linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "tick-internal.h"
  58
  59/*
  60 * The timer bases:
  61 *
  62 * There are more clockids than hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  70        .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93        }
  94};
  95
  96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  97        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
  98        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
  99        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 100        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 101};
 102
 103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 104{
 105        return hrtimer_clock_to_base_table[clock_id];
 106}
 107
 108/*
 109 * Functions and macros which are different for UP/SMP systems are kept in a
 110 * single place
 111 */
 112#ifdef CONFIG_SMP
 113
 114/*
 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 116 * such that hrtimer_callback_running() can unconditionally dereference
 117 * timer->base->cpu_base
 118 */
 119static struct hrtimer_cpu_base migration_cpu_base = {
 120        .seq = SEQCNT_ZERO(migration_cpu_base),
 121        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 122};
 123
 124#define migration_base  migration_cpu_base.clock_base[0]
 125
 126/*
 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 128 * means that all timers which are tied to this base via timer->base are
 129 * locked, and the base itself is locked too.
 130 *
 131 * So __run_timers/migrate_timers can safely modify all timers which could
 132 * be found on the lists/queues.
 133 *
 134 * When the timer's base is locked, and the timer removed from list, it is
 135 * possible to set timer->base = &migration_base and drop the lock: the timer
 136 * remains locked.
 137 */
 138static
 139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 140                                             unsigned long *flags)
 141{
 142        struct hrtimer_clock_base *base;
 143
 144        for (;;) {
 145                base = timer->base;
 146                if (likely(base != &migration_base)) {
 147                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 148                        if (likely(base == timer->base))
 149                                return base;
 150                        /* The timer has migrated to another CPU: */
 151                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 152                }
 153                cpu_relax();
 154        }
 155}
 156
 157/*
 158 * With HIGHRES=y we do not migrate the timer when it is expiring
 159 * before the next event on the target cpu because we cannot reprogram
 160 * the target cpu hardware and we would cause it to fire late.
 161 *
 162 * Called with cpu_base->lock of target cpu held.
 163 */
 164static int
 165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 166{
 167#ifdef CONFIG_HIGH_RES_TIMERS
 168        ktime_t expires;
 169
 170        if (!new_base->cpu_base->hres_active)
 171                return 0;
 172
 173        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 174        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 175#else
 176        return 0;
 177#endif
 178}
 179
 180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 181static inline
 182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 183                                         int pinned)
 184{
 185        if (pinned || !base->migration_enabled)
 186                return base;
 187        return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 188}
 189#else
 190static inline
 191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 192                                         int pinned)
 193{
 194        return base;
 195}
 196#endif
 197
 198/*
 199 * We switch the timer base to a power-optimized selected CPU target,
 200 * if:
 201 *      - NO_HZ_COMMON is enabled
 202 *      - timer migration is enabled
 203 *      - the timer callback is not running
 204 *      - the timer is not the first expiring timer on the new target
 205 *
 206 * If one of the above requirements is not fulfilled we move the timer
 207 * to the current CPU or leave it on the previously assigned CPU if
 208 * the timer callback is currently running.
 209 */
 210static inline struct hrtimer_clock_base *
 211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 212                    int pinned)
 213{
 214        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 215        struct hrtimer_clock_base *new_base;
 216        int basenum = base->index;
 217
 218        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 219        new_cpu_base = get_target_base(this_cpu_base, pinned);
 220again:
 221        new_base = &new_cpu_base->clock_base[basenum];
 222
 223        if (base != new_base) {
 224                /*
 225                 * We are trying to move timer to new_base.
 226                 * However we can't change timer's base while it is running,
 227                 * so we keep it on the same CPU. No hassle vs. reprogramming
 228                 * the event source in the high resolution case. The softirq
 229                 * code will take care of this when the timer function has
 230                 * completed. There is no conflict as we hold the lock until
 231                 * the timer is enqueued.
 232                 */
 233                if (unlikely(hrtimer_callback_running(timer)))
 234                        return base;
 235
 236                /* See the comment in lock_hrtimer_base() */
 237                timer->base = &migration_base;
 238                raw_spin_unlock(&base->cpu_base->lock);
 239                raw_spin_lock(&new_base->cpu_base->lock);
 240
 241                if (new_cpu_base != this_cpu_base &&
 242                    hrtimer_check_target(timer, new_base)) {
 243                        raw_spin_unlock(&new_base->cpu_base->lock);
 244                        raw_spin_lock(&base->cpu_base->lock);
 245                        new_cpu_base = this_cpu_base;
 246                        timer->base = base;
 247                        goto again;
 248                }
 249                timer->base = new_base;
 250        } else {
 251                if (new_cpu_base != this_cpu_base &&
 252                    hrtimer_check_target(timer, new_base)) {
 253                        new_cpu_base = this_cpu_base;
 254                        goto again;
 255                }
 256        }
 257        return new_base;
 258}
 259
 260#else /* CONFIG_SMP */
 261
 262static inline struct hrtimer_clock_base *
 263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 264{
 265        struct hrtimer_clock_base *base = timer->base;
 266
 267        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 268
 269        return base;
 270}
 271
 272# define switch_hrtimer_base(t, b, p)   (b)
 273
 274#endif  /* !CONFIG_SMP */
 275
 276/*
 277 * Functions for the union type storage format of ktime_t which are
 278 * too large for inlining:
 279 */
 280#if BITS_PER_LONG < 64
 281/*
 282 * Divide a ktime value by a nanosecond value
 283 */
 284s64 __ktime_divns(const ktime_t kt, s64 div)
 285{
 286        int sft = 0;
 287        s64 dclc;
 288        u64 tmp;
 289
 290        dclc = ktime_to_ns(kt);
 291        tmp = dclc < 0 ? -dclc : dclc;
 292
 293        /* Make sure the divisor is less than 2^32: */
 294        while (div >> 32) {
 295                sft++;
 296                div >>= 1;
 297        }
 298        tmp >>= sft;
 299        do_div(tmp, (unsigned long) div);
 300        return dclc < 0 ? -tmp : tmp;
 301}
 302EXPORT_SYMBOL_GPL(__ktime_divns);
 303#endif /* BITS_PER_LONG >= 64 */
 304
 305/*
 306 * Add two ktime values and do a safety check for overflow:
 307 */
 308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 309{
 310        ktime_t res = ktime_add(lhs, rhs);
 311
 312        /*
 313         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 314         * return to user space in a timespec:
 315         */
 316        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 317                res = ktime_set(KTIME_SEC_MAX, 0);
 318
 319        return res;
 320}
 321
 322EXPORT_SYMBOL_GPL(ktime_add_safe);
 323
 324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 325
 326static struct debug_obj_descr hrtimer_debug_descr;
 327
 328static void *hrtimer_debug_hint(void *addr)
 329{
 330        return ((struct hrtimer *) addr)->function;
 331}
 332
 333/*
 334 * fixup_init is called when:
 335 * - an active object is initialized
 336 */
 337static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 338{
 339        struct hrtimer *timer = addr;
 340
 341        switch (state) {
 342        case ODEBUG_STATE_ACTIVE:
 343                hrtimer_cancel(timer);
 344                debug_object_init(timer, &hrtimer_debug_descr);
 345                return 1;
 346        default:
 347                return 0;
 348        }
 349}
 350
 351/*
 352 * fixup_activate is called when:
 353 * - an active object is activated
 354 * - an unknown object is activated (might be a statically initialized object)
 355 */
 356static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 357{
 358        switch (state) {
 359
 360        case ODEBUG_STATE_NOTAVAILABLE:
 361                WARN_ON_ONCE(1);
 362                return 0;
 363
 364        case ODEBUG_STATE_ACTIVE:
 365                WARN_ON(1);
 366
 367        default:
 368                return 0;
 369        }
 370}
 371
 372/*
 373 * fixup_free is called when:
 374 * - an active object is freed
 375 */
 376static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 377{
 378        struct hrtimer *timer = addr;
 379
 380        switch (state) {
 381        case ODEBUG_STATE_ACTIVE:
 382                hrtimer_cancel(timer);
 383                debug_object_free(timer, &hrtimer_debug_descr);
 384                return 1;
 385        default:
 386                return 0;
 387        }
 388}
 389
 390static struct debug_obj_descr hrtimer_debug_descr = {
 391        .name           = "hrtimer",
 392        .debug_hint     = hrtimer_debug_hint,
 393        .fixup_init     = hrtimer_fixup_init,
 394        .fixup_activate = hrtimer_fixup_activate,
 395        .fixup_free     = hrtimer_fixup_free,
 396};
 397
 398static inline void debug_hrtimer_init(struct hrtimer *timer)
 399{
 400        debug_object_init(timer, &hrtimer_debug_descr);
 401}
 402
 403static inline void debug_hrtimer_activate(struct hrtimer *timer)
 404{
 405        debug_object_activate(timer, &hrtimer_debug_descr);
 406}
 407
 408static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 409{
 410        debug_object_deactivate(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_free(struct hrtimer *timer)
 414{
 415        debug_object_free(timer, &hrtimer_debug_descr);
 416}
 417
 418static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 419                           enum hrtimer_mode mode);
 420
 421void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 422                           enum hrtimer_mode mode)
 423{
 424        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 425        __hrtimer_init(timer, clock_id, mode);
 426}
 427EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 428
 429void destroy_hrtimer_on_stack(struct hrtimer *timer)
 430{
 431        debug_object_free(timer, &hrtimer_debug_descr);
 432}
 433
 434#else
 435static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 436static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 437static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 438#endif
 439
 440static inline void
 441debug_init(struct hrtimer *timer, clockid_t clockid,
 442           enum hrtimer_mode mode)
 443{
 444        debug_hrtimer_init(timer);
 445        trace_hrtimer_init(timer, clockid, mode);
 446}
 447
 448static inline void debug_activate(struct hrtimer *timer)
 449{
 450        debug_hrtimer_activate(timer);
 451        trace_hrtimer_start(timer);
 452}
 453
 454static inline void debug_deactivate(struct hrtimer *timer)
 455{
 456        debug_hrtimer_deactivate(timer);
 457        trace_hrtimer_cancel(timer);
 458}
 459
 460#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 461static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
 462                                             struct hrtimer *timer)
 463{
 464#ifdef CONFIG_HIGH_RES_TIMERS
 465        cpu_base->next_timer = timer;
 466#endif
 467}
 468
 469static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 470{
 471        struct hrtimer_clock_base *base = cpu_base->clock_base;
 472        ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
 473        unsigned int active = cpu_base->active_bases;
 474
 475        hrtimer_update_next_timer(cpu_base, NULL);
 476        for (; active; base++, active >>= 1) {
 477                struct timerqueue_node *next;
 478                struct hrtimer *timer;
 479
 480                if (!(active & 0x01))
 481                        continue;
 482
 483                next = timerqueue_getnext(&base->active);
 484                timer = container_of(next, struct hrtimer, node);
 485                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 486                if (expires.tv64 < expires_next.tv64) {
 487                        expires_next = expires;
 488                        hrtimer_update_next_timer(cpu_base, timer);
 489                }
 490        }
 491        /*
 492         * clock_was_set() might have changed base->offset of any of
 493         * the clock bases so the result might be negative. Fix it up
 494         * to prevent a false positive in clockevents_program_event().
 495         */
 496        if (expires_next.tv64 < 0)
 497                expires_next.tv64 = 0;
 498        return expires_next;
 499}
 500#endif
 501
 502static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 503{
 504        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 505        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 506        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 507
 508        return ktime_get_update_offsets_now(&base->clock_was_set_seq,
 509                                            offs_real, offs_boot, offs_tai);
 510}
 511
 512/* High resolution timer related functions */
 513#ifdef CONFIG_HIGH_RES_TIMERS
 514
 515/*
 516 * High resolution timer enabled ?
 517 */
 518static bool hrtimer_hres_enabled __read_mostly  = true;
 519unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 520EXPORT_SYMBOL_GPL(hrtimer_resolution);
 521
 522/*
 523 * Enable / Disable high resolution mode
 524 */
 525static int __init setup_hrtimer_hres(char *str)
 526{
 527        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 528}
 529
 530__setup("highres=", setup_hrtimer_hres);
 531
 532/*
 533 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 534 */
 535static inline int hrtimer_is_hres_enabled(void)
 536{
 537        return hrtimer_hres_enabled;
 538}
 539
 540/*
 541 * Is the high resolution mode active ?
 542 */
 543static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 544{
 545        return cpu_base->hres_active;
 546}
 547
 548static inline int hrtimer_hres_active(void)
 549{
 550        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 551}
 552
 553/*
 554 * Reprogram the event source with checking both queues for the
 555 * next event
 556 * Called with interrupts disabled and base->lock held
 557 */
 558static void
 559hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 560{
 561        ktime_t expires_next;
 562
 563        if (!cpu_base->hres_active)
 564                return;
 565
 566        expires_next = __hrtimer_get_next_event(cpu_base);
 567
 568        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 569                return;
 570
 571        cpu_base->expires_next.tv64 = expires_next.tv64;
 572
 573        /*
 574         * If a hang was detected in the last timer interrupt then we
 575         * leave the hang delay active in the hardware. We want the
 576         * system to make progress. That also prevents the following
 577         * scenario:
 578         * T1 expires 50ms from now
 579         * T2 expires 5s from now
 580         *
 581         * T1 is removed, so this code is called and would reprogram
 582         * the hardware to 5s from now. Any hrtimer_start after that
 583         * will not reprogram the hardware due to hang_detected being
 584         * set. So we'd effectivly block all timers until the T2 event
 585         * fires.
 586         */
 587        if (cpu_base->hang_detected)
 588                return;
 589
 590        tick_program_event(cpu_base->expires_next, 1);
 591}
 592
 593/*
 594 * When a timer is enqueued and expires earlier than the already enqueued
 595 * timers, we have to check, whether it expires earlier than the timer for
 596 * which the clock event device was armed.
 597 *
 598 * Called with interrupts disabled and base->cpu_base.lock held
 599 */
 600static void hrtimer_reprogram(struct hrtimer *timer,
 601                              struct hrtimer_clock_base *base)
 602{
 603        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 604        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 605
 606        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 607
 608        /*
 609         * If the timer is not on the current cpu, we cannot reprogram
 610         * the other cpus clock event device.
 611         */
 612        if (base->cpu_base != cpu_base)
 613                return;
 614
 615        /*
 616         * If the hrtimer interrupt is running, then it will
 617         * reevaluate the clock bases and reprogram the clock event
 618         * device. The callbacks are always executed in hard interrupt
 619         * context so we don't need an extra check for a running
 620         * callback.
 621         */
 622        if (cpu_base->in_hrtirq)
 623                return;
 624
 625        /*
 626         * CLOCK_REALTIME timer might be requested with an absolute
 627         * expiry time which is less than base->offset. Set it to 0.
 628         */
 629        if (expires.tv64 < 0)
 630                expires.tv64 = 0;
 631
 632        if (expires.tv64 >= cpu_base->expires_next.tv64)
 633                return;
 634
 635        /* Update the pointer to the next expiring timer */
 636        cpu_base->next_timer = timer;
 637
 638        /*
 639         * If a hang was detected in the last timer interrupt then we
 640         * do not schedule a timer which is earlier than the expiry
 641         * which we enforced in the hang detection. We want the system
 642         * to make progress.
 643         */
 644        if (cpu_base->hang_detected)
 645                return;
 646
 647        /*
 648         * Program the timer hardware. We enforce the expiry for
 649         * events which are already in the past.
 650         */
 651        cpu_base->expires_next = expires;
 652        tick_program_event(expires, 1);
 653}
 654
 655/*
 656 * Initialize the high resolution related parts of cpu_base
 657 */
 658static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 659{
 660        base->expires_next.tv64 = KTIME_MAX;
 661        base->hres_active = 0;
 662}
 663
 664/*
 665 * Retrigger next event is called after clock was set
 666 *
 667 * Called with interrupts disabled via on_each_cpu()
 668 */
 669static void retrigger_next_event(void *arg)
 670{
 671        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 672
 673        if (!base->hres_active)
 674                return;
 675
 676        raw_spin_lock(&base->lock);
 677        hrtimer_update_base(base);
 678        hrtimer_force_reprogram(base, 0);
 679        raw_spin_unlock(&base->lock);
 680}
 681
 682/*
 683 * Switch to high resolution mode
 684 */
 685static void hrtimer_switch_to_hres(void)
 686{
 687        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 688
 689        if (tick_init_highres()) {
 690                printk(KERN_WARNING "Could not switch to high resolution "
 691                                    "mode on CPU %d\n", base->cpu);
 692                return;
 693        }
 694        base->hres_active = 1;
 695        hrtimer_resolution = HIGH_RES_NSEC;
 696
 697        tick_setup_sched_timer();
 698        /* "Retrigger" the interrupt to get things going */
 699        retrigger_next_event(NULL);
 700}
 701
 702static void clock_was_set_work(struct work_struct *work)
 703{
 704        clock_was_set();
 705}
 706
 707static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 708
 709/*
 710 * Called from timekeeping and resume code to reprogramm the hrtimer
 711 * interrupt device on all cpus.
 712 */
 713void clock_was_set_delayed(void)
 714{
 715        schedule_work(&hrtimer_work);
 716}
 717
 718#else
 719
 720static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
 721static inline int hrtimer_hres_active(void) { return 0; }
 722static inline int hrtimer_is_hres_enabled(void) { return 0; }
 723static inline void hrtimer_switch_to_hres(void) { }
 724static inline void
 725hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 726static inline int hrtimer_reprogram(struct hrtimer *timer,
 727                                    struct hrtimer_clock_base *base)
 728{
 729        return 0;
 730}
 731static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 732static inline void retrigger_next_event(void *arg) { }
 733
 734#endif /* CONFIG_HIGH_RES_TIMERS */
 735
 736/*
 737 * Clock realtime was set
 738 *
 739 * Change the offset of the realtime clock vs. the monotonic
 740 * clock.
 741 *
 742 * We might have to reprogram the high resolution timer interrupt. On
 743 * SMP we call the architecture specific code to retrigger _all_ high
 744 * resolution timer interrupts. On UP we just disable interrupts and
 745 * call the high resolution interrupt code.
 746 */
 747void clock_was_set(void)
 748{
 749#ifdef CONFIG_HIGH_RES_TIMERS
 750        /* Retrigger the CPU local events everywhere */
 751        on_each_cpu(retrigger_next_event, NULL, 1);
 752#endif
 753        timerfd_clock_was_set();
 754}
 755
 756/*
 757 * During resume we might have to reprogram the high resolution timer
 758 * interrupt on all online CPUs.  However, all other CPUs will be
 759 * stopped with IRQs interrupts disabled so the clock_was_set() call
 760 * must be deferred.
 761 */
 762void hrtimers_resume(void)
 763{
 764        WARN_ONCE(!irqs_disabled(),
 765                  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 766
 767        /* Retrigger on the local CPU */
 768        retrigger_next_event(NULL);
 769        /* And schedule a retrigger for all others */
 770        clock_was_set_delayed();
 771}
 772
 773static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 774{
 775#ifdef CONFIG_TIMER_STATS
 776        if (timer->start_site)
 777                return;
 778        timer->start_site = __builtin_return_address(0);
 779        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 780        timer->start_pid = current->pid;
 781#endif
 782}
 783
 784static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 785{
 786#ifdef CONFIG_TIMER_STATS
 787        timer->start_site = NULL;
 788#endif
 789}
 790
 791static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 792{
 793#ifdef CONFIG_TIMER_STATS
 794        if (likely(!timer_stats_active))
 795                return;
 796        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 797                                 timer->function, timer->start_comm, 0);
 798#endif
 799}
 800
 801/*
 802 * Counterpart to lock_hrtimer_base above:
 803 */
 804static inline
 805void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 806{
 807        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 808}
 809
 810/**
 811 * hrtimer_forward - forward the timer expiry
 812 * @timer:      hrtimer to forward
 813 * @now:        forward past this time
 814 * @interval:   the interval to forward
 815 *
 816 * Forward the timer expiry so it will expire in the future.
 817 * Returns the number of overruns.
 818 *
 819 * Can be safely called from the callback function of @timer. If
 820 * called from other contexts @timer must neither be enqueued nor
 821 * running the callback and the caller needs to take care of
 822 * serialization.
 823 *
 824 * Note: This only updates the timer expiry value and does not requeue
 825 * the timer.
 826 */
 827u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 828{
 829        u64 orun = 1;
 830        ktime_t delta;
 831
 832        delta = ktime_sub(now, hrtimer_get_expires(timer));
 833
 834        if (delta.tv64 < 0)
 835                return 0;
 836
 837        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 838                return 0;
 839
 840        if (interval.tv64 < hrtimer_resolution)
 841                interval.tv64 = hrtimer_resolution;
 842
 843        if (unlikely(delta.tv64 >= interval.tv64)) {
 844                s64 incr = ktime_to_ns(interval);
 845
 846                orun = ktime_divns(delta, incr);
 847                hrtimer_add_expires_ns(timer, incr * orun);
 848                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 849                        return orun;
 850                /*
 851                 * This (and the ktime_add() below) is the
 852                 * correction for exact:
 853                 */
 854                orun++;
 855        }
 856        hrtimer_add_expires(timer, interval);
 857
 858        return orun;
 859}
 860EXPORT_SYMBOL_GPL(hrtimer_forward);
 861
 862/*
 863 * enqueue_hrtimer - internal function to (re)start a timer
 864 *
 865 * The timer is inserted in expiry order. Insertion into the
 866 * red black tree is O(log(n)). Must hold the base lock.
 867 *
 868 * Returns 1 when the new timer is the leftmost timer in the tree.
 869 */
 870static int enqueue_hrtimer(struct hrtimer *timer,
 871                           struct hrtimer_clock_base *base)
 872{
 873        debug_activate(timer);
 874
 875        base->cpu_base->active_bases |= 1 << base->index;
 876
 877        timer->state = HRTIMER_STATE_ENQUEUED;
 878
 879        return timerqueue_add(&base->active, &timer->node);
 880}
 881
 882/*
 883 * __remove_hrtimer - internal function to remove a timer
 884 *
 885 * Caller must hold the base lock.
 886 *
 887 * High resolution timer mode reprograms the clock event device when the
 888 * timer is the one which expires next. The caller can disable this by setting
 889 * reprogram to zero. This is useful, when the context does a reprogramming
 890 * anyway (e.g. timer interrupt)
 891 */
 892static void __remove_hrtimer(struct hrtimer *timer,
 893                             struct hrtimer_clock_base *base,
 894                             u8 newstate, int reprogram)
 895{
 896        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 897        u8 state = timer->state;
 898
 899        timer->state = newstate;
 900        if (!(state & HRTIMER_STATE_ENQUEUED))
 901                return;
 902
 903        if (!timerqueue_del(&base->active, &timer->node))
 904                cpu_base->active_bases &= ~(1 << base->index);
 905
 906#ifdef CONFIG_HIGH_RES_TIMERS
 907        /*
 908         * Note: If reprogram is false we do not update
 909         * cpu_base->next_timer. This happens when we remove the first
 910         * timer on a remote cpu. No harm as we never dereference
 911         * cpu_base->next_timer. So the worst thing what can happen is
 912         * an superflous call to hrtimer_force_reprogram() on the
 913         * remote cpu later on if the same timer gets enqueued again.
 914         */
 915        if (reprogram && timer == cpu_base->next_timer)
 916                hrtimer_force_reprogram(cpu_base, 1);
 917#endif
 918}
 919
 920/*
 921 * remove hrtimer, called with base lock held
 922 */
 923static inline int
 924remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 925{
 926        if (hrtimer_is_queued(timer)) {
 927                u8 state = timer->state;
 928                int reprogram;
 929
 930                /*
 931                 * Remove the timer and force reprogramming when high
 932                 * resolution mode is active and the timer is on the current
 933                 * CPU. If we remove a timer on another CPU, reprogramming is
 934                 * skipped. The interrupt event on this CPU is fired and
 935                 * reprogramming happens in the interrupt handler. This is a
 936                 * rare case and less expensive than a smp call.
 937                 */
 938                debug_deactivate(timer);
 939                timer_stats_hrtimer_clear_start_info(timer);
 940                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 941
 942                if (!restart)
 943                        state = HRTIMER_STATE_INACTIVE;
 944
 945                __remove_hrtimer(timer, base, state, reprogram);
 946                return 1;
 947        }
 948        return 0;
 949}
 950
 951static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
 952                                            const enum hrtimer_mode mode)
 953{
 954#ifdef CONFIG_TIME_LOW_RES
 955        /*
 956         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
 957         * granular time values. For relative timers we add hrtimer_resolution
 958         * (i.e. one jiffie) to prevent short timeouts.
 959         */
 960        timer->is_rel = mode & HRTIMER_MODE_REL;
 961        if (timer->is_rel)
 962                tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
 963#endif
 964        return tim;
 965}
 966
 967/**
 968 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 969 * @timer:      the timer to be added
 970 * @tim:        expiry time
 971 * @delta_ns:   "slack" range for the timer
 972 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
 973 *              relative (HRTIMER_MODE_REL)
 974 */
 975void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 976                            u64 delta_ns, const enum hrtimer_mode mode)
 977{
 978        struct hrtimer_clock_base *base, *new_base;
 979        unsigned long flags;
 980        int leftmost;
 981
 982        base = lock_hrtimer_base(timer, &flags);
 983
 984        /* Remove an active timer from the queue: */
 985        remove_hrtimer(timer, base, true);
 986
 987        if (mode & HRTIMER_MODE_REL)
 988                tim = ktime_add_safe(tim, base->get_time());
 989
 990        tim = hrtimer_update_lowres(timer, tim, mode);
 991
 992        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 993
 994        /* Switch the timer base, if necessary: */
 995        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 996
 997        timer_stats_hrtimer_set_start_info(timer);
 998
 999        leftmost = enqueue_hrtimer(timer, new_base);
1000        if (!leftmost)
1001                goto unlock;
1002
1003        if (!hrtimer_is_hres_active(timer)) {
1004                /*
1005                 * Kick to reschedule the next tick to handle the new timer
1006                 * on dynticks target.
1007                 */
1008                if (new_base->cpu_base->nohz_active)
1009                        wake_up_nohz_cpu(new_base->cpu_base->cpu);
1010        } else {
1011                hrtimer_reprogram(timer, new_base);
1012        }
1013unlock:
1014        unlock_hrtimer_base(timer, &flags);
1015}
1016EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1017
1018/**
1019 * hrtimer_try_to_cancel - try to deactivate a timer
1020 * @timer:      hrtimer to stop
1021 *
1022 * Returns:
1023 *  0 when the timer was not active
1024 *  1 when the timer was active
1025 * -1 when the timer is currently excuting the callback function and
1026 *    cannot be stopped
1027 */
1028int hrtimer_try_to_cancel(struct hrtimer *timer)
1029{
1030        struct hrtimer_clock_base *base;
1031        unsigned long flags;
1032        int ret = -1;
1033
1034        /*
1035         * Check lockless first. If the timer is not active (neither
1036         * enqueued nor running the callback, nothing to do here.  The
1037         * base lock does not serialize against a concurrent enqueue,
1038         * so we can avoid taking it.
1039         */
1040        if (!hrtimer_active(timer))
1041                return 0;
1042
1043        base = lock_hrtimer_base(timer, &flags);
1044
1045        if (!hrtimer_callback_running(timer))
1046                ret = remove_hrtimer(timer, base, false);
1047
1048        unlock_hrtimer_base(timer, &flags);
1049
1050        return ret;
1051
1052}
1053EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1054
1055/**
1056 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1057 * @timer:      the timer to be cancelled
1058 *
1059 * Returns:
1060 *  0 when the timer was not active
1061 *  1 when the timer was active
1062 */
1063int hrtimer_cancel(struct hrtimer *timer)
1064{
1065        for (;;) {
1066                int ret = hrtimer_try_to_cancel(timer);
1067
1068                if (ret >= 0)
1069                        return ret;
1070                cpu_relax();
1071        }
1072}
1073EXPORT_SYMBOL_GPL(hrtimer_cancel);
1074
1075/**
1076 * hrtimer_get_remaining - get remaining time for the timer
1077 * @timer:      the timer to read
1078 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1079 */
1080ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1081{
1082        unsigned long flags;
1083        ktime_t rem;
1084
1085        lock_hrtimer_base(timer, &flags);
1086        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1087                rem = hrtimer_expires_remaining_adjusted(timer);
1088        else
1089                rem = hrtimer_expires_remaining(timer);
1090        unlock_hrtimer_base(timer, &flags);
1091
1092        return rem;
1093}
1094EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1095
1096#ifdef CONFIG_NO_HZ_COMMON
1097/**
1098 * hrtimer_get_next_event - get the time until next expiry event
1099 *
1100 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1101 */
1102u64 hrtimer_get_next_event(void)
1103{
1104        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1105        u64 expires = KTIME_MAX;
1106        unsigned long flags;
1107
1108        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1109
1110        if (!__hrtimer_hres_active(cpu_base))
1111                expires = __hrtimer_get_next_event(cpu_base).tv64;
1112
1113        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1114
1115        return expires;
1116}
1117#endif
1118
1119static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120                           enum hrtimer_mode mode)
1121{
1122        struct hrtimer_cpu_base *cpu_base;
1123        int base;
1124
1125        memset(timer, 0, sizeof(struct hrtimer));
1126
1127        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1128
1129        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130                clock_id = CLOCK_MONOTONIC;
1131
1132        base = hrtimer_clockid_to_base(clock_id);
1133        timer->base = &cpu_base->clock_base[base];
1134        timerqueue_init(&timer->node);
1135
1136#ifdef CONFIG_TIMER_STATS
1137        timer->start_site = NULL;
1138        timer->start_pid = -1;
1139        memset(timer->start_comm, 0, TASK_COMM_LEN);
1140#endif
1141}
1142
1143/**
1144 * hrtimer_init - initialize a timer to the given clock
1145 * @timer:      the timer to be initialized
1146 * @clock_id:   the clock to be used
1147 * @mode:       timer mode abs/rel
1148 */
1149void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150                  enum hrtimer_mode mode)
1151{
1152        debug_init(timer, clock_id, mode);
1153        __hrtimer_init(timer, clock_id, mode);
1154}
1155EXPORT_SYMBOL_GPL(hrtimer_init);
1156
1157/*
1158 * A timer is active, when it is enqueued into the rbtree or the
1159 * callback function is running or it's in the state of being migrated
1160 * to another cpu.
1161 *
1162 * It is important for this function to not return a false negative.
1163 */
1164bool hrtimer_active(const struct hrtimer *timer)
1165{
1166        struct hrtimer_cpu_base *cpu_base;
1167        unsigned int seq;
1168
1169        do {
1170                cpu_base = READ_ONCE(timer->base->cpu_base);
1171                seq = raw_read_seqcount_begin(&cpu_base->seq);
1172
1173                if (timer->state != HRTIMER_STATE_INACTIVE ||
1174                    cpu_base->running == timer)
1175                        return true;
1176
1177        } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1178                 cpu_base != READ_ONCE(timer->base->cpu_base));
1179
1180        return false;
1181}
1182EXPORT_SYMBOL_GPL(hrtimer_active);
1183
1184/*
1185 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1186 * distinct sections:
1187 *
1188 *  - queued:   the timer is queued
1189 *  - callback: the timer is being ran
1190 *  - post:     the timer is inactive or (re)queued
1191 *
1192 * On the read side we ensure we observe timer->state and cpu_base->running
1193 * from the same section, if anything changed while we looked at it, we retry.
1194 * This includes timer->base changing because sequence numbers alone are
1195 * insufficient for that.
1196 *
1197 * The sequence numbers are required because otherwise we could still observe
1198 * a false negative if the read side got smeared over multiple consequtive
1199 * __run_hrtimer() invocations.
1200 */
1201
1202static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1203                          struct hrtimer_clock_base *base,
1204                          struct hrtimer *timer, ktime_t *now)
1205{
1206        enum hrtimer_restart (*fn)(struct hrtimer *);
1207        int restart;
1208
1209        lockdep_assert_held(&cpu_base->lock);
1210
1211        debug_deactivate(timer);
1212        cpu_base->running = timer;
1213
1214        /*
1215         * Separate the ->running assignment from the ->state assignment.
1216         *
1217         * As with a regular write barrier, this ensures the read side in
1218         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1219         * timer->state == INACTIVE.
1220         */
1221        raw_write_seqcount_barrier(&cpu_base->seq);
1222
1223        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1224        timer_stats_account_hrtimer(timer);
1225        fn = timer->function;
1226
1227        /*
1228         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1229         * timer is restarted with a period then it becomes an absolute
1230         * timer. If its not restarted it does not matter.
1231         */
1232        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1233                timer->is_rel = false;
1234
1235        /*
1236         * Because we run timers from hardirq context, there is no chance
1237         * they get migrated to another cpu, therefore its safe to unlock
1238         * the timer base.
1239         */
1240        raw_spin_unlock(&cpu_base->lock);
1241        trace_hrtimer_expire_entry(timer, now);
1242        restart = fn(timer);
1243        trace_hrtimer_expire_exit(timer);
1244        raw_spin_lock(&cpu_base->lock);
1245
1246        /*
1247         * Note: We clear the running state after enqueue_hrtimer and
1248         * we do not reprogramm the event hardware. Happens either in
1249         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1250         *
1251         * Note: Because we dropped the cpu_base->lock above,
1252         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1253         * for us already.
1254         */
1255        if (restart != HRTIMER_NORESTART &&
1256            !(timer->state & HRTIMER_STATE_ENQUEUED))
1257                enqueue_hrtimer(timer, base);
1258
1259        /*
1260         * Separate the ->running assignment from the ->state assignment.
1261         *
1262         * As with a regular write barrier, this ensures the read side in
1263         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1264         * timer->state == INACTIVE.
1265         */
1266        raw_write_seqcount_barrier(&cpu_base->seq);
1267
1268        WARN_ON_ONCE(cpu_base->running != timer);
1269        cpu_base->running = NULL;
1270}
1271
1272static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1273{
1274        struct hrtimer_clock_base *base = cpu_base->clock_base;
1275        unsigned int active = cpu_base->active_bases;
1276
1277        for (; active; base++, active >>= 1) {
1278                struct timerqueue_node *node;
1279                ktime_t basenow;
1280
1281                if (!(active & 0x01))
1282                        continue;
1283
1284                basenow = ktime_add(now, base->offset);
1285
1286                while ((node = timerqueue_getnext(&base->active))) {
1287                        struct hrtimer *timer;
1288
1289                        timer = container_of(node, struct hrtimer, node);
1290
1291                        /*
1292                         * The immediate goal for using the softexpires is
1293                         * minimizing wakeups, not running timers at the
1294                         * earliest interrupt after their soft expiration.
1295                         * This allows us to avoid using a Priority Search
1296                         * Tree, which can answer a stabbing querry for
1297                         * overlapping intervals and instead use the simple
1298                         * BST we already have.
1299                         * We don't add extra wakeups by delaying timers that
1300                         * are right-of a not yet expired timer, because that
1301                         * timer will have to trigger a wakeup anyway.
1302                         */
1303                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1304                                break;
1305
1306                        __run_hrtimer(cpu_base, base, timer, &basenow);
1307                }
1308        }
1309}
1310
1311#ifdef CONFIG_HIGH_RES_TIMERS
1312
1313/*
1314 * High resolution timer interrupt
1315 * Called with interrupts disabled
1316 */
1317void hrtimer_interrupt(struct clock_event_device *dev)
1318{
1319        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1320        ktime_t expires_next, now, entry_time, delta;
1321        int retries = 0;
1322
1323        BUG_ON(!cpu_base->hres_active);
1324        cpu_base->nr_events++;
1325        dev->next_event.tv64 = KTIME_MAX;
1326
1327        raw_spin_lock(&cpu_base->lock);
1328        entry_time = now = hrtimer_update_base(cpu_base);
1329retry:
1330        cpu_base->in_hrtirq = 1;
1331        /*
1332         * We set expires_next to KTIME_MAX here with cpu_base->lock
1333         * held to prevent that a timer is enqueued in our queue via
1334         * the migration code. This does not affect enqueueing of
1335         * timers which run their callback and need to be requeued on
1336         * this CPU.
1337         */
1338        cpu_base->expires_next.tv64 = KTIME_MAX;
1339
1340        __hrtimer_run_queues(cpu_base, now);
1341
1342        /* Reevaluate the clock bases for the next expiry */
1343        expires_next = __hrtimer_get_next_event(cpu_base);
1344        /*
1345         * Store the new expiry value so the migration code can verify
1346         * against it.
1347         */
1348        cpu_base->expires_next = expires_next;
1349        cpu_base->in_hrtirq = 0;
1350        raw_spin_unlock(&cpu_base->lock);
1351
1352        /* Reprogramming necessary ? */
1353        if (!tick_program_event(expires_next, 0)) {
1354                cpu_base->hang_detected = 0;
1355                return;
1356        }
1357
1358        /*
1359         * The next timer was already expired due to:
1360         * - tracing
1361         * - long lasting callbacks
1362         * - being scheduled away when running in a VM
1363         *
1364         * We need to prevent that we loop forever in the hrtimer
1365         * interrupt routine. We give it 3 attempts to avoid
1366         * overreacting on some spurious event.
1367         *
1368         * Acquire base lock for updating the offsets and retrieving
1369         * the current time.
1370         */
1371        raw_spin_lock(&cpu_base->lock);
1372        now = hrtimer_update_base(cpu_base);
1373        cpu_base->nr_retries++;
1374        if (++retries < 3)
1375                goto retry;
1376        /*
1377         * Give the system a chance to do something else than looping
1378         * here. We stored the entry time, so we know exactly how long
1379         * we spent here. We schedule the next event this amount of
1380         * time away.
1381         */
1382        cpu_base->nr_hangs++;
1383        cpu_base->hang_detected = 1;
1384        raw_spin_unlock(&cpu_base->lock);
1385        delta = ktime_sub(now, entry_time);
1386        if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1387                cpu_base->max_hang_time = (unsigned int) delta.tv64;
1388        /*
1389         * Limit it to a sensible value as we enforce a longer
1390         * delay. Give the CPU at least 100ms to catch up.
1391         */
1392        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1393                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1394        else
1395                expires_next = ktime_add(now, delta);
1396        tick_program_event(expires_next, 1);
1397        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1398                    ktime_to_ns(delta));
1399}
1400
1401/*
1402 * local version of hrtimer_peek_ahead_timers() called with interrupts
1403 * disabled.
1404 */
1405static inline void __hrtimer_peek_ahead_timers(void)
1406{
1407        struct tick_device *td;
1408
1409        if (!hrtimer_hres_active())
1410                return;
1411
1412        td = this_cpu_ptr(&tick_cpu_device);
1413        if (td && td->evtdev)
1414                hrtimer_interrupt(td->evtdev);
1415}
1416
1417#else /* CONFIG_HIGH_RES_TIMERS */
1418
1419static inline void __hrtimer_peek_ahead_timers(void) { }
1420
1421#endif  /* !CONFIG_HIGH_RES_TIMERS */
1422
1423/*
1424 * Called from run_local_timers in hardirq context every jiffy
1425 */
1426void hrtimer_run_queues(void)
1427{
1428        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1429        ktime_t now;
1430
1431        if (__hrtimer_hres_active(cpu_base))
1432                return;
1433
1434        /*
1435         * This _is_ ugly: We have to check periodically, whether we
1436         * can switch to highres and / or nohz mode. The clocksource
1437         * switch happens with xtime_lock held. Notification from
1438         * there only sets the check bit in the tick_oneshot code,
1439         * otherwise we might deadlock vs. xtime_lock.
1440         */
1441        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1442                hrtimer_switch_to_hres();
1443                return;
1444        }
1445
1446        raw_spin_lock(&cpu_base->lock);
1447        now = hrtimer_update_base(cpu_base);
1448        __hrtimer_run_queues(cpu_base, now);
1449        raw_spin_unlock(&cpu_base->lock);
1450}
1451
1452/*
1453 * Sleep related functions:
1454 */
1455static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1456{
1457        struct hrtimer_sleeper *t =
1458                container_of(timer, struct hrtimer_sleeper, timer);
1459        struct task_struct *task = t->task;
1460
1461        t->task = NULL;
1462        if (task)
1463                wake_up_process(task);
1464
1465        return HRTIMER_NORESTART;
1466}
1467
1468void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1469{
1470        sl->timer.function = hrtimer_wakeup;
1471        sl->task = task;
1472}
1473EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1474
1475static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1476{
1477        hrtimer_init_sleeper(t, current);
1478
1479        do {
1480                set_current_state(TASK_INTERRUPTIBLE);
1481                hrtimer_start_expires(&t->timer, mode);
1482
1483                if (likely(t->task))
1484                        freezable_schedule();
1485
1486                hrtimer_cancel(&t->timer);
1487                mode = HRTIMER_MODE_ABS;
1488
1489        } while (t->task && !signal_pending(current));
1490
1491        __set_current_state(TASK_RUNNING);
1492
1493        return t->task == NULL;
1494}
1495
1496static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1497{
1498        struct timespec rmt;
1499        ktime_t rem;
1500
1501        rem = hrtimer_expires_remaining(timer);
1502        if (rem.tv64 <= 0)
1503                return 0;
1504        rmt = ktime_to_timespec(rem);
1505
1506        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1507                return -EFAULT;
1508
1509        return 1;
1510}
1511
1512long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1513{
1514        struct hrtimer_sleeper t;
1515        struct timespec __user  *rmtp;
1516        int ret = 0;
1517
1518        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1519                                HRTIMER_MODE_ABS);
1520        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1521
1522        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1523                goto out;
1524
1525        rmtp = restart->nanosleep.rmtp;
1526        if (rmtp) {
1527                ret = update_rmtp(&t.timer, rmtp);
1528                if (ret <= 0)
1529                        goto out;
1530        }
1531
1532        /* The other values in restart are already filled in */
1533        ret = -ERESTART_RESTARTBLOCK;
1534out:
1535        destroy_hrtimer_on_stack(&t.timer);
1536        return ret;
1537}
1538
1539long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1540                       const enum hrtimer_mode mode, const clockid_t clockid)
1541{
1542        struct restart_block *restart;
1543        struct hrtimer_sleeper t;
1544        int ret = 0;
1545        u64 slack;
1546
1547        slack = current->timer_slack_ns;
1548        if (dl_task(current) || rt_task(current))
1549                slack = 0;
1550
1551        hrtimer_init_on_stack(&t.timer, clockid, mode);
1552        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1553        if (do_nanosleep(&t, mode))
1554                goto out;
1555
1556        /* Absolute timers do not update the rmtp value and restart: */
1557        if (mode == HRTIMER_MODE_ABS) {
1558                ret = -ERESTARTNOHAND;
1559                goto out;
1560        }
1561
1562        if (rmtp) {
1563                ret = update_rmtp(&t.timer, rmtp);
1564                if (ret <= 0)
1565                        goto out;
1566        }
1567
1568        restart = &current->restart_block;
1569        restart->fn = hrtimer_nanosleep_restart;
1570        restart->nanosleep.clockid = t.timer.base->clockid;
1571        restart->nanosleep.rmtp = rmtp;
1572        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1573
1574        ret = -ERESTART_RESTARTBLOCK;
1575out:
1576        destroy_hrtimer_on_stack(&t.timer);
1577        return ret;
1578}
1579
1580SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1581                struct timespec __user *, rmtp)
1582{
1583        struct timespec tu;
1584
1585        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1586                return -EFAULT;
1587
1588        if (!timespec_valid(&tu))
1589                return -EINVAL;
1590
1591        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1592}
1593
1594/*
1595 * Functions related to boot-time initialization:
1596 */
1597static void init_hrtimers_cpu(int cpu)
1598{
1599        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1600        int i;
1601
1602        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603                cpu_base->clock_base[i].cpu_base = cpu_base;
1604                timerqueue_init_head(&cpu_base->clock_base[i].active);
1605        }
1606
1607        cpu_base->cpu = cpu;
1608        hrtimer_init_hres(cpu_base);
1609}
1610
1611#ifdef CONFIG_HOTPLUG_CPU
1612
1613static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1614                                struct hrtimer_clock_base *new_base)
1615{
1616        struct hrtimer *timer;
1617        struct timerqueue_node *node;
1618
1619        while ((node = timerqueue_getnext(&old_base->active))) {
1620                timer = container_of(node, struct hrtimer, node);
1621                BUG_ON(hrtimer_callback_running(timer));
1622                debug_deactivate(timer);
1623
1624                /*
1625                 * Mark it as ENQUEUED not INACTIVE otherwise the
1626                 * timer could be seen as !active and just vanish away
1627                 * under us on another CPU
1628                 */
1629                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1630                timer->base = new_base;
1631                /*
1632                 * Enqueue the timers on the new cpu. This does not
1633                 * reprogram the event device in case the timer
1634                 * expires before the earliest on this CPU, but we run
1635                 * hrtimer_interrupt after we migrated everything to
1636                 * sort out already expired timers and reprogram the
1637                 * event device.
1638                 */
1639                enqueue_hrtimer(timer, new_base);
1640        }
1641}
1642
1643static void migrate_hrtimers(int scpu)
1644{
1645        struct hrtimer_cpu_base *old_base, *new_base;
1646        int i;
1647
1648        BUG_ON(cpu_online(scpu));
1649        tick_cancel_sched_timer(scpu);
1650
1651        local_irq_disable();
1652        old_base = &per_cpu(hrtimer_bases, scpu);
1653        new_base = this_cpu_ptr(&hrtimer_bases);
1654        /*
1655         * The caller is globally serialized and nobody else
1656         * takes two locks at once, deadlock is not possible.
1657         */
1658        raw_spin_lock(&new_base->lock);
1659        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1660
1661        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1662                migrate_hrtimer_list(&old_base->clock_base[i],
1663                                     &new_base->clock_base[i]);
1664        }
1665
1666        raw_spin_unlock(&old_base->lock);
1667        raw_spin_unlock(&new_base->lock);
1668
1669        /* Check, if we got expired work to do */
1670        __hrtimer_peek_ahead_timers();
1671        local_irq_enable();
1672}
1673
1674#endif /* CONFIG_HOTPLUG_CPU */
1675
1676static int hrtimer_cpu_notify(struct notifier_block *self,
1677                                        unsigned long action, void *hcpu)
1678{
1679        int scpu = (long)hcpu;
1680
1681        switch (action) {
1682
1683        case CPU_UP_PREPARE:
1684        case CPU_UP_PREPARE_FROZEN:
1685                init_hrtimers_cpu(scpu);
1686                break;
1687
1688#ifdef CONFIG_HOTPLUG_CPU
1689        case CPU_DEAD:
1690        case CPU_DEAD_FROZEN:
1691                migrate_hrtimers(scpu);
1692                break;
1693#endif
1694
1695        default:
1696                break;
1697        }
1698
1699        return NOTIFY_OK;
1700}
1701
1702static struct notifier_block hrtimers_nb = {
1703        .notifier_call = hrtimer_cpu_notify,
1704};
1705
1706void __init hrtimers_init(void)
1707{
1708        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1709                          (void *)(long)smp_processor_id());
1710        register_cpu_notifier(&hrtimers_nb);
1711}
1712
1713/**
1714 * schedule_hrtimeout_range_clock - sleep until timeout
1715 * @expires:    timeout value (ktime_t)
1716 * @delta:      slack in expires timeout (ktime_t)
1717 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1719 */
1720int __sched
1721schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1722                               const enum hrtimer_mode mode, int clock)
1723{
1724        struct hrtimer_sleeper t;
1725
1726        /*
1727         * Optimize when a zero timeout value is given. It does not
1728         * matter whether this is an absolute or a relative time.
1729         */
1730        if (expires && !expires->tv64) {
1731                __set_current_state(TASK_RUNNING);
1732                return 0;
1733        }
1734
1735        /*
1736         * A NULL parameter means "infinite"
1737         */
1738        if (!expires) {
1739                schedule();
1740                return -EINTR;
1741        }
1742
1743        hrtimer_init_on_stack(&t.timer, clock, mode);
1744        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1745
1746        hrtimer_init_sleeper(&t, current);
1747
1748        hrtimer_start_expires(&t.timer, mode);
1749
1750        if (likely(t.task))
1751                schedule();
1752
1753        hrtimer_cancel(&t.timer);
1754        destroy_hrtimer_on_stack(&t.timer);
1755
1756        __set_current_state(TASK_RUNNING);
1757
1758        return !t.task ? 0 : -EINTR;
1759}
1760
1761/**
1762 * schedule_hrtimeout_range - sleep until timeout
1763 * @expires:    timeout value (ktime_t)
1764 * @delta:      slack in expires timeout (ktime_t)
1765 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1766 *
1767 * Make the current task sleep until the given expiry time has
1768 * elapsed. The routine will return immediately unless
1769 * the current task state has been set (see set_current_state()).
1770 *
1771 * The @delta argument gives the kernel the freedom to schedule the
1772 * actual wakeup to a time that is both power and performance friendly.
1773 * The kernel give the normal best effort behavior for "@expires+@delta",
1774 * but may decide to fire the timer earlier, but no earlier than @expires.
1775 *
1776 * You can set the task state as follows -
1777 *
1778 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779 * pass before the routine returns.
1780 *
1781 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1782 * delivered to the current task.
1783 *
1784 * The current task state is guaranteed to be TASK_RUNNING when this
1785 * routine returns.
1786 *
1787 * Returns 0 when the timer has expired otherwise -EINTR
1788 */
1789int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1790                                     const enum hrtimer_mode mode)
1791{
1792        return schedule_hrtimeout_range_clock(expires, delta, mode,
1793                                              CLOCK_MONOTONIC);
1794}
1795EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1796
1797/**
1798 * schedule_hrtimeout - sleep until timeout
1799 * @expires:    timeout value (ktime_t)
1800 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801 *
1802 * Make the current task sleep until the given expiry time has
1803 * elapsed. The routine will return immediately unless
1804 * the current task state has been set (see set_current_state()).
1805 *
1806 * You can set the task state as follows -
1807 *
1808 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1809 * pass before the routine returns.
1810 *
1811 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1812 * delivered to the current task.
1813 *
1814 * The current task state is guaranteed to be TASK_RUNNING when this
1815 * routine returns.
1816 *
1817 * Returns 0 when the timer has expired otherwise -EINTR
1818 */
1819int __sched schedule_hrtimeout(ktime_t *expires,
1820                               const enum hrtimer_mode mode)
1821{
1822        return schedule_hrtimeout_range(expires, 0, mode);
1823}
1824EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1825