
2972                max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973}
2974
2975#ifndef CONFIG_64BIT
2976static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977{
2978        u64 last_update_time_copy;
2979        u64 last_update_time;
2980
2981        do {
2982                last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983                smp_rmb();
2984                last_update_time = cfs_rq->avg.last_update_time;
2985        } while (last_update_time != last_update_time_copy);
2986
2987        return last_update_time;
2988}
2989#else
2990static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991{
2992        return cfs_rq->avg.last_update_time;
2993}
2994#endif
2995
2996/*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
2999 */
3000void remove_entity_load_avg(struct sched_entity *se)
3001{
3002        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003        u64 last_update_time;
3004
3005        /*
3006         * Newly created task or never used group entity should not be removed
3007         * from its (source) cfs_rq
3008         */
3009        if (se->avg.last_update_time == 0)
3010                return;
3011
3012        last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
3014        __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015        atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016        atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017}
3018
3019static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020{
3021        return cfs_rq->runnable_load_avg;
3022}
3023
3024static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025{
3026        return cfs_rq->avg.load_avg;
3027}
3028
3029static int idle_balance(struct rq *this_rq);
3030
3031#else /* CONFIG_SMP */
3032
3033static inline void update_load_avg(struct sched_entity *se, int not_used)
3034{
3035        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3036        struct rq *rq = rq_of(cfs_rq);
3037
3038        cpufreq_trigger_update(rq_clock(rq));
3039}
3040
3041static inline void
3042enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3043static inline void
3044dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3045static inline void remove_entity_load_avg(struct sched_entity *se) {}
3046
3047static inline void
3048attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3049static inline void
3050detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3051
3052static inline int idle_balance(struct rq *rq)
3053{
3054        return 0;
3055}
3056
3057#endif /* CONFIG_SMP */
3058
3059static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061#ifdef CONFIG_SCHEDSTATS
3062        struct task_struct *tsk = NULL;
3063
3064        if (entity_is_task(se))
3065                tsk = task_of(se);
3066
3067        if (se->statistics.sleep_start) {
3068                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3069
3070                if ((s64)delta < 0)
3071                        delta = 0;
3072
3073                if (unlikely(delta > se->statistics.sleep_max))
3074                        se->statistics.sleep_max = delta;
3075
3076                se->statistics.sleep_start = 0;
3077                se->statistics.sum_sleep_runtime += delta;
3078
3079                if (tsk) {
3080                        account_scheduler_latency(tsk, delta >> 10, 1);
3081                        trace_sched_stat_sleep(tsk, delta);
3082                }
3083        }
3084        if (se->statistics.block_start) {
3085                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3086
3087                if ((s64)delta < 0)
3088                        delta = 0;
3089
3090                if (unlikely(delta > se->statistics.block_max))
3091                        se->statistics.block_max = delta;
3092
3093                se->statistics.block_start = 0;
3094                se->statistics.sum_sleep_runtime += delta;
3095
3096                if (tsk) {
3097                        if (tsk->in_iowait) {
3098                                se->statistics.iowait_sum += delta;
3099                                se->statistics.iowait_count++;
3100                                trace_sched_stat_iowait(tsk, delta);
3101                        }
3102
3103                        trace_sched_stat_blocked(tsk, delta);
3104
3105                        /*
3106                         * Blocking time is in units of nanosecs, so shift by
3107                         * 20 to get a milliseconds-range estimation of the
3108                         * amount of time that the task spent sleeping:
3109                         */
3110                        if (unlikely(prof_on == SLEEP_PROFILING)) {
3111                                profile_hits(SLEEP_PROFILING,
3112                                                (void *)get_wchan(tsk),
3113                                                delta >> 20);
3114                        }
3115                        account_scheduler_latency(tsk, delta >> 10, 0);
3116                }
3117        }
3118#endif
3119}
3120
3121static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3122{
3123#ifdef CONFIG_SCHED_DEBUG
3124        s64 d = se->vruntime - cfs_rq->min_vruntime;
3125
3126        if (d < 0)
3127                d = -d;
3128
3129        if (d > 3*sysctl_sched_latency)
3130                schedstat_inc(cfs_rq, nr_spread_over);
3131#endif
3132}
3133
3134static void
3135place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3136{
3137        u64 vruntime = cfs_rq->min_vruntime;
3138
3139        /*
3140         * The 'current' period is already promised to the current tasks,
3141         * however the extra weight of the new task will slow them down a
3142         * little, place the new task so that it fits in the slot that
3143         * stays open at the end.
3144         */
3145        if (initial && sched_feat(START_DEBIT))
3146                vruntime += sched_vslice(cfs_rq, se);
3147
3148        /* sleeps up to a single latency don't count. */
3149        if (!initial) {
3150                unsigned long thresh = sysctl_sched_latency;
3151
3152                /*
3153                 * Halve their sleep time's effect, to allow
3154                 * for a gentler effect of sleepers:
3155                 */
3156                if (sched_feat(GENTLE_FAIR_SLEEPERS))
3157                        thresh >>= 1;
3158
3159                vruntime -= thresh;
3160        }
3161
3162        /* ensure we never gain time by being placed backwards. */
3163        se->vruntime = max_vruntime(se->vruntime, vruntime);
3164}
3165
3166static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3167
3168static inline void check_schedstat_required(void)
3169{
3170#ifdef CONFIG_SCHEDSTATS
3171        if (schedstat_enabled())
3172                return;
3173
3174        /* Force schedstat enabled if a dependent tracepoint is active */
3175        if (trace_sched_stat_wait_enabled()    ||
3176                        trace_sched_stat_sleep_enabled()   ||
3177                        trace_sched_stat_iowait_enabled()  ||
3178                        trace_sched_stat_blocked_enabled() ||
3179                        trace_sched_stat_runtime_enabled())  {
3180                pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3181                             "stat_blocked and stat_runtime require the "
3182                             "kernel parameter schedstats=enabled or "
3183                             "kernel.sched_schedstats=1\n");
3184        }
3185#endif
3186}
3187
3188static void
3189enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3190{
3191        /*
3192         * Update the normalized vruntime before updating min_vruntime
3193         * through calling update_curr().
3194         */
3195        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3196                se->vruntime += cfs_rq->min_vruntime;
3197
3198        /*
3199         * Update run-time statistics of the 'current'.
3200         */
3201        update_curr(cfs_rq);
3202        enqueue_entity_load_avg(cfs_rq, se);
3203        account_entity_enqueue(cfs_rq, se);
3204        update_cfs_shares(cfs_rq);
3205
3206        if (flags & ENQUEUE_WAKEUP) {
3207                place_entity(cfs_rq, se, 0);
3208                if (schedstat_enabled())
3209                        enqueue_sleeper(cfs_rq, se);
3210        }
3211
3212        check_schedstat_required();
3213        if (schedstat_enabled()) {
3214                update_stats_enqueue(cfs_rq, se);
3215                check_spread(cfs_rq, se);
3216        }
3217        if (se != cfs_rq->curr)
3218                __enqueue_entity(cfs_rq, se);
3219        se->on_rq = 1;
3220
3221        if (cfs_rq->nr_running == 1) {
3222                list_add_leaf_cfs_rq(cfs_rq);
3223                check_enqueue_throttle(cfs_rq);
3224        }
3225}
3226
3227static void __clear_buddies_last(struct sched_entity *se)
3228{
3229        for_each_sched_entity(se) {
3230                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3231                if (cfs_rq->last != se)
3232                        break;
3233
3234                cfs_rq->last = NULL;
3235        }
3236}
3237
3238static void __clear_buddies_next(struct sched_entity *se)
3239{
3240        for_each_sched_entity(se) {
3241                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3242                if (cfs_rq->next != se)
3243                        break;
3244
3245                cfs_rq->next = NULL;
3246        }
3247}
3248
3249static void __clear_buddies_skip(struct sched_entity *se)
3250{
3251        for_each_sched_entity(se) {
3252                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3253                if (cfs_rq->skip != se)
3254                        break;
3255
3256                cfs_rq->skip = NULL;
3257        }
3258}
3259
3260static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3261{
3262        if (cfs_rq->last == se)
3263                __clear_buddies_last(se);
3264
3265        if (cfs_rq->next == se)
3266                __clear_buddies_next(se);
3267
3268        if (cfs_rq->skip == se)
3269                __clear_buddies_skip(se);
3270}
3271
3272static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3273
3274static void
3275dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3276{
3277        /*
3278         * Update run-time statistics of the 'current'.
3279         */
3280        update_curr(cfs_rq);
3281        dequeue_entity_load_avg(cfs_rq, se);
3282
3283        if (schedstat_enabled())
3284                update_stats_dequeue(cfs_rq, se, flags);
3285
3286        clear_buddies(cfs_rq, se);
3287
3288        if (se != cfs_rq->curr)
3289                __dequeue_entity(cfs_rq, se);
3290        se->on_rq = 0;
3291        account_entity_dequeue(cfs_rq, se);
3292
3293        /*
3294         * Normalize the entity after updating the min_vruntime because the
3295         * update can refer to the ->curr item and we need to reflect this
3296         * movement in our normalized position.
3297         */
3298        if (!(flags & DEQUEUE_SLEEP))
3299                se->vruntime -= cfs_rq->min_vruntime;
3300
3301        /* return excess runtime on last dequeue */
3302        return_cfs_rq_runtime(cfs_rq);
3303
3304        update_min_vruntime(cfs_rq);
3305        update_cfs_shares(cfs_rq);
3306}
3307
3308/*
3309 * Preempt the current task with a newly woken task if needed:
3310 */
3311static void
3312check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3313{
3314        unsigned long ideal_runtime, delta_exec;
3315        struct sched_entity *se;
3316        s64 delta;
3317
3318        ideal_runtime = sched_slice(cfs_rq, curr);
3319        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3320        if (delta_exec > ideal_runtime) {
3321                resched_curr(rq_of(cfs_rq));
3322                /*
3323                 * The current task ran long enough, ensure it doesn't get
3324                 * re-elected due to buddy favours.
3325                 */
3326                clear_buddies(cfs_rq, curr);
3327                return;
3328        }
3329
3330        /*
3331         * Ensure that a task that missed wakeup preemption by a
3332         * narrow margin doesn't have to wait for a full slice.
3333         * This also mitigates buddy induced latencies under load.
3334         */
3335        if (delta_exec < sysctl_sched_min_granularity)
3336                return;
3337
3338        se = __pick_first_entity(cfs_rq);
3339        delta = curr->vruntime - se->vruntime;
3340
3341        if (delta < 0)
3342                return;
3343
3344        if (delta > ideal_runtime)
3345                resched_curr(rq_of(cfs_rq));
3346}
3347
3348static void
3349set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3350{
3351        /* 'current' is not kept within the tree. */
3352        if (se->on_rq) {
3353                /*
3354                 * Any task has to be enqueued before it get to execute on
3355                 * a CPU. So account for the time it spent waiting on the
3356                 * runqueue.
3357                 */
3358                if (schedstat_enabled())
3359                        update_stats_wait_end(cfs_rq, se);
3360                __dequeue_entity(cfs_rq, se);
3361                update_load_avg(se, 1);
3362        }
3363
3364        update_stats_curr_start(cfs_rq, se);
3365        cfs_rq->curr = se;
3366#ifdef CONFIG_SCHEDSTATS
3367        /*
3368         * Track our maximum slice length, if the CPU's load is at
3369         * least twice that of our own weight (i.e. dont track it
3370         * when there are only lesser-weight tasks around):
3371         */
3372        if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3373                se->statistics.slice_max = max(se->statistics.slice_max,
3374                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
3375        }
3376#endif
3377        se->prev_sum_exec_runtime = se->sum_exec_runtime;
3378}
3379
3380static int
3381wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3382
3383/*
3384 * Pick the next process, keeping these things in mind, in this order:
3385 * 1) keep things fair between processes/task groups
3386 * 2) pick the "next" process, since someone really wants that to run
3387 * 3) pick the "last" process, for cache locality
3388 * 4) do not run the "skip" process, if something else is available
3389 */
3390static struct sched_entity *
3391pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3392{
3393        struct sched_entity *left = __pick_first_entity(cfs_rq);
3394        struct sched_entity *se;
3395
3396        /*
3397         * If curr is set we have to see if its left of the leftmost entity
3398         * still in the tree, provided there was anything in the tree at all.
3399         */
3400        if (!left || (curr && entity_before(curr, left)))
3401                left = curr;
3402
3403        se = left; /* ideally we run the leftmost entity */
3404
3405        /*
3406         * Avoid running the skip buddy, if running something else can
3407         * be done without getting too unfair.
3408         */
3409        if (cfs_rq->skip == se) {
3410                struct sched_entity *second;
3411
3412                if (se == curr) {
3413                        second = __pick_first_entity(cfs_rq);
3414                } else {
3415                        second = __pick_next_entity(se);
3416                        if (!second || (curr && entity_before(curr, second)))
3417                                second = curr;
3418                }
3419
3420                if (second && wakeup_preempt_entity(second, left) < 1)
3421                        se = second;
3422        }
3423
3424        /*
3425         * Prefer last buddy, try to return the CPU to a preempted task.
3426         */
3427        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3428                se = cfs_rq->last;
3429
3430        /*
3431         * Someone really wants this to run. If it's not unfair, run it.
3432         */
3433        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3434                se = cfs_rq->next;
3435
3436        clear_buddies(cfs_rq, se);
3437
3438        return se;
3439}
3440
3441static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3442
3443static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3444{
3445        /*
3446         * If still on the runqueue then deactivate_task()
3447         * was not called and update_curr() has to be done:
3448         */
3449        if (prev->on_rq)
3450                update_curr(cfs_rq);
3451
3452        /* throttle cfs_rqs exceeding runtime */
3453        check_cfs_rq_runtime(cfs_rq);
3454
3455        if (schedstat_enabled()) {
3456                check_spread(cfs_rq, prev);
3457                if (prev->on_rq)
3458                        update_stats_wait_start(cfs_rq, prev);
3459        }
3460
3461        if (prev->on_rq) {
3462                /* Put 'current' back into the tree. */
3463                __enqueue_entity(cfs_rq, prev);
3464                /* in !on_rq case, update occurred at dequeue */
3465                update_load_avg(prev, 0);
3466        }
3467        cfs_rq->curr = NULL;
3468}
3469
3470static void
3471entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3472{
3473        /*
3474         * Update run-time statistics of the 'current'.
3475         */
3476        update_curr(cfs_rq);
3477
3478        /*
3479         * Ensure that runnable average is periodically updated.
3480         */
3481        update_load_avg(curr, 1);
3482        update_cfs_shares(cfs_rq);
3483
3484#ifdef CONFIG_SCHED_HRTICK
3485        /*
3486         * queued ticks are scheduled to match the slice, so don't bother
3487         * validating it and just reschedule.
3488         */
3489        if (queued) {
3490                resched_curr(rq_of(cfs_rq));
3491                return;
3492        }
3493        /*
3494         * don't let the period tick interfere with the hrtick preemption
3495         */
3496        if (!sched_feat(DOUBLE_TICK) &&
3497                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3498                return;
3499#endif
3500
3501        if (cfs_rq->nr_running > 1)
3502                check_preempt_tick(cfs_rq, curr);
3503}
3504
3505
3506/**************************************************
3507 * CFS bandwidth control machinery
3508 */
3509
3510#ifdef CONFIG_CFS_BANDWIDTH
3511
3512#ifdef HAVE_JUMP_LABEL
3513static struct static_key __cfs_bandwidth_used;
3514
3515static inline bool cfs_bandwidth_used(void)
3516{
3517        return static_key_false(&__cfs_bandwidth_used);
3518}
3519
3520void cfs_bandwidth_usage_inc(void)
3521{
3522        static_key_slow_inc(&__cfs_bandwidth_used);
3523}
3524
3525void cfs_bandwidth_usage_dec(void)
3526{
3527        static_key_slow_dec(&__cfs_bandwidth_used);
3528}
3529#else /* HAVE_JUMP_LABEL */
3530static bool cfs_bandwidth_used(void)
3531{
3532        return true;
3533}
3534
3535void cfs_bandwidth_usage_inc(void) {}
3536void cfs_bandwidth_usage_dec(void) {}
3537#endif /* HAVE_JUMP_LABEL */
3538
3539/*
3540 * default period for cfs group bandwidth.
3541 * default: 0.1s, units: nanoseconds
3542 */
3543static inline u64 default_cfs_period(void)
3544{
3545        return 100000000ULL;
3546}
3547
3548static inline u64 sched_cfs_bandwidth_slice(void)
3549{
3550        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3551}
3552
3553/*
3554 * Replenish runtime according to assigned quota and update expiration time.
3555 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3556 * additional synchronization around rq->lock.
3557 *
3558 * requires cfs_b->lock
3559 */
3560void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3561{
3562        u64 now;
3563
3564        if (cfs_b->quota == RUNTIME_INF)
3565                return;
3566
3567        now = sched_clock_cpu(smp_processor_id());
3568        cfs_b->runtime = cfs_b->quota;
3569        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3570}
3571
3572static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3573{
3574        return &tg->cfs_bandwidth;
3575}
3576
3577/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3578static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3579{
3580        if (unlikely(cfs_rq->throttle_count))
3581                return cfs_rq->throttled_clock_task;
3582
3583        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3584}
3585
3586/* returns 0 on failure to allocate runtime */
3587static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3588{
3589        struct task_group *tg = cfs_rq->tg;
3590        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3591        u64 amount = 0, min_amount, expires;
3592
3593        /* note: this is a positive sum as runtime_remaining <= 0 */
3594        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3595
3596        raw_spin_lock(&cfs_b->lock);
3597        if (cfs_b->quota == RUNTIME_INF)
3598                amount = min_amount;
3599        else {
3600                start_cfs_bandwidth(cfs_b);
3601
3602                if (cfs_b->runtime > 0) {
3603                        amount = min(cfs_b->runtime, min_amount);
3604                        cfs_b->runtime -= amount;
3605                        cfs_b->idle = 0;
3606                }
3607        }
3608        expires = cfs_b->runtime_expires;
3609        raw_spin_unlock(&cfs_b->lock);
3610
3611        cfs_rq->runtime_remaining += amount;
3612        /*
3613         * we may have advanced our local expiration to account for allowed
3614         * spread between our sched_clock and the one on which runtime was
3615         * issued.
3616         */
3617        if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3618                cfs_rq->runtime_expires = expires;
3619
3620        return cfs_rq->runtime_remaining > 0;
3621}
3622
3623/*
3624 * Note: This depends on the synchronization provided by sched_clock and the
3625 * fact that rq->clock snapshots this value.
3626 */
3627static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3628{
3629        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3630
3631        /* if the deadline is ahead of our clock, nothing to do */
3632        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3633                return;
3634
3635        if (cfs_rq->runtime_remaining < 0)
3636                return;
3637
3638        /*
3639         * If the local deadline has passed we have to consider the
3640         * possibility that our sched_clock is 'fast' and the global deadline
3641         * has not truly expired.
3642         *
3643         * Fortunately we can check determine whether this the case by checking
3644         * whether the global deadline has advanced. It is valid to compare
3645         * cfs_b->runtime_expires without any locks since we only care about
3646         * exact equality, so a partial write will still work.
3647         */
3648
3649        if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3650                /* extend local deadline, drift is bounded above by 2 ticks */
3651                cfs_rq->runtime_expires += TICK_NSEC;
3652        } else {
3653                /* global deadline is ahead, expiration has passed */
3654                cfs_rq->runtime_remaining = 0;
3655        }
3656}
3657
3658static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3659{
3660        /* dock delta_exec before expiring quota (as it could span periods) */
3661        cfs_rq->runtime_remaining -= delta_exec;
3662        expire_cfs_rq_runtime(cfs_rq);
3663
3664        if (likely(cfs_rq->runtime_remaining > 0))
3665                return;
3666
3667        /*
3668         * if we're unable to extend our runtime we resched so that the active
3669         * hierarchy can be throttled
3670         */
3671        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3672                resched_curr(rq_of(cfs_rq));
3673}
3674
3675static __always_inline
3676void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3677{
3678        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3679                return;
3680
3681        __account_cfs_rq_runtime(cfs_rq, delta_exec);
3682}
3683
3684static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3685{
3686        return cfs_bandwidth_used() && cfs_rq->throttled;
3687}
3688
3689/* check whether cfs_rq, or any parent, is throttled */
3690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3691{
3692        return cfs_bandwidth_used() && cfs_rq->throttle_count;
3693}
3694
3695/*
3696 * Ensure that neither of the group entities corresponding to src_cpu or
3697 * dest_cpu are members of a throttled hierarchy when performing group
3698 * load-balance operations.
3699 */
3700static inline int throttled_lb_pair(struct task_group *tg,
3701                                    int src_cpu, int dest_cpu)
3702{
3703        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3704
3705        src_cfs_rq = tg->cfs_rq[src_cpu];
3706        dest_cfs_rq = tg->cfs_rq[dest_cpu];
3707
3708        return throttled_hierarchy(src_cfs_rq) ||
3709               throttled_hierarchy(dest_cfs_rq);
3710}
3711
3712/* updated child weight may affect parent so we have to do this bottom up */
3713static int tg_unthrottle_up(struct task_group *tg, void *data)
3714{
3715        struct rq *rq = data;
3716        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3717
3718        cfs_rq->throttle_count--;
3719#ifdef CONFIG_SMP
3720        if (!cfs_rq->throttle_count) {
3721                /* adjust cfs_rq_clock_task() */
3722                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3723                                             cfs_rq->throttled_clock_task;
3724        }
3725#endif
3726
3727        return 0;
3728}
3729
3730static int tg_throttle_down(struct task_group *tg, void *data)
3731{
3732        struct rq *rq = data;
3733        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3734
3735        /* group is entering throttled state, stop time */
3736        if (!cfs_rq->throttle_count)
3737                cfs_rq->throttled_clock_task = rq_clock_task(rq);
3738        cfs_rq->throttle_count++;
3739
3740        return 0;
3741}
3742
3743static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3744{
3745        struct rq *rq = rq_of(cfs_rq);
3746        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3747        struct sched_entity *se;
3748        long task_delta, dequeue = 1;
3749        bool empty;
3750
3751        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3752
3753        /* freeze hierarchy runnable averages while throttled */
3754        rcu_read_lock();
3755        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3756        rcu_read_unlock();
3757
3758        task_delta = cfs_rq->h_nr_running;
3759        for_each_sched_entity(se) {
3760                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3761                /* throttled entity or throttle-on-deactivate */
3762                if (!se->on_rq)
3763                        break;
3764
3765                if (dequeue)
3766                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3767                qcfs_rq->h_nr_running -= task_delta;
3768
3769                if (qcfs_rq->load.weight)
3770                        dequeue = 0;
3771        }
3772
3773        if (!se)
3774                sub_nr_running(rq, task_delta);
3775
3776        cfs_rq->throttled = 1;
3777        cfs_rq->throttled_clock = rq_clock(rq);
3778        raw_spin_lock(&cfs_b->lock);
3779        empty = list_empty(&cfs_b->throttled_cfs_rq);
3780
3781        /*
3782         * Add to the _head_ of the list, so that an already-started
3783         * distribute_cfs_runtime will not see us
3784         */
3785        list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3786
3787        /*
3788         * If we're the first throttled task, make sure the bandwidth
3789         * timer is running.
3790         */
3791        if (empty)
3792                start_cfs_bandwidth(cfs_b);
3793
3794        raw_spin_unlock(&cfs_b->lock);
3795}
3796
3797void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3798{
3799        struct rq *rq = rq_of(cfs_rq);
3800        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3801        struct sched_entity *se;
3802        int enqueue = 1;
3803        long task_delta;
3804
3805        se = cfs_rq->tg->se[cpu_of(rq)];
3806
3807        cfs_rq->throttled = 0;
3808
3809        update_rq_clock(rq);
3810
3811        raw_spin_lock(&cfs_b->lock);
3812        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3813        list_del_rcu(&cfs_rq->throttled_list);
3814        raw_spin_unlock(&cfs_b->lock);
3815
3816        /* update hierarchical throttle state */
3817        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3818
3819        if (!cfs_rq->load.weight)
3820                return;
3821
3822        task_delta = cfs_rq->h_nr_running;
3823        for_each_sched_entity(se) {
3824                if (se->on_rq)
3825                        enqueue = 0;
3826
3827                cfs_rq = cfs_rq_of(se);
3828                if (enqueue)
3829                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3830                cfs_rq->h_nr_running += task_delta;
3831
3832                if (cfs_rq_throttled(cfs_rq))
3833                        break;
3834        }
3835
3836        if (!se)
3837                add_nr_running(rq, task_delta);
3838
3839        /* determine whether we need to wake up potentially idle cpu */
3840        if (rq->curr == rq->idle && rq->cfs.nr_running)
3841                resched_curr(rq);
3842}
3843
3844static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3845                u64 remaining, u64 expires)
3846{
3847        struct cfs_rq *cfs_rq;
3848        u64 runtime;
3849        u64 starting_runtime = remaining;
3850
3851        rcu_read_lock();
3852        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3853                                throttled_list) {
3854                struct rq *rq = rq_of(cfs_rq);
3855
3856                raw_spin_lock(&rq->lock);
3857                if (!cfs_rq_throttled(cfs_rq))
3858                        goto next;
3859
3860                runtime = -cfs_rq->runtime_remaining + 1;
3861                if (runtime > remaining)
3862                        runtime = remaining;
3863                remaining -= runtime;
3864
3865                cfs_rq->runtime_remaining += runtime;
3866                cfs_rq->runtime_expires = expires;
3867
3868                /* we check whether we're throttled above */
3869                if (cfs_rq->runtime_remaining > 0)
3870                        unthrottle_cfs_rq(cfs_rq);
3871
3872next:
3873                raw_spin_unlock(&rq->lock);
3874
3875                if (!remaining)
3876                        break;
3877        }
3878        rcu_read_unlock();
3879
3880        return starting_runtime - remaining;
3881}
3882
3883/*
3884 * Responsible for refilling a task_group's bandwidth and unthrottling its
3885 * cfs_rqs as appropriate. If there has been no activity within the last
3886 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3887 * used to track this state.
3888 */
3889static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3890{
3891        u64 runtime, runtime_expires;
3892        int throttled;
3893
3894        /* no need to continue the timer with no bandwidth constraint */
3895        if (cfs_b->quota == RUNTIME_INF)
3896                goto out_deactivate;
3897
3898        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3899        cfs_b->nr_periods += overrun;
3900
3901        /*
3902         * idle depends on !throttled (for the case of a large deficit), and if
3903         * we're going inactive then everything else can be deferred
3904         */
3905        if (cfs_b->idle && !throttled)
3906                goto out_deactivate;
3907
3908        __refill_cfs_bandwidth_runtime(cfs_b);
3909
3910        if (!throttled) {
3911                /* mark as potentially idle for the upcoming period */
3912                cfs_b->idle = 1;
3913                return 0;
3914        }
3915
3916        /* account preceding periods in which throttling occurred */
3917        cfs_b->nr_throttled += overrun;
3918
3919        runtime_expires = cfs_b->runtime_expires;
3920
3921        /*
3922         * This check is repeated as we are holding onto the new bandwidth while
3923         * we unthrottle. This can potentially race with an unthrottled group
3924         * trying to acquire new bandwidth from the global pool. This can result
3925         * in us over-using our runtime if it is all used during this loop, but
3926         * only by limited amounts in that extreme case.
3927         */
3928        while (throttled && cfs_b->runtime > 0) {
3929                runtime = cfs_b->runtime;
3930                raw_spin_unlock(&cfs_b->lock);
3931                /* we can't nest cfs_b->lock while distributing bandwidth */
3932                runtime = distribute_cfs_runtime(cfs_b, runtime,
3933                                                 runtime_expires);
3934                raw_spin_lock(&cfs_b->lock);
3935
3936                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3937
3938                cfs_b->runtime -= min(runtime, cfs_b->runtime);
3939        }
3940
3941        /*
3942         * While we are ensured activity in the period following an
3943         * unthrottle, this also covers the case in which the new bandwidth is
3944         * insufficient to cover the existing bandwidth deficit.  (Forcing the
3945         * timer to remain active while there are any throttled entities.)
3946         */
3947        cfs_b->idle = 0;
3948
3949        return 0;
3950
3951out_deactivate:
3952        return 1;
3953}
3954
3955/* a cfs_rq won't donate quota below this amount */
3956static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3957/* minimum remaining period time to redistribute slack quota */
3958static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3959/* how long we wait to gather additional slack before distributing */
3960static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3961
3962/*
3963 * Are we near the end of the current quota period?
3964 *
3965 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3966 * hrtimer base being cleared by hrtimer_start. In the case of
3967 * migrate_hrtimers, base is never cleared, so we are fine.
3968 */
3969static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3970{
3971        struct hrtimer *refresh_timer = &cfs_b->period_timer;
3972        u64 remaining;
3973
3974        /* if the call-back is running a quota refresh is already occurring */
3975        if (hrtimer_callback_running(refresh_timer))
3976                return 1;
3977
3978        /* is a quota refresh about to occur? */
3979        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3980        if (remaining < min_expire)
3981                return 1;
3982
3983        return 0;
3984}
3985
3986static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3987{
3988        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3989
3990        /* if there's a quota refresh soon don't bother with slack */
3991        if (runtime_refresh_within(cfs_b, min_left))
3992                return;
3993
3994        hrtimer_start(&cfs_b->slack_timer,
3995                        ns_to_ktime(cfs_bandwidth_slack_period),
3996                        HRTIMER_MODE_REL);
3997}
3998
3999/* we know any runtime found here is valid as update_curr() precedes return */
4000static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4001{
4002        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4003        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4004
4005        if (slack_runtime <= 0)
4006                return;
4007
4008        raw_spin_lock(&cfs_b->lock);
4009        if (cfs_b->quota != RUNTIME_INF &&
4010            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4011                cfs_b->runtime += slack_runtime;
4012
4013                /* we are under rq->lock, defer unthrottling using a timer */
4014                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4015                    !list_empty(&cfs_b->throttled_cfs_rq))
4016                        start_cfs_slack_bandwidth(cfs_b);
4017        }
4018        raw_spin_unlock(&cfs_b->lock);
4019
4020        /* even if it's not valid for return we don't want to try again */
4021        cfs_rq->runtime_remaining -= slack_runtime;
4022}
4023
4024static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4025{
4026        if (!cfs_bandwidth_used())
4027                return;
4028
4029        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4030                return;
4031
4032        __return_cfs_rq_runtime(cfs_rq);
4033}
4034
4035/*
4036 * This is done with a timer (instead of inline with bandwidth return) since
4037 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4038 */
4039static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4040{
4041        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4042        u64 expires;
4043
4044        /* confirm we're still not at a refresh boundary */
4045        raw_spin_lock(&cfs_b->lock);
4046        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4047                raw_spin_unlock(&cfs_b->lock);
4048                return;
4049        }
4050
4051        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4052                runtime = cfs_b->runtime;
4053
4054        expires = cfs_b->runtime_expires;
4055        raw_spin_unlock(&cfs_b->lock);
4056
4057        if (!runtime)
4058                return;
4059
4060        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4061
4062        raw_spin_lock(&cfs_b->lock);
4063        if (expires == cfs_b->runtime_expires)
4064                cfs_b->runtime -= min(runtime, cfs_b->runtime);
4065        raw_spin_unlock(&cfs_b->lock);
4066}
4067
4068/*
4069 * When a group wakes up we want to make sure that its quota is not already
4070 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4071 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4072 */
4073static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4074{
4075        if (!cfs_bandwidth_used())
4076                return;
4077
4078        /* an active group must be handled by the update_curr()->put() path */
4079        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4080                return;
4081
4082        /* ensure the group is not already throttled */
4083        if (cfs_rq_throttled(cfs_rq))
4084                return;
4085
4086        /* update runtime allocation */
4087        account_cfs_rq_runtime(cfs_rq, 0);
4088        if (cfs_rq->runtime_remaining <= 0)
4089                throttle_cfs_rq(cfs_rq);
4090}
4091
4092/* conditionally throttle active cfs_rq's from put_prev_entity() */
4093static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094{
4095        if (!cfs_bandwidth_used())
4096                return false;
4097
4098        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4099                return false;
4100
4101        /*
4102         * it's possible for a throttled entity to be forced into a running
4103         * state (e.g. set_curr_task), in this case we're finished.
4104         */
4105        if (cfs_rq_throttled(cfs_rq))
4106                return true;
4107
4108        throttle_cfs_rq(cfs_rq);
4109        return true;
4110}
4111
4112static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4113{
4114        struct cfs_bandwidth *cfs_b =
4115                container_of(timer, struct cfs_bandwidth, slack_timer);
4116
4117        do_sched_cfs_slack_timer(cfs_b);
4118
4119        return HRTIMER_NORESTART;
4120}
4121
4122static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4123{
4124        struct cfs_bandwidth *cfs_b =
4125                container_of(timer, struct cfs_bandwidth, period_timer);
4126        int overrun;
4127        int idle = 0;
4128
4129        raw_spin_lock(&cfs_b->lock);
4130        for (;;) {
4131                overrun = hrtimer_forward_now(timer, cfs_b->period);
4132                if (!overrun)
4133                        break;
4134
4135                idle = do_sched_cfs_period_timer(cfs_b, overrun);
4136        }
4137        if (idle)
4138                cfs_b->period_active = 0;
4139        raw_spin_unlock(&cfs_b->lock);
4140
4141        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4142}
4143
4144void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145{
4146        raw_spin_lock_init(&cfs_b->lock);
4147        cfs_b->runtime = 0;
4148        cfs_b->quota = RUNTIME_INF;
4149        cfs_b->period = ns_to_ktime(default_cfs_period());
4150
4151        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4152        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4153        cfs_b->period_timer.function = sched_cfs_period_timer;
4154        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4155        cfs_b->slack_timer.function = sched_cfs_slack_timer;
4156}
4157
4158static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4159{
4160        cfs_rq->runtime_enabled = 0;
4161        INIT_LIST_HEAD(&cfs_rq->throttled_list);
4162}
4163
4164void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4165{
4166        lockdep_assert_held(&cfs_b->lock);
4167
4168        if (!cfs_b->period_active) {
4169                cfs_b->period_active = 1;
4170                hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4171                hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4172        }
4173}
4174
4175static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4176{
4177        /* init_cfs_bandwidth() was not called */
4178        if (!cfs_b->throttled_cfs_rq.next)
4179                return;
4180
4181        hrtimer_cancel(&cfs_b->period_timer);
4182        hrtimer_cancel(&cfs_b->slack_timer);
4183}
4184
4185static void __maybe_unused update_runtime_enabled(struct rq *rq)
4186{
4187        struct cfs_rq *cfs_rq;
4188
4189        for_each_leaf_cfs_rq(rq, cfs_rq) {
4190                struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4191
4192                raw_spin_lock(&cfs_b->lock);
4193                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4194                raw_spin_unlock(&cfs_b->lock);
4195        }
4196}
4197
4198static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4199{
4200        struct cfs_rq *cfs_rq;
4201
4202        for_each_leaf_cfs_rq(rq, cfs_rq) {
4203                if (!cfs_rq->runtime_enabled)
4204                        continue;
4205
4206                /*
4207                 * clock_task is not advancing so we just need to make sure
4208                 * there's some valid quota amount
4209                 */
4210                cfs_rq->runtime_remaining = 1;
4211                /*
4212                 * Offline rq is schedulable till cpu is completely disabled
4213                 * in take_cpu_down(), so we prevent new cfs throttling here.
4214                 */
4215                cfs_rq->runtime_enabled = 0;
4216
4217                if (cfs_rq_throttled(cfs_rq))
4218                        unthrottle_cfs_rq(cfs_rq);
4219        }
4220}
4221
4222#else /* CONFIG_CFS_BANDWIDTH */
4223static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4224{
4225        return rq_clock_task(rq_of(cfs_rq));
4226}
4227
4228static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4229static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4230static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4231static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4232
4233static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4234{
4235        return 0;
4236}
4237
4238static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4239{
4240        return 0;
4241}
4242
4243static inline int throttled_lb_pair(struct task_group *tg,
4244                                    int src_cpu, int dest_cpu)
4245{
4246        return 0;
4247}
4248
4249void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4250
4251#ifdef CONFIG_FAIR_GROUP_SCHED
4252static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4253#endif
4254
4255static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4256{
4257        return NULL;
4258}
4259static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4260static inline void update_runtime_enabled(struct rq *rq) {}
4261static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4262
4263#endif /* CONFIG_CFS_BANDWIDTH */
4264
4265/**************************************************
4266 * CFS operations on tasks:
4267 */
4268
4269#ifdef CONFIG_SCHED_HRTICK
4270static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4271{
4272        struct sched_entity *se = &p->se;
4273        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274
4275        WARN_ON(task_rq(p) != rq);
4276
4277        if (cfs_rq->nr_running > 1) {
4278                u64 slice = sched_slice(cfs_rq, se);
4279                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4280                s64 delta = slice - ran;
4281
4282                if (delta < 0) {
4283                        if (rq->curr == p)
4284                                resched_curr(rq);
4285                        return;
4286                }
4287                hrtick_start(rq, delta);
4288        }
4289}
4290
4291/*
4292 * called from enqueue/dequeue and updates the hrtick when the
4293 * current task is from our class and nr_running is low enough
4294 * to matter.
4295 */
4296static void hrtick_update(struct rq *rq)
4297{
4298        struct task_struct *curr = rq->curr;
4299
4300        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4301                return;
4302
4303        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4304                hrtick_start_fair(rq, curr);
4305}
4306#else /* !CONFIG_SCHED_HRTICK */
4307static inline void
4308hrtick_start_fair(struct rq *rq, struct task_struct *p)
4309{
4310}
4311
4312static inline void hrtick_update(struct rq *rq)
4313{
4314}
4315#endif
4316
4317/*
4318 * The enqueue_task method is called before nr_running is
4319 * increased. Here we update the fair scheduling stats and
4320 * then put the task into the rbtree:
4321 */
4322static void
4323enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4324{
4325        struct cfs_rq *cfs_rq;
4326        struct sched_entity *se = &p->se;
4327
4328        for_each_sched_entity(se) {
4329                if (se->on_rq)
4330                        break;
4331                cfs_rq = cfs_rq_of(se);
4332                enqueue_entity(cfs_rq, se, flags);
4333
4334                /*
4335                 * end evaluation on encountering a throttled cfs_rq
4336                 *
4337                 * note: in the case of encountering a throttled cfs_rq we will
4338                 * post the final h_nr_running increment below.
4339                */
4340                if (cfs_rq_throttled(cfs_rq))
4341                        break;
4342                cfs_rq->h_nr_running++;
4343
4344                flags = ENQUEUE_WAKEUP;
4345        }
4346
4347        for_each_sched_entity(se) {
4348                cfs_rq = cfs_rq_of(se);
4349                cfs_rq->h_nr_running++;
4350
4351                if (cfs_rq_throttled(cfs_rq))
4352                        break;
4353
4354                update_load_avg(se, 1);
4355                update_cfs_shares(cfs_rq);
4356        }
4357
4358        if (!se)
4359                add_nr_running(rq, 1);
4360
4361        hrtick_update(rq);
4362}
4363
4364static void set_next_buddy(struct sched_entity *se);
4365
4366/*
4367 * The dequeue_task method is called before nr_running is
4368 * decreased. We remove the task from the rbtree and
4369 * update the fair scheduling stats:
4370 */
4371static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4372{
4373        struct cfs_rq *cfs_rq;
4374        struct sched_entity *se = &p->se;
4375        int task_sleep = flags & DEQUEUE_SLEEP;
4376
4377        for_each_sched_entity(se) {
4378                cfs_rq = cfs_rq_of(se);
4379                dequeue_entity(cfs_rq, se, flags);
4380
4381                /*
4382                 * end evaluation on encountering a throttled cfs_rq
4383                 *
4384                 * note: in the case of encountering a throttled cfs_rq we will
4385                 * post the final h_nr_running decrement below.
4386                */
4387                if (cfs_rq_throttled(cfs_rq))
4388                        break;
4389                cfs_rq->h_nr_running--;
4390
4391                /* Don't dequeue parent if it has other entities besides us */
4392                if (cfs_rq->load.weight) {
4393                        /*
4394                         * Bias pick_next to pick a task from this cfs_rq, as
4395                         * p is sleeping when it is within its sched_slice.
4396                         */
4397                        if (task_sleep && parent_entity(se))
4398                                set_next_buddy(parent_entity(se));
4399
4400                        /* avoid re-evaluating load for this entity */
4401                        se = parent_entity(se);
4402                        break;
4403                }
4404                flags |= DEQUEUE_SLEEP;
4405        }
4406
4407        for_each_sched_entity(se) {
4408                cfs_rq = cfs_rq_of(se);
4409                cfs_rq->h_nr_running--;
4410
4411                if (cfs_rq_throttled(cfs_rq))
4412                        break;
4413
4414                update_load_avg(se, 1);
4415                update_cfs_shares(cfs_rq);
4416        }
4417
4418        if (!se)
4419                sub_nr_running(rq, 1);
4420
4421        hrtick_update(rq);
4422}
4423
4424#ifdef CONFIG_SMP
4425
4426/*
4427 * per rq 'load' arrray crap; XXX kill this.
4428 */
4429
4430/*
4431 * The exact cpuload calculated at every tick would be:
4432 *
4433 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4434 *
4435 * If a cpu misses updates for n ticks (as it was idle) and update gets
4436 * called on the n+1-th tick when cpu may be busy, then we have:
4437 *
4438 *   load_n   = (1 - 1/2^i)^n * load_0
4439 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4440 *
4441 * decay_load_missed() below does efficient calculation of
4442 *
4443 *   load' = (1 - 1/2^i)^n * load
4444 *
4445 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4446 * This allows us to precompute the above in said factors, thereby allowing the
4447 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4448 * fixed_power_int())
4449 *
4450 * The calculation is approximated on a 128 point scale.
4451 */
4452#define DEGRADE_SHIFT           7
4453
4454static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4455static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4456        {   0,   0,  0,  0,  0,  0, 0, 0 },
4457        {  64,  32,  8,  0,  0,  0, 0, 0 },
4458        {  96,  72, 40, 12,  1,  0, 0, 0 },
4459        { 112,  98, 75, 43, 15,  1, 0, 0 },
4460        { 120, 112, 98, 76, 45, 16, 2, 0 }
4461};
4462
4463/*
4464 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4465 * would be when CPU is idle and so we just decay the old load without
4466 * adding any new load.
4467 */
4468static unsigned long
4469decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4470{
4471        int j = 0;
4472
4473        if (!missed_updates)
4474                return load;
4475
4476        if (missed_updates >= degrade_zero_ticks[idx])
4477                return 0;
4478
4479        if (idx == 1)
4480                return load >> missed_updates;
4481
4482        while (missed_updates) {
4483                if (missed_updates % 2)
4484                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4485
4486                missed_updates >>= 1;
4487                j++;
4488        }
4489        return load;
4490}
4491
4492/**
4493 * __update_cpu_load - update the rq->cpu_load[] statistics
4494 * @this_rq: The rq to update statistics for
4495 * @this_load: The current load
4496 * @pending_updates: The number of missed updates
4497 * @active: !0 for NOHZ_FULL
4498 *
4499 * Update rq->cpu_load[] statistics. This function is usually called every
4500 * scheduler tick (TICK_NSEC).
4501 *
4502 * This function computes a decaying average:
4503 *
4504 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4505 *
4506 * Because of NOHZ it might not get called on every tick which gives need for
4507 * the @pending_updates argument.
4508 *
4509 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4510 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4511 *             = A * (A * load[i]_n-2 + B) + B
4512 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4513 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4514 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4515 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4516 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4517 *
4518 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4519 * any change in load would have resulted in the tick being turned back on.
4520 *
4521 * For regular NOHZ, this reduces to:
4522 *
4523 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4524 *
4525 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4526 * term. See the @active paramter.
4527 */
4528static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4529                              unsigned long pending_updates, int active)
4530{
4531        unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4532        int i, scale;
4533
4534        this_rq->nr_load_updates++;
4535
4536        /* Update our load: */
4537        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4538        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4539                unsigned long old_load, new_load;
4540
4541                /* scale is effectively 1 << i now, and >> i divides by scale */
4542
4543                old_load = this_rq->cpu_load[i];
4544                old_load = decay_load_missed(old_load, pending_updates - 1, i);
4545                if (tickless_load) {
4546                        old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4547                        /*
4548                         * old_load can never be a negative value because a
4549                         * decayed tickless_load cannot be greater than the
4550                         * original tickless_load.
4551                         */
4552                        old_load += tickless_load;
4553                }
4554                new_load = this_load;
4555                /*
4556                 * Round up the averaging division if load is increasing. This
4557                 * prevents us from getting stuck on 9 if the load is 10, for
4558                 * example.
4559                 */
4560                if (new_load > old_load)
4561                        new_load += scale - 1;
4562
4563                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4564        }
4565
4566        sched_avg_update(this_rq);
4567}
4568
4569/* Used instead of source_load when we know the type == 0 */
4570static unsigned long weighted_cpuload(const int cpu)
4571{
4572        return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4573}
4574
4575#ifdef CONFIG_NO_HZ_COMMON
4576static void __update_cpu_load_nohz(struct rq *this_rq,
4577                                   unsigned long curr_jiffies,
4578                                   unsigned long load,
4579                                   int active)
4580{
4581        unsigned long pending_updates;
4582
4583        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4584        if (pending_updates) {
4585                this_rq->last_load_update_tick = curr_jiffies;
4586                /*
4587                 * In the regular NOHZ case, we were idle, this means load 0.
4588                 * In the NOHZ_FULL case, we were non-idle, we should consider
4589                 * its weighted load.
4590                 */
4591                __update_cpu_load(this_rq, load, pending_updates, active);
4592        }
4593}
4594
4595/*
4596 * There is no sane way to deal with nohz on smp when using jiffies because the
4597 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4598 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4599 *
4600 * Therefore we cannot use the delta approach from the regular tick since that
4601 * would seriously skew the load calculation. However we'll make do for those
4602 * updates happening while idle (nohz_idle_balance) or coming out of idle
4603 * (tick_nohz_idle_exit).
4604 *
4605 * This means we might still be one tick off for nohz periods.
4606 */
4607
4608/*
4609 * Called from nohz_idle_balance() to update the load ratings before doing the
4610 * idle balance.
4611 */
4612static void update_cpu_load_idle(struct rq *this_rq)
4613{
4614        /*
4615         * bail if there's load or we're actually up-to-date.
4616         */
4617        if (weighted_cpuload(cpu_of(this_rq)))
4618                return;
4619
4620        __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4621}
4622
4623/*
4624 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4625 */
4626void update_cpu_load_nohz(int active)
4627{
4628        struct rq *this_rq = this_rq();
4629        unsigned long curr_jiffies = READ_ONCE(jiffies);
4630        unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4631
4632        if (curr_jiffies == this_rq->last_load_update_tick)
4633                return;
4634
4635        raw_spin_lock(&this_rq->lock);
4636        __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4637        raw_spin_unlock(&this_rq->lock);
4638}
4639#endif /* CONFIG_NO_HZ */
4640
4641/*
4642 * Called from scheduler_tick()
4643 */
4644void update_cpu_load_active(struct rq *this_rq)
4645{
4646        unsigned long load = weighted_cpuload(cpu_of(this_rq));
4647        /*
4648         * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4649         */
4650        this_rq->last_load_update_tick = jiffies;
4651        __update_cpu_load(this_rq, load, 1, 1);
4652}
4653
4654/*
4655 * Return a low guess at the load of a migration-source cpu weighted
4656 * according to the scheduling class and "nice" value.
4657 *
4658 * We want to under-estimate the load of migration sources, to
4659 * balance conservatively.
4660 */
4661static unsigned long source_load(int cpu, int type)
4662{
4663        struct rq *rq = cpu_rq(cpu);
4664        unsigned long total = weighted_cpuload(cpu);
4665
4666        if (type == 0 || !sched_feat(LB_BIAS))
4667                return total;
4668
4669        return min(rq->cpu_load[type-1], total);
4670}
4671
4672/*
4673 * Return a high guess at the load of a migration-target cpu weighted
4674 * according to the scheduling class and "nice" value.
4675 */
4676static unsigned long target_load(int cpu, int type)
4677{
4678        struct rq *rq = cpu_rq(cpu);
4679        unsigned long total = weighted_cpuload(cpu);
4680
4681        if (type == 0 || !sched_feat(LB_BIAS))
4682                return total;
4683
4684        return max(rq->cpu_load[type-1], total);
4685}
4686
4687static unsigned long capacity_of(int cpu)
4688{
4689        return cpu_rq(cpu)->cpu_capacity;
4690}
4691
4692static unsigned long capacity_orig_of(int cpu)
4693{
4694        return cpu_rq(cpu)->cpu_capacity_orig;
4695}
4696
4697static unsigned long cpu_avg_load_per_task(int cpu)
4698{
4699        struct rq *rq = cpu_rq(cpu);
4700        unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4701        unsigned long load_avg = weighted_cpuload(cpu);
4702
4703        if (nr_running)
4704                return load_avg / nr_running;
4705
4706        return 0;
4707}
4708
4709static void record_wakee(struct task_struct *p)
4710{
4711        /*
4712         * Rough decay (wiping) for cost saving, don't worry
4713         * about the boundary, really active task won't care
4714         * about the loss.
4715         */
4716        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4717                current->wakee_flips >>= 1;
4718                current->wakee_flip_decay_ts = jiffies;
4719        }
4720
4721        if (current->last_wakee != p) {
4722                current->last_wakee = p;
4723                current->wakee_flips++;
4724        }
4725}
4726
4727static void task_waking_fair(struct task_struct *p)
4728{
4729        struct sched_entity *se = &p->se;
4730        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4731        u64 min_vruntime;
4732
4733#ifndef CONFIG_64BIT
4734        u64 min_vruntime_copy;
4735
4736        do {
4737                min_vruntime_copy = cfs_rq->min_vruntime_copy;
4738                smp_rmb();
4739                min_vruntime = cfs_rq->min_vruntime;
4740        } while (min_vruntime != min_vruntime_copy);
4741#else
4742        min_vruntime = cfs_rq->min_vruntime;
4743#endif
4744
4745        se->vruntime -= min_vruntime;
4746        record_wakee(p);
4747}
4748
4749#ifdef CONFIG_FAIR_GROUP_SCHED
4750/*
4751 * effective_load() calculates the load change as seen from the root_task_group
4752 *
4753 * Adding load to a group doesn't make a group heavier, but can cause movement
4754 * of group shares between cpus. Assuming the shares were perfectly aligned one
4755 * can calculate the shift in shares.
4756 *
4757 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4758 * on this @cpu and results in a total addition (subtraction) of @wg to the
4759 * total group weight.
4760 *
4761 * Given a runqueue weight distribution (rw_i) we can compute a shares
4762 * distribution (s_i) using:
4763 *
4764 *   s_i = rw_i / \Sum rw_j                                             (1)
4765 *
4766 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4767 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4768 * shares distribution (s_i):
4769 *
4770 *   rw_i = {   2,   4,   1,   0 }
4771 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4772 *
4773 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4774 * task used to run on and the CPU the waker is running on), we need to
4775 * compute the effect of waking a task on either CPU and, in case of a sync
4776 * wakeup, compute the effect of the current task going to sleep.
4777 *
4778 * So for a change of @wl to the local @cpu with an overall group weight change
4779 * of @wl we can compute the new shares distribution (s'_i) using:
4780 *
4781 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
4782 *
4783 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4784 * differences in waking a task to CPU 0. The additional task changes the
4785 * weight and shares distributions like:
4786 *
4787 *   rw'_i = {   3,   4,   1,   0 }
4788 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4789 *
4790 * We can then compute the difference in effective weight by using:
4791 *
4792 *   dw_i = S * (s'_i - s_i)                                            (3)
4793 *
4794 * Where 'S' is the group weight as seen by its parent.
4795 *
4796 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4797 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4798 * 4/7) times the weight of the group.
4799 */
4800static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4801{
4802        struct sched_entity *se = tg->se[cpu];
4803
4804        if (!tg->parent)        /* the trivial, non-cgroup case */
4805                return wl;
4806
4807        for_each_sched_entity(se) {
4808                long w, W;
4809
4810                tg = se->my_q->tg;
4811
4812                /*
4813                 * W = @wg + \Sum rw_j
4814                 */
4815                W = wg + calc_tg_weight(tg, se->my_q);
4816
4817                /*
4818                 * w = rw_i + @wl
4819                 */
4820                w = cfs_rq_load_avg(se->my_q) + wl;
4821
4822                /*
4823                 * wl = S * s'_i; see (2)
4824                 */
4825                if (W > 0 && w < W)
4826                        wl = (w * (long)tg->shares) / W;
4827                else
4828                        wl = tg->shares;
4829
4830                /*
4831                 * Per the above, wl is the new se->load.weight value; since
4832                 * those are clipped to [MIN_SHARES, ...) do so now. See
4833                 * calc_cfs_shares().
4834                 */
4835                if (wl < MIN_SHARES)
4836                        wl = MIN_SHARES;
4837
4838                /*
4839                 * wl = dw_i = S * (s'_i - s_i); see (3)
4840                 */
4841                wl -= se->avg.load_avg;
4842
4843                /*
4844                 * Recursively apply this logic to all parent groups to compute
4845                 * the final effective load change on the root group. Since
4846                 * only the @tg group gets extra weight, all parent groups can
4847                 * only redistribute existing shares. @wl is the shift in shares
4848                 * resulting from this level per the above.
4849                 */
4850                wg = 0;
4851        }
4852
4853        return wl;
4854}
4855#else
4856
4857static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4858{
4859        return wl;
4860}
4861
4862#endif
4863
4864/*
4865 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4866 * A waker of many should wake a different task than the one last awakened
4867 * at a frequency roughly N times higher than one of its wakees.  In order
4868 * to determine whether we should let the load spread vs consolodating to
4869 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4870 * partner, and a factor of lls_size higher frequency in the other.  With
4871 * both conditions met, we can be relatively sure that the relationship is
4872 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4873 * being client/server, worker/dispatcher, interrupt source or whatever is
4874 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4875 */
4876static int wake_wide(struct task_struct *p)
4877{
4878        unsigned int master = current->wakee_flips;
4879        unsigned int slave = p->wakee_flips;
4880        int factor = this_cpu_read(sd_llc_size);
4881
4882        if (master < slave)
4883                swap(master, slave);
4884        if (slave < factor || master < slave * factor)
4885                return 0;
4886        return 1;
4887}
4888
4889static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4890{
4891        s64 this_load, load;
4892        s64 this_eff_load, prev_eff_load;
4893        int idx, this_cpu, prev_cpu;
4894        struct task_group *tg;
4895        unsigned long weight;
4896        int balanced;
4897
4898        idx       = sd->wake_idx;
4899        this_cpu  = smp_processor_id();
4900        prev_cpu  = task_cpu(p);
4901        load      = source_load(prev_cpu, idx);
4902        this_load = target_load(this_cpu, idx);
4903
4904        /*
4905         * If sync wakeup then subtract the (maximum possible)
4906         * effect of the currently running task from the load
4907         * of the current CPU:
4908         */
4909        if (sync) {
4910                tg = task_group(current);
4911                weight = current->se.avg.load_avg;
4912
4913                this_load += effective_load(tg, this_cpu, -weight, -weight);
4914                load += effective_load(tg, prev_cpu, 0, -weight);
4915        }
4916
4917        tg = task_group(p);
4918        weight = p->se.avg.load_avg;
4919
4920        /*
4921         * In low-load situations, where prev_cpu is idle and this_cpu is idle
4922         * due to the sync cause above having dropped this_load to 0, we'll
4923         * always have an imbalance, but there's really nothing you can do
4924         * about that, so that's good too.
4925         *
4926         * Otherwise check if either cpus are near enough in load to allow this
4927         * task to be woken on this_cpu.
4928         */
4929        this_eff_load = 100;
4930        this_eff_load *= capacity_of(prev_cpu);
4931
4932        prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4933        prev_eff_load *= capacity_of(this_cpu);
4934
4935        if (this_load > 0) {
4936                this_eff_load *= this_load +
4937                        effective_load(tg, this_cpu, weight, weight);
4938
4939                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4940        }
4941
4942        balanced = this_eff_load <= prev_eff_load;
4943
4944        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4945
4946        if (!balanced)
4947                return 0;
4948
4949        schedstat_inc(sd, ttwu_move_affine);
4950        schedstat_inc(p, se.statistics.nr_wakeups_affine);
4951
4952        return 1;
4953}
4954
4955/*
4956 * find_idlest_group finds and returns the least busy CPU group within the
4957 * domain.
4958 */
4959static struct sched_group *
4960find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4961                  int this_cpu, int sd_flag)
4962{
4963        struct sched_group *idlest = NULL, *group = sd->groups;
4964        unsigned long min_load = ULONG_MAX, this_load = 0;
4965        int load_idx = sd->forkexec_idx;
4966        int imbalance = 100 + (sd->imbalance_pct-100)/2;
4967
4968        if (sd_flag & SD_BALANCE_WAKE)
4969                load_idx = sd->wake_idx;
4970
4971        do {
4972                unsigned long load, avg_load;
4973                int local_group;
4974                int i;
4975
4976                /* Skip over this group if it has no CPUs allowed */
4977                if (!cpumask_intersects(sched_group_cpus(group),
4978                                        tsk_cpus_allowed(p)))
4979                        continue;
4980
4981                local_group = cpumask_test_cpu(this_cpu,
4982                                               sched_group_cpus(group));
4983
4984                /* Tally up the load of all CPUs in the group */
4985                avg_load = 0;
4986
4987                for_each_cpu(i, sched_group_cpus(group)) {
4988                        /* Bias balancing toward cpus of our domain */
4989                        if (local_group)
4990                                load = source_load(i, load_idx);
4991                        else
4992                                load = target_load(i, load_idx);
4993
4994                        avg_load += load;
4995                }
4996
4997                /* Adjust by relative CPU capacity of the group */
4998                avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4999
5000                if (local_group) {
5001                        this_load = avg_load;
5002                } else if (avg_load < min_load) {
5003                        min_load = avg_load;
5004                        idlest = group;
5005                }
5006        } while (group = group->next, group != sd->groups);
5007
5008        if (!idlest || 100*this_load < imbalance*min_load)
5009                return NULL;
5010        return idlest;
5011}
5012
5013/*
5014 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5015 */
5016static int
5017find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5018{
5019        unsigned long load, min_load = ULONG_MAX;
5020        unsigned int min_exit_latency = UINT_MAX;
5021        u64 latest_idle_timestamp = 0;
5022        int least_loaded_cpu = this_cpu;
5023        int shallowest_idle_cpu = -1;
5024        int i;
5025
5026        /* Traverse only the allowed CPUs */
5027        for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5028                if (idle_cpu(i)) {
5029                        struct rq *rq = cpu_rq(i);
5030                        struct cpuidle_state *idle = idle_get_state(rq);
5031                        if (idle && idle->exit_latency < min_exit_latency) {
5032                                /*
5033                                 * We give priority to a CPU whose idle state
5034                                 * has the smallest exit latency irrespective
5035                                 * of any idle timestamp.
5036                                 */
5037                                min_exit_latency = idle->exit_latency;
5038                                latest_idle_timestamp = rq->idle_stamp;
5039                                shallowest_idle_cpu = i;
5040                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5041                                   rq->idle_stamp > latest_idle_timestamp) {
5042                                /*
5043                                 * If equal or no active idle state, then
5044                                 * the most recently idled CPU might have
5045                                 * a warmer cache.
5046                                 */
5047                                latest_idle_timestamp = rq->idle_stamp;
5048                                shallowest_idle_cpu = i;
5049                        }
5050                } else if (shallowest_idle_cpu == -1) {
5051                        load = weighted_cpuload(i);
5052                        if (load < min_load || (load == min_load && i == this_cpu)) {
5053                                min_load = load;
5054                                least_loaded_cpu = i;
5055                        }
5056                }
5057        }
5058
5059        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5060}
5061
5062/*
5063 * Try and locate an idle CPU in the sched_domain.
5064 */
5065static int select_idle_sibling(struct task_struct *p, int target)
5066{
5067        struct sched_domain *sd;
5068        struct sched_group *sg;
5069        int i = task_cpu(p);
5070
5071        if (idle_cpu(target))
5072                return target;
5073
5074        /*
5075         * If the prevous cpu is cache affine and idle, don't be stupid.
5076         */
5077        if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5078                return i;
5079
5080        /*
5081         * Otherwise, iterate the domains and find an eligible idle cpu.
5082         *
5083         * A completely idle sched group at higher domains is more
5084         * desirable than an idle group at a lower level, because lower
5085         * domains have smaller groups and usually share hardware
5086         * resources which causes tasks to contend on them, e.g. x86
5087         * hyperthread siblings in the lowest domain (SMT) can contend
5088         * on the shared cpu pipeline.
5089         *
5090         * However, while we prefer idle groups at higher domains
5091         * finding an idle cpu at the lowest domain is still better than
5092         * returning 'target', which we've already established, isn't
5093         * idle.
5094         */
5095        sd = rcu_dereference(per_cpu(sd_llc, target));
5096        for_each_lower_domain(sd) {
5097                sg = sd->groups;
5098                do {
5099                        if (!cpumask_intersects(sched_group_cpus(sg),
5100                                                tsk_cpus_allowed(p)))
5101                                goto next;
5102
5103                        /* Ensure the entire group is idle */
5104                        for_each_cpu(i, sched_group_cpus(sg)) {
5105                                if (i == target || !idle_cpu(i))
5106                                        goto next;
5107                        }
5108
5109                        /*
5110                         * It doesn't matter which cpu we pick, the
5111                         * whole group is idle.
5112                         */
5113                        target = cpumask_first_and(sched_group_cpus(sg),
5114                                        tsk_cpus_allowed(p));
5115                        goto done;
5116next:
5117                        sg = sg->next;
5118                } while (sg != sd->groups);
5119        }
5120done:
5121        return target;
5122}
5123
5124/*
5125 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5126 * tasks. The unit of the return value must be the one of capacity so we can
5127 * compare the utilization with the capacity of the CPU that is available for
5128 * CFS task (ie cpu_capacity).
5129 *
5130 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5131 * recent utilization of currently non-runnable tasks on a CPU. It represents
5132 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5133 * capacity_orig is the cpu_capacity available at the highest frequency
5134 * (arch_scale_freq_capacity()).
5135 * The utilization of a CPU converges towards a sum equal to or less than the
5136 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5137 * the running time on this CPU scaled by capacity_curr.
5138 *
5139 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5140 * higher than capacity_orig because of unfortunate rounding in
5141 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5142 * the average stabilizes with the new running time. We need to check that the
5143 * utilization stays within the range of [0..capacity_orig] and cap it if
5144 * necessary. Without utilization capping, a group could be seen as overloaded
5145 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5146 * available capacity. We allow utilization to overshoot capacity_curr (but not
5147 * capacity_orig) as it useful for predicting the capacity required after task
5148 * migrations (scheduler-driven DVFS).
5149 */
5150static int cpu_util(int cpu)
5151{
5152        unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5153        unsigned long capacity = capacity_orig_of(cpu);
5154
5155        return (util >= capacity) ? capacity : util;
5156}
5157
5158/*
5159 * select_task_rq_fair: Select target runqueue for the waking task in domains
5160 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5161 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5162 *
5163 * Balances load by selecting the idlest cpu in the idlest group, or under
5164 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5165 *
5166 * Returns the target cpu number.
5167 *
5168 * preempt must be disabled.
5169 */
5170static int
5171select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5172{
5173        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5174        int cpu = smp_processor_id();
5175        int new_cpu = prev_cpu;
5176        int want_affine = 0;
5177        int sync = wake_flags & WF_SYNC;
5178
5179        if (sd_flag & SD_BALANCE_WAKE)
5180                want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5181
5182        rcu_read_lock();
5183        for_each_domain(cpu, tmp) {
5184                if (!(tmp->flags & SD_LOAD_BALANCE))
5185                        break;
5186
5187                /*
5188                 * If both cpu and prev_cpu are part of this domain,
5189                 * cpu is a valid SD_WAKE_AFFINE target.
5190                 */
5191                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5192                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5193                        affine_sd = tmp;
5194                        break;
5195                }
5196
5197                if (tmp->flags & sd_flag)
5198                        sd = tmp;
5199                else if (!want_affine)
5200                        break;
5201        }
5202
5203        if (affine_sd) {
5204                sd = NULL; /* Prefer wake_affine over balance flags */
5205                if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5206                        new_cpu = cpu;
5207        }
5208
5209        if (!sd) {
5210                if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5211                        new_cpu = select_idle_sibling(p, new_cpu);
5212
5213        } else while (sd) {
5214                struct sched_group *group;
5215                int weight;
5216
5217                if (!(sd->flags & sd_flag)) {
5218                        sd = sd->child;
5219                        continue;
5220                }
5221
5222                group = find_idlest_group(sd, p, cpu, sd_flag);
5223                if (!group) {
5224                        sd = sd->child;
5225                        continue;
5226                }
5227
5228                new_cpu = find_idlest_cpu(group, p, cpu);
5229                if (new_cpu == -1 || new_cpu == cpu) {
5230                        /* Now try balancing at a lower domain level of cpu */
5231                        sd = sd->child;
5232                        continue;
5233                }
5234
5235                /* Now try balancing at a lower domain level of new_cpu */
5236                cpu = new_cpu;
5237                weight = sd->span_weight;
5238                sd = NULL;
5239                for_each_domain(cpu, tmp) {
5240                        if (weight <= tmp->span_weight)
5241                                break;
5242                        if (tmp->flags & sd_flag)
5243                                sd = tmp;
5244                }
5245                /* while loop will break here if sd == NULL */
5246        }
5247        rcu_read_unlock();
5248
5249        return new_cpu;
5250}
5251
5252/*
5253 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5254 * cfs_rq_of(p) references at time of call are still valid and identify the
5255 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5256 */
5257static void migrate_task_rq_fair(struct task_struct *p)
5258{
5259        /*
5260         * We are supposed to update the task to "current" time, then its up to date
5261         * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5262         * what current time is, so simply throw away the out-of-date time. This
5263         * will result in the wakee task is less decayed, but giving the wakee more
5264         * load sounds not bad.
5265         */
5266        remove_entity_load_avg(&p->se);
5267
5268        /* Tell new CPU we are migrated */
5269        p->se.avg.last_update_time = 0;
5270
5271        /* We have migrated, no longer consider this task hot */
5272        p->se.exec_start = 0;
5273}
5274
5275static void task_dead_fair(struct task_struct *p)
5276{
5277        remove_entity_load_avg(&p->se);
5278}
5279#endif /* CONFIG_SMP */
5280
5281static unsigned long
5282wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5283{
5284        unsigned long gran = sysctl_sched_wakeup_granularity;
5285
5286        /*
5287         * Since its curr running now, convert the gran from real-time
5288         * to virtual-time in his units.
5289         *
5290         * By using 'se' instead of 'curr' we penalize light tasks, so
5291         * they get preempted easier. That is, if 'se' < 'curr' then
5292         * the resulting gran will be larger, therefore penalizing the
5293         * lighter, if otoh 'se' > 'curr' then the resulting gran will
5294         * be smaller, again penalizing the lighter task.
5295         *
5296         * This is especially important for buddies when the leftmost
5297         * task is higher priority than the buddy.
5298         */
5299        return calc_delta_fair(gran, se);
5300}
5301
5302/*
5303 * Should 'se' preempt 'curr'.
5304 *
5305 *             |s1
5306 *        |s2
5307 *   |s3
5308 *         g
5309 *      |<--->|c
5310 *
5311 *  w(c, s1) = -1
5312 *  w(c, s2) =  0
5313 *  w(c, s3) =  1
5314 *
5315 */
5316static int
5317wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5318{
5319        s64 gran, vdiff = curr->vruntime - se->vruntime;
5320
5321        if (vdiff <= 0)
5322                return -1;
5323
5324        gran = wakeup_gran(curr, se);
5325        if (vdiff > gran)
5326                return 1;
5327
5328        return 0;
5329}
5330
5331static void set_last_buddy(struct sched_entity *se)
5332{
5333        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5334                return;
5335
5336        for_each_sched_entity(se)
5337                cfs_rq_of(se)->last = se;
5338}
5339
5340static void set_next_buddy(struct sched_entity *se)
5341{
5342        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5343                return;
5344
5345        for_each_sched_entity(se)
5346                cfs_rq_of(se)->next = se;
5347}
5348
5349static void set_skip_buddy(struct sched_entity *se)
5350{
5351        for_each_sched_entity(se)
5352                cfs_rq_of(se)->skip = se;
5353}
5354
5355/*
5356 * Preempt the current task with a newly woken task if needed:
5357 */
5358static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5359{
5360        struct task_struct *curr = rq->curr;
5361        struct sched_entity *se = &curr->se, *pse = &p->se;
5362        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5363        int scale = cfs_rq->nr_running >= sched_nr_latency;
5364        int next_buddy_marked = 0;
5365
5366        if (unlikely(se == pse))
5367                return;
5368
5369        /*
5370         * This is possible from callers such as attach_tasks(), in which we
5371         * unconditionally check_prempt_curr() after an enqueue (which may have
5372         * lead to a throttle).  This both saves work and prevents false
5373         * next-buddy nomination below.
5374         */
5375        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5376                return;
5377
5378        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5379                set_next_buddy(pse);
5380                next_buddy_marked = 1;
5381        }
5382
5383        /*
5384         * We can come here with TIF_NEED_RESCHED already set from new task
5385         * wake up path.
5386         *
5387         * Note: this also catches the edge-case of curr being in a throttled
5388         * group (e.g. via set_curr_task), since update_curr() (in the
5389         * enqueue of curr) will have resulted in resched being set.  This
5390         * prevents us from potentially nominating it as a false LAST_BUDDY
5391         * below.
5392         */
5393        if (test_tsk_need_resched(curr))
5394                return;
5395
5396        /* Idle tasks are by definition preempted by non-idle tasks. */
5397        if (unlikely(curr->policy == SCHED_IDLE) &&
5398            likely(p->policy != SCHED_IDLE))
5399                goto preempt;
5400
5401        /*
5402         * Batch and idle tasks do not preempt non-idle tasks (their preemption
5403         * is driven by the tick):
5404         */
5405        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5406                return;
5407
5408        find_matching_se(&se, &pse);
5409        update_curr(cfs_rq_of(se));
5410        BUG_ON(!pse);
5411        if (wakeup_preempt_entity(se, pse) == 1) {
5412                /*
5413                 * Bias pick_next to pick the sched entity that is
5414                 * triggering this preemption.
5415                 */
5416                if (!next_buddy_marked)
5417                        set_next_buddy(pse);
5418                goto preempt;
5419        }
5420
5421        return;
5422
5423preempt:
5424        resched_curr(rq);
5425        /*
5426         * Only set the backward buddy when the current task is still
5427         * on the rq. This can happen when a wakeup gets interleaved
5428         * with schedule on the ->pre_schedule() or idle_balance()
5429         * point, either of which can * drop the rq lock.
5430         *
5431         * Also, during early boot the idle thread is in the fair class,
5432         * for obvious reasons its a bad idea to schedule back to it.
5433         */
5434        if (unlikely(!se->on_rq || curr == rq->idle))
5435                return;
5436
5437        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5438                set_last_buddy(se);
5439}
5440
5441static struct task_struct *
5442pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5443{
5444        struct cfs_rq *cfs_rq = &rq->cfs;
5445        struct sched_entity *se;
5446        struct task_struct *p;
5447        int new_tasks;
5448
5449again:
5450#ifdef CONFIG_FAIR_GROUP_SCHED
5451        if (!cfs_rq->nr_running)
5452                goto idle;
5453
5454        if (prev->sched_class != &fair_sched_class)
5455                goto simple;
5456
5457        /*
5458         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5459         * likely that a next task is from the same cgroup as the current.
5460         *
5461         * Therefore attempt to avoid putting and setting the entire cgroup
5462         * hierarchy, only change the part that actually changes.
5463         */
5464
5465        do {
5466                struct sched_entity *curr = cfs_rq->curr;
5467
5468                /*
5469                 * Since we got here without doing put_prev_entity() we also
5470                 * have to consider cfs_rq->curr. If it is still a runnable
5471                 * entity, update_curr() will update its vruntime, otherwise
5472                 * forget we've ever seen it.
5473                 */
5474                if (curr) {
5475                        if (curr->on_rq)
5476                                update_curr(cfs_rq);
5477                        else
5478                                curr = NULL;
5479
5480                        /*
5481                         * This call to check_cfs_rq_runtime() will do the
5482                         * throttle and dequeue its entity in the parent(s).
5483                         * Therefore the 'simple' nr_running test will indeed
5484                         * be correct.
5485                         */
5486                        if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5487                                goto simple;
5488                }
5489
5490                se = pick_next_entity(cfs_rq, curr);
5491                cfs_rq = group_cfs_rq(se);
5492        } while (cfs_rq);
5493
5494        p = task_of(se);
5495
5496        /*
5497         * Since we haven't yet done put_prev_entity and if the selected task
5498         * is a different task than we started out with, try and touch the
5499         * least amount of cfs_rqs.
5500         */
5501        if (prev != p) {
5502                struct sched_entity *pse = &prev->se;
5503
5504                while (!(cfs_rq = is_same_group(se, pse))) {
5505                        int se_depth = se->depth;
5506                        int pse_depth = pse->depth;
5507
5508                        if (se_depth <= pse_depth) {
5509                                put_prev_entity(cfs_rq_of(pse), pse);
5510                                pse = parent_entity(pse);
5511                        }
5512                        if (se_depth >= pse_depth) {
5513                                set_next_entity(cfs_rq_of(se), se);
5514                                se = parent_entity(se);
5515                        }
5516                }
5517
5518                put_prev_entity(cfs_rq, pse);
5519                set_next_entity(cfs_rq, se);
5520        }
5521
5522        if (hrtick_enabled(rq))
5523                hrtick_start_fair(rq, p);
5524
5525        return p;
5526simple:
5527        cfs_rq = &rq->cfs;
5528#endif
5529
5530        if (!cfs_rq->nr_running)
5531                goto idle;
5532
5533        put_prev_task(rq, prev);
5534
5535        do {
5536                se = pick_next_entity(cfs_rq, NULL);
5537                set_next_entity(cfs_rq, se);
5538                cfs_rq = group_cfs_rq(se);
5539        } while (cfs_rq);
5540
5541        p = task_of(se);
5542
5543        if (hrtick_enabled(rq))
5544                hrtick_start_fair(rq, p);
5545
5546        return p;
5547
5548idle:
5549        /*
5550         * This is OK, because current is on_cpu, which avoids it being picked
5551         * for load-balance and preemption/IRQs are still disabled avoiding
5552         * further scheduler activity on it and we're being very careful to
5553         * re-start the picking loop.
5554         */
5555        lockdep_unpin_lock(&rq->lock);
5556        new_tasks = idle_balance(rq);
5557        lockdep_pin_lock(&rq->lock);
5558        /*
5559         * Because idle_balance() releases (and re-acquires) rq->lock, it is
5560         * possible for any higher priority task to appear. In that case we
5561         * must re-start the pick_next_entity() loop.
5562         */
5563        if (new_tasks < 0)
5564                return RETRY_TASK;
5565
5566        if (new_tasks > 0)
5567                goto again;
5568
5569        return NULL;
5570}
5571
5572/*
5573 * Account for a descheduled task:
5574 */
5575static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5576{
5577        struct sched_entity *se = &prev->se;
5578        struct cfs_rq *cfs_rq;
5579
5580        for_each_sched_entity(se) {
5581                cfs_rq = cfs_rq_of(se);
5582                put_prev_entity(cfs_rq, se);
5583        }
5584}
5585
5586/*
5587 * sched_yield() is very simple
5588 *
5589 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5590 */
5591static void yield_task_fair(struct rq *rq)
5592{
5593        struct task_struct *curr = rq->curr;
5594        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5595        struct sched_entity *se = &curr->se;
5596
5597        /*
5598         * Are we the only task in the tree?
5599         */
5600        if (unlikely(rq->nr_running == 1))
5601                return;
5602
5603        clear_buddies(cfs_rq, se);
5604
5605        if (curr->policy != SCHED_BATCH) {
5606                update_rq_clock(rq);
5607                /*
5608                 * Update run-time statistics of the 'current'.
5609                 */
5610                update_curr(cfs_rq);
5611                /*
5612                 * Tell update_rq_clock() that we've just updated,
5613                 * so we don't do microscopic update in schedule()
5614                 * and double the fastpath cost.
5615                 */
5616                rq_clock_skip_update(rq, true);
5617        }
5618
5619        set_skip_buddy(se);
5620}
5621
5622static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5623{
5624        struct sched_entity *se = &p->se;
5625
5626        /* throttled hierarchies are not runnable */
5627        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5628                return false;
5629
5630        /* Tell the scheduler that we'd really like pse to run next. */
5631        set_next_buddy(se);
5632
5633        yield_task_fair(rq);
5634
5635        return true;
5636}
5637
5638#ifdef CONFIG_SMP
5639/**************************************************
5640 * Fair scheduling class load-balancing methods.
5641 *
5642 * BASICS
5643 *
5644 * The purpose of load-balancing is to achieve the same basic fairness the
5645 * per-cpu scheduler provides, namely provide a proportional amount of compute
5646 * time to each task. This is expressed in the following equation:
5647 *
5648 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5649 *
5650 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5651 * W_i,0 is defined as:
5652 *
5653 *   W_i,0 = \Sum_j w_i,j                                             (2)
5654 *
5655 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5656 * is derived from the nice value as per prio_to_weight[].
5657 *
5658 * The weight average is an exponential decay average of the instantaneous
5659 * weight:
5660 *
5661 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5662 *
5663 * C_i is the compute capacity of cpu i, typically it is the
5664 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5665 * can also include other factors [XXX].
5666 *
5667 * To achieve this balance we define a measure of imbalance which follows
5668 * directly from (1):
5669 *
5670 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5671 *
5672 * We them move tasks around to minimize the imbalance. In the continuous
5673 * function space it is obvious this converges, in the discrete case we get
5674 * a few fun cases generally called infeasible weight scenarios.
5675 *
5676 * [XXX expand on:
5677 *     - infeasible weights;
5678 *     - local vs global optima in the discrete case. ]
5679 *
5680 *
5681 * SCHED DOMAINS
5682 *
5683 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5684 * for all i,j solution, we create a tree of cpus that follows the hardware
5685 * topology where each level pairs two lower groups (or better). This results
5686 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5687 * tree to only the first of the previous level and we decrease the frequency
5688 * of load-balance at each level inv. proportional to the number of cpus in
5689 * the groups.
5690 *
5691 * This yields:
5692 *
5693 *     log_2 n     1     n
5694 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5695 *     i = 0      2^i   2^i
5696 *                               `- size of each group
5697 *         |         |     `- number of cpus doing load-balance
5698 *         |         `- freq
5699 *         `- sum over all levels
5700 *
5701 * Coupled with a limit on how many tasks we can migrate every balance pass,
5702 * this makes (5) the runtime complexity of the balancer.
5703 *
5704 * An important property here is that each CPU is still (indirectly) connected
5705 * to every other cpu in at most O(log n) steps:
5706 *
5707 * The adjacency matrix of the resulting graph is given by:
5708 *
5709 *             log_2 n     
5710 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5711 *             k = 0
5712 *
5713 * And you'll find that:
5714 *
5715 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5716 *
5717 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5718 * The task movement gives a factor of O(m), giving a convergence complexity
5719 * of:
5720 *
5721 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5722 *
5723 *
5724 * WORK CONSERVING
5725 *
5726 * In order to avoid CPUs going idle while there's still work to do, new idle
5727 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5728 * tree itself instead of relying on other CPUs to bring it work.
5729 *
5730 * This adds some complexity to both (5) and (8) but it reduces the total idle
5731 * time.
5732 *
5733 * [XXX more?]
5734 *
5735 *
5736 * CGROUPS
5737 *
5738 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5739 *
5740 *                                s_k,i
5741 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5742 *                                 S_k
5743 *
5744 * Where
5745 *
5746 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5747 *
5748 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5749 *
5750 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5751 * property.
5752 *
5753 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5754 *      rewrite all of this once again.]
5755 */ 
5756
5757static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5758
5759enum fbq_type { regular, remote, all };
5760
5761#define LBF_ALL_PINNED  0x01
5762#define LBF_NEED_BREAK  0x02
5763#define LBF_DST_PINNED  0x04
5764#define LBF_SOME_PINNED 0x08
5765
5766struct lb_env {
5767        struct sched_domain     *sd;
5768
5769        struct rq               *src_rq;
5770        int                     src_cpu;
5771
5772        int                     dst_cpu;
5773        struct rq               *dst_rq;
5774
5775        struct cpumask          *dst_grpmask;
5776        int                     new_dst_cpu;
5777        enum cpu_idle_type      idle;
5778        long                    imbalance;
5779        /* The set of CPUs under consideration for load-balancing */
5780        struct cpumask          *cpus;
5781
5782        unsigned int            flags;
5783
5784        unsigned int            loop;
5785        unsigned int            loop_break;
5786        unsigned int            loop_max;
5787
5788        enum fbq_type           fbq_type;
5789        struct list_head        tasks;
5790};
5791
5792/*
5793 * Is this task likely cache-hot:
5794 */
5795static int task_hot(struct task_struct *p, struct lb_env *env)
5796{
5797        s64 delta;
5798
5799        lockdep_assert_held(&env->src_rq->lock);
5800
5801        if (p->sched_class != &fair_sched_class)
5802                return 0;
5803
5804        if (unlikely(p->policy == SCHED_IDLE))
5805                return 0;
5806
5807        /*
5808         * Buddy candidates are cache hot:
5809         */
5810        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5811                        (&p->se == cfs_rq_of(&p->se)->next ||
5812                         &p->se == cfs_rq_of(&p->se)->last))
5813                return 1;
5814
5815        if (sysctl_sched_migration_cost == -1)
5816                return 1;
5817        if (sysctl_sched_migration_cost == 0)
5818                return 0;
5819
5820        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5821
5822        return delta < (s64)sysctl_sched_migration_cost;
5823}
5824
5825#ifdef CONFIG_NUMA_BALANCING
5826/*
5827 * Returns 1, if task migration degrades locality
5828 * Returns 0, if task migration improves locality i.e migration preferred.
5829 * Returns -1, if task migration is not affected by locality.
5830 */
5831static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5832{
5833        struct numa_group *numa_group = rcu_dereference(p->numa_group);
5834        unsigned long src_faults, dst_faults;
5835        int src_nid, dst_nid;
5836
5837        if (!static_branch_likely(&sched_numa_balancing))
5838                return -1;
5839
5840        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5841                return -1;
5842
5843        src_nid = cpu_to_node(env->src_cpu);
5844        dst_nid = cpu_to_node(env->dst_cpu);
5845
5846        if (src_nid == dst_nid)
5847                return -1;
5848
5849        /* Migrating away from the preferred node is always bad. */
5850        if (src_nid == p->numa_preferred_nid) {
5851                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5852                        return 1;
5853                else
5854                        return -1;
5855        }
5856
5857        /* Encourage migration to the preferred node. */
5858        if (dst_nid == p->numa_preferred_nid)
5859                return 0;
5860
5861        if (numa_group) {
5862                src_faults = group_faults(p, src_nid);
5863                dst_faults = group_faults(p, dst_nid);
5864        } else {
5865                src_faults = task_faults(p, src_nid);
5866                dst_faults = task_faults(p, dst_nid);
5867        }
5868
5869        return dst_faults < src_faults;
5870}
5871
5872#else
5873static inline int migrate_degrades_locality(struct task_struct *p,
5874                                             struct lb_env *env)
5875{
5876        return -1;
5877}
5878#endif
5879
5880/*
5881 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5882 */
5883static
5884int can_migrate_task(struct task_struct *p, struct lb_env *env)
5885{
5886        int tsk_cache_hot;
5887
5888        lockdep_assert_held(&env->src_rq->lock);
5889
5890        /*
5891         * We do not migrate tasks that are:
5892         * 1) throttled_lb_pair, or
5893         * 2) cannot be migrated to this CPU due to cpus_allowed, or
5894         * 3) running (obviously), or
5895         * 4) are cache-hot on their current CPU.
5896         */
5897        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5898                return 0;
5899
5900        if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5901                int cpu;
5902
5903                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5904
5905                env->flags |= LBF_SOME_PINNED;
5906
5907                /*
5908                 * Remember if this task can be migrated to any other cpu in
5909                 * our sched_group. We may want to revisit it if we couldn't
5910                 * meet load balance goals by pulling other tasks on src_cpu.
5911                 *
5912                 * Also avoid computing new_dst_cpu if we have already computed
5913                 * one in current iteration.
5914                 */
5915                if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5916                        return 0;
5917
5918                /* Prevent to re-select dst_cpu via env's cpus */
5919                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5920                        if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5921                                env->flags |= LBF_DST_PINNED;
5922                                env->new_dst_cpu = cpu;
5923                                break;
5924                        }
5925                }
5926
5927                return 0;
5928        }
5929
5930        /* Record that we found atleast one task that could run on dst_cpu */
5931        env->flags &= ~LBF_ALL_PINNED;
5932
5933        if (task_running(env->src_rq, p)) {
5934                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5935                return 0;
5936        }
5937
5938        /*
5939         * Aggressive migration if:
5940         * 1) destination numa is preferred
5941         * 2) task is cache cold, or
5942         * 3) too many balance attempts have failed.
5943         */
5944        tsk_cache_hot = migrate_degrades_locality(p, env);
5945        if (tsk_cache_hot == -1)
5946                tsk_cache_hot = task_hot(p, env);
5947
5948        if (tsk_cache_hot <= 0 ||
5949            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5950                if (tsk_cache_hot == 1) {
5951                        schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5952                        schedstat_inc(p, se.statistics.nr_forced_migrations);
5953                }
5954                return 1;
5955        }
5956
5957        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5958        return 0;
5959}
5960
5961/*
5962 * detach_task() -- detach the task for the migration specified in env
5963 */
5964static void detach_task(struct task_struct *p, struct lb_env *env)
5965{
5966        lockdep_assert_held(&env->src_rq->lock);
5967
5968        p->on_rq = TASK_ON_RQ_MIGRATING;
5969        deactivate_task(env->src_rq, p, 0);
5970        set_task_cpu(p, env->dst_cpu);
5971}
5972
5973/*
5974 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5975 * part of active balancing operations within "domain".
5976 *
5977 * Returns a task if successful and NULL otherwise.
5978 */
5979static struct task_struct *detach_one_task(struct lb_env *env)
5980{
5981        struct task_struct *p, *n;
5982
5983        lockdep_assert_held(&env->src_rq->lock);
5984
5985        list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5986                if (!can_migrate_task(p, env))
5987                        continue;
5988
5989                detach_task(p, env);
5990
5991                /*
5992                 * Right now, this is only the second place where
5993                 * lb_gained[env->idle] is updated (other is detach_tasks)
5994                 * so we can safely collect stats here rather than
5995                 * inside detach_tasks().
5996                 */
5997                schedstat_inc(env->sd, lb_gained[env->idle]);
5998                return p;
5999        }
6000        return NULL;
6001}
6002
6003static const unsigned int sched_nr_migrate_break = 32;
6004
6005/*
6006 * detach_tasks() -- tries to detach up to imbalance weighted load from
6007 * busiest_rq, as part of a balancing operation within domain "sd".
6008 *
6009 * Returns number of detached tasks if successful and 0 otherwise.
6010 */
6011static int detach_tasks(struct lb_env *env)
6012{
6013        struct list_head *tasks = &env->src_rq->cfs_tasks;
6014        struct task_struct *p;
6015        unsigned long load;
6016        int detached = 0;
6017
6018        lockdep_assert_held(&env->src_rq->lock);
6019
6020        if (env->imbalance <= 0)
6021                return 0;
6022
6023        while (!list_empty(tasks)) {
6024                /*
6025                 * We don't want to steal all, otherwise we may be treated likewise,
6026                 * which could at worst lead to a livelock crash.
6027                 */
6028                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6029                        break;
6030
6031                p = list_first_entry(tasks, struct task_struct, se.group_node);
6032
6033                env->loop++;
6034                /* We've more or less seen every task there is, call it quits */
6035                if (env->loop > env->loop_max)
6036                        break;
6037
6038                /* take a breather every nr_migrate tasks */
6039                if (env->loop > env->loop_break) {
6040                        env->loop_break += sched_nr_migrate_break;
6041                        env->flags |= LBF_NEED_BREAK;
6042                        break;
6043                }
6044
6045                if (!can_migrate_task(p, env))
6046                        goto next;
6047
6048                load = task_h_load(p);
6049
6050                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6051                        goto next;
6052
6053                if ((load / 2) > env->imbalance)
6054                        goto next;
6055
6056                detach_task(p, env);
6057                list_add(&p->se.group_node, &env->tasks);
6058
6059                detached++;
6060                env->imbalance -= load;
6061
6062#ifdef CONFIG_PREEMPT
6063                /*
6064                 * NEWIDLE balancing is a source of latency, so preemptible
6065                 * kernels will stop after the first task is detached to minimize
6066                 * the critical section.
6067                 */
6068                if (env->idle == CPU_NEWLY_IDLE)
6069                        break;
6070#endif
6071
6072                /*
6073                 * We only want to steal up to the prescribed amount of
6074                 * weighted load.
6075                 */
6076                if (env->imbalance <= 0)
6077                        break;
6078
6079                continue;
6080next:
6081                list_move_tail(&p->se.group_node, tasks);
6082        }
6083
6084        /*
6085         * Right now, this is one of only two places we collect this stat
6086         * so we can safely collect detach_one_task() stats here rather
6087         * than inside detach_one_task().
6088         */
6089        schedstat_add(env->sd, lb_gained[env->idle], detached);
6090
6091        return detached;
6092}
6093
6094/*
6095 * attach_task() -- attach the task detached by detach_task() to its new rq.
6096 */
6097static void attach_task(struct rq *rq, struct task_struct *p)
6098{
6099        lockdep_assert_held(&rq->lock);
6100
6101        BUG_ON(task_rq(p) != rq);
6102        activate_task(rq, p, 0);
6103        p->on_rq = TASK_ON_RQ_QUEUED;
6104        check_preempt_curr(rq, p, 0);
6105}
6106
6107/*
6108 * attach_one_task() -- attaches the task returned from detach_one_task() to
6109 * its new rq.
6110 */
6111static void attach_one_task(struct rq *rq, struct task_struct *p)
6112{
6113        raw_spin_lock(&rq->lock);
6114        attach_task(rq, p);
6115        raw_spin_unlock(&rq->lock);
6116}
6117
6118/*
6119 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6120 * new rq.
6121 */
6122static void attach_tasks(struct lb_env *env)
6123{
6124        struct list_head *tasks = &env->tasks;
6125        struct task_struct *p;
6126
6127        raw_spin_lock(&env->dst_rq->lock);
6128
6129        while (!list_empty(tasks)) {
6130                p = list_first_entry(tasks, struct task_struct, se.group_node);
6131                list_del_init(&p->se.group_node);
6132
6133                attach_task(env->dst_rq, p);
6134        }
6135
6136        raw_spin_unlock(&env->dst_rq->lock);
6137}
6138
6139#ifdef CONFIG_FAIR_GROUP_SCHED
6140static void update_blocked_averages(int cpu)
6141{
6142        struct rq *rq = cpu_rq(cpu);
6143        struct cfs_rq *cfs_rq;
6144        unsigned long flags;
6145
6146        raw_spin_lock_irqsave(&rq->lock, flags);
6147        update_rq_clock(rq);
6148
6149        /*
6150         * Iterates the task_group tree in a bottom up fashion, see
6151         * list_add_leaf_cfs_rq() for details.
6152         */
6153        for_each_leaf_cfs_rq(rq, cfs_rq) {
6154                /* throttled entities do not contribute to load */
6155                if (throttled_hierarchy(cfs_rq))
6156                        continue;
6157
6158                if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6159                        update_tg_load_avg(cfs_rq, 0);
6160        }
6161        raw_spin_unlock_irqrestore(&rq->lock, flags);
6162}
6163
6164/*
6165 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6166 * This needs to be done in a top-down fashion because the load of a child
6167 * group is a fraction of its parents load.
6168 */
6169static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6170{
6171        struct rq *rq = rq_of(cfs_rq);
6172        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6173        unsigned long now = jiffies;
6174        unsigned long load;
6175
6176        if (cfs_rq->last_h_load_update == now)
6177                return;
6178
6179        cfs_rq->h_load_next = NULL;
6180        for_each_sched_entity(se) {
6181                cfs_rq = cfs_rq_of(se);
6182                cfs_rq->h_load_next = se;
6183                if (cfs_rq->last_h_load_update == now)
6184                        break;
6185        }
6186
6187        if (!se) {
6188                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6189                cfs_rq->last_h_load_update = now;
6190        }
6191
6192        while ((se = cfs_rq->h_load_next) != NULL) {
6193                load = cfs_rq->h_load;
6194                load = div64_ul(load * se->avg.load_avg,
6195                        cfs_rq_load_avg(cfs_rq) + 1);
6196                cfs_rq = group_cfs_rq(se);
6197                cfs_rq->h_load = load;
6198                cfs_rq->last_h_load_update = now;
6199        }
6200}
6201
6202static unsigned long task_h_load(struct task_struct *p)
6203{
6204        struct cfs_rq *cfs_rq = task_cfs_rq(p);
6205
6206        update_cfs_rq_h_load(cfs_rq);
6207        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6208                        cfs_rq_load_avg(cfs_rq) + 1);
6209}
6210#else
6211static inline void update_blocked_averages(int cpu)
6212{
6213        struct rq *rq = cpu_rq(cpu);
6214        struct cfs_rq *cfs_rq = &rq->cfs;
6215        unsigned long flags;
6216
6217        raw_spin_lock_irqsave(&rq->lock, flags);
6218        update_rq_clock(rq);
6219        update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6220        raw_spin_unlock_irqrestore(&rq->lock, flags);
6221}
6222
6223static unsigned long task_h_load(struct task_struct *p)
6224{
6225        return p->se.avg.load_avg;
6226}
6227#endif
6228
6229/********** Helpers for find_busiest_group ************************/
6230
6231enum group_type {
6232        group_other = 0,
6233        group_imbalanced,
6234        group_overloaded,
6235};
6236
6237/*
6238 * sg_lb_stats - stats of a sched_group required for load_balancing
6239 */
6240struct sg_lb_stats {
6241        unsigned long avg_load; /*Avg load across the CPUs of the group */
6242        unsigned long group_load; /* Total load over the CPUs of the group */
6243        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6244        unsigned long load_per_task;
6245        unsigned long group_capacity;
6246        unsigned long group_util; /* Total utilization of the group */
6247        unsigned int sum_nr_running; /* Nr tasks running in the group */
6248        unsigned int idle_cpus;
6249        unsigned int group_weight;
6250        enum group_type group_type;
6251        int group_no_capacity;
6252#ifdef CONFIG_NUMA_BALANCING
6253        unsigned int nr_numa_running;
6254        unsigned int nr_preferred_running;
6255#endif
6256};
6257
6258/*
6259 * sd_lb_stats - Structure to store the statistics of a sched_domain
6260 *               during load balancing.
6261 */
6262struct sd_lb_stats {
6263        struct sched_group *busiest;    /* Busiest group in this sd */
6264        struct sched_group *local;      /* Local group in this sd */
6265        unsigned long total_load;       /* Total load of all groups in sd */
6266        unsigned long total_capacity;   /* Total capacity of all groups in sd */
6267        unsigned long avg_load; /* Average load across all groups in sd */
6268
6269        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6270        struct sg_lb_stats local_stat;  /* Statistics of the local group */
6271};
6272
6273static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6274{
6275        /*
6276         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6277         * local_stat because update_sg_lb_stats() does a full clear/assignment.
6278         * We must however clear busiest_stat::avg_load because
6279         * update_sd_pick_busiest() reads this before assignment.
6280         */
6281        *sds = (struct sd_lb_stats){
6282                .busiest = NULL,
6283                .local = NULL,
6284                .total_load = 0UL,
6285                .total_capacity = 0UL,
6286                .busiest_stat = {
6287                        .avg_load = 0UL,
6288                        .sum_nr_running = 0,
6289                        .group_type = group_other,
6290                },
6291        };
6292}
6293
6294/**
6295 * get_sd_load_idx - Obtain the load index for a given sched domain.
6296 * @sd: The sched_domain whose load_idx is to be obtained.
6297 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6298 *
6299 * Return: The load index.
6300 */
6301static inline int get_sd_load_idx(struct sched_domain *sd,
6302                                        enum cpu_idle_type idle)
6303{
6304        int load_idx;
6305
6306        switch (idle) {
6307        case CPU_NOT_IDLE:
6308                load_idx = sd->busy_idx;
6309                break;
6310
6311        case CPU_NEWLY_IDLE:
6312                load_idx = sd->newidle_idx;
6313                break;
6314        default:
6315                load_idx = sd->idle_idx;
6316                break;
6317        }
6318
6319        return load_idx;
6320}
6321
6322static unsigned long scale_rt_capacity(int cpu)
6323{
6324        struct rq *rq = cpu_rq(cpu);
6325        u64 total, used, age_stamp, avg;
6326        s64 delta;
6327
6328        /*
6329         * Since we're reading these variables without serialization make sure
6330         * we read them once before doing sanity checks on them.
6331         */
6332        age_stamp = READ_ONCE(rq->age_stamp);
6333        avg = READ_ONCE(rq->rt_avg);
6334        delta = __rq_clock_broken(rq) - age_stamp;
6335
6336        if (unlikely(delta < 0))
6337                delta = 0;
6338
6339        total = sched_avg_period() + delta;
6340
6341        used = div_u64(avg, total);
6342
6343        if (likely(used < SCHED_CAPACITY_SCALE))
6344                return SCHED_CAPACITY_SCALE - used;
6345
6346        return 1;
6347}
6348
6349static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6350{
6351        unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6352        struct sched_group *sdg = sd->groups;
6353
6354        cpu_rq(cpu)->cpu_capacity_orig = capacity;
6355
6356        capacity *= scale_rt_capacity(cpu);
6357        capacity >>= SCHED_CAPACITY_SHIFT;
6358
6359        if (!capacity)
6360                capacity = 1;
6361
6362        cpu_rq(cpu)->cpu_capacity = capacity;
6363        sdg->sgc->capacity = capacity;
6364}
6365
6366void update_group_capacity(struct sched_domain *sd, int cpu)
6367{
6368        struct sched_domain *child = sd->child;
6369        struct sched_group *group, *sdg = sd->groups;
6370        unsigned long capacity;
6371        unsigned long interval;
6372
6373        interval = msecs_to_jiffies(sd->balance_interval);
6374        interval = clamp(interval, 1UL, max_load_balance_interval);
6375        sdg->sgc->next_update = jiffies + interval;
6376
6377        if (!child) {
6378                update_cpu_capacity(sd, cpu);
6379                return;
6380        }
6381
6382        capacity = 0;
6383
6384        if (child->flags & SD_OVERLAP) {
6385                /*
6386                 * SD_OVERLAP domains cannot assume that child groups
6387                 * span the current group.
6388                 */
6389
6390                for_each_cpu(cpu, sched_group_cpus(sdg)) {
6391                        struct sched_group_capacity *sgc;
6392                        struct rq *rq = cpu_rq(cpu);
6393
6394                        /*
6395                         * build_sched_domains() -> init_sched_groups_capacity()
6396                         * gets here before we've attached the domains to the
6397                         * runqueues.
6398                         *
6399                         * Use capacity_of(), which is set irrespective of domains
6400                         * in update_cpu_capacity().
6401                         *
6402                         * This avoids capacity from being 0 and
6403                         * causing divide-by-zero issues on boot.
6404                         */
6405                        if (unlikely(!rq->sd)) {
6406                                capacity += capacity_of(cpu);
6407                                continue;
6408                        }
6409
6410                        sgc = rq->sd->groups->sgc;
6411                        capacity += sgc->capacity;
6412                }
6413        } else  {
6414                /*
6415                 * !SD_OVERLAP domains can assume that child groups
6416                 * span the current group.
6417                 */ 
6418
6419                group = child->groups;
6420                do {
6421                        capacity += group->sgc->capacity;
6422                        group = group->next;
6423                } while (group != child->groups);
6424        }
6425
6426        sdg->sgc->capacity = capacity;
6427}
6428
6429/*
6430 * Check whether the capacity of the rq has been noticeably reduced by side
6431 * activity. The imbalance_pct is used for the threshold.
6432 * Return true is the capacity is reduced
6433 */
6434static inline int
6435check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6436{
6437        return ((rq->cpu_capacity * sd->imbalance_pct) <
6438                                (rq->cpu_capacity_orig * 100));
6439}
6440
6441/*
6442 * Group imbalance indicates (and tries to solve) the problem where balancing
6443 * groups is inadequate due to tsk_cpus_allowed() constraints.
6444 *
6445 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6446 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6447 * Something like:
6448 *
6449 *      { 0 1 2 3 } { 4 5 6 7 }
6450 *              *     * * *
6451 *
6452 * If we were to balance group-wise we'd place two tasks in the first group and
6453 * two tasks in the second group. Clearly this is undesired as it will overload
6454 * cpu 3 and leave one of the cpus in the second group unused.
6455 *
6456 * The current solution to this issue is detecting the skew in the first group
6457 * by noticing the lower domain failed to reach balance and had difficulty
6458 * moving tasks due to affinity constraints.
6459 *
6460 * When this is so detected; this group becomes a candidate for busiest; see
6461 * update_sd_pick_busiest(). And calculate_imbalance() and
6462 * find_busiest_group() avoid some of the usual balance conditions to allow it
6463 * to create an effective group imbalance.
6464 *
6465 * This is a somewhat tricky proposition since the next run might not find the
6466 * group imbalance and decide the groups need to be balanced again. A most
6467 * subtle and fragile situation.
6468 */
6469
6470static inline int sg_imbalanced(struct sched_group *group)
6471{
6472        return group->sgc->imbalance;
6473}
6474
6475/*
6476 * group_has_capacity returns true if the group has spare capacity that could
6477 * be used by some tasks.
6478 * We consider that a group has spare capacity if the  * number of task is
6479 * smaller than the number of CPUs or if the utilization is lower than the
6480 * available capacity for CFS tasks.
6481 * For the latter, we use a threshold to stabilize the state, to take into
6482 * account the variance of the tasks' load and to return true if the available
6483 * capacity in meaningful for the load balancer.
6484 * As an example, an available capacity of 1% can appear but it doesn't make
6485 * any benefit for the load balance.
6486 */
6487static inline bool
6488group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6489{
6490        if (sgs->sum_nr_running < sgs->group_weight)
6491                return true;
6492
6493        if ((sgs->group_capacity * 100) >
6494                        (sgs->group_util * env->sd->imbalance_pct))
6495                return true;
6496
6497        return false;
6498}
6499
6500/*
6501 *  group_is_overloaded returns true if the group has more tasks than it can
6502 *  handle.
6503 *  group_is_overloaded is not equals to !group_has_capacity because a group
6504 *  with the exact right number of tasks, has no more spare capacity but is not
6505 *  overloaded so both group_has_capacity and group_is_overloaded return
6506 *  false.
6507 */
6508static inline bool
6509group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6510{
6511        if (sgs->sum_nr_running <= sgs->group_weight)
6512                return false;
6513
6514        if ((sgs->group_capacity * 100) <
6515                        (sgs->group_util * env->sd->imbalance_pct))
6516                return true;
6517
6518        return false;
6519}
6520
6521static inline enum
6522group_type group_classify(struct sched_group *group,
6523                          struct sg_lb_stats *sgs)
6524{
6525        if (sgs->group_no_capacity)
6526                return group_overloaded;
6527
6528        if (sg_imbalanced(group))
6529                return group_imbalanced;
6530
6531        return group_other;
6532}
6533
6534/**
6535 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6536 * @env: The load balancing environment.
6537 * @group: sched_group whose statistics are to be updated.
6538 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6539 * @local_group: Does group contain this_cpu.
6540 * @sgs: variable to hold the statistics for this group.
6541 * @overload: Indicate more than one runnable task for any CPU.
6542 */
6543static inline void update_sg_lb_stats(struct lb_env *env,
6544                        struct sched_group *group, int load_idx,
6545                        int local_group, struct sg_lb_stats *sgs,
6546                        bool *overload)
6547{
6548        unsigned long load;
6549        int i, nr_running;
6550
6551        memset(sgs, 0, sizeof(*sgs));
6552
6553        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6554                struct rq *rq = cpu_rq(i);
6555
6556                /* Bias balancing toward cpus of our domain */
6557                if (local_group)
6558                        load = target_load(i, load_idx);
6559                else
6560                        load = source_load(i, load_idx);
6561
6562                sgs->group_load += load;
6563                sgs->group_util += cpu_util(i);
6564                sgs->sum_nr_running += rq->cfs.h_nr_running;
6565
6566                nr_running = rq->nr_running;
6567                if (nr_running > 1)
6568                        *overload = true;
6569
6570#ifdef CONFIG_NUMA_BALANCING
6571                sgs->nr_numa_running += rq->nr_numa_running;
6572                sgs->nr_preferred_running += rq->nr_preferred_running;
6573#endif
6574                sgs->sum_weighted_load += weighted_cpuload(i);
6575                /*
6576                 * No need to call idle_cpu() if nr_running is not 0
6577                 */
6578                if (!nr_running && idle_cpu(i))
6579                        sgs->idle_cpus++;
6580        }
6581
6582        /* Adjust by relative CPU capacity of the group */
6583        sgs->group_capacity = group->sgc->capacity;
6584        sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6585
6586        if (sgs->sum_nr_running)
6587                sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6588
6589        sgs->group_weight = group->group_weight;
6590
6591        sgs->group_no_capacity = group_is_overloaded(env, sgs);
6592        sgs->group_type = group_classify(group, sgs);
6593}
6594
6595/**
6596 * update_sd_pick_busiest - return 1 on busiest group
6597 * @env: The load balancing environment.
6598 * @sds: sched_domain statistics
6599 * @sg: sched_group candidate to be checked for being the busiest
6600 * @sgs: sched_group statistics
6601 *
6602 * Determine if @sg is a busier group than the previously selected
6603 * busiest group.
6604 *
6605 * Return: %true if @sg is a busier group than the previously selected
6606 * busiest group. %false otherwise.
6607 */
6608static bool update_sd_pick_busiest(struct lb_env *env,
6609                                   struct sd_lb_stats *sds,
6610                                   struct sched_group *sg,
6611                                   struct sg_lb_stats *sgs)
6612{
6613        struct sg_lb_stats *busiest = &sds->busiest_stat;
6614
6615        if (sgs->group_type > busiest->group_type)
6616                return true;
6617
6618        if (sgs->group_type < busiest->group_type)
6619                return false;
6620
6621        if (sgs->avg_load <= busiest->avg_load)
6622                return false;
6623
6624        /* This is the busiest node in its class. */
6625        if (!(env->sd->flags & SD_ASYM_PACKING))
6626                return true;
6627
6628        /*
6629         * ASYM_PACKING needs to move all the work to the lowest
6630         * numbered CPUs in the group, therefore mark all groups
6631         * higher than ourself as busy.
6632         */
6633        if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6634                if (!sds->busiest)
6635                        return true;
6636
6637                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6638                        return true;
6639        }
6640
6641        return false;
6642}
6643
6644#ifdef CONFIG_NUMA_BALANCING
6645static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6646{
6647        if (sgs->sum_nr_running > sgs->nr_numa_running)
6648                return regular;
6649        if (sgs->sum_nr_running > sgs->nr_preferred_running)
6650                return remote;
6651        return all;
6652}
6653
6654static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6655{
6656        if (rq->nr_running > rq->nr_numa_running)
6657                return regular;
6658        if (rq->nr_running > rq->nr_preferred_running)
6659                return remote;
6660        return all;
6661}
6662#else
6663static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6664{
6665        return all;
6666}
6667
6668static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6669{
6670        return regular;
6671}
6672#endif /* CONFIG_NUMA_BALANCING */
6673
6674/**
6675 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6676 * @env: The load balancing environment.
6677 * @sds: variable to hold the statistics for this sched_domain.
6678 */
6679static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6680{
6681        struct sched_domain *child = env->sd->child;
6682        struct sched_group *sg = env->sd->groups;
6683        struct sg_lb_stats tmp_sgs;
6684        int load_idx, prefer_sibling = 0;
6685        bool overload = false;
6686
6687        if (child && child->flags & SD_PREFER_SIBLING)
6688                prefer_sibling = 1;
6689
6690        load_idx = get_sd_load_idx(env->sd, env->idle);
6691
6692        do {
6693                struct sg_lb_stats *sgs = &tmp_sgs;
6694                int local_group;
6695
6696                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6697                if (local_group) {
6698                        sds->local = sg;
6699                        sgs = &sds->local_stat;
6700
6701                        if (env->idle != CPU_NEWLY_IDLE ||
6702                            time_after_eq(jiffies, sg->sgc->next_update))
6703                                update_group_capacity(env->sd, env->dst_cpu);
6704                }
6705
6706                update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6707                                                &overload);
6708
6709                if (local_group)
6710                        goto next_group;
6711
6712                /*
6713                 * In case the child domain prefers tasks go to siblings
6714                 * first, lower the sg capacity so that we'll try
6715                 * and move all the excess tasks away. We lower the capacity
6716                 * of a group only if the local group has the capacity to fit
6717                 * these excess tasks. The extra check prevents the case where
6718                 * you always pull from the heaviest group when it is already
6719                 * under-utilized (possible with a large weight task outweighs
6720                 * the tasks on the system).
6721                 */
6722                if (prefer_sibling && sds->local &&
6723                    group_has_capacity(env, &sds->local_stat) &&
6724                    (sgs->sum_nr_running > 1)) {
6725                        sgs->group_no_capacity = 1;
6726                        sgs->group_type = group_classify(sg, sgs);
6727                }
6728
6729                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6730                        sds->busiest = sg;
6731                        sds->busiest_stat = *sgs;
6732                }
6733
6734next_group:
6735                /* Now, start updating sd_lb_stats */
6736                sds->total_load += sgs->group_load;
6737                sds->total_capacity += sgs->group_capacity;
6738
6739                sg = sg->next;
6740        } while (sg != env->sd->groups);
6741
6742        if (env->sd->flags & SD_NUMA)
6743                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6744
6745        if (!env->sd->parent) {
6746                /* update overload indicator if we are at root domain */
6747                if (env->dst_rq->rd->overload != overload)
6748                        env->dst_rq->rd->overload = overload;
6749        }
6750
6751}
6752
6753/**
6754 * check_asym_packing - Check to see if the group is packed into the
6755 *                      sched doman.
6756 *
6757 * This is primarily intended to used at the sibling level.  Some
6758 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6759 * case of POWER7, it can move to lower SMT modes only when higher
6760 * threads are idle.  When in lower SMT modes, the threads will
6761 * perform better since they share less core resources.  Hence when we
6762 * have idle threads, we want them to be the higher ones.
6763 *
6764 * This packing function is run on idle threads.  It checks to see if
6765 * the busiest CPU in this domain (core in the P7 case) has a higher
6766 * CPU number than the packing function is being run on.  Here we are
6767 * assuming lower CPU number will be equivalent to lower a SMT thread
6768 * number.
6769 *
6770 * Return: 1 when packing is required and a task should be moved to
6771 * this CPU.  The amount of the imbalance is returned in *imbalance.
6772 *
6773 * @env: The load balancing environment.
6774 * @sds: Statistics of the sched_domain which is to be packed
6775 */
6776static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6777{
6778        int busiest_cpu;
6779
6780        if (!(env->sd->flags & SD_ASYM_PACKING))
6781                return 0;
6782
6783        if (!sds->busiest)
6784                return 0;
6785
6786        busiest_cpu = group_first_cpu(sds->busiest);
6787        if (env->dst_cpu > busiest_cpu)
6788                return 0;
6789
6790        env->imbalance = DIV_ROUND_CLOSEST(
6791                sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6792                SCHED_CAPACITY_SCALE);
6793
6794        return 1;
6795}
6796
6797/**
6798 * fix_small_imbalance - Calculate the minor imbalance that exists
6799 *                      amongst the groups of a sched_domain, during
6800 *                      load balancing.
6801 * @env: The load balancing environment.
6802 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6803 */
6804static inline
6805void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6806{
6807        unsigned long tmp, capa_now = 0, capa_move = 0;
6808        unsigned int imbn = 2;
6809        unsigned long scaled_busy_load_per_task;
6810        struct sg_lb_stats *local, *busiest;
6811
6812        local = &sds->local_stat;
6813        busiest = &sds->busiest_stat;
6814
6815        if (!local->sum_nr_running)
6816                local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6817        else if (busiest->load_per_task > local->load_per_task)
6818                imbn = 1;
6819
6820        scaled_busy_load_per_task =
6821                (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6822                busiest->group_capacity;
6823
6824        if (busiest->avg_load + scaled_busy_load_per_task >=
6825            local->avg_load + (scaled_busy_load_per_task * imbn)) {
6826                env->imbalance = busiest->load_per_task;
6827                return;
6828        }
6829
6830        /*
6831         * OK, we don't have enough imbalance to justify moving tasks,
6832         * however we may be able to increase total CPU capacity used by
6833         * moving them.
6834         */
6835
6836        capa_now += busiest->group_capacity *
6837                        min(busiest->load_per_task, busiest->avg_load);
6838        capa_now += local->group_capacity *
6839                        min(local->load_per_task, local->avg_load);
6840        capa_now /= SCHED_CAPACITY_SCALE;
6841
6842        /* Amount of load we'd subtract */
6843        if (busiest->avg_load > scaled_busy_load_per_task) {
6844                capa_move += busiest->group_capacity *
6845                            min(busiest->load_per_task,
6846                                busiest->avg_load - scaled_busy_load_per_task);
6847        }
6848
6849        /* Amount of load we'd add */
6850        if (busiest->avg_load * busiest->group_capacity <
6851            busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6852                tmp = (busiest->avg_load * busiest->group_capacity) /
6853                      local->group_capacity;
6854        } else {
6855                tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6856                      local->group_capacity;
6857        }
6858        capa_move += local->group_capacity *
6859                    min(local->load_per_task, local->avg_load + tmp);
6860        capa_move /= SCHED_CAPACITY_SCALE;
6861
6862        /* Move if we gain throughput */
6863        if (capa_move > capa_now)
6864                env->imbalance = busiest->load_per_task;
6865}
6866
6867/**
6868 * calculate_imbalance - Calculate the amount of imbalance present within the
6869 *                       groups of a given sched_domain during load balance.
6870 * @env: load balance environment
6871 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6872 */
6873static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6874{
6875        unsigned long max_pull, load_above_capacity = ~0UL;
6876        struct sg_lb_stats *local, *busiest;
6877
6878        local = &sds->local_stat;
6879        busiest = &sds->busiest_stat;
6880
6881        if (busiest->group_type == group_imbalanced) {
6882                /*
6883                 * In the group_imb case we cannot rely on group-wide averages
6884                 * to ensure cpu-load equilibrium, look at wider averages. XXX
6885                 */
6886                busiest->load_per_task =
6887                        min(busiest->load_per_task, sds->avg_load);
6888        }
6889
6890        /*
6891         * In the presence of smp nice balancing, certain scenarios can have
6892         * max load less than avg load(as we skip the groups at or below
6893         * its cpu_capacity, while calculating max_load..)
6894         */
6895        if (busiest->avg_load <= sds->avg_load ||
6896            local->avg_load >= sds->avg_load) {
6897                env->imbalance = 0;
6898                return fix_small_imbalance(env, sds);
6899        }
6900
6901        /*
6902         * If there aren't any idle cpus, avoid creating some.
6903         */
6904        if (busiest->group_type == group_overloaded &&
6905            local->group_type   == group_overloaded) {
6906                load_above_capacity = busiest->sum_nr_running *
6907                                        SCHED_LOAD_SCALE;
6908                if (load_above_capacity > busiest->group_capacity)
6909                        load_above_capacity -= busiest->group_capacity;
6910                else
6911                        load_above_capacity = ~0UL;
6912        }
6913
6914        /*
6915         * We're trying to get all the cpus to the average_load, so we don't
6916         * want to push ourselves above the average load, nor do we wish to
6917         * reduce the max loaded cpu below the average load. At the same time,
6918         * we also don't want to reduce the group load below the group capacity
6919         * (so that we can implement power-savings policies etc). Thus we look
6920         * for the minimum possible imbalance.
6921         */
6922        max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6923
6924        /* How much load to actually move to equalise the imbalance */
6925        env->imbalance = min(
6926                max_pull * busiest->group_capacity,
6927                (sds->avg_load - local->avg_load) * local->group_capacity
6928        ) / SCHED_CAPACITY_SCALE;
6929
6930        /*
6931         * if *imbalance is less than the average load per runnable task
6932         * there is no guarantee that any tasks will be moved so we'll have
6933         * a think about bumping its value to force at least one task to be
6934         * moved
6935         */
6936        if (env->imbalance < busiest->load_per_task)
6937                return fix_small_imbalance(env, sds);
6938}
6939
6940/******* find_busiest_group() helpers end here *********************/
6941
6942/**
6943 * find_busiest_group - Returns the busiest group within the sched_domain
6944 * if there is an imbalance. If there isn't an imbalance, and
6945 * the user has opted for power-savings, it returns a group whose
6946 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6947 * such a group exists.
6948 *
6949 * Also calculates the amount of weighted load which should be moved
6950 * to restore balance.
6951 *
6952 * @env: The load balancing environment.
6953 *
6954 * Return:      - The busiest group if imbalance exists.
6955 *              - If no imbalance and user has opted for power-savings balance,
6956 *                 return the least loaded group whose CPUs can be
6957 *                 put to idle by rebalancing its tasks onto our group.
6958 */
6959static struct sched_group *find_busiest_group(struct lb_env *env)
6960{
6961        struct sg_lb_stats *local, *busiest;
6962        struct sd_lb_stats sds;
6963
6964        init_sd_lb_stats(&sds);
6965
6966        /*
6967         * Compute the various statistics relavent for load balancing at
6968         * this level.
6969         */
6970        update_sd_lb_stats(env, &sds);
6971        local = &sds.local_stat;
6972        busiest = &sds.busiest_stat;
6973
6974        /* ASYM feature bypasses nice load balance check */
6975        if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6976            check_asym_packing(env, &sds))
6977                return sds.busiest;
6978
6979        /* There is no busy sibling group to pull tasks from */
6980        if (!sds.busiest || busiest->sum_nr_running == 0)
6981                goto out_balanced;
6982
6983        sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6984                                                / sds.total_capacity;
6985
6986        /*
6987         * If the busiest group is imbalanced the below checks don't
6988         * work because they assume all things are equal, which typically
6989         * isn't true due to cpus_allowed constraints and the like.
6990         */
6991        if (busiest->group_type == group_imbalanced)
6992                goto force_balance;
6993
6994        /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6995        if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6996            busiest->group_no_capacity)
6997                goto force_balance;
6998
6999        /*
7000         * If the local group is busier than the selected busiest group
7001         * don't try and pull any tasks.
7002         */
7003        if (local->avg_load >= busiest->avg_load)
7004                goto out_balanced;
7005
7006        /*
7007         * Don't pull any tasks if this group is already above the domain
7008         * average load.
7009         */
7010        if (local->avg_load >= sds.avg_load)
7011                goto out_balanced;
7012
7013        if (env->idle == CPU_IDLE) {
7014                /*
7015                 * This cpu is idle. If the busiest group is not overloaded
7016                 * and there is no imbalance between this and busiest group
7017                 * wrt idle cpus, it is balanced. The imbalance becomes
7018                 * significant if the diff is greater than 1 otherwise we
7019                 * might end up to just move the imbalance on another group
7020                 */
7021                if ((busiest->group_type != group_overloaded) &&
7022                                (local->idle_cpus <= (busiest->idle_cpus + 1)))
7023                        goto out_balanced;
7024        } else {
7025                /*
7026                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7027                 * imbalance_pct to be conservative.
7028                 */
7029                if (100 * busiest->avg_load <=
7030                                env->sd->imbalance_pct * local->avg_load)
7031                        goto out_balanced;
7032        }
7033
7034force_balance:
7035        /* Looks like there is an imbalance. Compute it */
7036        calculate_imbalance(env, &sds);
7037        return sds.busiest;
7038
7039out_balanced:
7040        env->imbalance = 0;
7041        return NULL;
7042}
7043
7044/*
7045 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7046 */
7047static struct rq *find_busiest_queue(struct lb_env *env,
7048                                     struct sched_group *group)
7049{
7050        struct rq *busiest = NULL, *rq;
7051        unsigned long busiest_load = 0, busiest_capacity = 1;
7052        int i;
7053
7054        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7055                unsigned long capacity, wl;
7056                enum fbq_type rt;
7057
7058                rq = cpu_rq(i);
7059                rt = fbq_classify_rq(rq);
7060
7061                /*
7062                 * We classify groups/runqueues into three groups:
7063                 *  - regular: there are !numa tasks
7064                 *  - remote:  there are numa tasks that run on the 'wrong' node
7065                 *  - all:     there is no distinction
7066                 *
7067                 * In order to avoid migrating ideally placed numa tasks,
7068                 * ignore those when there's better options.
7069                 *
7070                 * If we ignore the actual busiest queue to migrate another
7071                 * task, the next balance pass can still reduce the busiest
7072                 * queue by moving tasks around inside the node.
7073                 *
7074                 * If we cannot move enough load due to this classification
7075                 * the next pass will adjust the group classification and
7076                 * allow migration of more tasks.
7077                 *
7078                 * Both cases only affect the total convergence complexity.
7079                 */
7080                if (rt > env->fbq_type)
7081                        continue;
7082
7083                capacity = capacity_of(i);
7084
7085                wl = weighted_cpuload(i);
7086
7087                /*
7088                 * When comparing with imbalance, use weighted_cpuload()
7089                 * which is not scaled with the cpu capacity.
7090                 */
7091
7092                if (rq->nr_running == 1 && wl > env->imbalance &&
7093                    !check_cpu_capacity(rq, env->sd))
7094                        continue;
7095
7096                /*
7097                 * For the load comparisons with the other cpu's, consider
7098                 * the weighted_cpuload() scaled with the cpu capacity, so
7099                 * that the load can be moved away from the cpu that is
7100                 * potentially running at a lower capacity.
7101                 *
7102                 * Thus we're looking for max(wl_i / capacity_i), crosswise
7103                 * multiplication to rid ourselves of the division works out
7104                 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7105                 * our previous maximum.
7106                 */
7107                if (wl * busiest_capacity > busiest_load * capacity) {
7108                        busiest_load = wl;
7109                        busiest_capacity = capacity;
7110                        busiest = rq;
7111                }
7112        }
7113
7114        return busiest;
7115}
7116
7117/*
7118 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7119 * so long as it is large enough.
7120 */
7121#define MAX_PINNED_INTERVAL     512
7122
7123/* Working cpumask for load_balance and load_balance_newidle. */
7124DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7125
7126static int need_active_balance(struct lb_env *env)
7127{
7128        struct sched_domain *sd = env->sd;
7129
7130        if (env->idle == CPU_NEWLY_IDLE) {
7131
7132                /*
7133                 * ASYM_PACKING needs to force migrate tasks from busy but
7134                 * higher numbered CPUs in order to pack all tasks in the
7135                 * lowest numbered CPUs.
7136                 */
7137                if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7138                        return 1;
7139        }
7140
7141        /*
7142         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7143         * It's worth migrating the task if the src_cpu's capacity is reduced
7144         * because of other sched_class or IRQs if more capacity stays
7145         * available on dst_cpu.
7146         */
7147        if ((env->idle != CPU_NOT_IDLE) &&
7148            (env->src_rq->cfs.h_nr_running == 1)) {
7149                if ((check_cpu_capacity(env->src_rq, sd)) &&
7150                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7151                        return 1;
7152        }
7153
7154        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7155}
7156
7157static int active_load_balance_cpu_stop(void *data);
7158
7159static int should_we_balance(struct lb_env *env)
7160{
7161        struct sched_group *sg = env->sd->groups;
7162        struct cpumask *sg_cpus, *sg_mask;
7163        int cpu, balance_cpu = -1;
7164
7165        /*
7166         * In the newly idle case, we will allow all the cpu's
7167         * to do the newly idle load balance.
7168         */
7169        if (env->idle == CPU_NEWLY_IDLE)
7170                return 1;
7171
7172        sg_cpus = sched_group_cpus(sg);
7173        sg_mask = sched_group_mask(sg);
7174        /* Try to find first idle cpu */
7175        for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7176                if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7177                        continue;
7178
7179                balance_cpu = cpu;
7180                break;
7181        }
7182
7183        if (balance_cpu == -1)
7184                balance_cpu = group_balance_cpu(sg);
7185
7186        /*
7187         * First idle cpu or the first cpu(busiest) in this sched group
7188         * is eligible for doing load balancing at this and above domains.
7189         */
7190        return balance_cpu == env->dst_cpu;
7191}
7192
7193/*
7194 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7195 * tasks if there is an imbalance.
7196 */
7197static int load_balance(int this_cpu, struct rq *this_rq,
7198                        struct sched_domain *sd, enum cpu_idle_type idle,
7199                        int *continue_balancing)
7200{
7201        int ld_moved, cur_ld_moved, active_balance = 0;
7202        struct sched_domain *sd_parent = sd->parent;
7203        struct sched_group *group;
7204        struct rq *busiest;
7205        unsigned long flags;
7206        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7207
7208        struct lb_env env = {
7209                .sd             = sd,
7210                .dst_cpu        = this_cpu,
7211                .dst_rq         = this_rq,
7212                .dst_grpmask    = sched_group_cpus(sd->groups),
7213                .idle           = idle,
7214                .loop_break     = sched_nr_migrate_break,
7215                .cpus           = cpus,
7216                .fbq_type       = all,
7217                .tasks          = LIST_HEAD_INIT(env.tasks),
7218        };
7219
7220        /*
7221         * For NEWLY_IDLE load_balancing, we don't need to consider
7222         * other cpus in our group
7223         */
7224        if (idle == CPU_NEWLY_IDLE)
7225                env.dst_grpmask = NULL;
7226
7227        cpumask_copy(cpus, cpu_active_mask);
7228
7229        schedstat_inc(sd, lb_count[idle]);
7230
7231redo:
7232        if (!should_we_balance(&env)) {
7233                *continue_balancing = 0;
7234                goto out_balanced;
7235        }
7236
7237        group = find_busiest_group(&env);
7238        if (!group) {
7239                schedstat_inc(sd, lb_nobusyg[idle]);
7240                goto out_balanced;
7241        }
7242
7243        busiest = find_busiest_queue(&env, group);
7244        if (!busiest) {
7245                schedstat_inc(sd, lb_nobusyq[idle]);
7246                goto out_balanced;
7247        }
7248
7249        BUG_ON(busiest == env.dst_rq);
7250
7251        schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7252
7253        env.src_cpu = busiest->cpu;
7254        env.src_rq = busiest;
7255
7256        ld_moved = 0;
7257        if (busiest->nr_running > 1) {
7258                /*
7259                 * Attempt to move tasks. If find_busiest_group has found
7260                 * an imbalance but busiest->nr_running <= 1, the group is
7261                 * still unbalanced. ld_moved simply stays zero, so it is
7262                 * correctly treated as an imbalance.
7263                 */
7264                env.flags |= LBF_ALL_PINNED;
7265                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7266
7267more_balance:
7268                raw_spin_lock_irqsave(&busiest->lock, flags);
7269
7270                /*
7271                 * cur_ld_moved - load moved in current iteration
7272                 * ld_moved     - cumulative load moved across iterations
7273                 */
7274                cur_ld_moved = detach_tasks(&env);
7275
7276                /*
7277                 * We've detached some tasks from busiest_rq. Every
7278                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7279                 * unlock busiest->lock, and we are able to be sure
7280                 * that nobody can manipulate the tasks in parallel.
7281                 * See task_rq_lock() family for the details.
7282                 */
7283
7284                raw_spin_unlock(&busiest->lock);
7285
7286                if (cur_ld_moved) {
7287                        attach_tasks(&env);
7288                        ld_moved += cur_ld_moved;
7289                }
7290
7291                local_irq_restore(flags);
7292
7293                if (env.flags & LBF_NEED_BREAK) {
7294                        env.flags &= ~LBF_NEED_BREAK;
7295                        goto more_balance;
7296                }
7297
7298                /*
7299                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7300                 * us and move them to an alternate dst_cpu in our sched_group
7301                 * where they can run. The upper limit on how many times we
7302                 * iterate on same src_cpu is dependent on number of cpus in our
7303                 * sched_group.
7304                 *
7305                 * This changes load balance semantics a bit on who can move
7306                 * load to a given_cpu. In addition to the given_cpu itself
7307                 * (or a ilb_cpu acting on its behalf where given_cpu is
7308                 * nohz-idle), we now have balance_cpu in a position to move
7309                 * load to given_cpu. In rare situations, this may cause
7310                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7311                 * _independently_ and at _same_ time to move some load to
7312                 * given_cpu) causing exceess load to be moved to given_cpu.
7313                 * This however should not happen so much in practice and
7314                 * moreover subsequent load balance cycles should correct the
7315                 * excess load moved.
7316                 */
7317                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7318
7319                        /* Prevent to re-select dst_cpu via env's cpus */
7320                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
7321
7322                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
7323                        env.dst_cpu      = env.new_dst_cpu;
7324                        env.flags       &= ~LBF_DST_PINNED;
7325                        env.loop         = 0;
7326                        env.loop_break   = sched_nr_migrate_break;
7327
7328                        /*
7329                         * Go back to "more_balance" rather than "redo" since we
7330                         * need to continue with same src_cpu.
7331                         */
7332                        goto more_balance;
7333                }
7334
7335                /*
7336                 * We failed to reach balance because of affinity.
7337                 */
7338                if (sd_parent) {
7339                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7340
7341                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7342                                *group_imbalance = 1;
7343                }
7344
7345                /* All tasks on this runqueue were pinned by CPU affinity */
7346                if (unlikely(env.flags & LBF_ALL_PINNED)) {
7347                        cpumask_clear_cpu(cpu_of(busiest), cpus);
7348                        if (!cpumask_empty(cpus)) {
7349                                env.loop = 0;
7350                                env.loop_break = sched_nr_migrate_break;
7351                                goto redo;
7352                        }
7353                        goto out_all_pinned;
7354                }
7355        }
7356
7357        if (!ld_moved) {
7358                schedstat_inc(sd, lb_failed[idle]);
7359                /*
7360                 * Increment the failure counter only on periodic balance.
7361                 * We do not want newidle balance, which can be very
7362                 * frequent, pollute the failure counter causing
7363                 * excessive cache_hot migrations and active balances.
7364                 */
7365                if (idle != CPU_NEWLY_IDLE)
7366                        sd->nr_balance_failed++;
7367
7368                if (need_active_balance(&env)) {
7369                        raw_spin_lock_irqsave(&busiest->lock, flags);
7370
7371                        /* don't kick the active_load_balance_cpu_stop,
7372                         * if the curr task on busiest cpu can't be
7373                         * moved to this_cpu
7374                         */
7375                        if (!cpumask_test_cpu(this_cpu,
7376                                        tsk_cpus_allowed(busiest->curr))) {
7377                                raw_spin_unlock_irqrestore(&busiest->lock,
7378                                                            flags);
7379                                env.flags |= LBF_ALL_PINNED;
7380                                goto out_one_pinned;
7381                        }
7382
7383                        /*
7384                         * ->active_balance synchronizes accesses to
7385                         * ->active_balance_work.  Once set, it's cleared
7386                         * only after active load balance is finished.
7387                         */
7388                        if (!busiest->active_balance) {
7389                                busiest->active_balance = 1;
7390                                busiest->push_cpu = this_cpu;
7391                                active_balance = 1;
7392                        }
7393                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
7394
7395                        if (active_balance) {
7396                                stop_one_cpu_nowait(cpu_of(busiest),
7397                                        active_load_balance_cpu_stop, busiest,
7398                                        &busiest->active_balance_work);
7399                        }
7400
7401                        /*
7402                         * We've kicked active balancing, reset the failure
7403                         * counter.
7404                         */
7405                        sd->nr_balance_failed = sd->cache_nice_tries+1;
7406                }
7407        } else
7408                sd->nr_balance_failed = 0;
7409
7410        if (likely(!active_balance)) {
7411                /* We were unbalanced, so reset the balancing interval */
7412                sd->balance_interval = sd->min_interval;
7413        } else {
7414                /*
7415                 * If we've begun active balancing, start to back off. This
7416                 * case may not be covered by the all_pinned logic if there
7417                 * is only 1 task on the busy runqueue (because we don't call
7418                 * detach_tasks).
7419                 */
7420                if (sd->balance_interval < sd->max_interval)
7421                        sd->balance_interval *= 2;
7422        }
7423
7424        goto out;
7425
7426out_balanced:
7427        /*
7428         * We reach balance although we may have faced some affinity
7429         * constraints. Clear the imbalance flag if it was set.
7430         */
7431        if (sd_parent) {
7432                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7433
7434                if (*group_imbalance)
7435                        *group_imbalance = 0;
7436        }
7437
7438out_all_pinned:
7439        /*
7440         * We reach balance because all tasks are pinned at this level so
7441         * we can't migrate them. Let the imbalance flag set so parent level
7442         * can try to migrate them.
7443         */
7444        schedstat_inc(sd, lb_balanced[idle]);
7445
7446        sd->nr_balance_failed = 0;
7447
7448out_one_pinned:
7449        /* tune up the balancing interval */
7450        if (((env.flags & LBF_ALL_PINNED) &&
7451                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
7452                        (sd->balance_interval < sd->max_interval))
7453                sd->balance_interval *= 2;
7454
7455        ld_moved = 0;
7456out:
7457        return ld_moved;
7458}
7459
7460static inline unsigned long
7461get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7462{
7463        unsigned long interval = sd->balance_interval;
7464
7465        if (cpu_busy)
7466                interval *= sd->busy_factor;
7467
7468        /* scale ms to jiffies */
7469        interval = msecs_to_jiffies(interval);
7470        interval = clamp(interval, 1UL, max_load_balance_interval);
7471
7472        return interval;
7473}
7474
7475static inline void
7476update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7477{
7478        unsigned long interval, next;
7479
7480        interval = get_sd_balance_interval(sd, cpu_busy);
7481        next = sd->last_balance + interval;
7482
7483        if (time_after(*next_balance, next))
7484                *next_balance = next;
7485}
7486
7487/*
7488 * idle_balance is called by schedule() if this_cpu is about to become
7489 * idle. Attempts to pull tasks from other CPUs.
7490 */
7491static int idle_balance(struct rq *this_rq)
7492{
7493        unsigned long next_balance = jiffies + HZ;
7494        int this_cpu = this_rq->cpu;
7495        struct sched_domain *sd;
7496        int pulled_task = 0;
7497        u64 curr_cost = 0;
7498
7499        /*
7500         * We must set idle_stamp _before_ calling idle_balance(), such that we
7501         * measure the duration of idle_balance() as idle time.
7502         */
7503        this_rq->idle_stamp = rq_clock(this_rq);
7504
7505        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7506            !this_rq->rd->overload) {
7507                rcu_read_lock();
7508                sd = rcu_dereference_check_sched_domain(this_rq->sd);
7509                if (sd)
7510                        update_next_balance(sd, 0, &next_balance);
7511                rcu_read_unlock();
7512
7513                goto out;
7514        }
7515
7516        raw_spin_unlock(&this_rq->lock);
7517
7518        update_blocked_averages(this_cpu);
7519        rcu_read_lock();
7520        for_each_domain(this_cpu, sd) {
7521                int continue_balancing = 1;
7522                u64 t0, domain_cost;
7523
7524                if (!(sd->flags & SD_LOAD_BALANCE))
7525                        continue;
7526
7527                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7528                        update_next_balance(sd, 0, &next_balance);
7529                        break;
7530                }
7531
7532                if (sd->flags & SD_BALANCE_NEWIDLE) {
7533                        t0 = sched_clock_cpu(this_cpu);
7534
7535                        pulled_task = load_balance(this_cpu, this_rq,
7536                                                   sd, CPU_NEWLY_IDLE,
7537                                                   &continue_balancing);
7538
7539                        domain_cost = sched_clock_cpu(this_cpu) - t0;
7540                        if (domain_cost > sd->max_newidle_lb_cost)
7541                                sd->max_newidle_lb_cost = domain_cost;
7542
7543                        curr_cost += domain_cost;
7544                }
7545
7546                update_next_balance(sd, 0, &next_balance);
7547
7548                /*
7549                 * Stop searching for tasks to pull if there are
7550                 * now runnable tasks on this rq.
7551                 */
7552                if (pulled_task || this_rq->nr_running > 0)
7553                        break;
7554        }
7555        rcu_read_unlock();
7556
7557        raw_spin_lock(&this_rq->lock);
7558
7559        if (curr_cost > this_rq->max_idle_balance_cost)
7560                this_rq->max_idle_balance_cost = curr_cost;
7561
7562        /*
7563         * While browsing the domains, we released the rq lock, a task could
7564         * have been enqueued in the meantime. Since we're not going idle,
7565         * pretend we pulled a task.
7566         */
7567        if (this_rq->cfs.h_nr_running && !pulled_task)
7568                pulled_task = 1;
7569
7570out:
7571        /* Move the next balance forward */
7572        if (time_after(this_rq->next_balance, next_balance))
7573                this_rq->next_balance = next_balance;
7574
7575        /* Is there a task of a high priority class? */
7576        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7577                pulled_task = -1;
7578
7579        if (pulled_task)
7580                this_rq->idle_stamp = 0;
7581
7582        return pulled_task;
7583}
7584
7585/*
7586 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7587 * running tasks off the busiest CPU onto idle CPUs. It requires at
7588 * least 1 task to be running on each physical CPU where possible, and
7589 * avoids physical / logical imbalances.
7590 */
7591static int active_load_balance_cpu_stop(void *data)
7592{
7593        struct rq *busiest_rq = data;
7594        int busiest_cpu = cpu_of(busiest_rq);
7595        int target_cpu = busiest_rq->push_cpu;
7596        struct rq *target_rq = cpu_rq(target_cpu);
7597        struct sched_domain *sd;
7598        struct task_struct *p = NULL;
7599
7600        raw_spin_lock_irq(&busiest_rq->lock);
7601
7602        /* make sure the requested cpu hasn't gone down in the meantime */
7603        if (unlikely(busiest_cpu != smp_processor_id() ||
7604                     !busiest_rq->active_balance))
7605                goto out_unlock;
7606
7607        /* Is there any task to move? */
7608        if (busiest_rq->nr_running <= 1)
7609                goto out_unlock;
7610
7611        /*
7612         * This condition is "impossible", if it occurs
7613         * we need to fix it. Originally reported by
7614         * Bjorn Helgaas on a 128-cpu setup.
7615         */
7616        BUG_ON(busiest_rq == target_rq);
7617
7618        /* Search for an sd spanning us and the target CPU. */
7619        rcu_read_lock();
7620        for_each_domain(target_cpu, sd) {
7621                if ((sd->flags & SD_LOAD_BALANCE) &&
7622                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7623                                break;
7624        }
7625
7626        if (likely(sd)) {
7627                struct lb_env env = {
7628                        .sd             = sd,
7629                        .dst_cpu        = target_cpu,
7630                        .dst_rq         = target_rq,
7631                        .src_cpu        = busiest_rq->cpu,
7632                        .src_rq         = busiest_rq,
7633                        .idle           = CPU_IDLE,
7634                };
7635
7636                schedstat_inc(sd, alb_count);
7637
7638                p = detach_one_task(&env);
7639                if (p)
7640                        schedstat_inc(sd, alb_pushed);
7641                else
7642                        schedstat_inc(sd, alb_failed);
7643        }
7644        rcu_read_unlock();
7645out_unlock:
7646        busiest_rq->active_balance = 0;
7647        raw_spin_unlock(&busiest_rq->lock);
7648
7649        if (p)
7650                attach_one_task(target_rq, p);
7651
7652        local_irq_enable();
7653
7654        return 0;
7655}
7656
7657static inline int on_null_domain(struct rq *rq)
7658{
7659        return unlikely(!rcu_dereference_sched(rq->sd));
7660}
7661
7662#ifdef CONFIG_NO_HZ_COMMON
7663/*
7664 * idle load balancing details
7665 * - When one of the busy CPUs notice that there may be an idle rebalancing
7666 *   needed, they will kick the idle load balancer, which then does idle
7667 *   load balancing for all the idle CPUs.
7668 */
7669static struct {
7670        cpumask_var_t idle_cpus_mask;
7671        atomic_t nr_cpus;
7672        unsigned long next_balance;     /* in jiffy units */
7673} nohz ____cacheline_aligned;
7674
7675static inline int find_new_ilb(void)
7676{
7677        int ilb = cpumask_first(nohz.idle_cpus_mask);
7678
7679        if (ilb < nr_cpu_ids && idle_cpu(ilb))
7680                return ilb;
7681
7682        return nr_cpu_ids;
7683}
7684
7685/*
7686 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7687 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7688 * CPU (if there is one).
7689 */
7690static void nohz_balancer_kick(void)
7691{
7692        int ilb_cpu;
7693
7694        nohz.next_balance++;
7695
7696        ilb_cpu = find_new_ilb();
7697
7698        if (ilb_cpu >= nr_cpu_ids)
7699                return;
7700
7701        if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7702                return;
7703        /*
7704         * Use smp_send_reschedule() instead of resched_cpu().
7705         * This way we generate a sched IPI on the target cpu which
7706         * is idle. And the softirq performing nohz idle load balance
7707         * will be run before returning from the IPI.
7708         */
7709        smp_send_reschedule(ilb_cpu);
7710        return;
7711}
7712
7713static inline void nohz_balance_exit_idle(int cpu)
7714{
7715        if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7716                /*
7717                 * Completely isolated CPUs don't ever set, so we must test.
7718                 */
7719                if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7720                        cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7721                        atomic_dec(&nohz.nr_cpus);
7722                }
7723                clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7724        }
7725}
7726
7727static inline void set_cpu_sd_state_busy(void)
7728{
7729        struct sched_domain *sd;
7730        int cpu = smp_processor_id();
7731
7732        rcu_read_lock();
7733        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7734
7735        if (!sd || !sd->nohz_idle)
7736                goto unlock;
7737        sd->nohz_idle = 0;
7738
7739        atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7740unlock:
7741        rcu_read_unlock();
7742}
7743
7744void set_cpu_sd_state_idle(void)
7745{
7746        struct sched_domain *sd;
7747        int cpu = smp_processor_id();
7748
7749        rcu_read_lock();
7750        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7751
7752        if (!sd || sd->nohz_idle)
7753                goto unlock;
7754        sd->nohz_idle = 1;
7755
7756        atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7757unlock:
7758        rcu_read_unlock();
7759}
7760
7761/*
7762 * This routine will record that the cpu is going idle with tick stopped.
7763 * This info will be used in performing idle load balancing in the future.
7764 */
7765void nohz_balance_enter_idle(int cpu)
7766{
7767        /*
7768         * If this cpu is going down, then nothing needs to be done.
7769         */
7770        if (!cpu_active(cpu))
7771                return;
7772
7773        if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7774                return;
7775
7776        /*
7777         * If we're a completely isolated CPU, we don't play.
7778         */
7779        if (on_null_domain(cpu_rq(cpu)))
7780                return;
7781
7782        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7783        atomic_inc(&nohz.nr_cpus);
7784        set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7785}
7786
7787static int sched_ilb_notifier(struct notifier_block *nfb,
7788                                        unsigned long action, void *hcpu)
7789{
7790        switch (action & ~CPU_TASKS_FROZEN) {
7791        case CPU_DYING:
7792                nohz_balance_exit_idle(smp_processor_id());
7793                return NOTIFY_OK;
7794        default:
7795                return NOTIFY_DONE;
7796        }
7797}
7798#endif
7799
7800static DEFINE_SPINLOCK(balancing);
7801
7802/*
7803 * Scale the max load_balance interval with the number of CPUs in the system.
7804 * This trades load-balance latency on larger machines for less cross talk.
7805 */
7806void update_max_interval(void)
7807{
7808        max_load_balance_interval = HZ*num_online_cpus()/10;
7809}
7810
7811/*
7812 * It checks each scheduling domain to see if it is due to be balanced,
7813 * and initiates a balancing operation if so.
7814 *
7815 * Balancing parameters are set up in init_sched_domains.
7816 */
7817static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7818{
7819        int continue_balancing = 1;
7820        int cpu = rq->cpu;
7821        unsigned long interval;
7822        struct sched_domain *sd;
7823        /* Earliest time when we have to do rebalance again */
7824        unsigned long next_balance = jiffies + 60*HZ;
7825        int update_next_balance = 0;
7826        int need_serialize, need_decay = 0;
7827        u64 max_cost = 0;
7828
7829        update_blocked_averages(cpu);
7830
7831        rcu_read_lock();
7832        for_each_domain(cpu, sd) {
7833                /*
7834                 * Decay the newidle max times here because this is a regular
7835                 * visit to all the domains. Decay ~1% per second.
7836                 */
7837                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7838                        sd->max_newidle_lb_cost =
7839                                (sd->max_newidle_lb_cost * 253) / 256;
7840                        sd->next_decay_max_lb_cost = jiffies + HZ;
7841                        need_decay = 1;
7842                }
7843                max_cost += sd->max_newidle_lb_cost;
7844
7845                if (!(sd->flags & SD_LOAD_BALANCE))
7846                        continue;
7847
7848                /*
7849                 * Stop the load balance at this level. There is another
7850                 * CPU in our sched group which is doing load balancing more
7851                 * actively.
7852                 */
7853                if (!continue_balancing) {
7854                        if (need_decay)
7855                                continue;
7856                        break;
7857                }
7858
7859                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7860
7861                need_serialize = sd->flags & SD_SERIALIZE;
7862                if (need_serialize) {
7863                        if (!spin_trylock(&balancing))
7864                                goto out;
7865                }
7866
7867                if (time_after_eq(jiffies, sd->last_balance + interval)) {
7868                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7869                                /*
7870                                 * The LBF_DST_PINNED logic could have changed
7871                                 * env->dst_cpu, so we can't know our idle
7872                                 * state even if we migrated tasks. Update it.
7873                                 */
7874                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7875                        }
7876                        sd->last_balance = jiffies;
7877                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7878                }
7879                if (need_serialize)
7880                        spin_unlock(&balancing);
7881out:
7882                if (time_after(next_balance, sd->last_balance + interval)) {
7883                        next_balance = sd->last_balance + interval;
7884                        update_next_balance = 1;
7885                }
7886        }
7887        if (need_decay) {
7888                /*
7889                 * Ensure the rq-wide value also decays but keep it at a
7890                 * reasonable floor to avoid funnies with rq->avg_idle.
7891                 */
7892                rq->max_idle_balance_cost =
7893                        max((u64)sysctl_sched_migration_cost, max_cost);
7894        }
7895        rcu_read_unlock();
7896
7897        /*
7898         * next_balance will be updated only when there is a need.
7899         * When the cpu is attached to null domain for ex, it will not be
7900         * updated.
7901         */
7902        if (likely(update_next_balance)) {
7903                rq->next_balance = next_balance;
7904
7905#ifdef CONFIG_NO_HZ_COMMON
7906                /*
7907                 * If this CPU has been elected to perform the nohz idle
7908                 * balance. Other idle CPUs have already rebalanced with
7909                 * nohz_idle_balance() and nohz.next_balance has been
7910                 * updated accordingly. This CPU is now running the idle load
7911                 * balance for itself and we need to update the
7912                 * nohz.next_balance accordingly.
7913                 */
7914                if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7915                        nohz.next_balance = rq->next_balance;
7916#endif
7917        }
7918}
7919
7920#ifdef CONFIG_NO_HZ_COMMON
7921/*
7922 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7923 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7924 */
7925static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7926{
7927        int this_cpu = this_rq->cpu;
7928        struct rq *rq;
7929        int balance_cpu;
7930        /* Earliest time when we have to do rebalance again */
7931        unsigned long next_balance = jiffies + 60*HZ;
7932        int update_next_balance = 0;
7933
7934        if (idle != CPU_IDLE ||
7935            !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7936                goto end;
7937
7938        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7939                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7940                        continue;
7941
7942                /*
7943                 * If this cpu gets work to do, stop the load balancing
7944                 * work being done for other cpus. Next load
7945                 * balancing owner will pick it up.
7946                 */
7947                if (need_resched())
7948                        break;
7949
7950                rq = cpu_rq(balance_cpu);
7951
7952                /*
7953                 * If time for next balance is due,
7954                 * do the balance.
7955                 */
7956                if (time_after_eq(jiffies, rq->next_balance)) {
7957                        raw_spin_lock_irq(&rq->lock);
7958                        update_rq_clock(rq);
7959                        update_cpu_load_idle(rq);
7960                        raw_spin_unlock_irq(&rq->lock);
7961                        rebalance_domains(rq, CPU_IDLE);
7962                }
7963
7964                if (time_after(next_balance, rq->next_balance)) {
7965                        next_balance = rq->next_balance;
7966                        update_next_balance = 1;
7967                }
7968        }
7969
7970        /*
7971         * next_balance will be updated only when there is a need.
7972         * When the CPU is attached to null domain for ex, it will not be
7973         * updated.
7974         */
7975        if (likely(update_next_balance))
7976                nohz.next_balance = next_balance;
7977end:
7978        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7979}
7980
7981/*
7982 * Current heuristic for kicking the idle load balancer in the presence
7983 * of an idle cpu in the system.
7984 *   - This rq has more than one task.
7985 *   - This rq has at least one CFS task and the capacity of the CPU is
7986 *     significantly reduced because of RT tasks or IRQs.
7987 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7988 *     multiple busy cpu.
7989 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7990 *     domain span are idle.
7991 */
7992static inline bool nohz_kick_needed(struct rq *rq)
7993{
7994        unsigned long now = jiffies;
7995        struct sched_domain *sd;
7996        struct sched_group_capacity *sgc;
7997        int nr_busy, cpu = rq->cpu;
7998        bool kick = false;
7999
8000        if (unlikely(rq->idle_balance))
8001                return false;
8002
8003       /*
8004        * We may be recently in ticked or tickless idle mode. At the first
8005        * busy tick after returning from idle, we will update the busy stats.
8006        */
8007        set_cpu_sd_state_busy();
8008        nohz_balance_exit_idle(cpu);
8009
8010        /*
8011         * None are in tickless mode and hence no need for NOHZ idle load
8012         * balancing.
8013         */
8014        if (likely(!atomic_read(&nohz.nr_cpus)))
8015                return false;
8016
8017        if (time_before(now, nohz.next_balance))
8018                return false;
8019
8020        if (rq->nr_running >= 2)
8021                return true;
8022
8023        rcu_read_lock();
8024        sd = rcu_dereference(per_cpu(sd_busy, cpu));
8025        if (sd) {
8026                sgc = sd->groups->sgc;
8027                nr_busy = atomic_read(&sgc->nr_busy_cpus);
8028
8029                if (nr_busy > 1) {
8030                        kick = true;
8031                        goto unlock;
8032                }
8033
8034        }
8035
8036        sd = rcu_dereference(rq->sd);
8037        if (sd) {
8038                if ((rq->cfs.h_nr_running >= 1) &&
8039                                check_cpu_capacity(rq, sd)) {
8040                        kick = true;
8041                        goto unlock;
8042                }
8043        }
8044
8045        sd = rcu_dereference(per_cpu(sd_asym, cpu));
8046        if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8047                                  sched_domain_span(sd)) < cpu)) {
8048                kick = true;
8049                goto unlock;
8050        }
8051
8052unlock:
8053        rcu_read_unlock();
8054        return kick;
8055}
8056#else
8057static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8058#endif
8059
8060/*
8061 * run_rebalance_domains is triggered when needed from the scheduler tick.
8062 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8063 */
8064static void run_rebalance_domains(struct softirq_action *h)
8065{
8066        struct rq *this_rq = this_rq();
8067        enum cpu_idle_type idle = this_rq->idle_balance ?
8068                                                CPU_IDLE : CPU_NOT_IDLE;
8069
8070        /*
8071         * If this cpu has a pending nohz_balance_kick, then do the
8072         * balancing on behalf of the other idle cpus whose ticks are
8073         * stopped. Do nohz_idle_balance *before* rebalance_domains to
8074         * give the idle cpus a chance to load balance. Else we may
8075         * load balance only within the local sched_domain hierarchy
8076         * and abort nohz_idle_balance altogether if we pull some load.
8077         */
8078        nohz_idle_balance(this_rq, idle);
8079        rebalance_domains(this_rq, idle);
8080}
8081
8082/*
8083 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8084 */
8085void trigger_load_balance(struct rq *rq)
8086{
8087        /* Don't need to rebalance while attached to NULL domain */
8088        if (unlikely(on_null_domain(rq)))
8089                return;
8090
8091        if (time_after_eq(jiffies, rq->next_balance))
8092                raise_softirq(SCHED_SOFTIRQ);
8093#ifdef CONFIG_NO_HZ_COMMON
8094        if (nohz_kick_needed(rq))
8095                nohz_balancer_kick();
8096#endif
8097}
8098
8099static void rq_online_fair(struct rq *rq)
8100{
8101        update_sysctl();
8102
8103        update_runtime_enabled(rq);
8104}
8105
8106static void rq_offline_fair(struct rq *rq)
8107{
8108        update_sysctl();
8109
8110        /* Ensure any throttled groups are reachable by pick_next_task */
8111        unthrottle_offline_cfs_rqs(rq);
8112}
8113
8114#endif /* CONFIG_SMP */
8115
8116/*
8117 * scheduler tick hitting a task of our scheduling class:
8118 */
8119static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8120{
8121        struct cfs_rq *cfs_rq;
8122        struct sched_entity *se = &curr->se;
8123
8124        for_each_sched_entity(se) {
8125                cfs_rq = cfs_rq_of(se);
8126                entity_tick(cfs_rq, se, queued);
8127        }
8128
8129        if (static_branch_unlikely(&sched_numa_balancing))
8130                task_tick_numa(rq, curr);
8131}
8132
8133/*
8134 * called on fork with the child task as argument from the parent's context
8135 *  - child not yet on the tasklist
8136 *  - preemption disabled
8137 */
8138static void task_fork_fair(struct task_struct *p)
8139{
8140        struct cfs_rq *cfs_rq;
8141        struct sched_entity *se = &p->se, *curr;
8142        int this_cpu = smp_processor_id();
8143        struct rq *rq = this_rq();
8144        unsigned long flags;
8145
8146        raw_spin_lock_irqsave(&rq->lock, flags);
8147
8148        update_rq_clock(rq);
8149
8150        cfs_rq = task_cfs_rq(current);
8151        curr = cfs_rq->curr;
8152
8153        /*
8154         * Not only the cpu but also the task_group of the parent might have
8155         * been changed after parent->se.parent,cfs_rq were copied to
8156         * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8157         * of child point to valid ones.
8158         */
8159        rcu_read_lock();
8160        __set_task_cpu(p, this_cpu);
8161        rcu_read_unlock();
8162
8163        update_curr(cfs_rq);
8164
8165        if (curr)
8166                se->vruntime = curr->vruntime;
8167        place_entity(cfs_rq, se, 1);
8168
8169        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8170                /*
8171                 * Upon rescheduling, sched_class::put_prev_task() will place
8172                 * 'current' within the tree based on its new key value.
8173                 */
8174                swap(curr->vruntime, se->vruntime);
8175                resched_curr(rq);
8176        }
8177
8178        se->vruntime -= cfs_rq->min_vruntime;
8179
8180        raw_spin_unlock_irqrestore(&rq->lock, flags);
8181}
8182
8183/*
8184 * Priority of the task has changed. Check to see if we preempt
8185 * the current task.
8186 */
8187static void
8188prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8189{
8190        if (!task_on_rq_queued(p))
8191                return;
8192
8193        /*
8194         * Reschedule if we are currently running on this runqueue and
8195         * our priority decreased, or if we are not currently running on
8196         * this runqueue and our priority is higher than the current's
8197         */
8198        if (rq->curr == p) {
8199                if (p->prio > oldprio)
8200                        resched_curr(rq);
8201        } else
8202                check_preempt_curr(rq, p, 0);
8203}
8204
8205static inline bool vruntime_normalized(struct task_struct *p)
8206{
8207        struct sched_entity *se = &p->se;
8208
8209        /*
8210         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8211         * the dequeue_entity(.flags=0) will already have normalized the
8212         * vruntime.
8213         */
8214        if (p->on_rq)
8215                return true;
8216
8217        /*
8218         * When !on_rq, vruntime of the task has usually NOT been normalized.
8219         * But there are some cases where it has already been normalized:
8220         *
8221         * - A forked child which is waiting for being woken up by
8222         *   wake_up_new_task().
8223         * - A task which has been woken up by try_to_wake_up() and
8224         *   waiting for actually being woken up by sched_ttwu_pending().
8225         */
8226        if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8227                return true;
8228
8229        return false;
8230}
8231
8232static void detach_task_cfs_rq(struct task_struct *p)
8233{
8234        struct sched_entity *se = &p->se;
8235        struct cfs_rq *cfs_rq = cfs_rq_of(se);
8236
8237        if (!vruntime_normalized(p)) {
8238                /*
8239                 * Fix up our vruntime so that the current sleep doesn't
8240                 * cause 'unlimited' sleep bonus.
8241                 */
8242                place_entity(cfs_rq, se, 0);
8243                se->vruntime -= cfs_rq->min_vruntime;
8244        }
8245
8246        /* Catch up with the cfs_rq and remove our load when we leave */
8247        detach_entity_load_avg(cfs_rq, se);
8248}
8249
8250static void attach_task_cfs_rq(struct task_struct *p)
8251{
8252        struct sched_entity *se = &p->se;
8253        struct cfs_rq *cfs_rq = cfs_rq_of(se);
8254
8255#ifdef CONFIG_FAIR_GROUP_SCHED
8256        /*
8257         * Since the real-depth could have been changed (only FAIR
8258         * class maintain depth value), reset depth properly.
8259         */
8260        se->depth = se->parent ? se->parent->depth + 1 : 0;
8261#endif
8262
8263        /* Synchronize task with its cfs_rq */
8264        attach_entity_load_avg(cfs_rq, se);
8265
8266        if (!vruntime_normalized(p))
8267                se->vruntime += cfs_rq->min_vruntime;
8268}
8269
8270static void switched_from_fair(struct rq *rq, struct task_struct *p)
8271{
8272        detach_task_cfs_rq(p);
8273}
8274
8275static void switched_to_fair(struct rq *rq, struct task_struct *p)
8276{
8277        attach_task_cfs_rq(p);
8278
8279        if (task_on_rq_queued(p)) {
8280                /*
8281                 * We were most likely switched from sched_rt, so
8282                 * kick off the schedule if running, otherwise just see
8283                 * if we can still preempt the current task.
8284                 */
8285                if (rq->curr == p)
8286                        resched_curr(rq);
8287                else
8288                        check_preempt_curr(rq, p, 0);
8289        }
8290}
8291
8292/* Account for a task changing its policy or group.
8293 *
8294 * This routine is mostly called to set cfs_rq->curr field when a task
8295 * migrates between groups/classes.
8296 */
8297static void set_curr_task_fair(struct rq *rq)
8298{
8299        struct sched_entity *se = &rq->curr->se;
8300
8301        for_each_sched_entity(se) {
8302                struct cfs_rq *cfs_rq = cfs_rq_of(se);
8303
8304                set_next_entity(cfs_rq, se);
8305                /* ensure bandwidth has been allocated on our new cfs_rq */
8306                account_cfs_rq_runtime(cfs_rq, 0);
8307        }
8308}
8309
8310void init_cfs_rq(struct cfs_rq *cfs_rq)
8311{
8312        cfs_rq->tasks_timeline = RB_ROOT;
8313        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8314#ifndef CONFIG_64BIT
8315        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8316#endif
8317#ifdef CONFIG_SMP
8318        atomic_long_set(&cfs_rq->removed_load_avg, 0);
8319        atomic_long_set(&cfs_rq->removed_util_avg, 0);
8320#endif
8321}
8322
8323#ifdef CONFIG_FAIR_GROUP_SCHED
8324static void task_move_group_fair(struct task_struct *p)
8325{
8326        detach_task_cfs_rq(p);
8327        set_task_rq(p, task_cpu(p));
8328
8329#ifdef CONFIG_SMP
8330        /* Tell se's cfs_rq has been changed -- migrated */
8331        p->se.avg.last_update_time = 0;
8332#endif
8333        attach_task_cfs_rq(p);
8334}
8335
8336void free_fair_sched_group(struct task_group *tg)
8337{
8338        int i;
8339
8340        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8341
8342        for_each_possible_cpu(i) {
8343                if (tg->cfs_rq)
8344                        kfree(tg->cfs_rq[i]);
8345                if (tg->se)
8346                        kfree(tg->se[i]);
8347        }
8348
8349        kfree(tg->cfs_rq);
8350        kfree(tg->se);
8351}
8352
8353int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8354{
8355        struct cfs_rq *cfs_rq;
8356        struct sched_entity *se;
8357        int i;
8358
8359        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8360        if (!tg->cfs_rq)
8361                goto err;
8362        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8363        if (!tg->se)
8364                goto err;
8365
8366        tg->shares = NICE_0_LOAD;
8367
8368        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8369
8370        for_each_possible_cpu(i) {
8371                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8372                                      GFP_KERNEL, cpu_to_node(i));
8373                if (!cfs_rq)
8374                        goto err;
8375
8376                se = kzalloc_node(sizeof(struct sched_entity),
8377                                  GFP_KERNEL, cpu_to_node(i));
8378                if (!se)
8379                        goto err_free_rq;
8380
8381                init_cfs_rq(cfs_rq);
8382                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8383                init_entity_runnable_average(se);
8384        }
8385
8386        return 1;
8387
8388err_free_rq:
8389        kfree(cfs_rq);
8390err:
8391        return 0;
8392}
8393
8394void unregister_fair_sched_group(struct task_group *tg)
8395{
8396        unsigned long flags;
8397        struct rq *rq;
8398        int cpu;
8399
8400        for_each_possible_cpu(cpu) {
8401                if (tg->se[cpu])
8402                        remove_entity_load_avg(tg->se[cpu]);
8403
8404                /*
8405                 * Only empty task groups can be destroyed; so we can speculatively
8406                 * check on_list without danger of it being re-added.
8407                 */
8408                if (!tg->cfs_rq[cpu]->on_list)
8409                        continue;
8410
8411                rq = cpu_rq(cpu);
8412
8413                raw_spin_lock_irqsave(&rq->lock, flags);
8414                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8415                raw_spin_unlock_irqrestore(&rq->lock, flags);
8416        }
8417}
8418
8419void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8420                        struct sched_entity *se, int cpu,
8421                        struct sched_entity *parent)
8422{
8423        struct rq *rq = cpu_rq(cpu);
8424
8425        cfs_rq->tg = tg;
8426        cfs_rq->rq = rq;
8427        init_cfs_rq_runtime(cfs_rq);
8428
8429        tg->cfs_rq[cpu] = cfs_rq;
8430        tg->se[cpu] = se;
8431
8432        /* se could be NULL for root_task_group */
8433        if (!se)
8434                return;
8435
8436        if (!parent) {
8437                se->cfs_rq = &rq->cfs;
8438                se->depth = 0;
8439        } else {
8440                se->cfs_rq = parent->my_q;
8441                se->depth = parent->depth + 1;
8442        }
8443
8444        se->my_q = cfs_rq;
8445        /* guarantee group entities always have weight */
8446        update_load_set(&se->load, NICE_0_LOAD);
8447        se->parent = parent;
8448}
8449
8450static DEFINE_MUTEX(shares_mutex);
8451
8452int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8453{
8454        int i;
8455        unsigned long flags;
8456
8457        /*
8458         * We can't change the weight of the root cgroup.
8459         */
8460        if (!tg->se[0])
8461                return -EINVAL;
8462
8463        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8464
8465        mutex_lock(&shares_mutex);
8466        if (tg->shares == shares)
8467                goto done;
8468
8469        tg->shares = shares;
8470        for_each_possible_cpu(i) {
8471                struct rq *rq = cpu_rq(i);
8472                struct sched_entity *se;
8473
8474                se = tg->se[i];
8475                /* Propagate contribution to hierarchy */
8476                raw_spin_lock_irqsave(&rq->lock, flags);
8477
8478                /* Possible calls to update_curr() need rq clock */
8479                update_rq_clock(rq);
8480                for_each_sched_entity(se)
8481                        update_cfs_shares(group_cfs_rq(se));
8482                raw_spin_unlock_irqrestore(&rq->lock, flags);
8483        }
8484
8485done:
8486        mutex_unlock(&shares_mutex);
8487        return 0;
8488}
8489#else /* CONFIG_FAIR_GROUP_SCHED */
8490
8491void free_fair_sched_group(struct task_group *tg) { }
8492
8493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8494{
8495        return 1;
8496}
8497
8498void unregister_fair_sched_group(struct task_group *tg) { }
8499
8500#endif /* CONFIG_FAIR_GROUP_SCHED */
8501
8502
8503static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8504{
8505        struct sched_entity *se = &task->se;
8506        unsigned int rr_interval = 0;
8507
8508        /*
8509         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8510         * idle runqueue:
8511         */
8512        if (rq->cfs.load.weight)
8513                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8514
8515        return rr_interval;
8516}
8517
8518/*
8519 * All the scheduling class methods:
8520 */
8521const struct sched_class fair_sched_class = {
8522        .next                   = &idle_sched_class,
8523        .enqueue_task           = enqueue_task_fair,
8524        .dequeue_task           = dequeue_task_fair,
8525        .yield_task             = yield_task_fair,
8526        .yield_to_task          = yield_to_task_fair,
8527
8528        .check_preempt_curr     = check_preempt_wakeup,
8529
8530        .pick_next_task         = pick_next_task_fair,
8531        .put_prev_task          = put_prev_task_fair,
8532
8533#ifdef CONFIG_SMP
8534        .select_task_rq         = select_task_rq_fair,
8535        .migrate_task_rq        = migrate_task_rq_fair,
8536
8537        .rq_online              = rq_online_fair,
8538        .rq_offline             = rq_offline_fair,
8539
8540        .task_waking            = task_waking_fair,
8541        .task_dead              = task_dead_fair,
8542        .set_cpus_allowed       = set_cpus_allowed_common,
8543#endif
8544
8545        .set_curr_task          = set_curr_task_fair,
8546        .task_tick              = task_tick_fair,
8547        .task_fork              = task_fork_fair,
8548
8549        .prio_changed           = prio_changed_fair,
8550        .switched_from          = switched_from_fair,
8551        .switched_to            = switched_to_fair,
8552
8553        .get_rr_interval        = get_rr_interval_fair,
8554
8555        .update_curr            = update_curr_fair,
8556
8557#ifdef CONFIG_FAIR_GROUP_SCHED
8558        .task_move_group        = task_move_group_fair,
8559#endif
8560};
8561
8562#ifdef CONFIG_SCHED_DEBUG
8563void print_cfs_stats(struct seq_file *m, int cpu)
8564{
8565        struct cfs_rq *cfs_rq;
8566
8567        rcu_read_lock();
8568        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8569                print_cfs_rq(m, cpu, cfs_rq);
8570        rcu_read_unlock();
8571}
8572
8573#ifdef CONFIG_NUMA_BALANCING
8574void show_numa_stats(struct task_struct *p, struct seq_file *m)
8575{
8576        int node;
8577        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8578
8579        for_each_online_node(node) {
8580                if (p->numa_faults) {
8581                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8582                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8583                }
8584                if (p->numa_group) {
8585                        gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8586                        gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8587                }
8588                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8589        }
8590}
8591#endif /* CONFIG_NUMA_BALANCING */
8592#endif /* CONFIG_SCHED_DEBUG */
8593
8594__init void init_sched_fair_class(void)
8595{
8596#ifdef CONFIG_SMP
8597        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8598
8599#ifdef CONFIG_NO_HZ_COMMON
8600        nohz.next_balance = jiffies;
8601        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8602        cpu_notifier(sched_ilb_notifier, 0);
8603#endif
8604#endif /* SMP */
8605
8606}
8607