linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"      /* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58        return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63        /* Is it explicitly or implicitly ignored? */
  64        return handler == SIG_IGN ||
  65                (handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70        void __user *handler;
  71
  72        handler = sig_handler(t, sig);
  73
  74        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75                        handler == SIG_DFL && !force)
  76                return 1;
  77
  78        return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83        /*
  84         * Blocked signals are never ignored, since the
  85         * signal handler may change by the time it is
  86         * unblocked.
  87         */
  88        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89                return 0;
  90
  91        if (!sig_task_ignored(t, sig, force))
  92                return 0;
  93
  94        /*
  95         * Tracers may want to know about even ignored signals.
  96         */
  97        return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106        unsigned long ready;
 107        long i;
 108
 109        switch (_NSIG_WORDS) {
 110        default:
 111                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112                        ready |= signal->sig[i] &~ blocked->sig[i];
 113                break;
 114
 115        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116                ready |= signal->sig[2] &~ blocked->sig[2];
 117                ready |= signal->sig[1] &~ blocked->sig[1];
 118                ready |= signal->sig[0] &~ blocked->sig[0];
 119                break;
 120
 121        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122                ready |= signal->sig[0] &~ blocked->sig[0];
 123                break;
 124
 125        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126        }
 127        return ready != 0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135            PENDING(&t->pending, &t->blocked) ||
 136            PENDING(&t->signal->shared_pending, &t->blocked)) {
 137                set_tsk_thread_flag(t, TIF_SIGPENDING);
 138                return 1;
 139        }
 140        /*
 141         * We must never clear the flag in another thread, or in current
 142         * when it's possible the current syscall is returning -ERESTART*.
 143         * So we don't clear it here, and only callers who know they should do.
 144         */
 145        return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154        if (recalc_sigpending_tsk(t))
 155                signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160        if (!recalc_sigpending_tsk(current) && !freezing(current))
 161                clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173        unsigned long i, *s, *m, x;
 174        int sig = 0;
 175
 176        s = pending->signal.sig;
 177        m = mask->sig;
 178
 179        /*
 180         * Handle the first word specially: it contains the
 181         * synchronous signals that need to be dequeued first.
 182         */
 183        x = *s &~ *m;
 184        if (x) {
 185                if (x & SYNCHRONOUS_MASK)
 186                        x &= SYNCHRONOUS_MASK;
 187                sig = ffz(~x) + 1;
 188                return sig;
 189        }
 190
 191        switch (_NSIG_WORDS) {
 192        default:
 193                for (i = 1; i < _NSIG_WORDS; ++i) {
 194                        x = *++s &~ *++m;
 195                        if (!x)
 196                                continue;
 197                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 198                        break;
 199                }
 200                break;
 201
 202        case 2:
 203                x = s[1] &~ m[1];
 204                if (!x)
 205                        break;
 206                sig = ffz(~x) + _NSIG_BPW + 1;
 207                break;
 208
 209        case 1:
 210                /* Nothing to do */
 211                break;
 212        }
 213
 214        return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221        if (!print_fatal_signals)
 222                return;
 223
 224        if (!__ratelimit(&ratelimit_state))
 225                return;
 226
 227        printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228                                current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255                return false;
 256
 257        if (mask & JOBCTL_STOP_SIGMASK)
 258                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260        task->jobctl |= mask;
 261        return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279                task->jobctl &= ~JOBCTL_TRAPPING;
 280                smp_mb();       /* advised by wake_up_bit() */
 281                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282        }
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304        if (mask & JOBCTL_STOP_PENDING)
 305                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307        task->jobctl &= ~mask;
 308
 309        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310                task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331        struct signal_struct *sig = task->signal;
 332        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338        if (!consume)
 339                return false;
 340
 341        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342                sig->group_stop_count--;
 343
 344        /*
 345         * Tell the caller to notify completion iff we are entering into a
 346         * fresh group stop.  Read comment in do_signal_stop() for details.
 347         */
 348        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349                sig->flags = SIGNAL_STOP_STOPPED;
 350                return true;
 351        }
 352        return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363        struct sigqueue *q = NULL;
 364        struct user_struct *user;
 365
 366        /*
 367         * Protect access to @t credentials. This can go away when all
 368         * callers hold rcu read lock.
 369         */
 370        rcu_read_lock();
 371        user = get_uid(__task_cred(t)->user);
 372        atomic_inc(&user->sigpending);
 373        rcu_read_unlock();
 374
 375        if (override_rlimit ||
 376            atomic_read(&user->sigpending) <=
 377                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 378                q = kmem_cache_alloc(sigqueue_cachep, flags);
 379        } else {
 380                print_dropped_signal(sig);
 381        }
 382
 383        if (unlikely(q == NULL)) {
 384                atomic_dec(&user->sigpending);
 385                free_uid(user);
 386        } else {
 387                INIT_LIST_HEAD(&q->list);
 388                q->flags = 0;
 389                q->user = user;
 390        }
 391
 392        return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397        if (q->flags & SIGQUEUE_PREALLOC)
 398                return;
 399        atomic_dec(&q->user->sigpending);
 400        free_uid(q->user);
 401        kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406        struct sigqueue *q;
 407
 408        sigemptyset(&queue->signal);
 409        while (!list_empty(&queue->list)) {
 410                q = list_entry(queue->list.next, struct sigqueue , list);
 411                list_del_init(&q->list);
 412                __sigqueue_free(q);
 413        }
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421        unsigned long flags;
 422
 423        spin_lock_irqsave(&t->sighand->siglock, flags);
 424        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425        flush_sigqueue(&t->pending);
 426        flush_sigqueue(&t->signal->shared_pending);
 427        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432        sigset_t signal, retain;
 433        struct sigqueue *q, *n;
 434
 435        signal = pending->signal;
 436        sigemptyset(&retain);
 437
 438        list_for_each_entry_safe(q, n, &pending->list, list) {
 439                int sig = q->info.si_signo;
 440
 441                if (likely(q->info.si_code != SI_TIMER)) {
 442                        sigaddset(&retain, sig);
 443                } else {
 444                        sigdelset(&signal, sig);
 445                        list_del_init(&q->list);
 446                        __sigqueue_free(q);
 447                }
 448        }
 449
 450        sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455        struct task_struct *tsk = current;
 456        unsigned long flags;
 457
 458        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459        __flush_itimer_signals(&tsk->pending);
 460        __flush_itimer_signals(&tsk->signal->shared_pending);
 461        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466        int i;
 467
 468        for (i = 0; i < _NSIG; ++i)
 469                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471        flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481        int i;
 482        struct k_sigaction *ka = &t->sighand->action[0];
 483        for (i = _NSIG ; i != 0 ; i--) {
 484                if (force_default || ka->sa.sa_handler != SIG_IGN)
 485                        ka->sa.sa_handler = SIG_DFL;
 486                ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488                ka->sa.sa_restorer = NULL;
 489#endif
 490                sigemptyset(&ka->sa.sa_mask);
 491                ka++;
 492        }
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498        if (is_global_init(tsk))
 499                return 1;
 500        if (handler != SIG_IGN && handler != SIG_DFL)
 501                return 0;
 502        /* if ptraced, let the tracer determine */
 503        return !tsk->ptrace;
 504}
 505
 506static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 507{
 508        struct sigqueue *q, *first = NULL;
 509
 510        /*
 511         * Collect the siginfo appropriate to this signal.  Check if
 512         * there is another siginfo for the same signal.
 513        */
 514        list_for_each_entry(q, &list->list, list) {
 515                if (q->info.si_signo == sig) {
 516                        if (first)
 517                                goto still_pending;
 518                        first = q;
 519                }
 520        }
 521
 522        sigdelset(&list->signal, sig);
 523
 524        if (first) {
 525still_pending:
 526                list_del_init(&first->list);
 527                copy_siginfo(info, &first->info);
 528                __sigqueue_free(first);
 529        } else {
 530                /*
 531                 * Ok, it wasn't in the queue.  This must be
 532                 * a fast-pathed signal or we must have been
 533                 * out of queue space.  So zero out the info.
 534                 */
 535                info->si_signo = sig;
 536                info->si_errno = 0;
 537                info->si_code = SI_USER;
 538                info->si_pid = 0;
 539                info->si_uid = 0;
 540        }
 541}
 542
 543static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 544                        siginfo_t *info)
 545{
 546        int sig = next_signal(pending, mask);
 547
 548        if (sig)
 549                collect_signal(sig, pending, info);
 550        return sig;
 551}
 552
 553/*
 554 * Dequeue a signal and return the element to the caller, which is
 555 * expected to free it.
 556 *
 557 * All callers have to hold the siglock.
 558 */
 559int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 560{
 561        int signr;
 562
 563        /* We only dequeue private signals from ourselves, we don't let
 564         * signalfd steal them
 565         */
 566        signr = __dequeue_signal(&tsk->pending, mask, info);
 567        if (!signr) {
 568                signr = __dequeue_signal(&tsk->signal->shared_pending,
 569                                         mask, info);
 570                /*
 571                 * itimer signal ?
 572                 *
 573                 * itimers are process shared and we restart periodic
 574                 * itimers in the signal delivery path to prevent DoS
 575                 * attacks in the high resolution timer case. This is
 576                 * compliant with the old way of self-restarting
 577                 * itimers, as the SIGALRM is a legacy signal and only
 578                 * queued once. Changing the restart behaviour to
 579                 * restart the timer in the signal dequeue path is
 580                 * reducing the timer noise on heavy loaded !highres
 581                 * systems too.
 582                 */
 583                if (unlikely(signr == SIGALRM)) {
 584                        struct hrtimer *tmr = &tsk->signal->real_timer;
 585
 586                        if (!hrtimer_is_queued(tmr) &&
 587                            tsk->signal->it_real_incr.tv64 != 0) {
 588                                hrtimer_forward(tmr, tmr->base->get_time(),
 589                                                tsk->signal->it_real_incr);
 590                                hrtimer_restart(tmr);
 591                        }
 592                }
 593        }
 594
 595        recalc_sigpending();
 596        if (!signr)
 597                return 0;
 598
 599        if (unlikely(sig_kernel_stop(signr))) {
 600                /*
 601                 * Set a marker that we have dequeued a stop signal.  Our
 602                 * caller might release the siglock and then the pending
 603                 * stop signal it is about to process is no longer in the
 604                 * pending bitmasks, but must still be cleared by a SIGCONT
 605                 * (and overruled by a SIGKILL).  So those cases clear this
 606                 * shared flag after we've set it.  Note that this flag may
 607                 * remain set after the signal we return is ignored or
 608                 * handled.  That doesn't matter because its only purpose
 609                 * is to alert stop-signal processing code when another
 610                 * processor has come along and cleared the flag.
 611                 */
 612                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 613        }
 614        if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 615                /*
 616                 * Release the siglock to ensure proper locking order
 617                 * of timer locks outside of siglocks.  Note, we leave
 618                 * irqs disabled here, since the posix-timers code is
 619                 * about to disable them again anyway.
 620                 */
 621                spin_unlock(&tsk->sighand->siglock);
 622                do_schedule_next_timer(info);
 623                spin_lock(&tsk->sighand->siglock);
 624        }
 625        return signr;
 626}
 627
 628/*
 629 * Tell a process that it has a new active signal..
 630 *
 631 * NOTE! we rely on the previous spin_lock to
 632 * lock interrupts for us! We can only be called with
 633 * "siglock" held, and the local interrupt must
 634 * have been disabled when that got acquired!
 635 *
 636 * No need to set need_resched since signal event passing
 637 * goes through ->blocked
 638 */
 639void signal_wake_up_state(struct task_struct *t, unsigned int state)
 640{
 641        set_tsk_thread_flag(t, TIF_SIGPENDING);
 642        /*
 643         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 644         * case. We don't check t->state here because there is a race with it
 645         * executing another processor and just now entering stopped state.
 646         * By using wake_up_state, we ensure the process will wake up and
 647         * handle its death signal.
 648         */
 649        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 650                kick_process(t);
 651}
 652
 653/*
 654 * Remove signals in mask from the pending set and queue.
 655 * Returns 1 if any signals were found.
 656 *
 657 * All callers must be holding the siglock.
 658 */
 659static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 660{
 661        struct sigqueue *q, *n;
 662        sigset_t m;
 663
 664        sigandsets(&m, mask, &s->signal);
 665        if (sigisemptyset(&m))
 666                return 0;
 667
 668        sigandnsets(&s->signal, &s->signal, mask);
 669        list_for_each_entry_safe(q, n, &s->list, list) {
 670                if (sigismember(mask, q->info.si_signo)) {
 671                        list_del_init(&q->list);
 672                        __sigqueue_free(q);
 673                }
 674        }
 675        return 1;
 676}
 677
 678static inline int is_si_special(const struct siginfo *info)
 679{
 680        return info <= SEND_SIG_FORCED;
 681}
 682
 683static inline bool si_fromuser(const struct siginfo *info)
 684{
 685        return info == SEND_SIG_NOINFO ||
 686                (!is_si_special(info) && SI_FROMUSER(info));
 687}
 688
 689/*
 690 * called with RCU read lock from check_kill_permission()
 691 */
 692static int kill_ok_by_cred(struct task_struct *t)
 693{
 694        const struct cred *cred = current_cred();
 695        const struct cred *tcred = __task_cred(t);
 696
 697        if (uid_eq(cred->euid, tcred->suid) ||
 698            uid_eq(cred->euid, tcred->uid)  ||
 699            uid_eq(cred->uid,  tcred->suid) ||
 700            uid_eq(cred->uid,  tcred->uid))
 701                return 1;
 702
 703        if (ns_capable(tcred->user_ns, CAP_KILL))
 704                return 1;
 705
 706        return 0;
 707}
 708
 709/*
 710 * Bad permissions for sending the signal
 711 * - the caller must hold the RCU read lock
 712 */
 713static int check_kill_permission(int sig, struct siginfo *info,
 714                                 struct task_struct *t)
 715{
 716        struct pid *sid;
 717        int error;
 718
 719        if (!valid_signal(sig))
 720                return -EINVAL;
 721
 722        if (!si_fromuser(info))
 723                return 0;
 724
 725        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 726        if (error)
 727                return error;
 728
 729        if (!same_thread_group(current, t) &&
 730            !kill_ok_by_cred(t)) {
 731                switch (sig) {
 732                case SIGCONT:
 733                        sid = task_session(t);
 734                        /*
 735                         * We don't return the error if sid == NULL. The
 736                         * task was unhashed, the caller must notice this.
 737                         */
 738                        if (!sid || sid == task_session(current))
 739                                break;
 740                default:
 741                        return -EPERM;
 742                }
 743        }
 744
 745        return security_task_kill(t, info, sig, 0);
 746}
 747
 748/**
 749 * ptrace_trap_notify - schedule trap to notify ptracer
 750 * @t: tracee wanting to notify tracer
 751 *
 752 * This function schedules sticky ptrace trap which is cleared on the next
 753 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 754 * ptracer.
 755 *
 756 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 757 * ptracer is listening for events, tracee is woken up so that it can
 758 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 759 * eventually taken without returning to userland after the existing traps
 760 * are finished by PTRACE_CONT.
 761 *
 762 * CONTEXT:
 763 * Must be called with @task->sighand->siglock held.
 764 */
 765static void ptrace_trap_notify(struct task_struct *t)
 766{
 767        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 768        assert_spin_locked(&t->sighand->siglock);
 769
 770        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 771        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 772}
 773
 774/*
 775 * Handle magic process-wide effects of stop/continue signals. Unlike
 776 * the signal actions, these happen immediately at signal-generation
 777 * time regardless of blocking, ignoring, or handling.  This does the
 778 * actual continuing for SIGCONT, but not the actual stopping for stop
 779 * signals. The process stop is done as a signal action for SIG_DFL.
 780 *
 781 * Returns true if the signal should be actually delivered, otherwise
 782 * it should be dropped.
 783 */
 784static bool prepare_signal(int sig, struct task_struct *p, bool force)
 785{
 786        struct signal_struct *signal = p->signal;
 787        struct task_struct *t;
 788        sigset_t flush;
 789
 790        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 791                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 792                        return sig == SIGKILL;
 793                /*
 794                 * The process is in the middle of dying, nothing to do.
 795                 */
 796        } else if (sig_kernel_stop(sig)) {
 797                /*
 798                 * This is a stop signal.  Remove SIGCONT from all queues.
 799                 */
 800                siginitset(&flush, sigmask(SIGCONT));
 801                flush_sigqueue_mask(&flush, &signal->shared_pending);
 802                for_each_thread(p, t)
 803                        flush_sigqueue_mask(&flush, &t->pending);
 804        } else if (sig == SIGCONT) {
 805                unsigned int why;
 806                /*
 807                 * Remove all stop signals from all queues, wake all threads.
 808                 */
 809                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 810                flush_sigqueue_mask(&flush, &signal->shared_pending);
 811                for_each_thread(p, t) {
 812                        flush_sigqueue_mask(&flush, &t->pending);
 813                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 814                        if (likely(!(t->ptrace & PT_SEIZED)))
 815                                wake_up_state(t, __TASK_STOPPED);
 816                        else
 817                                ptrace_trap_notify(t);
 818                }
 819
 820                /*
 821                 * Notify the parent with CLD_CONTINUED if we were stopped.
 822                 *
 823                 * If we were in the middle of a group stop, we pretend it
 824                 * was already finished, and then continued. Since SIGCHLD
 825                 * doesn't queue we report only CLD_STOPPED, as if the next
 826                 * CLD_CONTINUED was dropped.
 827                 */
 828                why = 0;
 829                if (signal->flags & SIGNAL_STOP_STOPPED)
 830                        why |= SIGNAL_CLD_CONTINUED;
 831                else if (signal->group_stop_count)
 832                        why |= SIGNAL_CLD_STOPPED;
 833
 834                if (why) {
 835                        /*
 836                         * The first thread which returns from do_signal_stop()
 837                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 838                         * notify its parent. See get_signal_to_deliver().
 839                         */
 840                        signal->flags = why | SIGNAL_STOP_CONTINUED;
 841                        signal->group_stop_count = 0;
 842                        signal->group_exit_code = 0;
 843                }
 844        }
 845
 846        return !sig_ignored(p, sig, force);
 847}
 848
 849/*
 850 * Test if P wants to take SIG.  After we've checked all threads with this,
 851 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 852 * blocking SIG were ruled out because they are not running and already
 853 * have pending signals.  Such threads will dequeue from the shared queue
 854 * as soon as they're available, so putting the signal on the shared queue
 855 * will be equivalent to sending it to one such thread.
 856 */
 857static inline int wants_signal(int sig, struct task_struct *p)
 858{
 859        if (sigismember(&p->blocked, sig))
 860                return 0;
 861        if (p->flags & PF_EXITING)
 862                return 0;
 863        if (sig == SIGKILL)
 864                return 1;
 865        if (task_is_stopped_or_traced(p))
 866                return 0;
 867        return task_curr(p) || !signal_pending(p);
 868}
 869
 870static void complete_signal(int sig, struct task_struct *p, int group)
 871{
 872        struct signal_struct *signal = p->signal;
 873        struct task_struct *t;
 874
 875        /*
 876         * Now find a thread we can wake up to take the signal off the queue.
 877         *
 878         * If the main thread wants the signal, it gets first crack.
 879         * Probably the least surprising to the average bear.
 880         */
 881        if (wants_signal(sig, p))
 882                t = p;
 883        else if (!group || thread_group_empty(p))
 884                /*
 885                 * There is just one thread and it does not need to be woken.
 886                 * It will dequeue unblocked signals before it runs again.
 887                 */
 888                return;
 889        else {
 890                /*
 891                 * Otherwise try to find a suitable thread.
 892                 */
 893                t = signal->curr_target;
 894                while (!wants_signal(sig, t)) {
 895                        t = next_thread(t);
 896                        if (t == signal->curr_target)
 897                                /*
 898                                 * No thread needs to be woken.
 899                                 * Any eligible threads will see
 900                                 * the signal in the queue soon.
 901                                 */
 902                                return;
 903                }
 904                signal->curr_target = t;
 905        }
 906
 907        /*
 908         * Found a killable thread.  If the signal will be fatal,
 909         * then start taking the whole group down immediately.
 910         */
 911        if (sig_fatal(p, sig) &&
 912            !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 913            !sigismember(&t->real_blocked, sig) &&
 914            (sig == SIGKILL || !t->ptrace)) {
 915                /*
 916                 * This signal will be fatal to the whole group.
 917                 */
 918                if (!sig_kernel_coredump(sig)) {
 919                        /*
 920                         * Start a group exit and wake everybody up.
 921                         * This way we don't have other threads
 922                         * running and doing things after a slower
 923                         * thread has the fatal signal pending.
 924                         */
 925                        signal->flags = SIGNAL_GROUP_EXIT;
 926                        signal->group_exit_code = sig;
 927                        signal->group_stop_count = 0;
 928                        t = p;
 929                        do {
 930                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 931                                sigaddset(&t->pending.signal, SIGKILL);
 932                                signal_wake_up(t, 1);
 933                        } while_each_thread(p, t);
 934                        return;
 935                }
 936        }
 937
 938        /*
 939         * The signal is already in the shared-pending queue.
 940         * Tell the chosen thread to wake up and dequeue it.
 941         */
 942        signal_wake_up(t, sig == SIGKILL);
 943        return;
 944}
 945
 946static inline int legacy_queue(struct sigpending *signals, int sig)
 947{
 948        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 949}
 950
 951#ifdef CONFIG_USER_NS
 952static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 953{
 954        if (current_user_ns() == task_cred_xxx(t, user_ns))
 955                return;
 956
 957        if (SI_FROMKERNEL(info))
 958                return;
 959
 960        rcu_read_lock();
 961        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 962                                        make_kuid(current_user_ns(), info->si_uid));
 963        rcu_read_unlock();
 964}
 965#else
 966static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 967{
 968        return;
 969}
 970#endif
 971
 972static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 973                        int group, int from_ancestor_ns)
 974{
 975        struct sigpending *pending;
 976        struct sigqueue *q;
 977        int override_rlimit;
 978        int ret = 0, result;
 979
 980        assert_spin_locked(&t->sighand->siglock);
 981
 982        result = TRACE_SIGNAL_IGNORED;
 983        if (!prepare_signal(sig, t,
 984                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
 985                goto ret;
 986
 987        pending = group ? &t->signal->shared_pending : &t->pending;
 988        /*
 989         * Short-circuit ignored signals and support queuing
 990         * exactly one non-rt signal, so that we can get more
 991         * detailed information about the cause of the signal.
 992         */
 993        result = TRACE_SIGNAL_ALREADY_PENDING;
 994        if (legacy_queue(pending, sig))
 995                goto ret;
 996
 997        result = TRACE_SIGNAL_DELIVERED;
 998        /*
 999         * fast-pathed signals for kernel-internal things like SIGSTOP
1000         * or SIGKILL.
1001         */
1002        if (info == SEND_SIG_FORCED)
1003                goto out_set;
1004
1005        /*
1006         * Real-time signals must be queued if sent by sigqueue, or
1007         * some other real-time mechanism.  It is implementation
1008         * defined whether kill() does so.  We attempt to do so, on
1009         * the principle of least surprise, but since kill is not
1010         * allowed to fail with EAGAIN when low on memory we just
1011         * make sure at least one signal gets delivered and don't
1012         * pass on the info struct.
1013         */
1014        if (sig < SIGRTMIN)
1015                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016        else
1017                override_rlimit = 0;
1018
1019        q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020                override_rlimit);
1021        if (q) {
1022                list_add_tail(&q->list, &pending->list);
1023                switch ((unsigned long) info) {
1024                case (unsigned long) SEND_SIG_NOINFO:
1025                        q->info.si_signo = sig;
1026                        q->info.si_errno = 0;
1027                        q->info.si_code = SI_USER;
1028                        q->info.si_pid = task_tgid_nr_ns(current,
1029                                                        task_active_pid_ns(t));
1030                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1031                        break;
1032                case (unsigned long) SEND_SIG_PRIV:
1033                        q->info.si_signo = sig;
1034                        q->info.si_errno = 0;
1035                        q->info.si_code = SI_KERNEL;
1036                        q->info.si_pid = 0;
1037                        q->info.si_uid = 0;
1038                        break;
1039                default:
1040                        copy_siginfo(&q->info, info);
1041                        if (from_ancestor_ns)
1042                                q->info.si_pid = 0;
1043                        break;
1044                }
1045
1046                userns_fixup_signal_uid(&q->info, t);
1047
1048        } else if (!is_si_special(info)) {
1049                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050                        /*
1051                         * Queue overflow, abort.  We may abort if the
1052                         * signal was rt and sent by user using something
1053                         * other than kill().
1054                         */
1055                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056                        ret = -EAGAIN;
1057                        goto ret;
1058                } else {
1059                        /*
1060                         * This is a silent loss of information.  We still
1061                         * send the signal, but the *info bits are lost.
1062                         */
1063                        result = TRACE_SIGNAL_LOSE_INFO;
1064                }
1065        }
1066
1067out_set:
1068        signalfd_notify(t, sig);
1069        sigaddset(&pending->signal, sig);
1070        complete_signal(sig, t, group);
1071ret:
1072        trace_signal_generate(sig, info, t, group, result);
1073        return ret;
1074}
1075
1076static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077                        int group)
1078{
1079        int from_ancestor_ns = 0;
1080
1081#ifdef CONFIG_PID_NS
1082        from_ancestor_ns = si_fromuser(info) &&
1083                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1084#endif
1085
1086        return __send_signal(sig, info, t, group, from_ancestor_ns);
1087}
1088
1089static void print_fatal_signal(int signr)
1090{
1091        struct pt_regs *regs = signal_pt_regs();
1092        printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1093
1094#if defined(__i386__) && !defined(__arch_um__)
1095        printk(KERN_INFO "code at %08lx: ", regs->ip);
1096        {
1097                int i;
1098                for (i = 0; i < 16; i++) {
1099                        unsigned char insn;
1100
1101                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102                                break;
1103                        printk(KERN_CONT "%02x ", insn);
1104                }
1105        }
1106        printk(KERN_CONT "\n");
1107#endif
1108        preempt_disable();
1109        show_regs(regs);
1110        preempt_enable();
1111}
1112
1113static int __init setup_print_fatal_signals(char *str)
1114{
1115        get_option (&str, &print_fatal_signals);
1116
1117        return 1;
1118}
1119
1120__setup("print-fatal-signals=", setup_print_fatal_signals);
1121
1122int
1123__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125        return send_signal(sig, info, p, 1);
1126}
1127
1128static int
1129specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130{
1131        return send_signal(sig, info, t, 0);
1132}
1133
1134int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135                        bool group)
1136{
1137        unsigned long flags;
1138        int ret = -ESRCH;
1139
1140        if (lock_task_sighand(p, &flags)) {
1141                ret = send_signal(sig, info, p, group);
1142                unlock_task_sighand(p, &flags);
1143        }
1144
1145        return ret;
1146}
1147
1148/*
1149 * Force a signal that the process can't ignore: if necessary
1150 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151 *
1152 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153 * since we do not want to have a signal handler that was blocked
1154 * be invoked when user space had explicitly blocked it.
1155 *
1156 * We don't want to have recursive SIGSEGV's etc, for example,
1157 * that is why we also clear SIGNAL_UNKILLABLE.
1158 */
1159int
1160force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161{
1162        unsigned long int flags;
1163        int ret, blocked, ignored;
1164        struct k_sigaction *action;
1165
1166        spin_lock_irqsave(&t->sighand->siglock, flags);
1167        action = &t->sighand->action[sig-1];
1168        ignored = action->sa.sa_handler == SIG_IGN;
1169        blocked = sigismember(&t->blocked, sig);
1170        if (blocked || ignored) {
1171                action->sa.sa_handler = SIG_DFL;
1172                if (blocked) {
1173                        sigdelset(&t->blocked, sig);
1174                        recalc_sigpending_and_wake(t);
1175                }
1176        }
1177        if (action->sa.sa_handler == SIG_DFL)
1178                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179        ret = specific_send_sig_info(sig, info, t);
1180        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181
1182        return ret;
1183}
1184
1185/*
1186 * Nuke all other threads in the group.
1187 */
1188int zap_other_threads(struct task_struct *p)
1189{
1190        struct task_struct *t = p;
1191        int count = 0;
1192
1193        p->signal->group_stop_count = 0;
1194
1195        while_each_thread(p, t) {
1196                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197                count++;
1198
1199                /* Don't bother with already dead threads */
1200                if (t->exit_state)
1201                        continue;
1202                sigaddset(&t->pending.signal, SIGKILL);
1203                signal_wake_up(t, 1);
1204        }
1205
1206        return count;
1207}
1208
1209struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210                                           unsigned long *flags)
1211{
1212        struct sighand_struct *sighand;
1213
1214        for (;;) {
1215                /*
1216                 * Disable interrupts early to avoid deadlocks.
1217                 * See rcu_read_unlock() comment header for details.
1218                 */
1219                local_irq_save(*flags);
1220                rcu_read_lock();
1221                sighand = rcu_dereference(tsk->sighand);
1222                if (unlikely(sighand == NULL)) {
1223                        rcu_read_unlock();
1224                        local_irq_restore(*flags);
1225                        break;
1226                }
1227                /*
1228                 * This sighand can be already freed and even reused, but
1229                 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230                 * initializes ->siglock: this slab can't go away, it has
1231                 * the same object type, ->siglock can't be reinitialized.
1232                 *
1233                 * We need to ensure that tsk->sighand is still the same
1234                 * after we take the lock, we can race with de_thread() or
1235                 * __exit_signal(). In the latter case the next iteration
1236                 * must see ->sighand == NULL.
1237                 */
1238                spin_lock(&sighand->siglock);
1239                if (likely(sighand == tsk->sighand)) {
1240                        rcu_read_unlock();
1241                        break;
1242                }
1243                spin_unlock(&sighand->siglock);
1244                rcu_read_unlock();
1245                local_irq_restore(*flags);
1246        }
1247
1248        return sighand;
1249}
1250
1251/*
1252 * send signal info to all the members of a group
1253 */
1254int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255{
1256        int ret;
1257
1258        rcu_read_lock();
1259        ret = check_kill_permission(sig, info, p);
1260        rcu_read_unlock();
1261
1262        if (!ret && sig)
1263                ret = do_send_sig_info(sig, info, p, true);
1264
1265        return ret;
1266}
1267
1268/*
1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270 * control characters do (^C, ^Z etc)
1271 * - the caller must hold at least a readlock on tasklist_lock
1272 */
1273int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274{
1275        struct task_struct *p = NULL;
1276        int retval, success;
1277
1278        success = 0;
1279        retval = -ESRCH;
1280        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281                int err = group_send_sig_info(sig, info, p);
1282                success |= !err;
1283                retval = err;
1284        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285        return success ? 0 : retval;
1286}
1287
1288int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289{
1290        int error = -ESRCH;
1291        struct task_struct *p;
1292
1293        for (;;) {
1294                rcu_read_lock();
1295                p = pid_task(pid, PIDTYPE_PID);
1296                if (p)
1297                        error = group_send_sig_info(sig, info, p);
1298                rcu_read_unlock();
1299                if (likely(!p || error != -ESRCH))
1300                        return error;
1301
1302                /*
1303                 * The task was unhashed in between, try again.  If it
1304                 * is dead, pid_task() will return NULL, if we race with
1305                 * de_thread() it will find the new leader.
1306                 */
1307        }
1308}
1309
1310int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311{
1312        int error;
1313        rcu_read_lock();
1314        error = kill_pid_info(sig, info, find_vpid(pid));
1315        rcu_read_unlock();
1316        return error;
1317}
1318
1319static int kill_as_cred_perm(const struct cred *cred,
1320                             struct task_struct *target)
1321{
1322        const struct cred *pcred = __task_cred(target);
1323        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325                return 0;
1326        return 1;
1327}
1328
1329/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331                         const struct cred *cred, u32 secid)
1332{
1333        int ret = -EINVAL;
1334        struct task_struct *p;
1335        unsigned long flags;
1336
1337        if (!valid_signal(sig))
1338                return ret;
1339
1340        rcu_read_lock();
1341        p = pid_task(pid, PIDTYPE_PID);
1342        if (!p) {
1343                ret = -ESRCH;
1344                goto out_unlock;
1345        }
1346        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1347                ret = -EPERM;
1348                goto out_unlock;
1349        }
1350        ret = security_task_kill(p, info, sig, secid);
1351        if (ret)
1352                goto out_unlock;
1353
1354        if (sig) {
1355                if (lock_task_sighand(p, &flags)) {
1356                        ret = __send_signal(sig, info, p, 1, 0);
1357                        unlock_task_sighand(p, &flags);
1358                } else
1359                        ret = -ESRCH;
1360        }
1361out_unlock:
1362        rcu_read_unlock();
1363        return ret;
1364}
1365EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366
1367/*
1368 * kill_something_info() interprets pid in interesting ways just like kill(2).
1369 *
1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371 * is probably wrong.  Should make it like BSD or SYSV.
1372 */
1373
1374static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376        int ret;
1377
1378        if (pid > 0) {
1379                rcu_read_lock();
1380                ret = kill_pid_info(sig, info, find_vpid(pid));
1381                rcu_read_unlock();
1382                return ret;
1383        }
1384
1385        read_lock(&tasklist_lock);
1386        if (pid != -1) {
1387                ret = __kill_pgrp_info(sig, info,
1388                                pid ? find_vpid(-pid) : task_pgrp(current));
1389        } else {
1390                int retval = 0, count = 0;
1391                struct task_struct * p;
1392
1393                for_each_process(p) {
1394                        if (task_pid_vnr(p) > 1 &&
1395                                        !same_thread_group(p, current)) {
1396                                int err = group_send_sig_info(sig, info, p);
1397                                ++count;
1398                                if (err != -EPERM)
1399                                        retval = err;
1400                        }
1401                }
1402                ret = count ? retval : -ESRCH;
1403        }
1404        read_unlock(&tasklist_lock);
1405
1406        return ret;
1407}
1408
1409/*
1410 * These are for backward compatibility with the rest of the kernel source.
1411 */
1412
1413int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414{
1415        /*
1416         * Make sure legacy kernel users don't send in bad values
1417         * (normal paths check this in check_kill_permission).
1418         */
1419        if (!valid_signal(sig))
1420                return -EINVAL;
1421
1422        return do_send_sig_info(sig, info, p, false);
1423}
1424
1425#define __si_special(priv) \
1426        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427
1428int
1429send_sig(int sig, struct task_struct *p, int priv)
1430{
1431        return send_sig_info(sig, __si_special(priv), p);
1432}
1433
1434void
1435force_sig(int sig, struct task_struct *p)
1436{
1437        force_sig_info(sig, SEND_SIG_PRIV, p);
1438}
1439
1440/*
1441 * When things go south during signal handling, we
1442 * will force a SIGSEGV. And if the signal that caused
1443 * the problem was already a SIGSEGV, we'll want to
1444 * make sure we don't even try to deliver the signal..
1445 */
1446int
1447force_sigsegv(int sig, struct task_struct *p)
1448{
1449        if (sig == SIGSEGV) {
1450                unsigned long flags;
1451                spin_lock_irqsave(&p->sighand->siglock, flags);
1452                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454        }
1455        force_sig(SIGSEGV, p);
1456        return 0;
1457}
1458
1459int kill_pgrp(struct pid *pid, int sig, int priv)
1460{
1461        int ret;
1462
1463        read_lock(&tasklist_lock);
1464        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465        read_unlock(&tasklist_lock);
1466
1467        return ret;
1468}
1469EXPORT_SYMBOL(kill_pgrp);
1470
1471int kill_pid(struct pid *pid, int sig, int priv)
1472{
1473        return kill_pid_info(sig, __si_special(priv), pid);
1474}
1475EXPORT_SYMBOL(kill_pid);
1476
1477/*
1478 * These functions support sending signals using preallocated sigqueue
1479 * structures.  This is needed "because realtime applications cannot
1480 * afford to lose notifications of asynchronous events, like timer
1481 * expirations or I/O completions".  In the case of POSIX Timers
1482 * we allocate the sigqueue structure from the timer_create.  If this
1483 * allocation fails we are able to report the failure to the application
1484 * with an EAGAIN error.
1485 */
1486struct sigqueue *sigqueue_alloc(void)
1487{
1488        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489
1490        if (q)
1491                q->flags |= SIGQUEUE_PREALLOC;
1492
1493        return q;
1494}
1495
1496void sigqueue_free(struct sigqueue *q)
1497{
1498        unsigned long flags;
1499        spinlock_t *lock = &current->sighand->siglock;
1500
1501        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502        /*
1503         * We must hold ->siglock while testing q->list
1504         * to serialize with collect_signal() or with
1505         * __exit_signal()->flush_sigqueue().
1506         */
1507        spin_lock_irqsave(lock, flags);
1508        q->flags &= ~SIGQUEUE_PREALLOC;
1509        /*
1510         * If it is queued it will be freed when dequeued,
1511         * like the "regular" sigqueue.
1512         */
1513        if (!list_empty(&q->list))
1514                q = NULL;
1515        spin_unlock_irqrestore(lock, flags);
1516
1517        if (q)
1518                __sigqueue_free(q);
1519}
1520
1521int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522{
1523        int sig = q->info.si_signo;
1524        struct sigpending *pending;
1525        unsigned long flags;
1526        int ret, result;
1527
1528        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529
1530        ret = -1;
1531        if (!likely(lock_task_sighand(t, &flags)))
1532                goto ret;
1533
1534        ret = 1; /* the signal is ignored */
1535        result = TRACE_SIGNAL_IGNORED;
1536        if (!prepare_signal(sig, t, false))
1537                goto out;
1538
1539        ret = 0;
1540        if (unlikely(!list_empty(&q->list))) {
1541                /*
1542                 * If an SI_TIMER entry is already queue just increment
1543                 * the overrun count.
1544                 */
1545                BUG_ON(q->info.si_code != SI_TIMER);
1546                q->info.si_overrun++;
1547                result = TRACE_SIGNAL_ALREADY_PENDING;
1548                goto out;
1549        }
1550        q->info.si_overrun = 0;
1551
1552        signalfd_notify(t, sig);
1553        pending = group ? &t->signal->shared_pending : &t->pending;
1554        list_add_tail(&q->list, &pending->list);
1555        sigaddset(&pending->signal, sig);
1556        complete_signal(sig, t, group);
1557        result = TRACE_SIGNAL_DELIVERED;
1558out:
1559        trace_signal_generate(sig, &q->info, t, group, result);
1560        unlock_task_sighand(t, &flags);
1561ret:
1562        return ret;
1563}
1564
1565/*
1566 * Let a parent know about the death of a child.
1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568 *
1569 * Returns true if our parent ignored us and so we've switched to
1570 * self-reaping.
1571 */
1572bool do_notify_parent(struct task_struct *tsk, int sig)
1573{
1574        struct siginfo info;
1575        unsigned long flags;
1576        struct sighand_struct *psig;
1577        bool autoreap = false;
1578        cputime_t utime, stime;
1579
1580        BUG_ON(sig == -1);
1581
1582        /* do_notify_parent_cldstop should have been called instead.  */
1583        BUG_ON(task_is_stopped_or_traced(tsk));
1584
1585        BUG_ON(!tsk->ptrace &&
1586               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587
1588        if (sig != SIGCHLD) {
1589                /*
1590                 * This is only possible if parent == real_parent.
1591                 * Check if it has changed security domain.
1592                 */
1593                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594                        sig = SIGCHLD;
1595        }
1596
1597        info.si_signo = sig;
1598        info.si_errno = 0;
1599        /*
1600         * We are under tasklist_lock here so our parent is tied to
1601         * us and cannot change.
1602         *
1603         * task_active_pid_ns will always return the same pid namespace
1604         * until a task passes through release_task.
1605         *
1606         * write_lock() currently calls preempt_disable() which is the
1607         * same as rcu_read_lock(), but according to Oleg, this is not
1608         * correct to rely on this
1609         */
1610        rcu_read_lock();
1611        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613                                       task_uid(tsk));
1614        rcu_read_unlock();
1615
1616        task_cputime(tsk, &utime, &stime);
1617        info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618        info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1619
1620        info.si_status = tsk->exit_code & 0x7f;
1621        if (tsk->exit_code & 0x80)
1622                info.si_code = CLD_DUMPED;
1623        else if (tsk->exit_code & 0x7f)
1624                info.si_code = CLD_KILLED;
1625        else {
1626                info.si_code = CLD_EXITED;
1627                info.si_status = tsk->exit_code >> 8;
1628        }
1629
1630        psig = tsk->parent->sighand;
1631        spin_lock_irqsave(&psig->siglock, flags);
1632        if (!tsk->ptrace && sig == SIGCHLD &&
1633            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635                /*
1636                 * We are exiting and our parent doesn't care.  POSIX.1
1637                 * defines special semantics for setting SIGCHLD to SIG_IGN
1638                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639                 * automatically and not left for our parent's wait4 call.
1640                 * Rather than having the parent do it as a magic kind of
1641                 * signal handler, we just set this to tell do_exit that we
1642                 * can be cleaned up without becoming a zombie.  Note that
1643                 * we still call __wake_up_parent in this case, because a
1644                 * blocked sys_wait4 might now return -ECHILD.
1645                 *
1646                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647                 * is implementation-defined: we do (if you don't want
1648                 * it, just use SIG_IGN instead).
1649                 */
1650                autoreap = true;
1651                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652                        sig = 0;
1653        }
1654        if (valid_signal(sig) && sig)
1655                __group_send_sig_info(sig, &info, tsk->parent);
1656        __wake_up_parent(tsk, tsk->parent);
1657        spin_unlock_irqrestore(&psig->siglock, flags);
1658
1659        return autoreap;
1660}
1661
1662/**
1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664 * @tsk: task reporting the state change
1665 * @for_ptracer: the notification is for ptracer
1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667 *
1668 * Notify @tsk's parent that the stopped/continued state has changed.  If
1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671 *
1672 * CONTEXT:
1673 * Must be called with tasklist_lock at least read locked.
1674 */
1675static void do_notify_parent_cldstop(struct task_struct *tsk,
1676                                     bool for_ptracer, int why)
1677{
1678        struct siginfo info;
1679        unsigned long flags;
1680        struct task_struct *parent;
1681        struct sighand_struct *sighand;
1682        cputime_t utime, stime;
1683
1684        if (for_ptracer) {
1685                parent = tsk->parent;
1686        } else {
1687                tsk = tsk->group_leader;
1688                parent = tsk->real_parent;
1689        }
1690
1691        info.si_signo = SIGCHLD;
1692        info.si_errno = 0;
1693        /*
1694         * see comment in do_notify_parent() about the following 4 lines
1695         */
1696        rcu_read_lock();
1697        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699        rcu_read_unlock();
1700
1701        task_cputime(tsk, &utime, &stime);
1702        info.si_utime = cputime_to_clock_t(utime);
1703        info.si_stime = cputime_to_clock_t(stime);
1704
1705        info.si_code = why;
1706        switch (why) {
1707        case CLD_CONTINUED:
1708                info.si_status = SIGCONT;
1709                break;
1710        case CLD_STOPPED:
1711                info.si_status = tsk->signal->group_exit_code & 0x7f;
1712                break;
1713        case CLD_TRAPPED:
1714                info.si_status = tsk->exit_code & 0x7f;
1715                break;
1716        default:
1717                BUG();
1718        }
1719
1720        sighand = parent->sighand;
1721        spin_lock_irqsave(&sighand->siglock, flags);
1722        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724                __group_send_sig_info(SIGCHLD, &info, parent);
1725        /*
1726         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727         */
1728        __wake_up_parent(tsk, parent);
1729        spin_unlock_irqrestore(&sighand->siglock, flags);
1730}
1731
1732static inline int may_ptrace_stop(void)
1733{
1734        if (!likely(current->ptrace))
1735                return 0;
1736        /*
1737         * Are we in the middle of do_coredump?
1738         * If so and our tracer is also part of the coredump stopping
1739         * is a deadlock situation, and pointless because our tracer
1740         * is dead so don't allow us to stop.
1741         * If SIGKILL was already sent before the caller unlocked
1742         * ->siglock we must see ->core_state != NULL. Otherwise it
1743         * is safe to enter schedule().
1744         *
1745         * This is almost outdated, a task with the pending SIGKILL can't
1746         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747         * after SIGKILL was already dequeued.
1748         */
1749        if (unlikely(current->mm->core_state) &&
1750            unlikely(current->mm == current->parent->mm))
1751                return 0;
1752
1753        return 1;
1754}
1755
1756/*
1757 * Return non-zero if there is a SIGKILL that should be waking us up.
1758 * Called with the siglock held.
1759 */
1760static int sigkill_pending(struct task_struct *tsk)
1761{
1762        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1763                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764}
1765
1766/*
1767 * This must be called with current->sighand->siglock held.
1768 *
1769 * This should be the path for all ptrace stops.
1770 * We always set current->last_siginfo while stopped here.
1771 * That makes it a way to test a stopped process for
1772 * being ptrace-stopped vs being job-control-stopped.
1773 *
1774 * If we actually decide not to stop at all because the tracer
1775 * is gone, we keep current->exit_code unless clear_code.
1776 */
1777static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778        __releases(&current->sighand->siglock)
1779        __acquires(&current->sighand->siglock)
1780{
1781        bool gstop_done = false;
1782
1783        if (arch_ptrace_stop_needed(exit_code, info)) {
1784                /*
1785                 * The arch code has something special to do before a
1786                 * ptrace stop.  This is allowed to block, e.g. for faults
1787                 * on user stack pages.  We can't keep the siglock while
1788                 * calling arch_ptrace_stop, so we must release it now.
1789                 * To preserve proper semantics, we must do this before
1790                 * any signal bookkeeping like checking group_stop_count.
1791                 * Meanwhile, a SIGKILL could come in before we retake the
1792                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793                 * So after regaining the lock, we must check for SIGKILL.
1794                 */
1795                spin_unlock_irq(&current->sighand->siglock);
1796                arch_ptrace_stop(exit_code, info);
1797                spin_lock_irq(&current->sighand->siglock);
1798                if (sigkill_pending(current))
1799                        return;
1800        }
1801
1802        /*
1803         * We're committing to trapping.  TRACED should be visible before
1804         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805         * Also, transition to TRACED and updates to ->jobctl should be
1806         * atomic with respect to siglock and should be done after the arch
1807         * hook as siglock is released and regrabbed across it.
1808         */
1809        set_current_state(TASK_TRACED);
1810
1811        current->last_siginfo = info;
1812        current->exit_code = exit_code;
1813
1814        /*
1815         * If @why is CLD_STOPPED, we're trapping to participate in a group
1816         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817         * across siglock relocks since INTERRUPT was scheduled, PENDING
1818         * could be clear now.  We act as if SIGCONT is received after
1819         * TASK_TRACED is entered - ignore it.
1820         */
1821        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822                gstop_done = task_participate_group_stop(current);
1823
1824        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828
1829        /* entering a trap, clear TRAPPING */
1830        task_clear_jobctl_trapping(current);
1831
1832        spin_unlock_irq(&current->sighand->siglock);
1833        read_lock(&tasklist_lock);
1834        if (may_ptrace_stop()) {
1835                /*
1836                 * Notify parents of the stop.
1837                 *
1838                 * While ptraced, there are two parents - the ptracer and
1839                 * the real_parent of the group_leader.  The ptracer should
1840                 * know about every stop while the real parent is only
1841                 * interested in the completion of group stop.  The states
1842                 * for the two don't interact with each other.  Notify
1843                 * separately unless they're gonna be duplicates.
1844                 */
1845                do_notify_parent_cldstop(current, true, why);
1846                if (gstop_done && ptrace_reparented(current))
1847                        do_notify_parent_cldstop(current, false, why);
1848
1849                /*
1850                 * Don't want to allow preemption here, because
1851                 * sys_ptrace() needs this task to be inactive.
1852                 *
1853                 * XXX: implement read_unlock_no_resched().
1854                 */
1855                preempt_disable();
1856                read_unlock(&tasklist_lock);
1857                preempt_enable_no_resched();
1858                freezable_schedule();
1859        } else {
1860                /*
1861                 * By the time we got the lock, our tracer went away.
1862                 * Don't drop the lock yet, another tracer may come.
1863                 *
1864                 * If @gstop_done, the ptracer went away between group stop
1865                 * completion and here.  During detach, it would have set
1866                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868                 * the real parent of the group stop completion is enough.
1869                 */
1870                if (gstop_done)
1871                        do_notify_parent_cldstop(current, false, why);
1872
1873                /* tasklist protects us from ptrace_freeze_traced() */
1874                __set_current_state(TASK_RUNNING);
1875                if (clear_code)
1876                        current->exit_code = 0;
1877                read_unlock(&tasklist_lock);
1878        }
1879
1880        /*
1881         * We are back.  Now reacquire the siglock before touching
1882         * last_siginfo, so that we are sure to have synchronized with
1883         * any signal-sending on another CPU that wants to examine it.
1884         */
1885        spin_lock_irq(&current->sighand->siglock);
1886        current->last_siginfo = NULL;
1887
1888        /* LISTENING can be set only during STOP traps, clear it */
1889        current->jobctl &= ~JOBCTL_LISTENING;
1890
1891        /*
1892         * Queued signals ignored us while we were stopped for tracing.
1893         * So check for any that we should take before resuming user mode.
1894         * This sets TIF_SIGPENDING, but never clears it.
1895         */
1896        recalc_sigpending_tsk(current);
1897}
1898
1899static void ptrace_do_notify(int signr, int exit_code, int why)
1900{
1901        siginfo_t info;
1902
1903        memset(&info, 0, sizeof info);
1904        info.si_signo = signr;
1905        info.si_code = exit_code;
1906        info.si_pid = task_pid_vnr(current);
1907        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908
1909        /* Let the debugger run.  */
1910        ptrace_stop(exit_code, why, 1, &info);
1911}
1912
1913void ptrace_notify(int exit_code)
1914{
1915        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916        if (unlikely(current->task_works))
1917                task_work_run();
1918
1919        spin_lock_irq(&current->sighand->siglock);
1920        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921        spin_unlock_irq(&current->sighand->siglock);
1922}
1923
1924/**
1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926 * @signr: signr causing group stop if initiating
1927 *
1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929 * and participate in it.  If already set, participate in the existing
1930 * group stop.  If participated in a group stop (and thus slept), %true is
1931 * returned with siglock released.
1932 *
1933 * If ptraced, this function doesn't handle stop itself.  Instead,
1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936 * places afterwards.
1937 *
1938 * CONTEXT:
1939 * Must be called with @current->sighand->siglock held, which is released
1940 * on %true return.
1941 *
1942 * RETURNS:
1943 * %false if group stop is already cancelled or ptrace trap is scheduled.
1944 * %true if participated in group stop.
1945 */
1946static bool do_signal_stop(int signr)
1947        __releases(&current->sighand->siglock)
1948{
1949        struct signal_struct *sig = current->signal;
1950
1951        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953                struct task_struct *t;
1954
1955                /* signr will be recorded in task->jobctl for retries */
1956                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957
1958                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959                    unlikely(signal_group_exit(sig)))
1960                        return false;
1961                /*
1962                 * There is no group stop already in progress.  We must
1963                 * initiate one now.
1964                 *
1965                 * While ptraced, a task may be resumed while group stop is
1966                 * still in effect and then receive a stop signal and
1967                 * initiate another group stop.  This deviates from the
1968                 * usual behavior as two consecutive stop signals can't
1969                 * cause two group stops when !ptraced.  That is why we
1970                 * also check !task_is_stopped(t) below.
1971                 *
1972                 * The condition can be distinguished by testing whether
1973                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974                 * group_exit_code in such case.
1975                 *
1976                 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977                 * an intervening stop signal is required to cause two
1978                 * continued events regardless of ptrace.
1979                 */
1980                if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981                        sig->group_exit_code = signr;
1982
1983                sig->group_stop_count = 0;
1984
1985                if (task_set_jobctl_pending(current, signr | gstop))
1986                        sig->group_stop_count++;
1987
1988                t = current;
1989                while_each_thread(current, t) {
1990                        /*
1991                         * Setting state to TASK_STOPPED for a group
1992                         * stop is always done with the siglock held,
1993                         * so this check has no races.
1994                         */
1995                        if (!task_is_stopped(t) &&
1996                            task_set_jobctl_pending(t, signr | gstop)) {
1997                                sig->group_stop_count++;
1998                                if (likely(!(t->ptrace & PT_SEIZED)))
1999                                        signal_wake_up(t, 0);
2000                                else
2001                                        ptrace_trap_notify(t);
2002                        }
2003                }
2004        }
2005
2006        if (likely(!current->ptrace)) {
2007                int notify = 0;
2008
2009                /*
2010                 * If there are no other threads in the group, or if there
2011                 * is a group stop in progress and we are the last to stop,
2012                 * report to the parent.
2013                 */
2014                if (task_participate_group_stop(current))
2015                        notify = CLD_STOPPED;
2016
2017                __set_current_state(TASK_STOPPED);
2018                spin_unlock_irq(&current->sighand->siglock);
2019
2020                /*
2021                 * Notify the parent of the group stop completion.  Because
2022                 * we're not holding either the siglock or tasklist_lock
2023                 * here, ptracer may attach inbetween; however, this is for
2024                 * group stop and should always be delivered to the real
2025                 * parent of the group leader.  The new ptracer will get
2026                 * its notification when this task transitions into
2027                 * TASK_TRACED.
2028                 */
2029                if (notify) {
2030                        read_lock(&tasklist_lock);
2031                        do_notify_parent_cldstop(current, false, notify);
2032                        read_unlock(&tasklist_lock);
2033                }
2034
2035                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2036                freezable_schedule();
2037                return true;
2038        } else {
2039                /*
2040                 * While ptraced, group stop is handled by STOP trap.
2041                 * Schedule it and let the caller deal with it.
2042                 */
2043                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044                return false;
2045        }
2046}
2047
2048/**
2049 * do_jobctl_trap - take care of ptrace jobctl traps
2050 *
2051 * When PT_SEIZED, it's used for both group stop and explicit
2052 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054 * the stop signal; otherwise, %SIGTRAP.
2055 *
2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057 * number as exit_code and no siginfo.
2058 *
2059 * CONTEXT:
2060 * Must be called with @current->sighand->siglock held, which may be
2061 * released and re-acquired before returning with intervening sleep.
2062 */
2063static void do_jobctl_trap(void)
2064{
2065        struct signal_struct *signal = current->signal;
2066        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067
2068        if (current->ptrace & PT_SEIZED) {
2069                if (!signal->group_stop_count &&
2070                    !(signal->flags & SIGNAL_STOP_STOPPED))
2071                        signr = SIGTRAP;
2072                WARN_ON_ONCE(!signr);
2073                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074                                 CLD_STOPPED);
2075        } else {
2076                WARN_ON_ONCE(!signr);
2077                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078                current->exit_code = 0;
2079        }
2080}
2081
2082static int ptrace_signal(int signr, siginfo_t *info)
2083{
2084        ptrace_signal_deliver();
2085        /*
2086         * We do not check sig_kernel_stop(signr) but set this marker
2087         * unconditionally because we do not know whether debugger will
2088         * change signr. This flag has no meaning unless we are going
2089         * to stop after return from ptrace_stop(). In this case it will
2090         * be checked in do_signal_stop(), we should only stop if it was
2091         * not cleared by SIGCONT while we were sleeping. See also the
2092         * comment in dequeue_signal().
2093         */
2094        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096
2097        /* We're back.  Did the debugger cancel the sig?  */
2098        signr = current->exit_code;
2099        if (signr == 0)
2100                return signr;
2101
2102        current->exit_code = 0;
2103
2104        /*
2105         * Update the siginfo structure if the signal has
2106         * changed.  If the debugger wanted something
2107         * specific in the siginfo structure then it should
2108         * have updated *info via PTRACE_SETSIGINFO.
2109         */
2110        if (signr != info->si_signo) {
2111                info->si_signo = signr;
2112                info->si_errno = 0;
2113                info->si_code = SI_USER;
2114                rcu_read_lock();
2115                info->si_pid = task_pid_vnr(current->parent);
2116                info->si_uid = from_kuid_munged(current_user_ns(),
2117                                                task_uid(current->parent));
2118                rcu_read_unlock();
2119        }
2120
2121        /* If the (new) signal is now blocked, requeue it.  */
2122        if (sigismember(&current->blocked, signr)) {
2123                specific_send_sig_info(signr, info, current);
2124                signr = 0;
2125        }
2126
2127        return signr;
2128}
2129
2130int get_signal(struct ksignal *ksig)
2131{
2132        struct sighand_struct *sighand = current->sighand;
2133        struct signal_struct *signal = current->signal;
2134        int signr;
2135
2136        if (unlikely(current->task_works))
2137                task_work_run();
2138
2139        if (unlikely(uprobe_deny_signal()))
2140                return 0;
2141
2142        /*
2143         * Do this once, we can't return to user-mode if freezing() == T.
2144         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145         * thus do not need another check after return.
2146         */
2147        try_to_freeze();
2148
2149relock:
2150        spin_lock_irq(&sighand->siglock);
2151        /*
2152         * Every stopped thread goes here after wakeup. Check to see if
2153         * we should notify the parent, prepare_signal(SIGCONT) encodes
2154         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155         */
2156        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157                int why;
2158
2159                if (signal->flags & SIGNAL_CLD_CONTINUED)
2160                        why = CLD_CONTINUED;
2161                else
2162                        why = CLD_STOPPED;
2163
2164                signal->flags &= ~SIGNAL_CLD_MASK;
2165
2166                spin_unlock_irq(&sighand->siglock);
2167
2168                /*
2169                 * Notify the parent that we're continuing.  This event is
2170                 * always per-process and doesn't make whole lot of sense
2171                 * for ptracers, who shouldn't consume the state via
2172                 * wait(2) either, but, for backward compatibility, notify
2173                 * the ptracer of the group leader too unless it's gonna be
2174                 * a duplicate.
2175                 */
2176                read_lock(&tasklist_lock);
2177                do_notify_parent_cldstop(current, false, why);
2178
2179                if (ptrace_reparented(current->group_leader))
2180                        do_notify_parent_cldstop(current->group_leader,
2181                                                true, why);
2182                read_unlock(&tasklist_lock);
2183
2184                goto relock;
2185        }
2186
2187        for (;;) {
2188                struct k_sigaction *ka;
2189
2190                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191                    do_signal_stop(0))
2192                        goto relock;
2193
2194                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195                        do_jobctl_trap();
2196                        spin_unlock_irq(&sighand->siglock);
2197                        goto relock;
2198                }
2199
2200                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2201
2202                if (!signr)
2203                        break; /* will return 0 */
2204
2205                if (unlikely(current->ptrace) && signr != SIGKILL) {
2206                        signr = ptrace_signal(signr, &ksig->info);
2207                        if (!signr)
2208                                continue;
2209                }
2210
2211                ka = &sighand->action[signr-1];
2212
2213                /* Trace actually delivered signals. */
2214                trace_signal_deliver(signr, &ksig->info, ka);
2215
2216                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217                        continue;
2218                if (ka->sa.sa_handler != SIG_DFL) {
2219                        /* Run the handler.  */
2220                        ksig->ka = *ka;
2221
2222                        if (ka->sa.sa_flags & SA_ONESHOT)
2223                                ka->sa.sa_handler = SIG_DFL;
2224
2225                        break; /* will return non-zero "signr" value */
2226                }
2227
2228                /*
2229                 * Now we are doing the default action for this signal.
2230                 */
2231                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232                        continue;
2233
2234                /*
2235                 * Global init gets no signals it doesn't want.
2236                 * Container-init gets no signals it doesn't want from same
2237                 * container.
2238                 *
2239                 * Note that if global/container-init sees a sig_kernel_only()
2240                 * signal here, the signal must have been generated internally
2241                 * or must have come from an ancestor namespace. In either
2242                 * case, the signal cannot be dropped.
2243                 */
2244                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245                                !sig_kernel_only(signr))
2246                        continue;
2247
2248                if (sig_kernel_stop(signr)) {
2249                        /*
2250                         * The default action is to stop all threads in
2251                         * the thread group.  The job control signals
2252                         * do nothing in an orphaned pgrp, but SIGSTOP
2253                         * always works.  Note that siglock needs to be
2254                         * dropped during the call to is_orphaned_pgrp()
2255                         * because of lock ordering with tasklist_lock.
2256                         * This allows an intervening SIGCONT to be posted.
2257                         * We need to check for that and bail out if necessary.
2258                         */
2259                        if (signr != SIGSTOP) {
2260                                spin_unlock_irq(&sighand->siglock);
2261
2262                                /* signals can be posted during this window */
2263
2264                                if (is_current_pgrp_orphaned())
2265                                        goto relock;
2266
2267                                spin_lock_irq(&sighand->siglock);
2268                        }
2269
2270                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2271                                /* It released the siglock.  */
2272                                goto relock;
2273                        }
2274
2275                        /*
2276                         * We didn't actually stop, due to a race
2277                         * with SIGCONT or something like that.
2278                         */
2279                        continue;
2280                }
2281
2282                spin_unlock_irq(&sighand->siglock);
2283
2284                /*
2285                 * Anything else is fatal, maybe with a core dump.
2286                 */
2287                current->flags |= PF_SIGNALED;
2288
2289                if (sig_kernel_coredump(signr)) {
2290                        if (print_fatal_signals)
2291                                print_fatal_signal(ksig->info.si_signo);
2292                        proc_coredump_connector(current);
2293                        /*
2294                         * If it was able to dump core, this kills all
2295                         * other threads in the group and synchronizes with
2296                         * their demise.  If we lost the race with another
2297                         * thread getting here, it set group_exit_code
2298                         * first and our do_group_exit call below will use
2299                         * that value and ignore the one we pass it.
2300                         */
2301                        do_coredump(&ksig->info);
2302                }
2303
2304                /*
2305                 * Death signals, no core dump.
2306                 */
2307                do_group_exit(ksig->info.si_signo);
2308                /* NOTREACHED */
2309        }
2310        spin_unlock_irq(&sighand->siglock);
2311
2312        ksig->sig = signr;
2313        return ksig->sig > 0;
2314}
2315
2316/**
2317 * signal_delivered - 
2318 * @ksig:               kernel signal struct
2319 * @stepping:           nonzero if debugger single-step or block-step in use
2320 *
2321 * This function should be called when a signal has successfully been
2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325 */
2326static void signal_delivered(struct ksignal *ksig, int stepping)
2327{
2328        sigset_t blocked;
2329
2330        /* A signal was successfully delivered, and the
2331           saved sigmask was stored on the signal frame,
2332           and will be restored by sigreturn.  So we can
2333           simply clear the restore sigmask flag.  */
2334        clear_restore_sigmask();
2335
2336        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338                sigaddset(&blocked, ksig->sig);
2339        set_current_blocked(&blocked);
2340        tracehook_signal_handler(stepping);
2341}
2342
2343void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344{
2345        if (failed)
2346                force_sigsegv(ksig->sig, current);
2347        else
2348                signal_delivered(ksig, stepping);
2349}
2350
2351/*
2352 * It could be that complete_signal() picked us to notify about the
2353 * group-wide signal. Other threads should be notified now to take
2354 * the shared signals in @which since we will not.
2355 */
2356static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357{
2358        sigset_t retarget;
2359        struct task_struct *t;
2360
2361        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362        if (sigisemptyset(&retarget))
2363                return;
2364
2365        t = tsk;
2366        while_each_thread(tsk, t) {
2367                if (t->flags & PF_EXITING)
2368                        continue;
2369
2370                if (!has_pending_signals(&retarget, &t->blocked))
2371                        continue;
2372                /* Remove the signals this thread can handle. */
2373                sigandsets(&retarget, &retarget, &t->blocked);
2374
2375                if (!signal_pending(t))
2376                        signal_wake_up(t, 0);
2377
2378                if (sigisemptyset(&retarget))
2379                        break;
2380        }
2381}
2382
2383void exit_signals(struct task_struct *tsk)
2384{
2385        int group_stop = 0;
2386        sigset_t unblocked;
2387
2388        /*
2389         * @tsk is about to have PF_EXITING set - lock out users which
2390         * expect stable threadgroup.
2391         */
2392        threadgroup_change_begin(tsk);
2393
2394        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395                tsk->flags |= PF_EXITING;
2396                threadgroup_change_end(tsk);
2397                return;
2398        }
2399
2400        spin_lock_irq(&tsk->sighand->siglock);
2401        /*
2402         * From now this task is not visible for group-wide signals,
2403         * see wants_signal(), do_signal_stop().
2404         */
2405        tsk->flags |= PF_EXITING;
2406
2407        threadgroup_change_end(tsk);
2408
2409        if (!signal_pending(tsk))
2410                goto out;
2411
2412        unblocked = tsk->blocked;
2413        signotset(&unblocked);
2414        retarget_shared_pending(tsk, &unblocked);
2415
2416        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417            task_participate_group_stop(tsk))
2418                group_stop = CLD_STOPPED;
2419out:
2420        spin_unlock_irq(&tsk->sighand->siglock);
2421
2422        /*
2423         * If group stop has completed, deliver the notification.  This
2424         * should always go to the real parent of the group leader.
2425         */
2426        if (unlikely(group_stop)) {
2427                read_lock(&tasklist_lock);
2428                do_notify_parent_cldstop(tsk, false, group_stop);
2429                read_unlock(&tasklist_lock);
2430        }
2431}
2432
2433EXPORT_SYMBOL(recalc_sigpending);
2434EXPORT_SYMBOL_GPL(dequeue_signal);
2435EXPORT_SYMBOL(flush_signals);
2436EXPORT_SYMBOL(force_sig);
2437EXPORT_SYMBOL(send_sig);
2438EXPORT_SYMBOL(send_sig_info);
2439EXPORT_SYMBOL(sigprocmask);
2440
2441/*
2442 * System call entry points.
2443 */
2444
2445/**
2446 *  sys_restart_syscall - restart a system call
2447 */
2448SYSCALL_DEFINE0(restart_syscall)
2449{
2450        struct restart_block *restart = &current->restart_block;
2451        return restart->fn(restart);
2452}
2453
2454long do_no_restart_syscall(struct restart_block *param)
2455{
2456        return -EINTR;
2457}
2458
2459static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460{
2461        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462                sigset_t newblocked;
2463                /* A set of now blocked but previously unblocked signals. */
2464                sigandnsets(&newblocked, newset, &current->blocked);
2465                retarget_shared_pending(tsk, &newblocked);
2466        }
2467        tsk->blocked = *newset;
2468        recalc_sigpending();
2469}
2470
2471/**
2472 * set_current_blocked - change current->blocked mask
2473 * @newset: new mask
2474 *
2475 * It is wrong to change ->blocked directly, this helper should be used
2476 * to ensure the process can't miss a shared signal we are going to block.
2477 */
2478void set_current_blocked(sigset_t *newset)
2479{
2480        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481        __set_current_blocked(newset);
2482}
2483
2484void __set_current_blocked(const sigset_t *newset)
2485{
2486        struct task_struct *tsk = current;
2487
2488        spin_lock_irq(&tsk->sighand->siglock);
2489        __set_task_blocked(tsk, newset);
2490        spin_unlock_irq(&tsk->sighand->siglock);
2491}
2492
2493/*
2494 * This is also useful for kernel threads that want to temporarily
2495 * (or permanently) block certain signals.
2496 *
2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498 * interface happily blocks "unblockable" signals like SIGKILL
2499 * and friends.
2500 */
2501int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502{
2503        struct task_struct *tsk = current;
2504        sigset_t newset;
2505
2506        /* Lockless, only current can change ->blocked, never from irq */
2507        if (oldset)
2508                *oldset = tsk->blocked;
2509
2510        switch (how) {
2511        case SIG_BLOCK:
2512                sigorsets(&newset, &tsk->blocked, set);
2513                break;
2514        case SIG_UNBLOCK:
2515                sigandnsets(&newset, &tsk->blocked, set);
2516                break;
2517        case SIG_SETMASK:
2518                newset = *set;
2519                break;
2520        default:
2521                return -EINVAL;
2522        }
2523
2524        __set_current_blocked(&newset);
2525        return 0;
2526}
2527
2528/**
2529 *  sys_rt_sigprocmask - change the list of currently blocked signals
2530 *  @how: whether to add, remove, or set signals
2531 *  @nset: stores pending signals
2532 *  @oset: previous value of signal mask if non-null
2533 *  @sigsetsize: size of sigset_t type
2534 */
2535SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536                sigset_t __user *, oset, size_t, sigsetsize)
2537{
2538        sigset_t old_set, new_set;
2539        int error;
2540
2541        /* XXX: Don't preclude handling different sized sigset_t's.  */
2542        if (sigsetsize != sizeof(sigset_t))
2543                return -EINVAL;
2544
2545        old_set = current->blocked;
2546
2547        if (nset) {
2548                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549                        return -EFAULT;
2550                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551
2552                error = sigprocmask(how, &new_set, NULL);
2553                if (error)
2554                        return error;
2555        }
2556
2557        if (oset) {
2558                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559                        return -EFAULT;
2560        }
2561
2562        return 0;
2563}
2564
2565#ifdef CONFIG_COMPAT
2566COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568{
2569#ifdef __BIG_ENDIAN
2570        sigset_t old_set = current->blocked;
2571
2572        /* XXX: Don't preclude handling different sized sigset_t's.  */
2573        if (sigsetsize != sizeof(sigset_t))
2574                return -EINVAL;
2575
2576        if (nset) {
2577                compat_sigset_t new32;
2578                sigset_t new_set;
2579                int error;
2580                if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581                        return -EFAULT;
2582
2583                sigset_from_compat(&new_set, &new32);
2584                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586                error = sigprocmask(how, &new_set, NULL);
2587                if (error)
2588                        return error;
2589        }
2590        if (oset) {
2591                compat_sigset_t old32;
2592                sigset_to_compat(&old32, &old_set);
2593                if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594                        return -EFAULT;
2595        }
2596        return 0;
2597#else
2598        return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599                                  (sigset_t __user *)oset, sigsetsize);
2600#endif
2601}
2602#endif
2603
2604static int do_sigpending(void *set, unsigned long sigsetsize)
2605{
2606        if (sigsetsize > sizeof(sigset_t))
2607                return -EINVAL;
2608
2609        spin_lock_irq(&current->sighand->siglock);
2610        sigorsets(set, &current->pending.signal,
2611                  &current->signal->shared_pending.signal);
2612        spin_unlock_irq(&current->sighand->siglock);
2613
2614        /* Outside the lock because only this thread touches it.  */
2615        sigandsets(set, &current->blocked, set);
2616        return 0;
2617}
2618
2619/**
2620 *  sys_rt_sigpending - examine a pending signal that has been raised
2621 *                      while blocked
2622 *  @uset: stores pending signals
2623 *  @sigsetsize: size of sigset_t type or larger
2624 */
2625SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626{
2627        sigset_t set;
2628        int err = do_sigpending(&set, sigsetsize);
2629        if (!err && copy_to_user(uset, &set, sigsetsize))
2630                err = -EFAULT;
2631        return err;
2632}
2633
2634#ifdef CONFIG_COMPAT
2635COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636                compat_size_t, sigsetsize)
2637{
2638#ifdef __BIG_ENDIAN
2639        sigset_t set;
2640        int err = do_sigpending(&set, sigsetsize);
2641        if (!err) {
2642                compat_sigset_t set32;
2643                sigset_to_compat(&set32, &set);
2644                /* we can get here only if sigsetsize <= sizeof(set) */
2645                if (copy_to_user(uset, &set32, sigsetsize))
2646                        err = -EFAULT;
2647        }
2648        return err;
2649#else
2650        return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651#endif
2652}
2653#endif
2654
2655#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656
2657int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658{
2659        int err;
2660
2661        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662                return -EFAULT;
2663        if (from->si_code < 0)
2664                return __copy_to_user(to, from, sizeof(siginfo_t))
2665                        ? -EFAULT : 0;
2666        /*
2667         * If you change siginfo_t structure, please be sure
2668         * this code is fixed accordingly.
2669         * Please remember to update the signalfd_copyinfo() function
2670         * inside fs/signalfd.c too, in case siginfo_t changes.
2671         * It should never copy any pad contained in the structure
2672         * to avoid security leaks, but must copy the generic
2673         * 3 ints plus the relevant union member.
2674         */
2675        err = __put_user(from->si_signo, &to->si_signo);
2676        err |= __put_user(from->si_errno, &to->si_errno);
2677        err |= __put_user((short)from->si_code, &to->si_code);
2678        switch (from->si_code & __SI_MASK) {
2679        case __SI_KILL:
2680                err |= __put_user(from->si_pid, &to->si_pid);
2681                err |= __put_user(from->si_uid, &to->si_uid);
2682                break;
2683        case __SI_TIMER:
2684                 err |= __put_user(from->si_tid, &to->si_tid);
2685                 err |= __put_user(from->si_overrun, &to->si_overrun);
2686                 err |= __put_user(from->si_ptr, &to->si_ptr);
2687                break;
2688        case __SI_POLL:
2689                err |= __put_user(from->si_band, &to->si_band);
2690                err |= __put_user(from->si_fd, &to->si_fd);
2691                break;
2692        case __SI_FAULT:
2693                err |= __put_user(from->si_addr, &to->si_addr);
2694#ifdef __ARCH_SI_TRAPNO
2695                err |= __put_user(from->si_trapno, &to->si_trapno);
2696#endif
2697#ifdef BUS_MCEERR_AO
2698                /*
2699                 * Other callers might not initialize the si_lsb field,
2700                 * so check explicitly for the right codes here.
2701                 */
2702                if (from->si_signo == SIGBUS &&
2703                    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706#ifdef SEGV_BNDERR
2707                if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708                        err |= __put_user(from->si_lower, &to->si_lower);
2709                        err |= __put_user(from->si_upper, &to->si_upper);
2710                }
2711#endif
2712#ifdef SEGV_PKUERR
2713                if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714                        err |= __put_user(from->si_pkey, &to->si_pkey);
2715#endif
2716                break;
2717        case __SI_CHLD:
2718                err |= __put_user(from->si_pid, &to->si_pid);
2719                err |= __put_user(from->si_uid, &to->si_uid);
2720                err |= __put_user(from->si_status, &to->si_status);
2721                err |= __put_user(from->si_utime, &to->si_utime);
2722                err |= __put_user(from->si_stime, &to->si_stime);
2723                break;
2724        case __SI_RT: /* This is not generated by the kernel as of now. */
2725        case __SI_MESGQ: /* But this is */
2726                err |= __put_user(from->si_pid, &to->si_pid);
2727                err |= __put_user(from->si_uid, &to->si_uid);
2728                err |= __put_user(from->si_ptr, &to->si_ptr);
2729                break;
2730#ifdef __ARCH_SIGSYS
2731        case __SI_SYS:
2732                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733                err |= __put_user(from->si_syscall, &to->si_syscall);
2734                err |= __put_user(from->si_arch, &to->si_arch);
2735                break;
2736#endif
2737        default: /* this is just in case for now ... */
2738                err |= __put_user(from->si_pid, &to->si_pid);
2739                err |= __put_user(from->si_uid, &to->si_uid);
2740                break;
2741        }
2742        return err;
2743}
2744
2745#endif
2746
2747/**
2748 *  do_sigtimedwait - wait for queued signals specified in @which
2749 *  @which: queued signals to wait for
2750 *  @info: if non-null, the signal's siginfo is returned here
2751 *  @ts: upper bound on process time suspension
2752 */
2753int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754                        const struct timespec *ts)
2755{
2756        struct task_struct *tsk = current;
2757        long timeout = MAX_SCHEDULE_TIMEOUT;
2758        sigset_t mask = *which;
2759        int sig;
2760
2761        if (ts) {
2762                if (!timespec_valid(ts))
2763                        return -EINVAL;
2764                timeout = timespec_to_jiffies(ts);
2765                /*
2766                 * We can be close to the next tick, add another one
2767                 * to ensure we will wait at least the time asked for.
2768                 */
2769                if (ts->tv_sec || ts->tv_nsec)
2770                        timeout++;
2771        }
2772
2773        /*
2774         * Invert the set of allowed signals to get those we want to block.
2775         */
2776        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2777        signotset(&mask);
2778
2779        spin_lock_irq(&tsk->sighand->siglock);
2780        sig = dequeue_signal(tsk, &mask, info);
2781        if (!sig && timeout) {
2782                /*
2783                 * None ready, temporarily unblock those we're interested
2784                 * while we are sleeping in so that we'll be awakened when
2785                 * they arrive. Unblocking is always fine, we can avoid
2786                 * set_current_blocked().
2787                 */
2788                tsk->real_blocked = tsk->blocked;
2789                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2790                recalc_sigpending();
2791                spin_unlock_irq(&tsk->sighand->siglock);
2792
2793                timeout = freezable_schedule_timeout_interruptible(timeout);
2794
2795                spin_lock_irq(&tsk->sighand->siglock);
2796                __set_task_blocked(tsk, &tsk->real_blocked);
2797                sigemptyset(&tsk->real_blocked);
2798                sig = dequeue_signal(tsk, &mask, info);
2799        }
2800        spin_unlock_irq(&tsk->sighand->siglock);
2801
2802        if (sig)
2803                return sig;
2804        return timeout ? -EINTR : -EAGAIN;
2805}
2806
2807/**
2808 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2809 *                      in @uthese
2810 *  @uthese: queued signals to wait for
2811 *  @uinfo: if non-null, the signal's siginfo is returned here
2812 *  @uts: upper bound on process time suspension
2813 *  @sigsetsize: size of sigset_t type
2814 */
2815SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2816                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2817                size_t, sigsetsize)
2818{
2819        sigset_t these;
2820        struct timespec ts;
2821        siginfo_t info;
2822        int ret;
2823
2824        /* XXX: Don't preclude handling different sized sigset_t's.  */
2825        if (sigsetsize != sizeof(sigset_t))
2826                return -EINVAL;
2827
2828        if (copy_from_user(&these, uthese, sizeof(these)))
2829                return -EFAULT;
2830
2831        if (uts) {
2832                if (copy_from_user(&ts, uts, sizeof(ts)))
2833                        return -EFAULT;
2834        }
2835
2836        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2837
2838        if (ret > 0 && uinfo) {
2839                if (copy_siginfo_to_user(uinfo, &info))
2840                        ret = -EFAULT;
2841        }
2842
2843        return ret;
2844}
2845
2846/**
2847 *  sys_kill - send a signal to a process
2848 *  @pid: the PID of the process
2849 *  @sig: signal to be sent
2850 */
2851SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2852{
2853        struct siginfo info;
2854
2855        info.si_signo = sig;
2856        info.si_errno = 0;
2857        info.si_code = SI_USER;
2858        info.si_pid = task_tgid_vnr(current);
2859        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2860
2861        return kill_something_info(sig, &info, pid);
2862}
2863
2864static int
2865do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2866{
2867        struct task_struct *p;
2868        int error = -ESRCH;
2869
2870        rcu_read_lock();
2871        p = find_task_by_vpid(pid);
2872        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2873                error = check_kill_permission(sig, info, p);
2874                /*
2875                 * The null signal is a permissions and process existence
2876                 * probe.  No signal is actually delivered.
2877                 */
2878                if (!error && sig) {
2879                        error = do_send_sig_info(sig, info, p, false);
2880                        /*
2881                         * If lock_task_sighand() failed we pretend the task
2882                         * dies after receiving the signal. The window is tiny,
2883                         * and the signal is private anyway.
2884                         */
2885                        if (unlikely(error == -ESRCH))
2886                                error = 0;
2887                }
2888        }
2889        rcu_read_unlock();
2890
2891        return error;
2892}
2893
2894static int do_tkill(pid_t tgid, pid_t pid, int sig)
2895{
2896        struct siginfo info = {};
2897
2898        info.si_signo = sig;
2899        info.si_errno = 0;
2900        info.si_code = SI_TKILL;
2901        info.si_pid = task_tgid_vnr(current);
2902        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2903
2904        return do_send_specific(tgid, pid, sig, &info);
2905}
2906
2907/**
2908 *  sys_tgkill - send signal to one specific thread
2909 *  @tgid: the thread group ID of the thread
2910 *  @pid: the PID of the thread
2911 *  @sig: signal to be sent
2912 *
2913 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2914 *  exists but it's not belonging to the target process anymore. This
2915 *  method solves the problem of threads exiting and PIDs getting reused.
2916 */
2917SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2918{
2919        /* This is only valid for single tasks */
2920        if (pid <= 0 || tgid <= 0)
2921                return -EINVAL;
2922
2923        return do_tkill(tgid, pid, sig);
2924}
2925
2926/**
2927 *  sys_tkill - send signal to one specific task
2928 *  @pid: the PID of the task
2929 *  @sig: signal to be sent
2930 *
2931 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2932 */
2933SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2934{
2935        /* This is only valid for single tasks */
2936        if (pid <= 0)
2937                return -EINVAL;
2938
2939        return do_tkill(0, pid, sig);
2940}
2941
2942static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2943{
2944        /* Not even root can pretend to send signals from the kernel.
2945         * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946         */
2947        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2948            (task_pid_vnr(current) != pid))
2949                return -EPERM;
2950
2951        info->si_signo = sig;
2952
2953        /* POSIX.1b doesn't mention process groups.  */
2954        return kill_proc_info(sig, info, pid);
2955}
2956
2957/**
2958 *  sys_rt_sigqueueinfo - send signal information to a signal
2959 *  @pid: the PID of the thread
2960 *  @sig: signal to be sent
2961 *  @uinfo: signal info to be sent
2962 */
2963SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2964                siginfo_t __user *, uinfo)
2965{
2966        siginfo_t info;
2967        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2968                return -EFAULT;
2969        return do_rt_sigqueueinfo(pid, sig, &info);
2970}
2971
2972#ifdef CONFIG_COMPAT
2973COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2974                        compat_pid_t, pid,
2975                        int, sig,
2976                        struct compat_siginfo __user *, uinfo)
2977{
2978        siginfo_t info = {};
2979        int ret = copy_siginfo_from_user32(&info, uinfo);
2980        if (unlikely(ret))
2981                return ret;
2982        return do_rt_sigqueueinfo(pid, sig, &info);
2983}
2984#endif
2985
2986static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2987{
2988        /* This is only valid for single tasks */
2989        if (pid <= 0 || tgid <= 0)
2990                return -EINVAL;
2991
2992        /* Not even root can pretend to send signals from the kernel.
2993         * Nor can they impersonate a kill()/tgkill(), which adds source info.
2994         */
2995        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2996            (task_pid_vnr(current) != pid))
2997                return -EPERM;
2998
2999        info->si_signo = sig;
3000
3001        return do_send_specific(tgid, pid, sig, info);
3002}
3003
3004SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3005                siginfo_t __user *, uinfo)
3006{
3007        siginfo_t info;
3008
3009        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3010                return -EFAULT;
3011
3012        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3013}
3014
3015#ifdef CONFIG_COMPAT
3016COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3017                        compat_pid_t, tgid,
3018                        compat_pid_t, pid,
3019                        int, sig,
3020                        struct compat_siginfo __user *, uinfo)
3021{
3022        siginfo_t info = {};
3023
3024        if (copy_siginfo_from_user32(&info, uinfo))
3025                return -EFAULT;
3026        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3027}
3028#endif
3029
3030/*
3031 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3032 */
3033void kernel_sigaction(int sig, __sighandler_t action)
3034{
3035        spin_lock_irq(&current->sighand->siglock);
3036        current->sighand->action[sig - 1].sa.sa_handler = action;
3037        if (action == SIG_IGN) {
3038                sigset_t mask;
3039
3040                sigemptyset(&mask);
3041                sigaddset(&mask, sig);
3042
3043                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3044                flush_sigqueue_mask(&mask, &current->pending);
3045                recalc_sigpending();
3046        }
3047        spin_unlock_irq(&current->sighand->siglock);
3048}
3049EXPORT_SYMBOL(kernel_sigaction);
3050
3051int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3052{
3053        struct task_struct *p = current, *t;
3054        struct k_sigaction *k;
3055        sigset_t mask;
3056
3057        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3058                return -EINVAL;
3059
3060        k = &p->sighand->action[sig-1];
3061
3062        spin_lock_irq(&p->sighand->siglock);
3063        if (oact)
3064                *oact = *k;
3065
3066        if (act) {
3067                sigdelsetmask(&act->sa.sa_mask,
3068                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3069                *k = *act;
3070                /*
3071                 * POSIX 3.3.1.3:
3072                 *  "Setting a signal action to SIG_IGN for a signal that is
3073                 *   pending shall cause the pending signal to be discarded,
3074                 *   whether or not it is blocked."
3075                 *
3076                 *  "Setting a signal action to SIG_DFL for a signal that is
3077                 *   pending and whose default action is to ignore the signal
3078                 *   (for example, SIGCHLD), shall cause the pending signal to
3079                 *   be discarded, whether or not it is blocked"
3080                 */
3081                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3082                        sigemptyset(&mask);
3083                        sigaddset(&mask, sig);
3084                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3085                        for_each_thread(p, t)
3086                                flush_sigqueue_mask(&mask, &t->pending);
3087                }
3088        }
3089
3090        spin_unlock_irq(&p->sighand->siglock);
3091        return 0;
3092}
3093
3094static int
3095do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3096{
3097        stack_t oss;
3098        int error;
3099
3100        oss.ss_sp = (void __user *) current->sas_ss_sp;
3101        oss.ss_size = current->sas_ss_size;
3102        oss.ss_flags = sas_ss_flags(sp);
3103
3104        if (uss) {
3105                void __user *ss_sp;
3106                size_t ss_size;
3107                int ss_flags;
3108
3109                error = -EFAULT;
3110                if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3111                        goto out;
3112                error = __get_user(ss_sp, &uss->ss_sp) |
3113                        __get_user(ss_flags, &uss->ss_flags) |
3114                        __get_user(ss_size, &uss->ss_size);
3115                if (error)
3116                        goto out;
3117
3118                error = -EPERM;
3119                if (on_sig_stack(sp))
3120                        goto out;
3121
3122                error = -EINVAL;
3123                /*
3124                 * Note - this code used to test ss_flags incorrectly:
3125                 *        old code may have been written using ss_flags==0
3126                 *        to mean ss_flags==SS_ONSTACK (as this was the only
3127                 *        way that worked) - this fix preserves that older
3128                 *        mechanism.
3129                 */
3130                if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3131                        goto out;
3132
3133                if (ss_flags == SS_DISABLE) {
3134                        ss_size = 0;
3135                        ss_sp = NULL;
3136                } else {
3137                        error = -ENOMEM;
3138                        if (ss_size < MINSIGSTKSZ)
3139                                goto out;
3140                }
3141
3142                current->sas_ss_sp = (unsigned long) ss_sp;
3143                current->sas_ss_size = ss_size;
3144        }
3145
3146        error = 0;
3147        if (uoss) {
3148                error = -EFAULT;
3149                if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3150                        goto out;
3151                error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3152                        __put_user(oss.ss_size, &uoss->ss_size) |
3153                        __put_user(oss.ss_flags, &uoss->ss_flags);
3154        }
3155
3156out:
3157        return error;
3158}
3159SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3160{
3161        return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3162}
3163
3164int restore_altstack(const stack_t __user *uss)
3165{
3166        int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3167        /* squash all but EFAULT for now */
3168        return err == -EFAULT ? err : 0;
3169}
3170
3171int __save_altstack(stack_t __user *uss, unsigned long sp)
3172{
3173        struct task_struct *t = current;
3174        return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3175                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3176                __put_user(t->sas_ss_size, &uss->ss_size);
3177}
3178
3179#ifdef CONFIG_COMPAT
3180COMPAT_SYSCALL_DEFINE2(sigaltstack,
3181                        const compat_stack_t __user *, uss_ptr,
3182                        compat_stack_t __user *, uoss_ptr)
3183{
3184        stack_t uss, uoss;
3185        int ret;
3186        mm_segment_t seg;
3187
3188        if (uss_ptr) {
3189                compat_stack_t uss32;
3190
3191                memset(&uss, 0, sizeof(stack_t));
3192                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3193                        return -EFAULT;
3194                uss.ss_sp = compat_ptr(uss32.ss_sp);
3195                uss.ss_flags = uss32.ss_flags;
3196                uss.ss_size = uss32.ss_size;
3197        }
3198        seg = get_fs();
3199        set_fs(KERNEL_DS);
3200        ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3201                             (stack_t __force __user *) &uoss,
3202                             compat_user_stack_pointer());
3203        set_fs(seg);
3204        if (ret >= 0 && uoss_ptr)  {
3205                if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3206                    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3207                    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3208                    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3209                        ret = -EFAULT;
3210        }
3211        return ret;
3212}
3213
3214int compat_restore_altstack(const compat_stack_t __user *uss)
3215{
3216        int err = compat_sys_sigaltstack(uss, NULL);
3217        /* squash all but -EFAULT for now */
3218        return err == -EFAULT ? err : 0;
3219}
3220
3221int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3222{
3223        struct task_struct *t = current;
3224        return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3225                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3226                __put_user(t->sas_ss_size, &uss->ss_size);
3227}
3228#endif
3229
3230#ifdef __ARCH_WANT_SYS_SIGPENDING
3231
3232/**
3233 *  sys_sigpending - examine pending signals
3234 *  @set: where mask of pending signal is returned
3235 */
3236SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3237{
3238        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3239}
3240
3241#endif
3242
3243#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3244/**
3245 *  sys_sigprocmask - examine and change blocked signals
3246 *  @how: whether to add, remove, or set signals
3247 *  @nset: signals to add or remove (if non-null)
3248 *  @oset: previous value of signal mask if non-null
3249 *
3250 * Some platforms have their own version with special arguments;
3251 * others support only sys_rt_sigprocmask.
3252 */
3253
3254SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3255                old_sigset_t __user *, oset)
3256{
3257        old_sigset_t old_set, new_set;
3258        sigset_t new_blocked;
3259
3260        old_set = current->blocked.sig[0];
3261
3262        if (nset) {
3263                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3264                        return -EFAULT;
3265
3266                new_blocked = current->blocked;
3267
3268                switch (how) {
3269                case SIG_BLOCK:
3270                        sigaddsetmask(&new_blocked, new_set);
3271                        break;
3272                case SIG_UNBLOCK:
3273                        sigdelsetmask(&new_blocked, new_set);
3274                        break;
3275                case SIG_SETMASK:
3276                        new_blocked.sig[0] = new_set;
3277                        break;
3278                default:
3279                        return -EINVAL;
3280                }
3281
3282                set_current_blocked(&new_blocked);
3283        }
3284
3285        if (oset) {
3286                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3287                        return -EFAULT;
3288        }
3289
3290        return 0;
3291}
3292#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3293
3294#ifndef CONFIG_ODD_RT_SIGACTION
3295/**
3296 *  sys_rt_sigaction - alter an action taken by a process
3297 *  @sig: signal to be sent
3298 *  @act: new sigaction
3299 *  @oact: used to save the previous sigaction
3300 *  @sigsetsize: size of sigset_t type
3301 */
3302SYSCALL_DEFINE4(rt_sigaction, int, sig,
3303                const struct sigaction __user *, act,
3304                struct sigaction __user *, oact,
3305                size_t, sigsetsize)
3306{
3307        struct k_sigaction new_sa, old_sa;
3308        int ret = -EINVAL;
3309
3310        /* XXX: Don't preclude handling different sized sigset_t's.  */
3311        if (sigsetsize != sizeof(sigset_t))
3312                goto out;
3313
3314        if (act) {
3315                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3316                        return -EFAULT;
3317        }
3318
3319        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3320
3321        if (!ret && oact) {
3322                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3323                        return -EFAULT;
3324        }
3325out:
3326        return ret;
3327}
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330                const struct compat_sigaction __user *, act,
3331                struct compat_sigaction __user *, oact,
3332                compat_size_t, sigsetsize)
3333{
3334        struct k_sigaction new_ka, old_ka;
3335        compat_sigset_t mask;
3336#ifdef __ARCH_HAS_SA_RESTORER
3337        compat_uptr_t restorer;
3338#endif
3339        int ret;
3340
3341        /* XXX: Don't preclude handling different sized sigset_t's.  */
3342        if (sigsetsize != sizeof(compat_sigset_t))
3343                return -EINVAL;
3344
3345        if (act) {
3346                compat_uptr_t handler;
3347                ret = get_user(handler, &act->sa_handler);
3348                new_ka.sa.sa_handler = compat_ptr(handler);
3349#ifdef __ARCH_HAS_SA_RESTORER
3350                ret |= get_user(restorer, &act->sa_restorer);
3351                new_ka.sa.sa_restorer = compat_ptr(restorer);
3352#endif
3353                ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3354                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3355                if (ret)
3356                        return -EFAULT;
3357                sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3358        }
3359
3360        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3361        if (!ret && oact) {
3362                sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3363                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3364                               &oact->sa_handler);
3365                ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3366                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3367#ifdef __ARCH_HAS_SA_RESTORER
3368                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3369                                &oact->sa_restorer);
3370#endif
3371        }
3372        return ret;
3373}
3374#endif
3375#endif /* !CONFIG_ODD_RT_SIGACTION */
3376
3377#ifdef CONFIG_OLD_SIGACTION
3378SYSCALL_DEFINE3(sigaction, int, sig,
3379                const struct old_sigaction __user *, act,
3380                struct old_sigaction __user *, oact)
3381{
3382        struct k_sigaction new_ka, old_ka;
3383        int ret;
3384
3385        if (act) {
3386                old_sigset_t mask;
3387                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3388                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3389                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3390                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3391                    __get_user(mask, &act->sa_mask))
3392                        return -EFAULT;
3393#ifdef __ARCH_HAS_KA_RESTORER
3394                new_ka.ka_restorer = NULL;
3395#endif
3396                siginitset(&new_ka.sa.sa_mask, mask);
3397        }
3398
3399        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400
3401        if (!ret && oact) {
3402                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3403                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3404                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3405                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3406                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3407                        return -EFAULT;
3408        }
3409
3410        return ret;
3411}
3412#endif
3413#ifdef CONFIG_COMPAT_OLD_SIGACTION
3414COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3415                const struct compat_old_sigaction __user *, act,
3416                struct compat_old_sigaction __user *, oact)
3417{
3418        struct k_sigaction new_ka, old_ka;
3419        int ret;
3420        compat_old_sigset_t mask;
3421        compat_uptr_t handler, restorer;
3422
3423        if (act) {
3424                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3425                    __get_user(handler, &act->sa_handler) ||
3426                    __get_user(restorer, &act->sa_restorer) ||
3427                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3428                    __get_user(mask, &act->sa_mask))
3429                        return -EFAULT;
3430
3431#ifdef __ARCH_HAS_KA_RESTORER
3432                new_ka.ka_restorer = NULL;
3433#endif
3434                new_ka.sa.sa_handler = compat_ptr(handler);
3435                new_ka.sa.sa_restorer = compat_ptr(restorer);
3436                siginitset(&new_ka.sa.sa_mask, mask);
3437        }
3438
3439        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440
3441        if (!ret && oact) {
3442                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3444                               &oact->sa_handler) ||
3445                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3446                               &oact->sa_restorer) ||
3447                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449                        return -EFAULT;
3450        }
3451        return ret;
3452}
3453#endif
3454
3455#ifdef CONFIG_SGETMASK_SYSCALL
3456
3457/*
3458 * For backwards compatibility.  Functionality superseded by sigprocmask.
3459 */
3460SYSCALL_DEFINE0(sgetmask)
3461{
3462        /* SMP safe */
3463        return current->blocked.sig[0];
3464}
3465
3466SYSCALL_DEFINE1(ssetmask, int, newmask)
3467{
3468        int old = current->blocked.sig[0];
3469        sigset_t newset;
3470
3471        siginitset(&newset, newmask);
3472        set_current_blocked(&newset);
3473
3474        return old;
3475}
3476#endif /* CONFIG_SGETMASK_SYSCALL */
3477
3478#ifdef __ARCH_WANT_SYS_SIGNAL
3479/*
3480 * For backwards compatibility.  Functionality superseded by sigaction.
3481 */
3482SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3483{
3484        struct k_sigaction new_sa, old_sa;
3485        int ret;
3486
3487        new_sa.sa.sa_handler = handler;
3488        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3489        sigemptyset(&new_sa.sa.sa_mask);
3490
3491        ret = do_sigaction(sig, &new_sa, &old_sa);
3492
3493        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3494}
3495#endif /* __ARCH_WANT_SYS_SIGNAL */
3496
3497#ifdef __ARCH_WANT_SYS_PAUSE
3498
3499SYSCALL_DEFINE0(pause)
3500{
3501        while (!signal_pending(current)) {
3502                __set_current_state(TASK_INTERRUPTIBLE);
3503                schedule();
3504        }
3505        return -ERESTARTNOHAND;
3506}
3507
3508#endif
3509
3510static int sigsuspend(sigset_t *set)
3511{
3512        current->saved_sigmask = current->blocked;
3513        set_current_blocked(set);
3514
3515        while (!signal_pending(current)) {
3516                __set_current_state(TASK_INTERRUPTIBLE);
3517                schedule();
3518        }
3519        set_restore_sigmask();
3520        return -ERESTARTNOHAND;
3521}
3522
3523/**
3524 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3525 *      @unewset value until a signal is received
3526 *  @unewset: new signal mask value
3527 *  @sigsetsize: size of sigset_t type
3528 */
3529SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3530{
3531        sigset_t newset;
3532
3533        /* XXX: Don't preclude handling different sized sigset_t's.  */
3534        if (sigsetsize != sizeof(sigset_t))
3535                return -EINVAL;
3536
3537        if (copy_from_user(&newset, unewset, sizeof(newset)))
3538                return -EFAULT;
3539        return sigsuspend(&newset);
3540}
3541 
3542#ifdef CONFIG_COMPAT
3543COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3544{
3545#ifdef __BIG_ENDIAN
3546        sigset_t newset;
3547        compat_sigset_t newset32;
3548
3549        /* XXX: Don't preclude handling different sized sigset_t's.  */
3550        if (sigsetsize != sizeof(sigset_t))
3551                return -EINVAL;
3552
3553        if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3554                return -EFAULT;
3555        sigset_from_compat(&newset, &newset32);
3556        return sigsuspend(&newset);
3557#else
3558        /* on little-endian bitmaps don't care about granularity */
3559        return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3560#endif
3561}
3562#endif
3563
3564#ifdef CONFIG_OLD_SIGSUSPEND
3565SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3566{
3567        sigset_t blocked;
3568        siginitset(&blocked, mask);
3569        return sigsuspend(&blocked);
3570}
3571#endif
3572#ifdef CONFIG_OLD_SIGSUSPEND3
3573SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3574{
3575        sigset_t blocked;
3576        siginitset(&blocked, mask);
3577        return sigsuspend(&blocked);
3578}
3579#endif
3580
3581__weak const char *arch_vma_name(struct vm_area_struct *vma)
3582{
3583        return NULL;
3584}
3585
3586void __init signals_init(void)
3587{
3588        /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3589        BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3590                != offsetof(struct siginfo, _sifields._pad));
3591
3592        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3593}
3594
3595#ifdef CONFIG_KGDB_KDB
3596#include <linux/kdb.h>
3597/*
3598 * kdb_send_sig_info - Allows kdb to send signals without exposing
3599 * signal internals.  This function checks if the required locks are
3600 * available before calling the main signal code, to avoid kdb
3601 * deadlocks.
3602 */
3603void
3604kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3605{
3606        static struct task_struct *kdb_prev_t;
3607        int sig, new_t;
3608        if (!spin_trylock(&t->sighand->siglock)) {
3609                kdb_printf("Can't do kill command now.\n"
3610                           "The sigmask lock is held somewhere else in "
3611                           "kernel, try again later\n");
3612                return;
3613        }
3614        spin_unlock(&t->sighand->siglock);
3615        new_t = kdb_prev_t != t;
3616        kdb_prev_t = t;
3617        if (t->state != TASK_RUNNING && new_t) {
3618                kdb_printf("Process is not RUNNING, sending a signal from "
3619                           "kdb risks deadlock\n"
3620                           "on the run queue locks. "
3621                           "The signal has _not_ been sent.\n"
3622                           "Reissue the kill command if you want to risk "
3623                           "the deadlock.\n");
3624                return;
3625        }
3626        sig = info->si_signo;
3627        if (send_sig_info(sig, info, t))
3628                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3629                           sig, t->pid);
3630        else
3631                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3632}
3633#endif  /* CONFIG_KGDB_KDB */
3634