linux/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * Common SMP CPU bringup/teardown functions
   3 */
   4#include <linux/cpu.h>
   5#include <linux/err.h>
   6#include <linux/smp.h>
   7#include <linux/delay.h>
   8#include <linux/init.h>
   9#include <linux/list.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/export.h>
  13#include <linux/percpu.h>
  14#include <linux/kthread.h>
  15#include <linux/smpboot.h>
  16
  17#include "smpboot.h"
  18
  19#ifdef CONFIG_SMP
  20
  21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  22/*
  23 * For the hotplug case we keep the task structs around and reuse
  24 * them.
  25 */
  26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  27
  28struct task_struct *idle_thread_get(unsigned int cpu)
  29{
  30        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  31
  32        if (!tsk)
  33                return ERR_PTR(-ENOMEM);
  34        init_idle(tsk, cpu);
  35        return tsk;
  36}
  37
  38void __init idle_thread_set_boot_cpu(void)
  39{
  40        per_cpu(idle_threads, smp_processor_id()) = current;
  41}
  42
  43/**
  44 * idle_init - Initialize the idle thread for a cpu
  45 * @cpu:        The cpu for which the idle thread should be initialized
  46 *
  47 * Creates the thread if it does not exist.
  48 */
  49static inline void idle_init(unsigned int cpu)
  50{
  51        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  52
  53        if (!tsk) {
  54                tsk = fork_idle(cpu);
  55                if (IS_ERR(tsk))
  56                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  57                else
  58                        per_cpu(idle_threads, cpu) = tsk;
  59        }
  60}
  61
  62/**
  63 * idle_threads_init - Initialize idle threads for all cpus
  64 */
  65void __init idle_threads_init(void)
  66{
  67        unsigned int cpu, boot_cpu;
  68
  69        boot_cpu = smp_processor_id();
  70
  71        for_each_possible_cpu(cpu) {
  72                if (cpu != boot_cpu)
  73                        idle_init(cpu);
  74        }
  75}
  76#endif
  77
  78#endif /* #ifdef CONFIG_SMP */
  79
  80static LIST_HEAD(hotplug_threads);
  81static DEFINE_MUTEX(smpboot_threads_lock);
  82
  83struct smpboot_thread_data {
  84        unsigned int                    cpu;
  85        unsigned int                    status;
  86        struct smp_hotplug_thread       *ht;
  87};
  88
  89enum {
  90        HP_THREAD_NONE = 0,
  91        HP_THREAD_ACTIVE,
  92        HP_THREAD_PARKED,
  93};
  94
  95/**
  96 * smpboot_thread_fn - percpu hotplug thread loop function
  97 * @data:       thread data pointer
  98 *
  99 * Checks for thread stop and park conditions. Calls the necessary
 100 * setup, cleanup, park and unpark functions for the registered
 101 * thread.
 102 *
 103 * Returns 1 when the thread should exit, 0 otherwise.
 104 */
 105static int smpboot_thread_fn(void *data)
 106{
 107        struct smpboot_thread_data *td = data;
 108        struct smp_hotplug_thread *ht = td->ht;
 109
 110        while (1) {
 111                set_current_state(TASK_INTERRUPTIBLE);
 112                preempt_disable();
 113                if (kthread_should_stop()) {
 114                        __set_current_state(TASK_RUNNING);
 115                        preempt_enable();
 116                        /* cleanup must mirror setup */
 117                        if (ht->cleanup && td->status != HP_THREAD_NONE)
 118                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 119                        kfree(td);
 120                        return 0;
 121                }
 122
 123                if (kthread_should_park()) {
 124                        __set_current_state(TASK_RUNNING);
 125                        preempt_enable();
 126                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 127                                BUG_ON(td->cpu != smp_processor_id());
 128                                ht->park(td->cpu);
 129                                td->status = HP_THREAD_PARKED;
 130                        }
 131                        kthread_parkme();
 132                        /* We might have been woken for stop */
 133                        continue;
 134                }
 135
 136                BUG_ON(td->cpu != smp_processor_id());
 137
 138                /* Check for state change setup */
 139                switch (td->status) {
 140                case HP_THREAD_NONE:
 141                        __set_current_state(TASK_RUNNING);
 142                        preempt_enable();
 143                        if (ht->setup)
 144                                ht->setup(td->cpu);
 145                        td->status = HP_THREAD_ACTIVE;
 146                        continue;
 147
 148                case HP_THREAD_PARKED:
 149                        __set_current_state(TASK_RUNNING);
 150                        preempt_enable();
 151                        if (ht->unpark)
 152                                ht->unpark(td->cpu);
 153                        td->status = HP_THREAD_ACTIVE;
 154                        continue;
 155                }
 156
 157                if (!ht->thread_should_run(td->cpu)) {
 158                        preempt_enable_no_resched();
 159                        schedule();
 160                } else {
 161                        __set_current_state(TASK_RUNNING);
 162                        preempt_enable();
 163                        ht->thread_fn(td->cpu);
 164                }
 165        }
 166}
 167
 168static int
 169__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 170{
 171        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 172        struct smpboot_thread_data *td;
 173
 174        if (tsk)
 175                return 0;
 176
 177        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 178        if (!td)
 179                return -ENOMEM;
 180        td->cpu = cpu;
 181        td->ht = ht;
 182
 183        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 184                                    ht->thread_comm);
 185        if (IS_ERR(tsk)) {
 186                kfree(td);
 187                return PTR_ERR(tsk);
 188        }
 189        get_task_struct(tsk);
 190        *per_cpu_ptr(ht->store, cpu) = tsk;
 191        if (ht->create) {
 192                /*
 193                 * Make sure that the task has actually scheduled out
 194                 * into park position, before calling the create
 195                 * callback. At least the migration thread callback
 196                 * requires that the task is off the runqueue.
 197                 */
 198                if (!wait_task_inactive(tsk, TASK_PARKED))
 199                        WARN_ON(1);
 200                else
 201                        ht->create(cpu);
 202        }
 203        return 0;
 204}
 205
 206int smpboot_create_threads(unsigned int cpu)
 207{
 208        struct smp_hotplug_thread *cur;
 209        int ret = 0;
 210
 211        mutex_lock(&smpboot_threads_lock);
 212        list_for_each_entry(cur, &hotplug_threads, list) {
 213                ret = __smpboot_create_thread(cur, cpu);
 214                if (ret)
 215                        break;
 216        }
 217        mutex_unlock(&smpboot_threads_lock);
 218        return ret;
 219}
 220
 221static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 222{
 223        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 224
 225        if (!ht->selfparking)
 226                kthread_unpark(tsk);
 227}
 228
 229int smpboot_unpark_threads(unsigned int cpu)
 230{
 231        struct smp_hotplug_thread *cur;
 232
 233        mutex_lock(&smpboot_threads_lock);
 234        list_for_each_entry(cur, &hotplug_threads, list)
 235                if (cpumask_test_cpu(cpu, cur->cpumask))
 236                        smpboot_unpark_thread(cur, cpu);
 237        mutex_unlock(&smpboot_threads_lock);
 238        return 0;
 239}
 240
 241static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 242{
 243        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 244
 245        if (tsk && !ht->selfparking)
 246                kthread_park(tsk);
 247}
 248
 249int smpboot_park_threads(unsigned int cpu)
 250{
 251        struct smp_hotplug_thread *cur;
 252
 253        mutex_lock(&smpboot_threads_lock);
 254        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 255                smpboot_park_thread(cur, cpu);
 256        mutex_unlock(&smpboot_threads_lock);
 257        return 0;
 258}
 259
 260static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 261{
 262        unsigned int cpu;
 263
 264        /* We need to destroy also the parked threads of offline cpus */
 265        for_each_possible_cpu(cpu) {
 266                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 267
 268                if (tsk) {
 269                        kthread_stop(tsk);
 270                        put_task_struct(tsk);
 271                        *per_cpu_ptr(ht->store, cpu) = NULL;
 272                }
 273        }
 274}
 275
 276/**
 277 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
 278 *                                          to hotplug
 279 * @plug_thread:        Hotplug thread descriptor
 280 * @cpumask:            The cpumask where threads run
 281 *
 282 * Creates and starts the threads on all online cpus.
 283 */
 284int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
 285                                           const struct cpumask *cpumask)
 286{
 287        unsigned int cpu;
 288        int ret = 0;
 289
 290        if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
 291                return -ENOMEM;
 292        cpumask_copy(plug_thread->cpumask, cpumask);
 293
 294        get_online_cpus();
 295        mutex_lock(&smpboot_threads_lock);
 296        for_each_online_cpu(cpu) {
 297                ret = __smpboot_create_thread(plug_thread, cpu);
 298                if (ret) {
 299                        smpboot_destroy_threads(plug_thread);
 300                        free_cpumask_var(plug_thread->cpumask);
 301                        goto out;
 302                }
 303                if (cpumask_test_cpu(cpu, cpumask))
 304                        smpboot_unpark_thread(plug_thread, cpu);
 305        }
 306        list_add(&plug_thread->list, &hotplug_threads);
 307out:
 308        mutex_unlock(&smpboot_threads_lock);
 309        put_online_cpus();
 310        return ret;
 311}
 312EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
 313
 314/**
 315 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 316 * @plug_thread:        Hotplug thread descriptor
 317 *
 318 * Stops all threads on all possible cpus.
 319 */
 320void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 321{
 322        get_online_cpus();
 323        mutex_lock(&smpboot_threads_lock);
 324        list_del(&plug_thread->list);
 325        smpboot_destroy_threads(plug_thread);
 326        mutex_unlock(&smpboot_threads_lock);
 327        put_online_cpus();
 328        free_cpumask_var(plug_thread->cpumask);
 329}
 330EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 331
 332/**
 333 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
 334 * @plug_thread:        Hotplug thread descriptor
 335 * @new:                Revised mask to use
 336 *
 337 * The cpumask field in the smp_hotplug_thread must not be updated directly
 338 * by the client, but only by calling this function.
 339 * This function can only be called on a registered smp_hotplug_thread.
 340 */
 341int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
 342                                         const struct cpumask *new)
 343{
 344        struct cpumask *old = plug_thread->cpumask;
 345        cpumask_var_t tmp;
 346        unsigned int cpu;
 347
 348        if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 349                return -ENOMEM;
 350
 351        get_online_cpus();
 352        mutex_lock(&smpboot_threads_lock);
 353
 354        /* Park threads that were exclusively enabled on the old mask. */
 355        cpumask_andnot(tmp, old, new);
 356        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 357                smpboot_park_thread(plug_thread, cpu);
 358
 359        /* Unpark threads that are exclusively enabled on the new mask. */
 360        cpumask_andnot(tmp, new, old);
 361        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 362                smpboot_unpark_thread(plug_thread, cpu);
 363
 364        cpumask_copy(old, new);
 365
 366        mutex_unlock(&smpboot_threads_lock);
 367        put_online_cpus();
 368
 369        free_cpumask_var(tmp);
 370
 371        return 0;
 372}
 373EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
 374
 375static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 376
 377/*
 378 * Called to poll specified CPU's state, for example, when waiting for
 379 * a CPU to come online.
 380 */
 381int cpu_report_state(int cpu)
 382{
 383        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 384}
 385
 386/*
 387 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 388 * return success.  Otherwise, return -EBUSY if the CPU died after
 389 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 390 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 391 * to dying.  In the latter two cases, the CPU might not be set up
 392 * properly, but it is up to the arch-specific code to decide.
 393 * Finally, -EIO indicates an unanticipated problem.
 394 *
 395 * Note that it is permissible to omit this call entirely, as is
 396 * done in architectures that do no CPU-hotplug error checking.
 397 */
 398int cpu_check_up_prepare(int cpu)
 399{
 400        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 401                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 402                return 0;
 403        }
 404
 405        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 406
 407        case CPU_POST_DEAD:
 408
 409                /* The CPU died properly, so just start it up again. */
 410                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 411                return 0;
 412
 413        case CPU_DEAD_FROZEN:
 414
 415                /*
 416                 * Timeout during CPU death, so let caller know.
 417                 * The outgoing CPU completed its processing, but after
 418                 * cpu_wait_death() timed out and reported the error. The
 419                 * caller is free to proceed, in which case the state
 420                 * will be reset properly by cpu_set_state_online().
 421                 * Proceeding despite this -EBUSY return makes sense
 422                 * for systems where the outgoing CPUs take themselves
 423                 * offline, with no post-death manipulation required from
 424                 * a surviving CPU.
 425                 */
 426                return -EBUSY;
 427
 428        case CPU_BROKEN:
 429
 430                /*
 431                 * The most likely reason we got here is that there was
 432                 * a timeout during CPU death, and the outgoing CPU never
 433                 * did complete its processing.  This could happen on
 434                 * a virtualized system if the outgoing VCPU gets preempted
 435                 * for more than five seconds, and the user attempts to
 436                 * immediately online that same CPU.  Trying again later
 437                 * might return -EBUSY above, hence -EAGAIN.
 438                 */
 439                return -EAGAIN;
 440
 441        default:
 442
 443                /* Should not happen.  Famous last words. */
 444                return -EIO;
 445        }
 446}
 447
 448/*
 449 * Mark the specified CPU online.
 450 *
 451 * Note that it is permissible to omit this call entirely, as is
 452 * done in architectures that do no CPU-hotplug error checking.
 453 */
 454void cpu_set_state_online(int cpu)
 455{
 456        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 457}
 458
 459#ifdef CONFIG_HOTPLUG_CPU
 460
 461/*
 462 * Wait for the specified CPU to exit the idle loop and die.
 463 */
 464bool cpu_wait_death(unsigned int cpu, int seconds)
 465{
 466        int jf_left = seconds * HZ;
 467        int oldstate;
 468        bool ret = true;
 469        int sleep_jf = 1;
 470
 471        might_sleep();
 472
 473        /* The outgoing CPU will normally get done quite quickly. */
 474        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 475                goto update_state;
 476        udelay(5);
 477
 478        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 479        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 480                schedule_timeout_uninterruptible(sleep_jf);
 481                jf_left -= sleep_jf;
 482                if (jf_left <= 0)
 483                        break;
 484                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 485        }
 486update_state:
 487        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 488        if (oldstate == CPU_DEAD) {
 489                /* Outgoing CPU died normally, update state. */
 490                smp_mb(); /* atomic_read() before update. */
 491                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 492        } else {
 493                /* Outgoing CPU still hasn't died, set state accordingly. */
 494                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 495                                   oldstate, CPU_BROKEN) != oldstate)
 496                        goto update_state;
 497                ret = false;
 498        }
 499        return ret;
 500}
 501
 502/*
 503 * Called by the outgoing CPU to report its successful death.  Return
 504 * false if this report follows the surviving CPU's timing out.
 505 *
 506 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 507 * timed out.  This approach allows architectures to omit calls to
 508 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 509 * the next cpu_wait_death()'s polling loop.
 510 */
 511bool cpu_report_death(void)
 512{
 513        int oldstate;
 514        int newstate;
 515        int cpu = smp_processor_id();
 516
 517        do {
 518                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 519                if (oldstate != CPU_BROKEN)
 520                        newstate = CPU_DEAD;
 521                else
 522                        newstate = CPU_DEAD_FROZEN;
 523        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 524                                oldstate, newstate) != oldstate);
 525        return newstate == CPU_DEAD;
 526}
 527
 528#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 529