linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP            (1 << 0)
  32#define TK_MIRROR               (1 << 1)
  33#define TK_CLOCK_WAS_SET        (1 << 2)
  34
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40        seqcount_t              seq;
  41        struct timekeeper       timekeeper;
  42} tk_core ____cacheline_aligned;
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:        Sequence counter for protecting updates. The lowest bit
  50 *              is the index for the tk_read_base array
  51 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  52 *              @seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57        seqcount_t              seq;
  58        struct tk_read_base     base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
  63
  64/* flag for if timekeeping is suspended */
  65int __read_mostly timekeeping_suspended;
  66
  67static inline void tk_normalize_xtime(struct timekeeper *tk)
  68{
  69        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  70                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  71                tk->xtime_sec++;
  72        }
  73}
  74
  75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  76{
  77        struct timespec64 ts;
  78
  79        ts.tv_sec = tk->xtime_sec;
  80        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  81        return ts;
  82}
  83
  84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  85{
  86        tk->xtime_sec = ts->tv_sec;
  87        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  88}
  89
  90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  91{
  92        tk->xtime_sec += ts->tv_sec;
  93        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  94        tk_normalize_xtime(tk);
  95}
  96
  97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  98{
  99        struct timespec64 tmp;
 100
 101        /*
 102         * Verify consistency of: offset_real = -wall_to_monotonic
 103         * before modifying anything
 104         */
 105        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 106                                        -tk->wall_to_monotonic.tv_nsec);
 107        WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 108        tk->wall_to_monotonic = wtm;
 109        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 110        tk->offs_real = timespec64_to_ktime(tmp);
 111        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 112}
 113
 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 115{
 116        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 117}
 118
 119#ifdef CONFIG_DEBUG_TIMEKEEPING
 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 121
 122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 123{
 124
 125        cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
 126        const char *name = tk->tkr_mono.clock->name;
 127
 128        if (offset > max_cycles) {
 129                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 130                                offset, name, max_cycles);
 131                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 132        } else {
 133                if (offset > (max_cycles >> 1)) {
 134                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 135                                        offset, name, max_cycles >> 1);
 136                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 137                }
 138        }
 139
 140        if (tk->underflow_seen) {
 141                if (jiffies - tk->last_warning > WARNING_FREQ) {
 142                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 143                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 144                        printk_deferred("         Your kernel is probably still fine.\n");
 145                        tk->last_warning = jiffies;
 146                }
 147                tk->underflow_seen = 0;
 148        }
 149
 150        if (tk->overflow_seen) {
 151                if (jiffies - tk->last_warning > WARNING_FREQ) {
 152                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 153                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 154                        printk_deferred("         Your kernel is probably still fine.\n");
 155                        tk->last_warning = jiffies;
 156                }
 157                tk->overflow_seen = 0;
 158        }
 159}
 160
 161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 162{
 163        struct timekeeper *tk = &tk_core.timekeeper;
 164        cycle_t now, last, mask, max, delta;
 165        unsigned int seq;
 166
 167        /*
 168         * Since we're called holding a seqlock, the data may shift
 169         * under us while we're doing the calculation. This can cause
 170         * false positives, since we'd note a problem but throw the
 171         * results away. So nest another seqlock here to atomically
 172         * grab the points we are checking with.
 173         */
 174        do {
 175                seq = read_seqcount_begin(&tk_core.seq);
 176                now = tkr->read(tkr->clock);
 177                last = tkr->cycle_last;
 178                mask = tkr->mask;
 179                max = tkr->clock->max_cycles;
 180        } while (read_seqcount_retry(&tk_core.seq, seq));
 181
 182        delta = clocksource_delta(now, last, mask);
 183
 184        /*
 185         * Try to catch underflows by checking if we are seeing small
 186         * mask-relative negative values.
 187         */
 188        if (unlikely((~delta & mask) < (mask >> 3))) {
 189                tk->underflow_seen = 1;
 190                delta = 0;
 191        }
 192
 193        /* Cap delta value to the max_cycles values to avoid mult overflows */
 194        if (unlikely(delta > max)) {
 195                tk->overflow_seen = 1;
 196                delta = tkr->clock->max_cycles;
 197        }
 198
 199        return delta;
 200}
 201#else
 202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 203{
 204}
 205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 206{
 207        cycle_t cycle_now, delta;
 208
 209        /* read clocksource */
 210        cycle_now = tkr->read(tkr->clock);
 211
 212        /* calculate the delta since the last update_wall_time */
 213        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 214
 215        return delta;
 216}
 217#endif
 218
 219/**
 220 * tk_setup_internals - Set up internals to use clocksource clock.
 221 *
 222 * @tk:         The target timekeeper to setup.
 223 * @clock:              Pointer to clocksource.
 224 *
 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 226 * pair and interval request.
 227 *
 228 * Unless you're the timekeeping code, you should not be using this!
 229 */
 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 231{
 232        cycle_t interval;
 233        u64 tmp, ntpinterval;
 234        struct clocksource *old_clock;
 235
 236        ++tk->cs_was_changed_seq;
 237        old_clock = tk->tkr_mono.clock;
 238        tk->tkr_mono.clock = clock;
 239        tk->tkr_mono.read = clock->read;
 240        tk->tkr_mono.mask = clock->mask;
 241        tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 242
 243        tk->tkr_raw.clock = clock;
 244        tk->tkr_raw.read = clock->read;
 245        tk->tkr_raw.mask = clock->mask;
 246        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 247
 248        /* Do the ns -> cycle conversion first, using original mult */
 249        tmp = NTP_INTERVAL_LENGTH;
 250        tmp <<= clock->shift;
 251        ntpinterval = tmp;
 252        tmp += clock->mult/2;
 253        do_div(tmp, clock->mult);
 254        if (tmp == 0)
 255                tmp = 1;
 256
 257        interval = (cycle_t) tmp;
 258        tk->cycle_interval = interval;
 259
 260        /* Go back from cycles -> shifted ns */
 261        tk->xtime_interval = (u64) interval * clock->mult;
 262        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 263        tk->raw_interval =
 264                ((u64) interval * clock->mult) >> clock->shift;
 265
 266         /* if changing clocks, convert xtime_nsec shift units */
 267        if (old_clock) {
 268                int shift_change = clock->shift - old_clock->shift;
 269                if (shift_change < 0)
 270                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 271                else
 272                        tk->tkr_mono.xtime_nsec <<= shift_change;
 273        }
 274        tk->tkr_raw.xtime_nsec = 0;
 275
 276        tk->tkr_mono.shift = clock->shift;
 277        tk->tkr_raw.shift = clock->shift;
 278
 279        tk->ntp_error = 0;
 280        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 281        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 282
 283        /*
 284         * The timekeeper keeps its own mult values for the currently
 285         * active clocksource. These value will be adjusted via NTP
 286         * to counteract clock drifting.
 287         */
 288        tk->tkr_mono.mult = clock->mult;
 289        tk->tkr_raw.mult = clock->mult;
 290        tk->ntp_err_mult = 0;
 291}
 292
 293/* Timekeeper helper functions. */
 294
 295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 296static u32 default_arch_gettimeoffset(void) { return 0; }
 297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 298#else
 299static inline u32 arch_gettimeoffset(void) { return 0; }
 300#endif
 301
 302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
 303                                          cycle_t delta)
 304{
 305        s64 nsec;
 306
 307        nsec = delta * tkr->mult + tkr->xtime_nsec;
 308        nsec >>= tkr->shift;
 309
 310        /* If arch requires, add in get_arch_timeoffset() */
 311        return nsec + arch_gettimeoffset();
 312}
 313
 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 315{
 316        cycle_t delta;
 317
 318        delta = timekeeping_get_delta(tkr);
 319        return timekeeping_delta_to_ns(tkr, delta);
 320}
 321
 322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
 323                                            cycle_t cycles)
 324{
 325        cycle_t delta;
 326
 327        /* calculate the delta since the last update_wall_time */
 328        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 329        return timekeeping_delta_to_ns(tkr, delta);
 330}
 331
 332/**
 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 334 * @tkr: Timekeeping readout base from which we take the update
 335 *
 336 * We want to use this from any context including NMI and tracing /
 337 * instrumenting the timekeeping code itself.
 338 *
 339 * Employ the latch technique; see @raw_write_seqcount_latch.
 340 *
 341 * So if a NMI hits the update of base[0] then it will use base[1]
 342 * which is still consistent. In the worst case this can result is a
 343 * slightly wrong timestamp (a few nanoseconds). See
 344 * @ktime_get_mono_fast_ns.
 345 */
 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 347{
 348        struct tk_read_base *base = tkf->base;
 349
 350        /* Force readers off to base[1] */
 351        raw_write_seqcount_latch(&tkf->seq);
 352
 353        /* Update base[0] */
 354        memcpy(base, tkr, sizeof(*base));
 355
 356        /* Force readers back to base[0] */
 357        raw_write_seqcount_latch(&tkf->seq);
 358
 359        /* Update base[1] */
 360        memcpy(base + 1, base, sizeof(*base));
 361}
 362
 363/**
 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 365 *
 366 * This timestamp is not guaranteed to be monotonic across an update.
 367 * The timestamp is calculated by:
 368 *
 369 *      now = base_mono + clock_delta * slope
 370 *
 371 * So if the update lowers the slope, readers who are forced to the
 372 * not yet updated second array are still using the old steeper slope.
 373 *
 374 * tmono
 375 * ^
 376 * |    o  n
 377 * |   o n
 378 * |  u
 379 * | o
 380 * |o
 381 * |12345678---> reader order
 382 *
 383 * o = old slope
 384 * u = update
 385 * n = new slope
 386 *
 387 * So reader 6 will observe time going backwards versus reader 5.
 388 *
 389 * While other CPUs are likely to be able observe that, the only way
 390 * for a CPU local observation is when an NMI hits in the middle of
 391 * the update. Timestamps taken from that NMI context might be ahead
 392 * of the following timestamps. Callers need to be aware of that and
 393 * deal with it.
 394 */
 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 396{
 397        struct tk_read_base *tkr;
 398        unsigned int seq;
 399        u64 now;
 400
 401        do {
 402                seq = raw_read_seqcount_latch(&tkf->seq);
 403                tkr = tkf->base + (seq & 0x01);
 404                now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
 405        } while (read_seqcount_retry(&tkf->seq, seq));
 406
 407        return now;
 408}
 409
 410u64 ktime_get_mono_fast_ns(void)
 411{
 412        return __ktime_get_fast_ns(&tk_fast_mono);
 413}
 414EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 415
 416u64 ktime_get_raw_fast_ns(void)
 417{
 418        return __ktime_get_fast_ns(&tk_fast_raw);
 419}
 420EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 421
 422/* Suspend-time cycles value for halted fast timekeeper. */
 423static cycle_t cycles_at_suspend;
 424
 425static cycle_t dummy_clock_read(struct clocksource *cs)
 426{
 427        return cycles_at_suspend;
 428}
 429
 430/**
 431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 432 * @tk: Timekeeper to snapshot.
 433 *
 434 * It generally is unsafe to access the clocksource after timekeeping has been
 435 * suspended, so take a snapshot of the readout base of @tk and use it as the
 436 * fast timekeeper's readout base while suspended.  It will return the same
 437 * number of cycles every time until timekeeping is resumed at which time the
 438 * proper readout base for the fast timekeeper will be restored automatically.
 439 */
 440static void halt_fast_timekeeper(struct timekeeper *tk)
 441{
 442        static struct tk_read_base tkr_dummy;
 443        struct tk_read_base *tkr = &tk->tkr_mono;
 444
 445        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 446        cycles_at_suspend = tkr->read(tkr->clock);
 447        tkr_dummy.read = dummy_clock_read;
 448        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 449
 450        tkr = &tk->tkr_raw;
 451        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 452        tkr_dummy.read = dummy_clock_read;
 453        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 454}
 455
 456#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 457
 458static inline void update_vsyscall(struct timekeeper *tk)
 459{
 460        struct timespec xt, wm;
 461
 462        xt = timespec64_to_timespec(tk_xtime(tk));
 463        wm = timespec64_to_timespec(tk->wall_to_monotonic);
 464        update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 465                            tk->tkr_mono.cycle_last);
 466}
 467
 468static inline void old_vsyscall_fixup(struct timekeeper *tk)
 469{
 470        s64 remainder;
 471
 472        /*
 473        * Store only full nanoseconds into xtime_nsec after rounding
 474        * it up and add the remainder to the error difference.
 475        * XXX - This is necessary to avoid small 1ns inconsistnecies caused
 476        * by truncating the remainder in vsyscalls. However, it causes
 477        * additional work to be done in timekeeping_adjust(). Once
 478        * the vsyscall implementations are converted to use xtime_nsec
 479        * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 480        * users are removed, this can be killed.
 481        */
 482        remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 483        tk->tkr_mono.xtime_nsec -= remainder;
 484        tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 485        tk->ntp_error += remainder << tk->ntp_error_shift;
 486        tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 487}
 488#else
 489#define old_vsyscall_fixup(tk)
 490#endif
 491
 492static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 493
 494static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 495{
 496        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 497}
 498
 499/**
 500 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 501 */
 502int pvclock_gtod_register_notifier(struct notifier_block *nb)
 503{
 504        struct timekeeper *tk = &tk_core.timekeeper;
 505        unsigned long flags;
 506        int ret;
 507
 508        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 509        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 510        update_pvclock_gtod(tk, true);
 511        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 512
 513        return ret;
 514}
 515EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 516
 517/**
 518 * pvclock_gtod_unregister_notifier - unregister a pvclock
 519 * timedata update listener
 520 */
 521int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 522{
 523        unsigned long flags;
 524        int ret;
 525
 526        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 527        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 528        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 529
 530        return ret;
 531}
 532EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 533
 534/*
 535 * tk_update_leap_state - helper to update the next_leap_ktime
 536 */
 537static inline void tk_update_leap_state(struct timekeeper *tk)
 538{
 539        tk->next_leap_ktime = ntp_get_next_leap();
 540        if (tk->next_leap_ktime.tv64 != KTIME_MAX)
 541                /* Convert to monotonic time */
 542                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 543}
 544
 545/*
 546 * Update the ktime_t based scalar nsec members of the timekeeper
 547 */
 548static inline void tk_update_ktime_data(struct timekeeper *tk)
 549{
 550        u64 seconds;
 551        u32 nsec;
 552
 553        /*
 554         * The xtime based monotonic readout is:
 555         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 556         * The ktime based monotonic readout is:
 557         *      nsec = base_mono + now();
 558         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 559         */
 560        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 561        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 562        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 563
 564        /* Update the monotonic raw base */
 565        tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 566
 567        /*
 568         * The sum of the nanoseconds portions of xtime and
 569         * wall_to_monotonic can be greater/equal one second. Take
 570         * this into account before updating tk->ktime_sec.
 571         */
 572        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 573        if (nsec >= NSEC_PER_SEC)
 574                seconds++;
 575        tk->ktime_sec = seconds;
 576}
 577
 578/* must hold timekeeper_lock */
 579static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 580{
 581        if (action & TK_CLEAR_NTP) {
 582                tk->ntp_error = 0;
 583                ntp_clear();
 584        }
 585
 586        tk_update_leap_state(tk);
 587        tk_update_ktime_data(tk);
 588
 589        update_vsyscall(tk);
 590        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 591
 592        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 593        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 594
 595        if (action & TK_CLOCK_WAS_SET)
 596                tk->clock_was_set_seq++;
 597        /*
 598         * The mirroring of the data to the shadow-timekeeper needs
 599         * to happen last here to ensure we don't over-write the
 600         * timekeeper structure on the next update with stale data
 601         */
 602        if (action & TK_MIRROR)
 603                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 604                       sizeof(tk_core.timekeeper));
 605}
 606
 607/**
 608 * timekeeping_forward_now - update clock to the current time
 609 *
 610 * Forward the current clock to update its state since the last call to
 611 * update_wall_time(). This is useful before significant clock changes,
 612 * as it avoids having to deal with this time offset explicitly.
 613 */
 614static void timekeeping_forward_now(struct timekeeper *tk)
 615{
 616        struct clocksource *clock = tk->tkr_mono.clock;
 617        cycle_t cycle_now, delta;
 618        s64 nsec;
 619
 620        cycle_now = tk->tkr_mono.read(clock);
 621        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 622        tk->tkr_mono.cycle_last = cycle_now;
 623        tk->tkr_raw.cycle_last  = cycle_now;
 624
 625        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 626
 627        /* If arch requires, add in get_arch_timeoffset() */
 628        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 629
 630        tk_normalize_xtime(tk);
 631
 632        nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 633        timespec64_add_ns(&tk->raw_time, nsec);
 634}
 635
 636/**
 637 * __getnstimeofday64 - Returns the time of day in a timespec64.
 638 * @ts:         pointer to the timespec to be set
 639 *
 640 * Updates the time of day in the timespec.
 641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 642 */
 643int __getnstimeofday64(struct timespec64 *ts)
 644{
 645        struct timekeeper *tk = &tk_core.timekeeper;
 646        unsigned long seq;
 647        s64 nsecs = 0;
 648
 649        do {
 650                seq = read_seqcount_begin(&tk_core.seq);
 651
 652                ts->tv_sec = tk->xtime_sec;
 653                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 654
 655        } while (read_seqcount_retry(&tk_core.seq, seq));
 656
 657        ts->tv_nsec = 0;
 658        timespec64_add_ns(ts, nsecs);
 659
 660        /*
 661         * Do not bail out early, in case there were callers still using
 662         * the value, even in the face of the WARN_ON.
 663         */
 664        if (unlikely(timekeeping_suspended))
 665                return -EAGAIN;
 666        return 0;
 667}
 668EXPORT_SYMBOL(__getnstimeofday64);
 669
 670/**
 671 * getnstimeofday64 - Returns the time of day in a timespec64.
 672 * @ts:         pointer to the timespec64 to be set
 673 *
 674 * Returns the time of day in a timespec64 (WARN if suspended).
 675 */
 676void getnstimeofday64(struct timespec64 *ts)
 677{
 678        WARN_ON(__getnstimeofday64(ts));
 679}
 680EXPORT_SYMBOL(getnstimeofday64);
 681
 682ktime_t ktime_get(void)
 683{
 684        struct timekeeper *tk = &tk_core.timekeeper;
 685        unsigned int seq;
 686        ktime_t base;
 687        s64 nsecs;
 688
 689        WARN_ON(timekeeping_suspended);
 690
 691        do {
 692                seq = read_seqcount_begin(&tk_core.seq);
 693                base = tk->tkr_mono.base;
 694                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 695
 696        } while (read_seqcount_retry(&tk_core.seq, seq));
 697
 698        return ktime_add_ns(base, nsecs);
 699}
 700EXPORT_SYMBOL_GPL(ktime_get);
 701
 702u32 ktime_get_resolution_ns(void)
 703{
 704        struct timekeeper *tk = &tk_core.timekeeper;
 705        unsigned int seq;
 706        u32 nsecs;
 707
 708        WARN_ON(timekeeping_suspended);
 709
 710        do {
 711                seq = read_seqcount_begin(&tk_core.seq);
 712                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 713        } while (read_seqcount_retry(&tk_core.seq, seq));
 714
 715        return nsecs;
 716}
 717EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 718
 719static ktime_t *offsets[TK_OFFS_MAX] = {
 720        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 721        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 722        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 723};
 724
 725ktime_t ktime_get_with_offset(enum tk_offsets offs)
 726{
 727        struct timekeeper *tk = &tk_core.timekeeper;
 728        unsigned int seq;
 729        ktime_t base, *offset = offsets[offs];
 730        s64 nsecs;
 731
 732        WARN_ON(timekeeping_suspended);
 733
 734        do {
 735                seq = read_seqcount_begin(&tk_core.seq);
 736                base = ktime_add(tk->tkr_mono.base, *offset);
 737                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 738
 739        } while (read_seqcount_retry(&tk_core.seq, seq));
 740
 741        return ktime_add_ns(base, nsecs);
 742
 743}
 744EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 745
 746/**
 747 * ktime_mono_to_any() - convert mononotic time to any other time
 748 * @tmono:      time to convert.
 749 * @offs:       which offset to use
 750 */
 751ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 752{
 753        ktime_t *offset = offsets[offs];
 754        unsigned long seq;
 755        ktime_t tconv;
 756
 757        do {
 758                seq = read_seqcount_begin(&tk_core.seq);
 759                tconv = ktime_add(tmono, *offset);
 760        } while (read_seqcount_retry(&tk_core.seq, seq));
 761
 762        return tconv;
 763}
 764EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 765
 766/**
 767 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 768 */
 769ktime_t ktime_get_raw(void)
 770{
 771        struct timekeeper *tk = &tk_core.timekeeper;
 772        unsigned int seq;
 773        ktime_t base;
 774        s64 nsecs;
 775
 776        do {
 777                seq = read_seqcount_begin(&tk_core.seq);
 778                base = tk->tkr_raw.base;
 779                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 780
 781        } while (read_seqcount_retry(&tk_core.seq, seq));
 782
 783        return ktime_add_ns(base, nsecs);
 784}
 785EXPORT_SYMBOL_GPL(ktime_get_raw);
 786
 787/**
 788 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 789 * @ts:         pointer to timespec variable
 790 *
 791 * The function calculates the monotonic clock from the realtime
 792 * clock and the wall_to_monotonic offset and stores the result
 793 * in normalized timespec64 format in the variable pointed to by @ts.
 794 */
 795void ktime_get_ts64(struct timespec64 *ts)
 796{
 797        struct timekeeper *tk = &tk_core.timekeeper;
 798        struct timespec64 tomono;
 799        s64 nsec;
 800        unsigned int seq;
 801
 802        WARN_ON(timekeeping_suspended);
 803
 804        do {
 805                seq = read_seqcount_begin(&tk_core.seq);
 806                ts->tv_sec = tk->xtime_sec;
 807                nsec = timekeeping_get_ns(&tk->tkr_mono);
 808                tomono = tk->wall_to_monotonic;
 809
 810        } while (read_seqcount_retry(&tk_core.seq, seq));
 811
 812        ts->tv_sec += tomono.tv_sec;
 813        ts->tv_nsec = 0;
 814        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 815}
 816EXPORT_SYMBOL_GPL(ktime_get_ts64);
 817
 818/**
 819 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 820 *
 821 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 822 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 823 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 824 * covers ~136 years of uptime which should be enough to prevent
 825 * premature wrap arounds.
 826 */
 827time64_t ktime_get_seconds(void)
 828{
 829        struct timekeeper *tk = &tk_core.timekeeper;
 830
 831        WARN_ON(timekeeping_suspended);
 832        return tk->ktime_sec;
 833}
 834EXPORT_SYMBOL_GPL(ktime_get_seconds);
 835
 836/**
 837 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 838 *
 839 * Returns the wall clock seconds since 1970. This replaces the
 840 * get_seconds() interface which is not y2038 safe on 32bit systems.
 841 *
 842 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 843 * 32bit systems the access must be protected with the sequence
 844 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 845 * value.
 846 */
 847time64_t ktime_get_real_seconds(void)
 848{
 849        struct timekeeper *tk = &tk_core.timekeeper;
 850        time64_t seconds;
 851        unsigned int seq;
 852
 853        if (IS_ENABLED(CONFIG_64BIT))
 854                return tk->xtime_sec;
 855
 856        do {
 857                seq = read_seqcount_begin(&tk_core.seq);
 858                seconds = tk->xtime_sec;
 859
 860        } while (read_seqcount_retry(&tk_core.seq, seq));
 861
 862        return seconds;
 863}
 864EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 865
 866/**
 867 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 868 * but without the sequence counter protect. This internal function
 869 * is called just when timekeeping lock is already held.
 870 */
 871time64_t __ktime_get_real_seconds(void)
 872{
 873        struct timekeeper *tk = &tk_core.timekeeper;
 874
 875        return tk->xtime_sec;
 876}
 877
 878/**
 879 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 880 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 881 */
 882void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 883{
 884        struct timekeeper *tk = &tk_core.timekeeper;
 885        unsigned long seq;
 886        ktime_t base_raw;
 887        ktime_t base_real;
 888        s64 nsec_raw;
 889        s64 nsec_real;
 890        cycle_t now;
 891
 892        WARN_ON_ONCE(timekeeping_suspended);
 893
 894        do {
 895                seq = read_seqcount_begin(&tk_core.seq);
 896
 897                now = tk->tkr_mono.read(tk->tkr_mono.clock);
 898                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 899                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 900                base_real = ktime_add(tk->tkr_mono.base,
 901                                      tk_core.timekeeper.offs_real);
 902                base_raw = tk->tkr_raw.base;
 903                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 904                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 905        } while (read_seqcount_retry(&tk_core.seq, seq));
 906
 907        systime_snapshot->cycles = now;
 908        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 909        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 910}
 911EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 912
 913/* Scale base by mult/div checking for overflow */
 914static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 915{
 916        u64 tmp, rem;
 917
 918        tmp = div64_u64_rem(*base, div, &rem);
 919
 920        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 921            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 922                return -EOVERFLOW;
 923        tmp *= mult;
 924        rem *= mult;
 925
 926        do_div(rem, div);
 927        *base = tmp + rem;
 928        return 0;
 929}
 930
 931/**
 932 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 933 * @history:                    Snapshot representing start of history
 934 * @partial_history_cycles:     Cycle offset into history (fractional part)
 935 * @total_history_cycles:       Total history length in cycles
 936 * @discontinuity:              True indicates clock was set on history period
 937 * @ts:                         Cross timestamp that should be adjusted using
 938 *      partial/total ratio
 939 *
 940 * Helper function used by get_device_system_crosststamp() to correct the
 941 * crosstimestamp corresponding to the start of the current interval to the
 942 * system counter value (timestamp point) provided by the driver. The
 943 * total_history_* quantities are the total history starting at the provided
 944 * reference point and ending at the start of the current interval. The cycle
 945 * count between the driver timestamp point and the start of the current
 946 * interval is partial_history_cycles.
 947 */
 948static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 949                                         cycle_t partial_history_cycles,
 950                                         cycle_t total_history_cycles,
 951                                         bool discontinuity,
 952                                         struct system_device_crosststamp *ts)
 953{
 954        struct timekeeper *tk = &tk_core.timekeeper;
 955        u64 corr_raw, corr_real;
 956        bool interp_forward;
 957        int ret;
 958
 959        if (total_history_cycles == 0 || partial_history_cycles == 0)
 960                return 0;
 961
 962        /* Interpolate shortest distance from beginning or end of history */
 963        interp_forward = partial_history_cycles > total_history_cycles/2 ?
 964                true : false;
 965        partial_history_cycles = interp_forward ?
 966                total_history_cycles - partial_history_cycles :
 967                partial_history_cycles;
 968
 969        /*
 970         * Scale the monotonic raw time delta by:
 971         *      partial_history_cycles / total_history_cycles
 972         */
 973        corr_raw = (u64)ktime_to_ns(
 974                ktime_sub(ts->sys_monoraw, history->raw));
 975        ret = scale64_check_overflow(partial_history_cycles,
 976                                     total_history_cycles, &corr_raw);
 977        if (ret)
 978                return ret;
 979
 980        /*
 981         * If there is a discontinuity in the history, scale monotonic raw
 982         *      correction by:
 983         *      mult(real)/mult(raw) yielding the realtime correction
 984         * Otherwise, calculate the realtime correction similar to monotonic
 985         *      raw calculation
 986         */
 987        if (discontinuity) {
 988                corr_real = mul_u64_u32_div
 989                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
 990        } else {
 991                corr_real = (u64)ktime_to_ns(
 992                        ktime_sub(ts->sys_realtime, history->real));
 993                ret = scale64_check_overflow(partial_history_cycles,
 994                                             total_history_cycles, &corr_real);
 995                if (ret)
 996                        return ret;
 997        }
 998
 999        /* Fixup monotonic raw and real time time values */
1000        if (interp_forward) {
1001                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1002                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1003        } else {
1004                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1005                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1006        }
1007
1008        return 0;
1009}
1010
1011/*
1012 * cycle_between - true if test occurs chronologically between before and after
1013 */
1014static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1015{
1016        if (test > before && test < after)
1017                return true;
1018        if (test < before && before > after)
1019                return true;
1020        return false;
1021}
1022
1023/**
1024 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025 * @get_time_fn:        Callback to get simultaneous device time and
1026 *      system counter from the device driver
1027 * @ctx:                Context passed to get_time_fn()
1028 * @history_begin:      Historical reference point used to interpolate system
1029 *      time when counter provided by the driver is before the current interval
1030 * @xtstamp:            Receives simultaneously captured system and device time
1031 *
1032 * Reads a timestamp from a device and correlates it to system time
1033 */
1034int get_device_system_crosststamp(int (*get_time_fn)
1035                                  (ktime_t *device_time,
1036                                   struct system_counterval_t *sys_counterval,
1037                                   void *ctx),
1038                                  void *ctx,
1039                                  struct system_time_snapshot *history_begin,
1040                                  struct system_device_crosststamp *xtstamp)
1041{
1042        struct system_counterval_t system_counterval;
1043        struct timekeeper *tk = &tk_core.timekeeper;
1044        cycle_t cycles, now, interval_start;
1045        unsigned int clock_was_set_seq = 0;
1046        ktime_t base_real, base_raw;
1047        s64 nsec_real, nsec_raw;
1048        u8 cs_was_changed_seq;
1049        unsigned long seq;
1050        bool do_interp;
1051        int ret;
1052
1053        do {
1054                seq = read_seqcount_begin(&tk_core.seq);
1055                /*
1056                 * Try to synchronously capture device time and a system
1057                 * counter value calling back into the device driver
1058                 */
1059                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1060                if (ret)
1061                        return ret;
1062
1063                /*
1064                 * Verify that the clocksource associated with the captured
1065                 * system counter value is the same as the currently installed
1066                 * timekeeper clocksource
1067                 */
1068                if (tk->tkr_mono.clock != system_counterval.cs)
1069                        return -ENODEV;
1070                cycles = system_counterval.cycles;
1071
1072                /*
1073                 * Check whether the system counter value provided by the
1074                 * device driver is on the current timekeeping interval.
1075                 */
1076                now = tk->tkr_mono.read(tk->tkr_mono.clock);
1077                interval_start = tk->tkr_mono.cycle_last;
1078                if (!cycle_between(interval_start, cycles, now)) {
1079                        clock_was_set_seq = tk->clock_was_set_seq;
1080                        cs_was_changed_seq = tk->cs_was_changed_seq;
1081                        cycles = interval_start;
1082                        do_interp = true;
1083                } else {
1084                        do_interp = false;
1085                }
1086
1087                base_real = ktime_add(tk->tkr_mono.base,
1088                                      tk_core.timekeeper.offs_real);
1089                base_raw = tk->tkr_raw.base;
1090
1091                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1092                                                     system_counterval.cycles);
1093                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1094                                                    system_counterval.cycles);
1095        } while (read_seqcount_retry(&tk_core.seq, seq));
1096
1097        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1098        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1099
1100        /*
1101         * Interpolate if necessary, adjusting back from the start of the
1102         * current interval
1103         */
1104        if (do_interp) {
1105                cycle_t partial_history_cycles, total_history_cycles;
1106                bool discontinuity;
1107
1108                /*
1109                 * Check that the counter value occurs after the provided
1110                 * history reference and that the history doesn't cross a
1111                 * clocksource change
1112                 */
1113                if (!history_begin ||
1114                    !cycle_between(history_begin->cycles,
1115                                   system_counterval.cycles, cycles) ||
1116                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1117                        return -EINVAL;
1118                partial_history_cycles = cycles - system_counterval.cycles;
1119                total_history_cycles = cycles - history_begin->cycles;
1120                discontinuity =
1121                        history_begin->clock_was_set_seq != clock_was_set_seq;
1122
1123                ret = adjust_historical_crosststamp(history_begin,
1124                                                    partial_history_cycles,
1125                                                    total_history_cycles,
1126                                                    discontinuity, xtstamp);
1127                if (ret)
1128                        return ret;
1129        }
1130
1131        return 0;
1132}
1133EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1134
1135/**
1136 * do_gettimeofday - Returns the time of day in a timeval
1137 * @tv:         pointer to the timeval to be set
1138 *
1139 * NOTE: Users should be converted to using getnstimeofday()
1140 */
1141void do_gettimeofday(struct timeval *tv)
1142{
1143        struct timespec64 now;
1144
1145        getnstimeofday64(&now);
1146        tv->tv_sec = now.tv_sec;
1147        tv->tv_usec = now.tv_nsec/1000;
1148}
1149EXPORT_SYMBOL(do_gettimeofday);
1150
1151/**
1152 * do_settimeofday64 - Sets the time of day.
1153 * @ts:     pointer to the timespec64 variable containing the new time
1154 *
1155 * Sets the time of day to the new time and update NTP and notify hrtimers
1156 */
1157int do_settimeofday64(const struct timespec64 *ts)
1158{
1159        struct timekeeper *tk = &tk_core.timekeeper;
1160        struct timespec64 ts_delta, xt;
1161        unsigned long flags;
1162        int ret = 0;
1163
1164        if (!timespec64_valid_strict(ts))
1165                return -EINVAL;
1166
1167        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1168        write_seqcount_begin(&tk_core.seq);
1169
1170        timekeeping_forward_now(tk);
1171
1172        xt = tk_xtime(tk);
1173        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1174        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1175
1176        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1177                ret = -EINVAL;
1178                goto out;
1179        }
1180
1181        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1182
1183        tk_set_xtime(tk, ts);
1184out:
1185        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1186
1187        write_seqcount_end(&tk_core.seq);
1188        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189
1190        /* signal hrtimers about time change */
1191        clock_was_set();
1192
1193        return ret;
1194}
1195EXPORT_SYMBOL(do_settimeofday64);
1196
1197/**
1198 * timekeeping_inject_offset - Adds or subtracts from the current time.
1199 * @tv:         pointer to the timespec variable containing the offset
1200 *
1201 * Adds or subtracts an offset value from the current time.
1202 */
1203int timekeeping_inject_offset(struct timespec *ts)
1204{
1205        struct timekeeper *tk = &tk_core.timekeeper;
1206        unsigned long flags;
1207        struct timespec64 ts64, tmp;
1208        int ret = 0;
1209
1210        if (!timespec_inject_offset_valid(ts))
1211                return -EINVAL;
1212
1213        ts64 = timespec_to_timespec64(*ts);
1214
1215        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216        write_seqcount_begin(&tk_core.seq);
1217
1218        timekeeping_forward_now(tk);
1219
1220        /* Make sure the proposed value is valid */
1221        tmp = timespec64_add(tk_xtime(tk),  ts64);
1222        if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1223            !timespec64_valid_strict(&tmp)) {
1224                ret = -EINVAL;
1225                goto error;
1226        }
1227
1228        tk_xtime_add(tk, &ts64);
1229        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1230
1231error: /* even if we error out, we forwarded the time, so call update */
1232        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1233
1234        write_seqcount_end(&tk_core.seq);
1235        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1236
1237        /* signal hrtimers about time change */
1238        clock_was_set();
1239
1240        return ret;
1241}
1242EXPORT_SYMBOL(timekeeping_inject_offset);
1243
1244
1245/**
1246 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1247 *
1248 */
1249s32 timekeeping_get_tai_offset(void)
1250{
1251        struct timekeeper *tk = &tk_core.timekeeper;
1252        unsigned int seq;
1253        s32 ret;
1254
1255        do {
1256                seq = read_seqcount_begin(&tk_core.seq);
1257                ret = tk->tai_offset;
1258        } while (read_seqcount_retry(&tk_core.seq, seq));
1259
1260        return ret;
1261}
1262
1263/**
1264 * __timekeeping_set_tai_offset - Lock free worker function
1265 *
1266 */
1267static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1268{
1269        tk->tai_offset = tai_offset;
1270        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1271}
1272
1273/**
1274 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1275 *
1276 */
1277void timekeeping_set_tai_offset(s32 tai_offset)
1278{
1279        struct timekeeper *tk = &tk_core.timekeeper;
1280        unsigned long flags;
1281
1282        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283        write_seqcount_begin(&tk_core.seq);
1284        __timekeeping_set_tai_offset(tk, tai_offset);
1285        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1286        write_seqcount_end(&tk_core.seq);
1287        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1288        clock_was_set();
1289}
1290
1291/**
1292 * change_clocksource - Swaps clocksources if a new one is available
1293 *
1294 * Accumulates current time interval and initializes new clocksource
1295 */
1296static int change_clocksource(void *data)
1297{
1298        struct timekeeper *tk = &tk_core.timekeeper;
1299        struct clocksource *new, *old;
1300        unsigned long flags;
1301
1302        new = (struct clocksource *) data;
1303
1304        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1305        write_seqcount_begin(&tk_core.seq);
1306
1307        timekeeping_forward_now(tk);
1308        /*
1309         * If the cs is in module, get a module reference. Succeeds
1310         * for built-in code (owner == NULL) as well.
1311         */
1312        if (try_module_get(new->owner)) {
1313                if (!new->enable || new->enable(new) == 0) {
1314                        old = tk->tkr_mono.clock;
1315                        tk_setup_internals(tk, new);
1316                        if (old->disable)
1317                                old->disable(old);
1318                        module_put(old->owner);
1319                } else {
1320                        module_put(new->owner);
1321                }
1322        }
1323        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324
1325        write_seqcount_end(&tk_core.seq);
1326        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327
1328        return 0;
1329}
1330
1331/**
1332 * timekeeping_notify - Install a new clock source
1333 * @clock:              pointer to the clock source
1334 *
1335 * This function is called from clocksource.c after a new, better clock
1336 * source has been registered. The caller holds the clocksource_mutex.
1337 */
1338int timekeeping_notify(struct clocksource *clock)
1339{
1340        struct timekeeper *tk = &tk_core.timekeeper;
1341
1342        if (tk->tkr_mono.clock == clock)
1343                return 0;
1344        stop_machine(change_clocksource, clock, NULL);
1345        tick_clock_notify();
1346        return tk->tkr_mono.clock == clock ? 0 : -1;
1347}
1348
1349/**
1350 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1351 * @ts:         pointer to the timespec64 to be set
1352 *
1353 * Returns the raw monotonic time (completely un-modified by ntp)
1354 */
1355void getrawmonotonic64(struct timespec64 *ts)
1356{
1357        struct timekeeper *tk = &tk_core.timekeeper;
1358        struct timespec64 ts64;
1359        unsigned long seq;
1360        s64 nsecs;
1361
1362        do {
1363                seq = read_seqcount_begin(&tk_core.seq);
1364                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1365                ts64 = tk->raw_time;
1366
1367        } while (read_seqcount_retry(&tk_core.seq, seq));
1368
1369        timespec64_add_ns(&ts64, nsecs);
1370        *ts = ts64;
1371}
1372EXPORT_SYMBOL(getrawmonotonic64);
1373
1374
1375/**
1376 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377 */
1378int timekeeping_valid_for_hres(void)
1379{
1380        struct timekeeper *tk = &tk_core.timekeeper;
1381        unsigned long seq;
1382        int ret;
1383
1384        do {
1385                seq = read_seqcount_begin(&tk_core.seq);
1386
1387                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1388
1389        } while (read_seqcount_retry(&tk_core.seq, seq));
1390
1391        return ret;
1392}
1393
1394/**
1395 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1396 */
1397u64 timekeeping_max_deferment(void)
1398{
1399        struct timekeeper *tk = &tk_core.timekeeper;
1400        unsigned long seq;
1401        u64 ret;
1402
1403        do {
1404                seq = read_seqcount_begin(&tk_core.seq);
1405
1406                ret = tk->tkr_mono.clock->max_idle_ns;
1407
1408        } while (read_seqcount_retry(&tk_core.seq, seq));
1409
1410        return ret;
1411}
1412
1413/**
1414 * read_persistent_clock -  Return time from the persistent clock.
1415 *
1416 * Weak dummy function for arches that do not yet support it.
1417 * Reads the time from the battery backed persistent clock.
1418 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419 *
1420 *  XXX - Do be sure to remove it once all arches implement it.
1421 */
1422void __weak read_persistent_clock(struct timespec *ts)
1423{
1424        ts->tv_sec = 0;
1425        ts->tv_nsec = 0;
1426}
1427
1428void __weak read_persistent_clock64(struct timespec64 *ts64)
1429{
1430        struct timespec ts;
1431
1432        read_persistent_clock(&ts);
1433        *ts64 = timespec_to_timespec64(ts);
1434}
1435
1436/**
1437 * read_boot_clock64 -  Return time of the system start.
1438 *
1439 * Weak dummy function for arches that do not yet support it.
1440 * Function to read the exact time the system has been started.
1441 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442 *
1443 *  XXX - Do be sure to remove it once all arches implement it.
1444 */
1445void __weak read_boot_clock64(struct timespec64 *ts)
1446{
1447        ts->tv_sec = 0;
1448        ts->tv_nsec = 0;
1449}
1450
1451/* Flag for if timekeeping_resume() has injected sleeptime */
1452static bool sleeptime_injected;
1453
1454/* Flag for if there is a persistent clock on this platform */
1455static bool persistent_clock_exists;
1456
1457/*
1458 * timekeeping_init - Initializes the clocksource and common timekeeping values
1459 */
1460void __init timekeeping_init(void)
1461{
1462        struct timekeeper *tk = &tk_core.timekeeper;
1463        struct clocksource *clock;
1464        unsigned long flags;
1465        struct timespec64 now, boot, tmp;
1466
1467        read_persistent_clock64(&now);
1468        if (!timespec64_valid_strict(&now)) {
1469                pr_warn("WARNING: Persistent clock returned invalid value!\n"
1470                        "         Check your CMOS/BIOS settings.\n");
1471                now.tv_sec = 0;
1472                now.tv_nsec = 0;
1473        } else if (now.tv_sec || now.tv_nsec)
1474                persistent_clock_exists = true;
1475
1476        read_boot_clock64(&boot);
1477        if (!timespec64_valid_strict(&boot)) {
1478                pr_warn("WARNING: Boot clock returned invalid value!\n"
1479                        "         Check your CMOS/BIOS settings.\n");
1480                boot.tv_sec = 0;
1481                boot.tv_nsec = 0;
1482        }
1483
1484        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1485        write_seqcount_begin(&tk_core.seq);
1486        ntp_init();
1487
1488        clock = clocksource_default_clock();
1489        if (clock->enable)
1490                clock->enable(clock);
1491        tk_setup_internals(tk, clock);
1492
1493        tk_set_xtime(tk, &now);
1494        tk->raw_time.tv_sec = 0;
1495        tk->raw_time.tv_nsec = 0;
1496        if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1497                boot = tk_xtime(tk);
1498
1499        set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1500        tk_set_wall_to_mono(tk, tmp);
1501
1502        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1503
1504        write_seqcount_end(&tk_core.seq);
1505        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1506}
1507
1508/* time in seconds when suspend began for persistent clock */
1509static struct timespec64 timekeeping_suspend_time;
1510
1511/**
1512 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1513 * @delta: pointer to a timespec delta value
1514 *
1515 * Takes a timespec offset measuring a suspend interval and properly
1516 * adds the sleep offset to the timekeeping variables.
1517 */
1518static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1519                                           struct timespec64 *delta)
1520{
1521        if (!timespec64_valid_strict(delta)) {
1522                printk_deferred(KERN_WARNING
1523                                "__timekeeping_inject_sleeptime: Invalid "
1524                                "sleep delta value!\n");
1525                return;
1526        }
1527        tk_xtime_add(tk, delta);
1528        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1529        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1530        tk_debug_account_sleep_time(delta);
1531}
1532
1533#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534/**
1535 * We have three kinds of time sources to use for sleep time
1536 * injection, the preference order is:
1537 * 1) non-stop clocksource
1538 * 2) persistent clock (ie: RTC accessible when irqs are off)
1539 * 3) RTC
1540 *
1541 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1542 * If system has neither 1) nor 2), 3) will be used finally.
1543 *
1544 *
1545 * If timekeeping has injected sleeptime via either 1) or 2),
1546 * 3) becomes needless, so in this case we don't need to call
1547 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1548 * means.
1549 */
1550bool timekeeping_rtc_skipresume(void)
1551{
1552        return sleeptime_injected;
1553}
1554
1555/**
1556 * 1) can be determined whether to use or not only when doing
1557 * timekeeping_resume() which is invoked after rtc_suspend(),
1558 * so we can't skip rtc_suspend() surely if system has 1).
1559 *
1560 * But if system has 2), 2) will definitely be used, so in this
1561 * case we don't need to call rtc_suspend(), and this is what
1562 * timekeeping_rtc_skipsuspend() means.
1563 */
1564bool timekeeping_rtc_skipsuspend(void)
1565{
1566        return persistent_clock_exists;
1567}
1568
1569/**
1570 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1571 * @delta: pointer to a timespec64 delta value
1572 *
1573 * This hook is for architectures that cannot support read_persistent_clock64
1574 * because their RTC/persistent clock is only accessible when irqs are enabled.
1575 * and also don't have an effective nonstop clocksource.
1576 *
1577 * This function should only be called by rtc_resume(), and allows
1578 * a suspend offset to be injected into the timekeeping values.
1579 */
1580void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1581{
1582        struct timekeeper *tk = &tk_core.timekeeper;
1583        unsigned long flags;
1584
1585        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1586        write_seqcount_begin(&tk_core.seq);
1587
1588        timekeeping_forward_now(tk);
1589
1590        __timekeeping_inject_sleeptime(tk, delta);
1591
1592        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1593
1594        write_seqcount_end(&tk_core.seq);
1595        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1596
1597        /* signal hrtimers about time change */
1598        clock_was_set();
1599}
1600#endif
1601
1602/**
1603 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1604 */
1605void timekeeping_resume(void)
1606{
1607        struct timekeeper *tk = &tk_core.timekeeper;
1608        struct clocksource *clock = tk->tkr_mono.clock;
1609        unsigned long flags;
1610        struct timespec64 ts_new, ts_delta;
1611        cycle_t cycle_now, cycle_delta;
1612
1613        sleeptime_injected = false;
1614        read_persistent_clock64(&ts_new);
1615
1616        clockevents_resume();
1617        clocksource_resume();
1618
1619        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620        write_seqcount_begin(&tk_core.seq);
1621
1622        /*
1623         * After system resumes, we need to calculate the suspended time and
1624         * compensate it for the OS time. There are 3 sources that could be
1625         * used: Nonstop clocksource during suspend, persistent clock and rtc
1626         * device.
1627         *
1628         * One specific platform may have 1 or 2 or all of them, and the
1629         * preference will be:
1630         *      suspend-nonstop clocksource -> persistent clock -> rtc
1631         * The less preferred source will only be tried if there is no better
1632         * usable source. The rtc part is handled separately in rtc core code.
1633         */
1634        cycle_now = tk->tkr_mono.read(clock);
1635        if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1636                cycle_now > tk->tkr_mono.cycle_last) {
1637                u64 num, max = ULLONG_MAX;
1638                u32 mult = clock->mult;
1639                u32 shift = clock->shift;
1640                s64 nsec = 0;
1641
1642                cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1643                                                tk->tkr_mono.mask);
1644
1645                /*
1646                 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1647                 * suspended time is too long. In that case we need do the
1648                 * 64 bits math carefully
1649                 */
1650                do_div(max, mult);
1651                if (cycle_delta > max) {
1652                        num = div64_u64(cycle_delta, max);
1653                        nsec = (((u64) max * mult) >> shift) * num;
1654                        cycle_delta -= num * max;
1655                }
1656                nsec += ((u64) cycle_delta * mult) >> shift;
1657
1658                ts_delta = ns_to_timespec64(nsec);
1659                sleeptime_injected = true;
1660        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1661                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1662                sleeptime_injected = true;
1663        }
1664
1665        if (sleeptime_injected)
1666                __timekeeping_inject_sleeptime(tk, &ts_delta);
1667
1668        /* Re-base the last cycle value */
1669        tk->tkr_mono.cycle_last = cycle_now;
1670        tk->tkr_raw.cycle_last  = cycle_now;
1671
1672        tk->ntp_error = 0;
1673        timekeeping_suspended = 0;
1674        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1675        write_seqcount_end(&tk_core.seq);
1676        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1677
1678        touch_softlockup_watchdog();
1679
1680        tick_resume();
1681        hrtimers_resume();
1682}
1683
1684int timekeeping_suspend(void)
1685{
1686        struct timekeeper *tk = &tk_core.timekeeper;
1687        unsigned long flags;
1688        struct timespec64               delta, delta_delta;
1689        static struct timespec64        old_delta;
1690
1691        read_persistent_clock64(&timekeeping_suspend_time);
1692
1693        /*
1694         * On some systems the persistent_clock can not be detected at
1695         * timekeeping_init by its return value, so if we see a valid
1696         * value returned, update the persistent_clock_exists flag.
1697         */
1698        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1699                persistent_clock_exists = true;
1700
1701        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1702        write_seqcount_begin(&tk_core.seq);
1703        timekeeping_forward_now(tk);
1704        timekeeping_suspended = 1;
1705
1706        if (persistent_clock_exists) {
1707                /*
1708                 * To avoid drift caused by repeated suspend/resumes,
1709                 * which each can add ~1 second drift error,
1710                 * try to compensate so the difference in system time
1711                 * and persistent_clock time stays close to constant.
1712                 */
1713                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1714                delta_delta = timespec64_sub(delta, old_delta);
1715                if (abs(delta_delta.tv_sec) >= 2) {
1716                        /*
1717                         * if delta_delta is too large, assume time correction
1718                         * has occurred and set old_delta to the current delta.
1719                         */
1720                        old_delta = delta;
1721                } else {
1722                        /* Otherwise try to adjust old_system to compensate */
1723                        timekeeping_suspend_time =
1724                                timespec64_add(timekeeping_suspend_time, delta_delta);
1725                }
1726        }
1727
1728        timekeeping_update(tk, TK_MIRROR);
1729        halt_fast_timekeeper(tk);
1730        write_seqcount_end(&tk_core.seq);
1731        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1732
1733        tick_suspend();
1734        clocksource_suspend();
1735        clockevents_suspend();
1736
1737        return 0;
1738}
1739
1740/* sysfs resume/suspend bits for timekeeping */
1741static struct syscore_ops timekeeping_syscore_ops = {
1742        .resume         = timekeeping_resume,
1743        .suspend        = timekeeping_suspend,
1744};
1745
1746static int __init timekeeping_init_ops(void)
1747{
1748        register_syscore_ops(&timekeeping_syscore_ops);
1749        return 0;
1750}
1751device_initcall(timekeeping_init_ops);
1752
1753/*
1754 * Apply a multiplier adjustment to the timekeeper
1755 */
1756static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1757                                                         s64 offset,
1758                                                         bool negative,
1759                                                         int adj_scale)
1760{
1761        s64 interval = tk->cycle_interval;
1762        s32 mult_adj = 1;
1763
1764        if (negative) {
1765                mult_adj = -mult_adj;
1766                interval = -interval;
1767                offset  = -offset;
1768        }
1769        mult_adj <<= adj_scale;
1770        interval <<= adj_scale;
1771        offset <<= adj_scale;
1772
1773        /*
1774         * So the following can be confusing.
1775         *
1776         * To keep things simple, lets assume mult_adj == 1 for now.
1777         *
1778         * When mult_adj != 1, remember that the interval and offset values
1779         * have been appropriately scaled so the math is the same.
1780         *
1781         * The basic idea here is that we're increasing the multiplier
1782         * by one, this causes the xtime_interval to be incremented by
1783         * one cycle_interval. This is because:
1784         *      xtime_interval = cycle_interval * mult
1785         * So if mult is being incremented by one:
1786         *      xtime_interval = cycle_interval * (mult + 1)
1787         * Its the same as:
1788         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1789         * Which can be shortened to:
1790         *      xtime_interval += cycle_interval
1791         *
1792         * So offset stores the non-accumulated cycles. Thus the current
1793         * time (in shifted nanoseconds) is:
1794         *      now = (offset * adj) + xtime_nsec
1795         * Now, even though we're adjusting the clock frequency, we have
1796         * to keep time consistent. In other words, we can't jump back
1797         * in time, and we also want to avoid jumping forward in time.
1798         *
1799         * So given the same offset value, we need the time to be the same
1800         * both before and after the freq adjustment.
1801         *      now = (offset * adj_1) + xtime_nsec_1
1802         *      now = (offset * adj_2) + xtime_nsec_2
1803         * So:
1804         *      (offset * adj_1) + xtime_nsec_1 =
1805         *              (offset * adj_2) + xtime_nsec_2
1806         * And we know:
1807         *      adj_2 = adj_1 + 1
1808         * So:
1809         *      (offset * adj_1) + xtime_nsec_1 =
1810         *              (offset * (adj_1+1)) + xtime_nsec_2
1811         *      (offset * adj_1) + xtime_nsec_1 =
1812         *              (offset * adj_1) + offset + xtime_nsec_2
1813         * Canceling the sides:
1814         *      xtime_nsec_1 = offset + xtime_nsec_2
1815         * Which gives us:
1816         *      xtime_nsec_2 = xtime_nsec_1 - offset
1817         * Which simplfies to:
1818         *      xtime_nsec -= offset
1819         *
1820         * XXX - TODO: Doc ntp_error calculation.
1821         */
1822        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1823                /* NTP adjustment caused clocksource mult overflow */
1824                WARN_ON_ONCE(1);
1825                return;
1826        }
1827
1828        tk->tkr_mono.mult += mult_adj;
1829        tk->xtime_interval += interval;
1830        tk->tkr_mono.xtime_nsec -= offset;
1831        tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1832}
1833
1834/*
1835 * Calculate the multiplier adjustment needed to match the frequency
1836 * specified by NTP
1837 */
1838static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1839                                                        s64 offset)
1840{
1841        s64 interval = tk->cycle_interval;
1842        s64 xinterval = tk->xtime_interval;
1843        u32 base = tk->tkr_mono.clock->mult;
1844        u32 max = tk->tkr_mono.clock->maxadj;
1845        u32 cur_adj = tk->tkr_mono.mult;
1846        s64 tick_error;
1847        bool negative;
1848        u32 adj_scale;
1849
1850        /* Remove any current error adj from freq calculation */
1851        if (tk->ntp_err_mult)
1852                xinterval -= tk->cycle_interval;
1853
1854        tk->ntp_tick = ntp_tick_length();
1855
1856        /* Calculate current error per tick */
1857        tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1858        tick_error -= (xinterval + tk->xtime_remainder);
1859
1860        /* Don't worry about correcting it if its small */
1861        if (likely((tick_error >= 0) && (tick_error <= interval)))
1862                return;
1863
1864        /* preserve the direction of correction */
1865        negative = (tick_error < 0);
1866
1867        /* If any adjustment would pass the max, just return */
1868        if (negative && (cur_adj - 1) <= (base - max))
1869                return;
1870        if (!negative && (cur_adj + 1) >= (base + max))
1871                return;
1872        /*
1873         * Sort out the magnitude of the correction, but
1874         * avoid making so large a correction that we go
1875         * over the max adjustment.
1876         */
1877        adj_scale = 0;
1878        tick_error = abs(tick_error);
1879        while (tick_error > interval) {
1880                u32 adj = 1 << (adj_scale + 1);
1881
1882                /* Check if adjustment gets us within 1 unit from the max */
1883                if (negative && (cur_adj - adj) <= (base - max))
1884                        break;
1885                if (!negative && (cur_adj + adj) >= (base + max))
1886                        break;
1887
1888                adj_scale++;
1889                tick_error >>= 1;
1890        }
1891
1892        /* scale the corrections */
1893        timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1894}
1895
1896/*
1897 * Adjust the timekeeper's multiplier to the correct frequency
1898 * and also to reduce the accumulated error value.
1899 */
1900static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1901{
1902        /* Correct for the current frequency error */
1903        timekeeping_freqadjust(tk, offset);
1904
1905        /* Next make a small adjustment to fix any cumulative error */
1906        if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1907                tk->ntp_err_mult = 1;
1908                timekeeping_apply_adjustment(tk, offset, 0, 0);
1909        } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1910                /* Undo any existing error adjustment */
1911                timekeeping_apply_adjustment(tk, offset, 1, 0);
1912                tk->ntp_err_mult = 0;
1913        }
1914
1915        if (unlikely(tk->tkr_mono.clock->maxadj &&
1916                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1917                        > tk->tkr_mono.clock->maxadj))) {
1918                printk_once(KERN_WARNING
1919                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1920                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1921                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1922        }
1923
1924        /*
1925         * It may be possible that when we entered this function, xtime_nsec
1926         * was very small.  Further, if we're slightly speeding the clocksource
1927         * in the code above, its possible the required corrective factor to
1928         * xtime_nsec could cause it to underflow.
1929         *
1930         * Now, since we already accumulated the second, cannot simply roll
1931         * the accumulated second back, since the NTP subsystem has been
1932         * notified via second_overflow. So instead we push xtime_nsec forward
1933         * by the amount we underflowed, and add that amount into the error.
1934         *
1935         * We'll correct this error next time through this function, when
1936         * xtime_nsec is not as small.
1937         */
1938        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1939                s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1940                tk->tkr_mono.xtime_nsec = 0;
1941                tk->ntp_error += neg << tk->ntp_error_shift;
1942        }
1943}
1944
1945/**
1946 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1947 *
1948 * Helper function that accumulates the nsecs greater than a second
1949 * from the xtime_nsec field to the xtime_secs field.
1950 * It also calls into the NTP code to handle leapsecond processing.
1951 *
1952 */
1953static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1954{
1955        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1956        unsigned int clock_set = 0;
1957
1958        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1959                int leap;
1960
1961                tk->tkr_mono.xtime_nsec -= nsecps;
1962                tk->xtime_sec++;
1963
1964                /* Figure out if its a leap sec and apply if needed */
1965                leap = second_overflow(tk->xtime_sec);
1966                if (unlikely(leap)) {
1967                        struct timespec64 ts;
1968
1969                        tk->xtime_sec += leap;
1970
1971                        ts.tv_sec = leap;
1972                        ts.tv_nsec = 0;
1973                        tk_set_wall_to_mono(tk,
1974                                timespec64_sub(tk->wall_to_monotonic, ts));
1975
1976                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1977
1978                        clock_set = TK_CLOCK_WAS_SET;
1979                }
1980        }
1981        return clock_set;
1982}
1983
1984/**
1985 * logarithmic_accumulation - shifted accumulation of cycles
1986 *
1987 * This functions accumulates a shifted interval of cycles into
1988 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1989 * loop.
1990 *
1991 * Returns the unconsumed cycles.
1992 */
1993static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1994                                                u32 shift,
1995                                                unsigned int *clock_set)
1996{
1997        cycle_t interval = tk->cycle_interval << shift;
1998        u64 raw_nsecs;
1999
2000        /* If the offset is smaller than a shifted interval, do nothing */
2001        if (offset < interval)
2002                return offset;
2003
2004        /* Accumulate one shifted interval */
2005        offset -= interval;
2006        tk->tkr_mono.cycle_last += interval;
2007        tk->tkr_raw.cycle_last  += interval;
2008
2009        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010        *clock_set |= accumulate_nsecs_to_secs(tk);
2011
2012        /* Accumulate raw time */
2013        raw_nsecs = (u64)tk->raw_interval << shift;
2014        raw_nsecs += tk->raw_time.tv_nsec;
2015        if (raw_nsecs >= NSEC_PER_SEC) {
2016                u64 raw_secs = raw_nsecs;
2017                raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2018                tk->raw_time.tv_sec += raw_secs;
2019        }
2020        tk->raw_time.tv_nsec = raw_nsecs;
2021
2022        /* Accumulate error between NTP and clock interval */
2023        tk->ntp_error += tk->ntp_tick << shift;
2024        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025                                                (tk->ntp_error_shift + shift);
2026
2027        return offset;
2028}
2029
2030/**
2031 * update_wall_time - Uses the current clocksource to increment the wall time
2032 *
2033 */
2034void update_wall_time(void)
2035{
2036        struct timekeeper *real_tk = &tk_core.timekeeper;
2037        struct timekeeper *tk = &shadow_timekeeper;
2038        cycle_t offset;
2039        int shift = 0, maxshift;
2040        unsigned int clock_set = 0;
2041        unsigned long flags;
2042
2043        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044
2045        /* Make sure we're fully resumed: */
2046        if (unlikely(timekeeping_suspended))
2047                goto out;
2048
2049#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050        offset = real_tk->cycle_interval;
2051#else
2052        offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2053                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054#endif
2055
2056        /* Check if there's really nothing to do */
2057        if (offset < real_tk->cycle_interval)
2058                goto out;
2059
2060        /* Do some additional sanity checking */
2061        timekeeping_check_update(real_tk, offset);
2062
2063        /*
2064         * With NO_HZ we may have to accumulate many cycle_intervals
2065         * (think "ticks") worth of time at once. To do this efficiently,
2066         * we calculate the largest doubling multiple of cycle_intervals
2067         * that is smaller than the offset.  We then accumulate that
2068         * chunk in one go, and then try to consume the next smaller
2069         * doubled multiple.
2070         */
2071        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072        shift = max(0, shift);
2073        /* Bound shift to one less than what overflows tick_length */
2074        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075        shift = min(shift, maxshift);
2076        while (offset >= tk->cycle_interval) {
2077                offset = logarithmic_accumulation(tk, offset, shift,
2078                                                        &clock_set);
2079                if (offset < tk->cycle_interval<<shift)
2080                        shift--;
2081        }
2082
2083        /* correct the clock when NTP error is too big */
2084        timekeeping_adjust(tk, offset);
2085
2086        /*
2087         * XXX This can be killed once everyone converts
2088         * to the new update_vsyscall.
2089         */
2090        old_vsyscall_fixup(tk);
2091
2092        /*
2093         * Finally, make sure that after the rounding
2094         * xtime_nsec isn't larger than NSEC_PER_SEC
2095         */
2096        clock_set |= accumulate_nsecs_to_secs(tk);
2097
2098        write_seqcount_begin(&tk_core.seq);
2099        /*
2100         * Update the real timekeeper.
2101         *
2102         * We could avoid this memcpy by switching pointers, but that
2103         * requires changes to all other timekeeper usage sites as
2104         * well, i.e. move the timekeeper pointer getter into the
2105         * spinlocked/seqcount protected sections. And we trade this
2106         * memcpy under the tk_core.seq against one before we start
2107         * updating.
2108         */
2109        timekeeping_update(tk, clock_set);
2110        memcpy(real_tk, tk, sizeof(*tk));
2111        /* The memcpy must come last. Do not put anything here! */
2112        write_seqcount_end(&tk_core.seq);
2113out:
2114        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115        if (clock_set)
2116                /* Have to call _delayed version, since in irq context*/
2117                clock_was_set_delayed();
2118}
2119
2120/**
2121 * getboottime64 - Return the real time of system boot.
2122 * @ts:         pointer to the timespec64 to be set
2123 *
2124 * Returns the wall-time of boot in a timespec64.
2125 *
2126 * This is based on the wall_to_monotonic offset and the total suspend
2127 * time. Calls to settimeofday will affect the value returned (which
2128 * basically means that however wrong your real time clock is at boot time,
2129 * you get the right time here).
2130 */
2131void getboottime64(struct timespec64 *ts)
2132{
2133        struct timekeeper *tk = &tk_core.timekeeper;
2134        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2135
2136        *ts = ktime_to_timespec64(t);
2137}
2138EXPORT_SYMBOL_GPL(getboottime64);
2139
2140unsigned long get_seconds(void)
2141{
2142        struct timekeeper *tk = &tk_core.timekeeper;
2143
2144        return tk->xtime_sec;
2145}
2146EXPORT_SYMBOL(get_seconds);
2147
2148struct timespec __current_kernel_time(void)
2149{
2150        struct timekeeper *tk = &tk_core.timekeeper;
2151
2152        return timespec64_to_timespec(tk_xtime(tk));
2153}
2154
2155struct timespec64 current_kernel_time64(void)
2156{
2157        struct timekeeper *tk = &tk_core.timekeeper;
2158        struct timespec64 now;
2159        unsigned long seq;
2160
2161        do {
2162                seq = read_seqcount_begin(&tk_core.seq);
2163
2164                now = tk_xtime(tk);
2165        } while (read_seqcount_retry(&tk_core.seq, seq));
2166
2167        return now;
2168}
2169EXPORT_SYMBOL(current_kernel_time64);
2170
2171struct timespec64 get_monotonic_coarse64(void)
2172{
2173        struct timekeeper *tk = &tk_core.timekeeper;
2174        struct timespec64 now, mono;
2175        unsigned long seq;
2176
2177        do {
2178                seq = read_seqcount_begin(&tk_core.seq);
2179
2180                now = tk_xtime(tk);
2181                mono = tk->wall_to_monotonic;
2182        } while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184        set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2185                                now.tv_nsec + mono.tv_nsec);
2186
2187        return now;
2188}
2189
2190/*
2191 * Must hold jiffies_lock
2192 */
2193void do_timer(unsigned long ticks)
2194{
2195        jiffies_64 += ticks;
2196        calc_global_load(ticks);
2197}
2198
2199/**
2200 * ktime_get_update_offsets_now - hrtimer helper
2201 * @cwsseq:     pointer to check and store the clock was set sequence number
2202 * @offs_real:  pointer to storage for monotonic -> realtime offset
2203 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2204 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2205 *
2206 * Returns current monotonic time and updates the offsets if the
2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208 * different.
2209 *
2210 * Called from hrtimer_interrupt() or retrigger_next_event()
2211 */
2212ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213                                     ktime_t *offs_boot, ktime_t *offs_tai)
2214{
2215        struct timekeeper *tk = &tk_core.timekeeper;
2216        unsigned int seq;
2217        ktime_t base;
2218        u64 nsecs;
2219
2220        do {
2221                seq = read_seqcount_begin(&tk_core.seq);
2222
2223                base = tk->tkr_mono.base;
2224                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225                base = ktime_add_ns(base, nsecs);
2226
2227                if (*cwsseq != tk->clock_was_set_seq) {
2228                        *cwsseq = tk->clock_was_set_seq;
2229                        *offs_real = tk->offs_real;
2230                        *offs_boot = tk->offs_boot;
2231                        *offs_tai = tk->offs_tai;
2232                }
2233
2234                /* Handle leapsecond insertion adjustments */
2235                if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2236                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2237
2238        } while (read_seqcount_retry(&tk_core.seq, seq));
2239
2240        return base;
2241}
2242
2243/**
2244 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2245 */
2246int do_adjtimex(struct timex *txc)
2247{
2248        struct timekeeper *tk = &tk_core.timekeeper;
2249        unsigned long flags;
2250        struct timespec64 ts;
2251        s32 orig_tai, tai;
2252        int ret;
2253
2254        /* Validate the data before disabling interrupts */
2255        ret = ntp_validate_timex(txc);
2256        if (ret)
2257                return ret;
2258
2259        if (txc->modes & ADJ_SETOFFSET) {
2260                struct timespec delta;
2261                delta.tv_sec  = txc->time.tv_sec;
2262                delta.tv_nsec = txc->time.tv_usec;
2263                if (!(txc->modes & ADJ_NANO))
2264                        delta.tv_nsec *= 1000;
2265                ret = timekeeping_inject_offset(&delta);
2266                if (ret)
2267                        return ret;
2268        }
2269
2270        getnstimeofday64(&ts);
2271
2272        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2273        write_seqcount_begin(&tk_core.seq);
2274
2275        orig_tai = tai = tk->tai_offset;
2276        ret = __do_adjtimex(txc, &ts, &tai);
2277
2278        if (tai != orig_tai) {
2279                __timekeeping_set_tai_offset(tk, tai);
2280                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2281        }
2282        tk_update_leap_state(tk);
2283
2284        write_seqcount_end(&tk_core.seq);
2285        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2286
2287        if (tai != orig_tai)
2288                clock_was_set();
2289
2290        ntp_notify_cmos_timer();
2291
2292        return ret;
2293}
2294
2295#ifdef CONFIG_NTP_PPS
2296/**
2297 * hardpps() - Accessor function to NTP __hardpps function
2298 */
2299void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2300{
2301        unsigned long flags;
2302
2303        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2304        write_seqcount_begin(&tk_core.seq);
2305
2306        __hardpps(phase_ts, raw_ts);
2307
2308        write_seqcount_end(&tk_core.seq);
2309        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2310}
2311EXPORT_SYMBOL(hardpps);
2312#endif
2313
2314/**
2315 * xtime_update() - advances the timekeeping infrastructure
2316 * @ticks:      number of ticks, that have elapsed since the last call.
2317 *
2318 * Must be called with interrupts disabled.
2319 */
2320void xtime_update(unsigned long ticks)
2321{
2322        write_seqlock(&jiffies_lock);
2323        do_timer(ticks);
2324        write_sequnlock(&jiffies_lock);
2325        update_wall_time();
2326}
2327