linux/kernel/sched/wait.c
<<
>>
Prefs
   1/*
   2 * Generic waiting primitives.
   3 *
   4 * (C) 2004 Nadia Yvette Chambers, Oracle
   5 */
   6#include <linux/init.h>
   7#include <linux/export.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/wait.h>
  11#include <linux/hash.h>
  12#include <linux/kthread.h>
  13
  14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
  15{
  16        spin_lock_init(&q->lock);
  17        lockdep_set_class_and_name(&q->lock, key, name);
  18        INIT_LIST_HEAD(&q->task_list);
  19}
  20
  21EXPORT_SYMBOL(__init_waitqueue_head);
  22
  23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  24{
  25        unsigned long flags;
  26
  27        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
  28        spin_lock_irqsave(&q->lock, flags);
  29        __add_wait_queue(q, wait);
  30        spin_unlock_irqrestore(&q->lock, flags);
  31}
  32EXPORT_SYMBOL(add_wait_queue);
  33
  34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
  35{
  36        unsigned long flags;
  37
  38        wait->flags |= WQ_FLAG_EXCLUSIVE;
  39        spin_lock_irqsave(&q->lock, flags);
  40        __add_wait_queue_tail(q, wait);
  41        spin_unlock_irqrestore(&q->lock, flags);
  42}
  43EXPORT_SYMBOL(add_wait_queue_exclusive);
  44
  45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  46{
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&q->lock, flags);
  50        __remove_wait_queue(q, wait);
  51        spin_unlock_irqrestore(&q->lock, flags);
  52}
  53EXPORT_SYMBOL(remove_wait_queue);
  54
  55
  56/*
  57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  59 * number) then we wake all the non-exclusive tasks and one exclusive task.
  60 *
  61 * There are circumstances in which we can try to wake a task which has already
  62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
  64 */
  65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  66                        int nr_exclusive, int wake_flags, void *key)
  67{
  68        wait_queue_t *curr, *next;
  69
  70        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  71                unsigned flags = curr->flags;
  72
  73                if (curr->func(curr, mode, wake_flags, key) &&
  74                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  75                        break;
  76        }
  77}
  78
  79/**
  80 * __wake_up - wake up threads blocked on a waitqueue.
  81 * @q: the waitqueue
  82 * @mode: which threads
  83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
  84 * @key: is directly passed to the wakeup function
  85 *
  86 * It may be assumed that this function implies a write memory barrier before
  87 * changing the task state if and only if any tasks are woken up.
  88 */
  89void __wake_up(wait_queue_head_t *q, unsigned int mode,
  90                        int nr_exclusive, void *key)
  91{
  92        unsigned long flags;
  93
  94        spin_lock_irqsave(&q->lock, flags);
  95        __wake_up_common(q, mode, nr_exclusive, 0, key);
  96        spin_unlock_irqrestore(&q->lock, flags);
  97}
  98EXPORT_SYMBOL(__wake_up);
  99
 100/*
 101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 102 */
 103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
 104{
 105        __wake_up_common(q, mode, nr, 0, NULL);
 106}
 107EXPORT_SYMBOL_GPL(__wake_up_locked);
 108
 109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 110{
 111        __wake_up_common(q, mode, 1, 0, key);
 112}
 113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 114
 115/**
 116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 117 * @q: the waitqueue
 118 * @mode: which threads
 119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 120 * @key: opaque value to be passed to wakeup targets
 121 *
 122 * The sync wakeup differs that the waker knows that it will schedule
 123 * away soon, so while the target thread will be woken up, it will not
 124 * be migrated to another CPU - ie. the two threads are 'synchronized'
 125 * with each other. This can prevent needless bouncing between CPUs.
 126 *
 127 * On UP it can prevent extra preemption.
 128 *
 129 * It may be assumed that this function implies a write memory barrier before
 130 * changing the task state if and only if any tasks are woken up.
 131 */
 132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 133                        int nr_exclusive, void *key)
 134{
 135        unsigned long flags;
 136        int wake_flags = 1; /* XXX WF_SYNC */
 137
 138        if (unlikely(!q))
 139                return;
 140
 141        if (unlikely(nr_exclusive != 1))
 142                wake_flags = 0;
 143
 144        spin_lock_irqsave(&q->lock, flags);
 145        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 146        spin_unlock_irqrestore(&q->lock, flags);
 147}
 148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 149
 150/*
 151 * __wake_up_sync - see __wake_up_sync_key()
 152 */
 153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 154{
 155        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
 156}
 157EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
 158
 159/*
 160 * Note: we use "set_current_state()" _after_ the wait-queue add,
 161 * because we need a memory barrier there on SMP, so that any
 162 * wake-function that tests for the wait-queue being active
 163 * will be guaranteed to see waitqueue addition _or_ subsequent
 164 * tests in this thread will see the wakeup having taken place.
 165 *
 166 * The spin_unlock() itself is semi-permeable and only protects
 167 * one way (it only protects stuff inside the critical region and
 168 * stops them from bleeding out - it would still allow subsequent
 169 * loads to move into the critical region).
 170 */
 171void
 172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
 173{
 174        unsigned long flags;
 175
 176        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 177        spin_lock_irqsave(&q->lock, flags);
 178        if (list_empty(&wait->task_list))
 179                __add_wait_queue(q, wait);
 180        set_current_state(state);
 181        spin_unlock_irqrestore(&q->lock, flags);
 182}
 183EXPORT_SYMBOL(prepare_to_wait);
 184
 185void
 186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 187{
 188        unsigned long flags;
 189
 190        wait->flags |= WQ_FLAG_EXCLUSIVE;
 191        spin_lock_irqsave(&q->lock, flags);
 192        if (list_empty(&wait->task_list))
 193                __add_wait_queue_tail(q, wait);
 194        set_current_state(state);
 195        spin_unlock_irqrestore(&q->lock, flags);
 196}
 197EXPORT_SYMBOL(prepare_to_wait_exclusive);
 198
 199long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 200{
 201        unsigned long flags;
 202
 203        if (signal_pending_state(state, current))
 204                return -ERESTARTSYS;
 205
 206        wait->private = current;
 207        wait->func = autoremove_wake_function;
 208
 209        spin_lock_irqsave(&q->lock, flags);
 210        if (list_empty(&wait->task_list)) {
 211                if (wait->flags & WQ_FLAG_EXCLUSIVE)
 212                        __add_wait_queue_tail(q, wait);
 213                else
 214                        __add_wait_queue(q, wait);
 215        }
 216        set_current_state(state);
 217        spin_unlock_irqrestore(&q->lock, flags);
 218
 219        return 0;
 220}
 221EXPORT_SYMBOL(prepare_to_wait_event);
 222
 223/**
 224 * finish_wait - clean up after waiting in a queue
 225 * @q: waitqueue waited on
 226 * @wait: wait descriptor
 227 *
 228 * Sets current thread back to running state and removes
 229 * the wait descriptor from the given waitqueue if still
 230 * queued.
 231 */
 232void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
 233{
 234        unsigned long flags;
 235
 236        __set_current_state(TASK_RUNNING);
 237        /*
 238         * We can check for list emptiness outside the lock
 239         * IFF:
 240         *  - we use the "careful" check that verifies both
 241         *    the next and prev pointers, so that there cannot
 242         *    be any half-pending updates in progress on other
 243         *    CPU's that we haven't seen yet (and that might
 244         *    still change the stack area.
 245         * and
 246         *  - all other users take the lock (ie we can only
 247         *    have _one_ other CPU that looks at or modifies
 248         *    the list).
 249         */
 250        if (!list_empty_careful(&wait->task_list)) {
 251                spin_lock_irqsave(&q->lock, flags);
 252                list_del_init(&wait->task_list);
 253                spin_unlock_irqrestore(&q->lock, flags);
 254        }
 255}
 256EXPORT_SYMBOL(finish_wait);
 257
 258/**
 259 * abort_exclusive_wait - abort exclusive waiting in a queue
 260 * @q: waitqueue waited on
 261 * @wait: wait descriptor
 262 * @mode: runstate of the waiter to be woken
 263 * @key: key to identify a wait bit queue or %NULL
 264 *
 265 * Sets current thread back to running state and removes
 266 * the wait descriptor from the given waitqueue if still
 267 * queued.
 268 *
 269 * Wakes up the next waiter if the caller is concurrently
 270 * woken up through the queue.
 271 *
 272 * This prevents waiter starvation where an exclusive waiter
 273 * aborts and is woken up concurrently and no one wakes up
 274 * the next waiter.
 275 */
 276void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
 277                        unsigned int mode, void *key)
 278{
 279        unsigned long flags;
 280
 281        __set_current_state(TASK_RUNNING);
 282        spin_lock_irqsave(&q->lock, flags);
 283        if (!list_empty(&wait->task_list))
 284                list_del_init(&wait->task_list);
 285        else if (waitqueue_active(q))
 286                __wake_up_locked_key(q, mode, key);
 287        spin_unlock_irqrestore(&q->lock, flags);
 288}
 289EXPORT_SYMBOL(abort_exclusive_wait);
 290
 291int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 292{
 293        int ret = default_wake_function(wait, mode, sync, key);
 294
 295        if (ret)
 296                list_del_init(&wait->task_list);
 297        return ret;
 298}
 299EXPORT_SYMBOL(autoremove_wake_function);
 300
 301static inline bool is_kthread_should_stop(void)
 302{
 303        return (current->flags & PF_KTHREAD) && kthread_should_stop();
 304}
 305
 306/*
 307 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
 308 *
 309 * add_wait_queue(&wq, &wait);
 310 * for (;;) {
 311 *     if (condition)
 312 *         break;
 313 *
 314 *     p->state = mode;                         condition = true;
 315 *     smp_mb(); // A                           smp_wmb(); // C
 316 *     if (!wait->flags & WQ_FLAG_WOKEN)        wait->flags |= WQ_FLAG_WOKEN;
 317 *         schedule()                           try_to_wake_up();
 318 *     p->state = TASK_RUNNING;             ~~~~~~~~~~~~~~~~~~
 319 *     wait->flags &= ~WQ_FLAG_WOKEN;           condition = true;
 320 *     smp_mb() // B                            smp_wmb(); // C
 321 *                                              wait->flags |= WQ_FLAG_WOKEN;
 322 * }
 323 * remove_wait_queue(&wq, &wait);
 324 *
 325 */
 326long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
 327{
 328        set_current_state(mode); /* A */
 329        /*
 330         * The above implies an smp_mb(), which matches with the smp_wmb() from
 331         * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
 332         * also observe all state before the wakeup.
 333         */
 334        if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
 335                timeout = schedule_timeout(timeout);
 336        __set_current_state(TASK_RUNNING);
 337
 338        /*
 339         * The below implies an smp_mb(), it too pairs with the smp_wmb() from
 340         * woken_wake_function() such that we must either observe the wait
 341         * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
 342         * an event.
 343         */
 344        smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
 345
 346        return timeout;
 347}
 348EXPORT_SYMBOL(wait_woken);
 349
 350int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 351{
 352        /*
 353         * Although this function is called under waitqueue lock, LOCK
 354         * doesn't imply write barrier and the users expects write
 355         * barrier semantics on wakeup functions.  The following
 356         * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
 357         * and is paired with smp_store_mb() in wait_woken().
 358         */
 359        smp_wmb(); /* C */
 360        wait->flags |= WQ_FLAG_WOKEN;
 361
 362        return default_wake_function(wait, mode, sync, key);
 363}
 364EXPORT_SYMBOL(woken_wake_function);
 365
 366int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 367{
 368        struct wait_bit_key *key = arg;
 369        struct wait_bit_queue *wait_bit
 370                = container_of(wait, struct wait_bit_queue, wait);
 371
 372        if (wait_bit->key.flags != key->flags ||
 373                        wait_bit->key.bit_nr != key->bit_nr ||
 374                        test_bit(key->bit_nr, key->flags))
 375                return 0;
 376        else
 377                return autoremove_wake_function(wait, mode, sync, key);
 378}
 379EXPORT_SYMBOL(wake_bit_function);
 380
 381/*
 382 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
 383 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
 384 * permitted return codes. Nonzero return codes halt waiting and return.
 385 */
 386int __sched
 387__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
 388              wait_bit_action_f *action, unsigned mode)
 389{
 390        int ret = 0;
 391
 392        do {
 393                prepare_to_wait(wq, &q->wait, mode);
 394                if (test_bit(q->key.bit_nr, q->key.flags))
 395                        ret = (*action)(&q->key, mode);
 396        } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
 397        finish_wait(wq, &q->wait);
 398        return ret;
 399}
 400EXPORT_SYMBOL(__wait_on_bit);
 401
 402int __sched out_of_line_wait_on_bit(void *word, int bit,
 403                                    wait_bit_action_f *action, unsigned mode)
 404{
 405        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 406        DEFINE_WAIT_BIT(wait, word, bit);
 407
 408        return __wait_on_bit(wq, &wait, action, mode);
 409}
 410EXPORT_SYMBOL(out_of_line_wait_on_bit);
 411
 412int __sched out_of_line_wait_on_bit_timeout(
 413        void *word, int bit, wait_bit_action_f *action,
 414        unsigned mode, unsigned long timeout)
 415{
 416        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 417        DEFINE_WAIT_BIT(wait, word, bit);
 418
 419        wait.key.timeout = jiffies + timeout;
 420        return __wait_on_bit(wq, &wait, action, mode);
 421}
 422EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
 423
 424int __sched
 425__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
 426                        wait_bit_action_f *action, unsigned mode)
 427{
 428        do {
 429                int ret;
 430
 431                prepare_to_wait_exclusive(wq, &q->wait, mode);
 432                if (!test_bit(q->key.bit_nr, q->key.flags))
 433                        continue;
 434                ret = action(&q->key, mode);
 435                if (!ret)
 436                        continue;
 437                abort_exclusive_wait(wq, &q->wait, mode, &q->key);
 438                return ret;
 439        } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
 440        finish_wait(wq, &q->wait);
 441        return 0;
 442}
 443EXPORT_SYMBOL(__wait_on_bit_lock);
 444
 445int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
 446                                         wait_bit_action_f *action, unsigned mode)
 447{
 448        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 449        DEFINE_WAIT_BIT(wait, word, bit);
 450
 451        return __wait_on_bit_lock(wq, &wait, action, mode);
 452}
 453EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
 454
 455void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
 456{
 457        struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
 458        if (waitqueue_active(wq))
 459                __wake_up(wq, TASK_NORMAL, 1, &key);
 460}
 461EXPORT_SYMBOL(__wake_up_bit);
 462
 463/**
 464 * wake_up_bit - wake up a waiter on a bit
 465 * @word: the word being waited on, a kernel virtual address
 466 * @bit: the bit of the word being waited on
 467 *
 468 * There is a standard hashed waitqueue table for generic use. This
 469 * is the part of the hashtable's accessor API that wakes up waiters
 470 * on a bit. For instance, if one were to have waiters on a bitflag,
 471 * one would call wake_up_bit() after clearing the bit.
 472 *
 473 * In order for this to function properly, as it uses waitqueue_active()
 474 * internally, some kind of memory barrier must be done prior to calling
 475 * this. Typically, this will be smp_mb__after_atomic(), but in some
 476 * cases where bitflags are manipulated non-atomically under a lock, one
 477 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
 478 * because spin_unlock() does not guarantee a memory barrier.
 479 */
 480void wake_up_bit(void *word, int bit)
 481{
 482        __wake_up_bit(bit_waitqueue(word, bit), word, bit);
 483}
 484EXPORT_SYMBOL(wake_up_bit);
 485
 486wait_queue_head_t *bit_waitqueue(void *word, int bit)
 487{
 488        const int shift = BITS_PER_LONG == 32 ? 5 : 6;
 489        const struct zone *zone = page_zone(virt_to_page(word));
 490        unsigned long val = (unsigned long)word << shift | bit;
 491
 492        return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
 493}
 494EXPORT_SYMBOL(bit_waitqueue);
 495
 496/*
 497 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
 498 * index (we're keying off bit -1, but that would produce a horrible hash
 499 * value).
 500 */
 501static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
 502{
 503        if (BITS_PER_LONG == 64) {
 504                unsigned long q = (unsigned long)p;
 505                return bit_waitqueue((void *)(q & ~1), q & 1);
 506        }
 507        return bit_waitqueue(p, 0);
 508}
 509
 510static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
 511                                  void *arg)
 512{
 513        struct wait_bit_key *key = arg;
 514        struct wait_bit_queue *wait_bit
 515                = container_of(wait, struct wait_bit_queue, wait);
 516        atomic_t *val = key->flags;
 517
 518        if (wait_bit->key.flags != key->flags ||
 519            wait_bit->key.bit_nr != key->bit_nr ||
 520            atomic_read(val) != 0)
 521                return 0;
 522        return autoremove_wake_function(wait, mode, sync, key);
 523}
 524
 525/*
 526 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
 527 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
 528 * return codes halt waiting and return.
 529 */
 530static __sched
 531int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
 532                       int (*action)(atomic_t *), unsigned mode)
 533{
 534        atomic_t *val;
 535        int ret = 0;
 536
 537        do {
 538                prepare_to_wait(wq, &q->wait, mode);
 539                val = q->key.flags;
 540                if (atomic_read(val) == 0)
 541                        break;
 542                ret = (*action)(val);
 543        } while (!ret && atomic_read(val) != 0);
 544        finish_wait(wq, &q->wait);
 545        return ret;
 546}
 547
 548#define DEFINE_WAIT_ATOMIC_T(name, p)                                   \
 549        struct wait_bit_queue name = {                                  \
 550                .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),              \
 551                .wait   = {                                             \
 552                        .private        = current,                      \
 553                        .func           = wake_atomic_t_function,       \
 554                        .task_list      =                               \
 555                                LIST_HEAD_INIT((name).wait.task_list),  \
 556                },                                                      \
 557        }
 558
 559__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
 560                                         unsigned mode)
 561{
 562        wait_queue_head_t *wq = atomic_t_waitqueue(p);
 563        DEFINE_WAIT_ATOMIC_T(wait, p);
 564
 565        return __wait_on_atomic_t(wq, &wait, action, mode);
 566}
 567EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
 568
 569/**
 570 * wake_up_atomic_t - Wake up a waiter on a atomic_t
 571 * @p: The atomic_t being waited on, a kernel virtual address
 572 *
 573 * Wake up anyone waiting for the atomic_t to go to zero.
 574 *
 575 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
 576 * check is done by the waiter's wake function, not the by the waker itself).
 577 */
 578void wake_up_atomic_t(atomic_t *p)
 579{
 580        __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
 581}
 582EXPORT_SYMBOL(wake_up_atomic_t);
 583
 584__sched int bit_wait(struct wait_bit_key *word, int mode)
 585{
 586        schedule();
 587        if (signal_pending_state(mode, current))
 588                return -EINTR;
 589        return 0;
 590}
 591EXPORT_SYMBOL(bit_wait);
 592
 593__sched int bit_wait_io(struct wait_bit_key *word, int mode)
 594{
 595        io_schedule();
 596        if (signal_pending_state(mode, current))
 597                return -EINTR;
 598        return 0;
 599}
 600EXPORT_SYMBOL(bit_wait_io);
 601
 602__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
 603{
 604        unsigned long now = READ_ONCE(jiffies);
 605        if (time_after_eq(now, word->timeout))
 606                return -EAGAIN;
 607        schedule_timeout(word->timeout - now);
 608        if (signal_pending_state(mode, current))
 609                return -EINTR;
 610        return 0;
 611}
 612EXPORT_SYMBOL_GPL(bit_wait_timeout);
 613
 614__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
 615{
 616        unsigned long now = READ_ONCE(jiffies);
 617        if (time_after_eq(now, word->timeout))
 618                return -EAGAIN;
 619        io_schedule_timeout(word->timeout - now);
 620        if (signal_pending_state(mode, current))
 621                return -EINTR;
 622        return 0;
 623}
 624EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
 625