1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29
30
31
32
33
34
35
36
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42} alarm_bases[ALARM_NUMTYPE];
43
44
45static ktime_t freezer_delta;
46static DEFINE_SPINLOCK(freezer_delta_lock);
47
48static struct wakeup_source *ws;
49
50#ifdef CONFIG_RTC_CLASS
51
52static struct rtc_timer rtctimer;
53static struct rtc_device *rtcdev;
54static DEFINE_SPINLOCK(rtcdev_lock);
55
56
57
58
59
60
61
62
63struct rtc_device *alarmtimer_get_rtcdev(void)
64{
65 unsigned long flags;
66 struct rtc_device *ret;
67
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
71
72 return ret;
73}
74EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75
76static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
78{
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
81
82 if (rtcdev)
83 return -EBUSY;
84
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93
94 get_device(dev);
95 }
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
98}
99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102 rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116 class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121 return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129
130
131
132
133
134
135
136
137
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
142
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147
148
149
150
151
152
153
154
155
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
160
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166
167
168
169
170
171
172
173
174
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
182
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
186
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
189
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
195 }
196 spin_unlock_irqrestore(&base->lock, flags);
197
198 return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204 struct alarm_base *base = &alarm_bases[alarm->type];
205 return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210
211
212
213
214
215
216
217
218
219
220static int alarmtimer_suspend(struct device *dev)
221{
222 struct rtc_time tm;
223 ktime_t min, now;
224 unsigned long flags;
225 struct rtc_device *rtc;
226 int i;
227 int ret;
228
229 spin_lock_irqsave(&freezer_delta_lock, flags);
230 min = freezer_delta;
231 freezer_delta = ktime_set(0, 0);
232 spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234 rtc = alarmtimer_get_rtcdev();
235
236 if (!rtc)
237 return 0;
238
239
240 for (i = 0; i < ALARM_NUMTYPE; i++) {
241 struct alarm_base *base = &alarm_bases[i];
242 struct timerqueue_node *next;
243 ktime_t delta;
244
245 spin_lock_irqsave(&base->lock, flags);
246 next = timerqueue_getnext(&base->timerqueue);
247 spin_unlock_irqrestore(&base->lock, flags);
248 if (!next)
249 continue;
250 delta = ktime_sub(next->expires, base->gettime());
251 if (!min.tv64 || (delta.tv64 < min.tv64))
252 min = delta;
253 }
254 if (min.tv64 == 0)
255 return 0;
256
257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 return -EBUSY;
260 }
261
262
263 rtc_timer_cancel(rtc, &rtctimer);
264 rtc_read_time(rtc, &tm);
265 now = rtc_tm_to_ktime(tm);
266 now = ktime_add(now, min);
267
268
269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 if (ret < 0)
271 __pm_wakeup_event(ws, MSEC_PER_SEC);
272 return ret;
273}
274
275static int alarmtimer_resume(struct device *dev)
276{
277 struct rtc_device *rtc;
278
279 rtc = alarmtimer_get_rtcdev();
280 if (rtc)
281 rtc_timer_cancel(rtc, &rtctimer);
282 return 0;
283}
284
285#else
286static int alarmtimer_suspend(struct device *dev)
287{
288 return 0;
289}
290
291static int alarmtimer_resume(struct device *dev)
292{
293 return 0;
294}
295#endif
296
297static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
298{
299 ktime_t delta;
300 unsigned long flags;
301 struct alarm_base *base = &alarm_bases[type];
302
303 delta = ktime_sub(absexp, base->gettime());
304
305 spin_lock_irqsave(&freezer_delta_lock, flags);
306 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
307 freezer_delta = delta;
308 spin_unlock_irqrestore(&freezer_delta_lock, flags);
309}
310
311
312
313
314
315
316
317
318void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
319 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
320{
321 timerqueue_init(&alarm->node);
322 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
323 HRTIMER_MODE_ABS);
324 alarm->timer.function = alarmtimer_fired;
325 alarm->function = function;
326 alarm->type = type;
327 alarm->state = ALARMTIMER_STATE_INACTIVE;
328}
329EXPORT_SYMBOL_GPL(alarm_init);
330
331
332
333
334
335
336void alarm_start(struct alarm *alarm, ktime_t start)
337{
338 struct alarm_base *base = &alarm_bases[alarm->type];
339 unsigned long flags;
340
341 spin_lock_irqsave(&base->lock, flags);
342 alarm->node.expires = start;
343 alarmtimer_enqueue(base, alarm);
344 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
345 spin_unlock_irqrestore(&base->lock, flags);
346}
347EXPORT_SYMBOL_GPL(alarm_start);
348
349
350
351
352
353
354void alarm_start_relative(struct alarm *alarm, ktime_t start)
355{
356 struct alarm_base *base = &alarm_bases[alarm->type];
357
358 start = ktime_add(start, base->gettime());
359 alarm_start(alarm, start);
360}
361EXPORT_SYMBOL_GPL(alarm_start_relative);
362
363void alarm_restart(struct alarm *alarm)
364{
365 struct alarm_base *base = &alarm_bases[alarm->type];
366 unsigned long flags;
367
368 spin_lock_irqsave(&base->lock, flags);
369 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
370 hrtimer_restart(&alarm->timer);
371 alarmtimer_enqueue(base, alarm);
372 spin_unlock_irqrestore(&base->lock, flags);
373}
374EXPORT_SYMBOL_GPL(alarm_restart);
375
376
377
378
379
380
381
382
383int alarm_try_to_cancel(struct alarm *alarm)
384{
385 struct alarm_base *base = &alarm_bases[alarm->type];
386 unsigned long flags;
387 int ret;
388
389 spin_lock_irqsave(&base->lock, flags);
390 ret = hrtimer_try_to_cancel(&alarm->timer);
391 if (ret >= 0)
392 alarmtimer_dequeue(base, alarm);
393 spin_unlock_irqrestore(&base->lock, flags);
394 return ret;
395}
396EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
397
398
399
400
401
402
403
404
405int alarm_cancel(struct alarm *alarm)
406{
407 for (;;) {
408 int ret = alarm_try_to_cancel(alarm);
409 if (ret >= 0)
410 return ret;
411 cpu_relax();
412 }
413}
414EXPORT_SYMBOL_GPL(alarm_cancel);
415
416
417u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
418{
419 u64 overrun = 1;
420 ktime_t delta;
421
422 delta = ktime_sub(now, alarm->node.expires);
423
424 if (delta.tv64 < 0)
425 return 0;
426
427 if (unlikely(delta.tv64 >= interval.tv64)) {
428 s64 incr = ktime_to_ns(interval);
429
430 overrun = ktime_divns(delta, incr);
431
432 alarm->node.expires = ktime_add_ns(alarm->node.expires,
433 incr*overrun);
434
435 if (alarm->node.expires.tv64 > now.tv64)
436 return overrun;
437
438
439
440
441 overrun++;
442 }
443
444 alarm->node.expires = ktime_add(alarm->node.expires, interval);
445 return overrun;
446}
447EXPORT_SYMBOL_GPL(alarm_forward);
448
449u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
450{
451 struct alarm_base *base = &alarm_bases[alarm->type];
452
453 return alarm_forward(alarm, base->gettime(), interval);
454}
455EXPORT_SYMBOL_GPL(alarm_forward_now);
456
457
458
459
460
461
462static enum alarmtimer_type clock2alarm(clockid_t clockid)
463{
464 if (clockid == CLOCK_REALTIME_ALARM)
465 return ALARM_REALTIME;
466 if (clockid == CLOCK_BOOTTIME_ALARM)
467 return ALARM_BOOTTIME;
468 return -1;
469}
470
471
472
473
474
475
476
477static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
478 ktime_t now)
479{
480 unsigned long flags;
481 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
482 it.alarm.alarmtimer);
483 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
484
485 spin_lock_irqsave(&ptr->it_lock, flags);
486 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
487 if (posix_timer_event(ptr, 0) != 0)
488 ptr->it_overrun++;
489 }
490
491
492 if (ptr->it.alarm.interval.tv64) {
493 ptr->it_overrun += alarm_forward(alarm, now,
494 ptr->it.alarm.interval);
495 result = ALARMTIMER_RESTART;
496 }
497 spin_unlock_irqrestore(&ptr->it_lock, flags);
498
499 return result;
500}
501
502
503
504
505
506
507
508
509static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
510{
511 if (!alarmtimer_get_rtcdev())
512 return -EINVAL;
513
514 tp->tv_sec = 0;
515 tp->tv_nsec = hrtimer_resolution;
516 return 0;
517}
518
519
520
521
522
523
524
525
526static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
527{
528 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
529
530 if (!alarmtimer_get_rtcdev())
531 return -EINVAL;
532
533 *tp = ktime_to_timespec(base->gettime());
534 return 0;
535}
536
537
538
539
540
541
542
543static int alarm_timer_create(struct k_itimer *new_timer)
544{
545 enum alarmtimer_type type;
546 struct alarm_base *base;
547
548 if (!alarmtimer_get_rtcdev())
549 return -ENOTSUPP;
550
551 if (!capable(CAP_WAKE_ALARM))
552 return -EPERM;
553
554 type = clock2alarm(new_timer->it_clock);
555 base = &alarm_bases[type];
556 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
557 return 0;
558}
559
560
561
562
563
564
565
566
567static void alarm_timer_get(struct k_itimer *timr,
568 struct itimerspec *cur_setting)
569{
570 ktime_t relative_expiry_time =
571 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
572
573 if (ktime_to_ns(relative_expiry_time) > 0) {
574 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
575 } else {
576 cur_setting->it_value.tv_sec = 0;
577 cur_setting->it_value.tv_nsec = 0;
578 }
579
580 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
581}
582
583
584
585
586
587
588
589static int alarm_timer_del(struct k_itimer *timr)
590{
591 if (!rtcdev)
592 return -ENOTSUPP;
593
594 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
595 return TIMER_RETRY;
596
597 return 0;
598}
599
600
601
602
603
604
605
606
607
608
609static int alarm_timer_set(struct k_itimer *timr, int flags,
610 struct itimerspec *new_setting,
611 struct itimerspec *old_setting)
612{
613 ktime_t exp;
614
615 if (!rtcdev)
616 return -ENOTSUPP;
617
618 if (flags & ~TIMER_ABSTIME)
619 return -EINVAL;
620
621 if (old_setting)
622 alarm_timer_get(timr, old_setting);
623
624
625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 return TIMER_RETRY;
627
628
629 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
630 exp = timespec_to_ktime(new_setting->it_value);
631
632 if (flags != TIMER_ABSTIME) {
633 ktime_t now;
634
635 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
636 exp = ktime_add(now, exp);
637 }
638
639 alarm_start(&timr->it.alarm.alarmtimer, exp);
640 return 0;
641}
642
643
644
645
646
647
648
649static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
650 ktime_t now)
651{
652 struct task_struct *task = (struct task_struct *)alarm->data;
653
654 alarm->data = NULL;
655 if (task)
656 wake_up_process(task);
657 return ALARMTIMER_NORESTART;
658}
659
660
661
662
663
664
665
666
667static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
668{
669 alarm->data = (void *)current;
670 do {
671 set_current_state(TASK_INTERRUPTIBLE);
672 alarm_start(alarm, absexp);
673 if (likely(alarm->data))
674 schedule();
675
676 alarm_cancel(alarm);
677 } while (alarm->data && !signal_pending(current));
678
679 __set_current_state(TASK_RUNNING);
680
681 return (alarm->data == NULL);
682}
683
684
685
686
687
688
689
690
691
692
693
694static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
695 struct timespec __user *rmtp)
696{
697 struct timespec rmt;
698 ktime_t rem;
699
700 rem = ktime_sub(exp, alarm_bases[type].gettime());
701
702 if (rem.tv64 <= 0)
703 return 0;
704 rmt = ktime_to_timespec(rem);
705
706 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
707 return -EFAULT;
708
709 return 1;
710
711}
712
713
714
715
716
717
718
719static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
720{
721 enum alarmtimer_type type = restart->nanosleep.clockid;
722 ktime_t exp;
723 struct timespec __user *rmtp;
724 struct alarm alarm;
725 int ret = 0;
726
727 exp.tv64 = restart->nanosleep.expires;
728 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
729
730 if (alarmtimer_do_nsleep(&alarm, exp))
731 goto out;
732
733 if (freezing(current))
734 alarmtimer_freezerset(exp, type);
735
736 rmtp = restart->nanosleep.rmtp;
737 if (rmtp) {
738 ret = update_rmtp(exp, type, rmtp);
739 if (ret <= 0)
740 goto out;
741 }
742
743
744
745 ret = -ERESTART_RESTARTBLOCK;
746out:
747 return ret;
748}
749
750
751
752
753
754
755
756
757
758
759static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
760 struct timespec *tsreq, struct timespec __user *rmtp)
761{
762 enum alarmtimer_type type = clock2alarm(which_clock);
763 struct alarm alarm;
764 ktime_t exp;
765 int ret = 0;
766 struct restart_block *restart;
767
768 if (!alarmtimer_get_rtcdev())
769 return -ENOTSUPP;
770
771 if (flags & ~TIMER_ABSTIME)
772 return -EINVAL;
773
774 if (!capable(CAP_WAKE_ALARM))
775 return -EPERM;
776
777 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
778
779 exp = timespec_to_ktime(*tsreq);
780
781 if (flags != TIMER_ABSTIME) {
782 ktime_t now = alarm_bases[type].gettime();
783 exp = ktime_add(now, exp);
784 }
785
786 if (alarmtimer_do_nsleep(&alarm, exp))
787 goto out;
788
789 if (freezing(current))
790 alarmtimer_freezerset(exp, type);
791
792
793 if (flags == TIMER_ABSTIME) {
794 ret = -ERESTARTNOHAND;
795 goto out;
796 }
797
798 if (rmtp) {
799 ret = update_rmtp(exp, type, rmtp);
800 if (ret <= 0)
801 goto out;
802 }
803
804 restart = ¤t->restart_block;
805 restart->fn = alarm_timer_nsleep_restart;
806 restart->nanosleep.clockid = type;
807 restart->nanosleep.expires = exp.tv64;
808 restart->nanosleep.rmtp = rmtp;
809 ret = -ERESTART_RESTARTBLOCK;
810
811out:
812 return ret;
813}
814
815
816
817static const struct dev_pm_ops alarmtimer_pm_ops = {
818 .suspend = alarmtimer_suspend,
819 .resume = alarmtimer_resume,
820};
821
822static struct platform_driver alarmtimer_driver = {
823 .driver = {
824 .name = "alarmtimer",
825 .pm = &alarmtimer_pm_ops,
826 }
827};
828
829
830
831
832
833
834
835static int __init alarmtimer_init(void)
836{
837 struct platform_device *pdev;
838 int error = 0;
839 int i;
840 struct k_clock alarm_clock = {
841 .clock_getres = alarm_clock_getres,
842 .clock_get = alarm_clock_get,
843 .timer_create = alarm_timer_create,
844 .timer_set = alarm_timer_set,
845 .timer_del = alarm_timer_del,
846 .timer_get = alarm_timer_get,
847 .nsleep = alarm_timer_nsleep,
848 };
849
850 alarmtimer_rtc_timer_init();
851
852 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
853 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
854
855
856 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
857 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
858 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
859 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
860 for (i = 0; i < ALARM_NUMTYPE; i++) {
861 timerqueue_init_head(&alarm_bases[i].timerqueue);
862 spin_lock_init(&alarm_bases[i].lock);
863 }
864
865 error = alarmtimer_rtc_interface_setup();
866 if (error)
867 return error;
868
869 error = platform_driver_register(&alarmtimer_driver);
870 if (error)
871 goto out_if;
872
873 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
874 if (IS_ERR(pdev)) {
875 error = PTR_ERR(pdev);
876 goto out_drv;
877 }
878 ws = wakeup_source_register("alarmtimer");
879 return 0;
880
881out_drv:
882 platform_driver_unregister(&alarmtimer_driver);
883out_if:
884 alarmtimer_rtc_interface_remove();
885 return error;
886}
887device_initcall(alarmtimer_init);
888