linux/kernel/time/clockevents.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/clockevents.c
   3 *
   4 * This file contains functions which manage clock event devices.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
   9 *
  10 * This code is licenced under the GPL version 2. For details see
  11 * kernel-base/COPYING.
  12 */
  13
  14#include <linux/clockchips.h>
  15#include <linux/hrtimer.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/smp.h>
  19#include <linux/device.h>
  20
  21#include "tick-internal.h"
  22
  23/* The registered clock event devices */
  24static LIST_HEAD(clockevent_devices);
  25static LIST_HEAD(clockevents_released);
  26/* Protection for the above */
  27static DEFINE_RAW_SPINLOCK(clockevents_lock);
  28/* Protection for unbind operations */
  29static DEFINE_MUTEX(clockevents_mutex);
  30
  31struct ce_unbind {
  32        struct clock_event_device *ce;
  33        int res;
  34};
  35
  36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
  37                        bool ismax)
  38{
  39        u64 clc = (u64) latch << evt->shift;
  40        u64 rnd;
  41
  42        if (unlikely(!evt->mult)) {
  43                evt->mult = 1;
  44                WARN_ON(1);
  45        }
  46        rnd = (u64) evt->mult - 1;
  47
  48        /*
  49         * Upper bound sanity check. If the backwards conversion is
  50         * not equal latch, we know that the above shift overflowed.
  51         */
  52        if ((clc >> evt->shift) != (u64)latch)
  53                clc = ~0ULL;
  54
  55        /*
  56         * Scaled math oddities:
  57         *
  58         * For mult <= (1 << shift) we can safely add mult - 1 to
  59         * prevent integer rounding loss. So the backwards conversion
  60         * from nsec to device ticks will be correct.
  61         *
  62         * For mult > (1 << shift), i.e. device frequency is > 1GHz we
  63         * need to be careful. Adding mult - 1 will result in a value
  64         * which when converted back to device ticks can be larger
  65         * than latch by up to (mult - 1) >> shift. For the min_delta
  66         * calculation we still want to apply this in order to stay
  67         * above the minimum device ticks limit. For the upper limit
  68         * we would end up with a latch value larger than the upper
  69         * limit of the device, so we omit the add to stay below the
  70         * device upper boundary.
  71         *
  72         * Also omit the add if it would overflow the u64 boundary.
  73         */
  74        if ((~0ULL - clc > rnd) &&
  75            (!ismax || evt->mult <= (1ULL << evt->shift)))
  76                clc += rnd;
  77
  78        do_div(clc, evt->mult);
  79
  80        /* Deltas less than 1usec are pointless noise */
  81        return clc > 1000 ? clc : 1000;
  82}
  83
  84/**
  85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
  86 * @latch:      value to convert
  87 * @evt:        pointer to clock event device descriptor
  88 *
  89 * Math helper, returns latch value converted to nanoseconds (bound checked)
  90 */
  91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
  92{
  93        return cev_delta2ns(latch, evt, false);
  94}
  95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
  96
  97static int __clockevents_switch_state(struct clock_event_device *dev,
  98                                      enum clock_event_state state)
  99{
 100        if (dev->features & CLOCK_EVT_FEAT_DUMMY)
 101                return 0;
 102
 103        /* Transition with new state-specific callbacks */
 104        switch (state) {
 105        case CLOCK_EVT_STATE_DETACHED:
 106                /* The clockevent device is getting replaced. Shut it down. */
 107
 108        case CLOCK_EVT_STATE_SHUTDOWN:
 109                if (dev->set_state_shutdown)
 110                        return dev->set_state_shutdown(dev);
 111                return 0;
 112
 113        case CLOCK_EVT_STATE_PERIODIC:
 114                /* Core internal bug */
 115                if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
 116                        return -ENOSYS;
 117                if (dev->set_state_periodic)
 118                        return dev->set_state_periodic(dev);
 119                return 0;
 120
 121        case CLOCK_EVT_STATE_ONESHOT:
 122                /* Core internal bug */
 123                if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 124                        return -ENOSYS;
 125                if (dev->set_state_oneshot)
 126                        return dev->set_state_oneshot(dev);
 127                return 0;
 128
 129        case CLOCK_EVT_STATE_ONESHOT_STOPPED:
 130                /* Core internal bug */
 131                if (WARN_ONCE(!clockevent_state_oneshot(dev),
 132                              "Current state: %d\n",
 133                              clockevent_get_state(dev)))
 134                        return -EINVAL;
 135
 136                if (dev->set_state_oneshot_stopped)
 137                        return dev->set_state_oneshot_stopped(dev);
 138                else
 139                        return -ENOSYS;
 140
 141        default:
 142                return -ENOSYS;
 143        }
 144}
 145
 146/**
 147 * clockevents_switch_state - set the operating state of a clock event device
 148 * @dev:        device to modify
 149 * @state:      new state
 150 *
 151 * Must be called with interrupts disabled !
 152 */
 153void clockevents_switch_state(struct clock_event_device *dev,
 154                              enum clock_event_state state)
 155{
 156        if (clockevent_get_state(dev) != state) {
 157                if (__clockevents_switch_state(dev, state))
 158                        return;
 159
 160                clockevent_set_state(dev, state);
 161
 162                /*
 163                 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
 164                 * on it, so fix it up and emit a warning:
 165                 */
 166                if (clockevent_state_oneshot(dev)) {
 167                        if (unlikely(!dev->mult)) {
 168                                dev->mult = 1;
 169                                WARN_ON(1);
 170                        }
 171                }
 172        }
 173}
 174
 175/**
 176 * clockevents_shutdown - shutdown the device and clear next_event
 177 * @dev:        device to shutdown
 178 */
 179void clockevents_shutdown(struct clock_event_device *dev)
 180{
 181        clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 182        dev->next_event.tv64 = KTIME_MAX;
 183}
 184
 185/**
 186 * clockevents_tick_resume -    Resume the tick device before using it again
 187 * @dev:                        device to resume
 188 */
 189int clockevents_tick_resume(struct clock_event_device *dev)
 190{
 191        int ret = 0;
 192
 193        if (dev->tick_resume)
 194                ret = dev->tick_resume(dev);
 195
 196        return ret;
 197}
 198
 199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
 200
 201/* Limit min_delta to a jiffie */
 202#define MIN_DELTA_LIMIT         (NSEC_PER_SEC / HZ)
 203
 204/**
 205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
 206 * @dev:       device to increase the minimum delta
 207 *
 208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
 209 */
 210static int clockevents_increase_min_delta(struct clock_event_device *dev)
 211{
 212        /* Nothing to do if we already reached the limit */
 213        if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
 214                printk_deferred(KERN_WARNING
 215                                "CE: Reprogramming failure. Giving up\n");
 216                dev->next_event.tv64 = KTIME_MAX;
 217                return -ETIME;
 218        }
 219
 220        if (dev->min_delta_ns < 5000)
 221                dev->min_delta_ns = 5000;
 222        else
 223                dev->min_delta_ns += dev->min_delta_ns >> 1;
 224
 225        if (dev->min_delta_ns > MIN_DELTA_LIMIT)
 226                dev->min_delta_ns = MIN_DELTA_LIMIT;
 227
 228        printk_deferred(KERN_WARNING
 229                        "CE: %s increased min_delta_ns to %llu nsec\n",
 230                        dev->name ? dev->name : "?",
 231                        (unsigned long long) dev->min_delta_ns);
 232        return 0;
 233}
 234
 235/**
 236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
 237 * @dev:        device to program
 238 *
 239 * Returns 0 on success, -ETIME when the retry loop failed.
 240 */
 241static int clockevents_program_min_delta(struct clock_event_device *dev)
 242{
 243        unsigned long long clc;
 244        int64_t delta;
 245        int i;
 246
 247        for (i = 0;;) {
 248                delta = dev->min_delta_ns;
 249                dev->next_event = ktime_add_ns(ktime_get(), delta);
 250
 251                if (clockevent_state_shutdown(dev))
 252                        return 0;
 253
 254                dev->retries++;
 255                clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 256                if (dev->set_next_event((unsigned long) clc, dev) == 0)
 257                        return 0;
 258
 259                if (++i > 2) {
 260                        /*
 261                         * We tried 3 times to program the device with the
 262                         * given min_delta_ns. Try to increase the minimum
 263                         * delta, if that fails as well get out of here.
 264                         */
 265                        if (clockevents_increase_min_delta(dev))
 266                                return -ETIME;
 267                        i = 0;
 268                }
 269        }
 270}
 271
 272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
 273
 274/**
 275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
 276 * @dev:        device to program
 277 *
 278 * Returns 0 on success, -ETIME when the retry loop failed.
 279 */
 280static int clockevents_program_min_delta(struct clock_event_device *dev)
 281{
 282        unsigned long long clc;
 283        int64_t delta;
 284
 285        delta = dev->min_delta_ns;
 286        dev->next_event = ktime_add_ns(ktime_get(), delta);
 287
 288        if (clockevent_state_shutdown(dev))
 289                return 0;
 290
 291        dev->retries++;
 292        clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 293        return dev->set_next_event((unsigned long) clc, dev);
 294}
 295
 296#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
 297
 298/**
 299 * clockevents_program_event - Reprogram the clock event device.
 300 * @dev:        device to program
 301 * @expires:    absolute expiry time (monotonic clock)
 302 * @force:      program minimum delay if expires can not be set
 303 *
 304 * Returns 0 on success, -ETIME when the event is in the past.
 305 */
 306int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
 307                              bool force)
 308{
 309        unsigned long long clc;
 310        int64_t delta;
 311        int rc;
 312
 313        if (unlikely(expires.tv64 < 0)) {
 314                WARN_ON_ONCE(1);
 315                return -ETIME;
 316        }
 317
 318        dev->next_event = expires;
 319
 320        if (clockevent_state_shutdown(dev))
 321                return 0;
 322
 323        /* We must be in ONESHOT state here */
 324        WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
 325                  clockevent_get_state(dev));
 326
 327        /* Shortcut for clockevent devices that can deal with ktime. */
 328        if (dev->features & CLOCK_EVT_FEAT_KTIME)
 329                return dev->set_next_ktime(expires, dev);
 330
 331        delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
 332        if (delta <= 0)
 333                return force ? clockevents_program_min_delta(dev) : -ETIME;
 334
 335        delta = min(delta, (int64_t) dev->max_delta_ns);
 336        delta = max(delta, (int64_t) dev->min_delta_ns);
 337
 338        clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 339        rc = dev->set_next_event((unsigned long) clc, dev);
 340
 341        return (rc && force) ? clockevents_program_min_delta(dev) : rc;
 342}
 343
 344/*
 345 * Called after a notify add to make devices available which were
 346 * released from the notifier call.
 347 */
 348static void clockevents_notify_released(void)
 349{
 350        struct clock_event_device *dev;
 351
 352        while (!list_empty(&clockevents_released)) {
 353                dev = list_entry(clockevents_released.next,
 354                                 struct clock_event_device, list);
 355                list_del(&dev->list);
 356                list_add(&dev->list, &clockevent_devices);
 357                tick_check_new_device(dev);
 358        }
 359}
 360
 361/*
 362 * Try to install a replacement clock event device
 363 */
 364static int clockevents_replace(struct clock_event_device *ced)
 365{
 366        struct clock_event_device *dev, *newdev = NULL;
 367
 368        list_for_each_entry(dev, &clockevent_devices, list) {
 369                if (dev == ced || !clockevent_state_detached(dev))
 370                        continue;
 371
 372                if (!tick_check_replacement(newdev, dev))
 373                        continue;
 374
 375                if (!try_module_get(dev->owner))
 376                        continue;
 377
 378                if (newdev)
 379                        module_put(newdev->owner);
 380                newdev = dev;
 381        }
 382        if (newdev) {
 383                tick_install_replacement(newdev);
 384                list_del_init(&ced->list);
 385        }
 386        return newdev ? 0 : -EBUSY;
 387}
 388
 389/*
 390 * Called with clockevents_mutex and clockevents_lock held
 391 */
 392static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
 393{
 394        /* Fast track. Device is unused */
 395        if (clockevent_state_detached(ced)) {
 396                list_del_init(&ced->list);
 397                return 0;
 398        }
 399
 400        return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
 401}
 402
 403/*
 404 * SMP function call to unbind a device
 405 */
 406static void __clockevents_unbind(void *arg)
 407{
 408        struct ce_unbind *cu = arg;
 409        int res;
 410
 411        raw_spin_lock(&clockevents_lock);
 412        res = __clockevents_try_unbind(cu->ce, smp_processor_id());
 413        if (res == -EAGAIN)
 414                res = clockevents_replace(cu->ce);
 415        cu->res = res;
 416        raw_spin_unlock(&clockevents_lock);
 417}
 418
 419/*
 420 * Issues smp function call to unbind a per cpu device. Called with
 421 * clockevents_mutex held.
 422 */
 423static int clockevents_unbind(struct clock_event_device *ced, int cpu)
 424{
 425        struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
 426
 427        smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
 428        return cu.res;
 429}
 430
 431/*
 432 * Unbind a clockevents device.
 433 */
 434int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
 435{
 436        int ret;
 437
 438        mutex_lock(&clockevents_mutex);
 439        ret = clockevents_unbind(ced, cpu);
 440        mutex_unlock(&clockevents_mutex);
 441        return ret;
 442}
 443EXPORT_SYMBOL_GPL(clockevents_unbind_device);
 444
 445/**
 446 * clockevents_register_device - register a clock event device
 447 * @dev:        device to register
 448 */
 449void clockevents_register_device(struct clock_event_device *dev)
 450{
 451        unsigned long flags;
 452
 453        /* Initialize state to DETACHED */
 454        clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
 455
 456        if (!dev->cpumask) {
 457                WARN_ON(num_possible_cpus() > 1);
 458                dev->cpumask = cpumask_of(smp_processor_id());
 459        }
 460
 461        raw_spin_lock_irqsave(&clockevents_lock, flags);
 462
 463        list_add(&dev->list, &clockevent_devices);
 464        tick_check_new_device(dev);
 465        clockevents_notify_released();
 466
 467        raw_spin_unlock_irqrestore(&clockevents_lock, flags);
 468}
 469EXPORT_SYMBOL_GPL(clockevents_register_device);
 470
 471void clockevents_config(struct clock_event_device *dev, u32 freq)
 472{
 473        u64 sec;
 474
 475        if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 476                return;
 477
 478        /*
 479         * Calculate the maximum number of seconds we can sleep. Limit
 480         * to 10 minutes for hardware which can program more than
 481         * 32bit ticks so we still get reasonable conversion values.
 482         */
 483        sec = dev->max_delta_ticks;
 484        do_div(sec, freq);
 485        if (!sec)
 486                sec = 1;
 487        else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
 488                sec = 600;
 489
 490        clockevents_calc_mult_shift(dev, freq, sec);
 491        dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
 492        dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
 493}
 494
 495/**
 496 * clockevents_config_and_register - Configure and register a clock event device
 497 * @dev:        device to register
 498 * @freq:       The clock frequency
 499 * @min_delta:  The minimum clock ticks to program in oneshot mode
 500 * @max_delta:  The maximum clock ticks to program in oneshot mode
 501 *
 502 * min/max_delta can be 0 for devices which do not support oneshot mode.
 503 */
 504void clockevents_config_and_register(struct clock_event_device *dev,
 505                                     u32 freq, unsigned long min_delta,
 506                                     unsigned long max_delta)
 507{
 508        dev->min_delta_ticks = min_delta;
 509        dev->max_delta_ticks = max_delta;
 510        clockevents_config(dev, freq);
 511        clockevents_register_device(dev);
 512}
 513EXPORT_SYMBOL_GPL(clockevents_config_and_register);
 514
 515int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
 516{
 517        clockevents_config(dev, freq);
 518
 519        if (clockevent_state_oneshot(dev))
 520                return clockevents_program_event(dev, dev->next_event, false);
 521
 522        if (clockevent_state_periodic(dev))
 523                return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
 524
 525        return 0;
 526}
 527
 528/**
 529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
 530 * @dev:        device to modify
 531 * @freq:       new device frequency
 532 *
 533 * Reconfigure and reprogram a clock event device in oneshot
 534 * mode. Must be called on the cpu for which the device delivers per
 535 * cpu timer events. If called for the broadcast device the core takes
 536 * care of serialization.
 537 *
 538 * Returns 0 on success, -ETIME when the event is in the past.
 539 */
 540int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
 541{
 542        unsigned long flags;
 543        int ret;
 544
 545        local_irq_save(flags);
 546        ret = tick_broadcast_update_freq(dev, freq);
 547        if (ret == -ENODEV)
 548                ret = __clockevents_update_freq(dev, freq);
 549        local_irq_restore(flags);
 550        return ret;
 551}
 552
 553/*
 554 * Noop handler when we shut down an event device
 555 */
 556void clockevents_handle_noop(struct clock_event_device *dev)
 557{
 558}
 559
 560/**
 561 * clockevents_exchange_device - release and request clock devices
 562 * @old:        device to release (can be NULL)
 563 * @new:        device to request (can be NULL)
 564 *
 565 * Called from various tick functions with clockevents_lock held and
 566 * interrupts disabled.
 567 */
 568void clockevents_exchange_device(struct clock_event_device *old,
 569                                 struct clock_event_device *new)
 570{
 571        /*
 572         * Caller releases a clock event device. We queue it into the
 573         * released list and do a notify add later.
 574         */
 575        if (old) {
 576                module_put(old->owner);
 577                clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
 578                list_del(&old->list);
 579                list_add(&old->list, &clockevents_released);
 580        }
 581
 582        if (new) {
 583                BUG_ON(!clockevent_state_detached(new));
 584                clockevents_shutdown(new);
 585        }
 586}
 587
 588/**
 589 * clockevents_suspend - suspend clock devices
 590 */
 591void clockevents_suspend(void)
 592{
 593        struct clock_event_device *dev;
 594
 595        list_for_each_entry_reverse(dev, &clockevent_devices, list)
 596                if (dev->suspend && !clockevent_state_detached(dev))
 597                        dev->suspend(dev);
 598}
 599
 600/**
 601 * clockevents_resume - resume clock devices
 602 */
 603void clockevents_resume(void)
 604{
 605        struct clock_event_device *dev;
 606
 607        list_for_each_entry(dev, &clockevent_devices, list)
 608                if (dev->resume && !clockevent_state_detached(dev))
 609                        dev->resume(dev);
 610}
 611
 612#ifdef CONFIG_HOTPLUG_CPU
 613/**
 614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
 615 */
 616void tick_cleanup_dead_cpu(int cpu)
 617{
 618        struct clock_event_device *dev, *tmp;
 619        unsigned long flags;
 620
 621        raw_spin_lock_irqsave(&clockevents_lock, flags);
 622
 623        tick_shutdown_broadcast_oneshot(cpu);
 624        tick_shutdown_broadcast(cpu);
 625        tick_shutdown(cpu);
 626        /*
 627         * Unregister the clock event devices which were
 628         * released from the users in the notify chain.
 629         */
 630        list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
 631                list_del(&dev->list);
 632        /*
 633         * Now check whether the CPU has left unused per cpu devices
 634         */
 635        list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
 636                if (cpumask_test_cpu(cpu, dev->cpumask) &&
 637                    cpumask_weight(dev->cpumask) == 1 &&
 638                    !tick_is_broadcast_device(dev)) {
 639                        BUG_ON(!clockevent_state_detached(dev));
 640                        list_del(&dev->list);
 641                }
 642        }
 643        raw_spin_unlock_irqrestore(&clockevents_lock, flags);
 644}
 645#endif
 646
 647#ifdef CONFIG_SYSFS
 648struct bus_type clockevents_subsys = {
 649        .name           = "clockevents",
 650        .dev_name       = "clockevent",
 651};
 652
 653static DEFINE_PER_CPU(struct device, tick_percpu_dev);
 654static struct tick_device *tick_get_tick_dev(struct device *dev);
 655
 656static ssize_t sysfs_show_current_tick_dev(struct device *dev,
 657                                           struct device_attribute *attr,
 658                                           char *buf)
 659{
 660        struct tick_device *td;
 661        ssize_t count = 0;
 662
 663        raw_spin_lock_irq(&clockevents_lock);
 664        td = tick_get_tick_dev(dev);
 665        if (td && td->evtdev)
 666                count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
 667        raw_spin_unlock_irq(&clockevents_lock);
 668        return count;
 669}
 670static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
 671
 672/* We don't support the abomination of removable broadcast devices */
 673static ssize_t sysfs_unbind_tick_dev(struct device *dev,
 674                                     struct device_attribute *attr,
 675                                     const char *buf, size_t count)
 676{
 677        char name[CS_NAME_LEN];
 678        ssize_t ret = sysfs_get_uname(buf, name, count);
 679        struct clock_event_device *ce;
 680
 681        if (ret < 0)
 682                return ret;
 683
 684        ret = -ENODEV;
 685        mutex_lock(&clockevents_mutex);
 686        raw_spin_lock_irq(&clockevents_lock);
 687        list_for_each_entry(ce, &clockevent_devices, list) {
 688                if (!strcmp(ce->name, name)) {
 689                        ret = __clockevents_try_unbind(ce, dev->id);
 690                        break;
 691                }
 692        }
 693        raw_spin_unlock_irq(&clockevents_lock);
 694        /*
 695         * We hold clockevents_mutex, so ce can't go away
 696         */
 697        if (ret == -EAGAIN)
 698                ret = clockevents_unbind(ce, dev->id);
 699        mutex_unlock(&clockevents_mutex);
 700        return ret ? ret : count;
 701}
 702static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
 703
 704#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 705static struct device tick_bc_dev = {
 706        .init_name      = "broadcast",
 707        .id             = 0,
 708        .bus            = &clockevents_subsys,
 709};
 710
 711static struct tick_device *tick_get_tick_dev(struct device *dev)
 712{
 713        return dev == &tick_bc_dev ? tick_get_broadcast_device() :
 714                &per_cpu(tick_cpu_device, dev->id);
 715}
 716
 717static __init int tick_broadcast_init_sysfs(void)
 718{
 719        int err = device_register(&tick_bc_dev);
 720
 721        if (!err)
 722                err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
 723        return err;
 724}
 725#else
 726static struct tick_device *tick_get_tick_dev(struct device *dev)
 727{
 728        return &per_cpu(tick_cpu_device, dev->id);
 729}
 730static inline int tick_broadcast_init_sysfs(void) { return 0; }
 731#endif
 732
 733static int __init tick_init_sysfs(void)
 734{
 735        int cpu;
 736
 737        for_each_possible_cpu(cpu) {
 738                struct device *dev = &per_cpu(tick_percpu_dev, cpu);
 739                int err;
 740
 741                dev->id = cpu;
 742                dev->bus = &clockevents_subsys;
 743                err = device_register(dev);
 744                if (!err)
 745                        err = device_create_file(dev, &dev_attr_current_device);
 746                if (!err)
 747                        err = device_create_file(dev, &dev_attr_unbind_device);
 748                if (err)
 749                        return err;
 750        }
 751        return tick_broadcast_init_sysfs();
 752}
 753
 754static int __init clockevents_init_sysfs(void)
 755{
 756        int err = subsys_system_register(&clockevents_subsys, NULL);
 757
 758        if (!err)
 759                err = tick_init_sysfs();
 760        return err;
 761}
 762device_initcall(clockevents_init_sysfs);
 763#endif /* SYSFS */
 764