linux/lib/idr.c
<<
>>
Prefs
   1/*
   2 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
   3 *      Copyright (C) 2002 by Concurrent Computer Corporation
   4 *      Distributed under the GNU GPL license version 2.
   5 *
   6 * Modified by George Anzinger to reuse immediately and to use
   7 * find bit instructions.  Also removed _irq on spinlocks.
   8 *
   9 * Modified by Nadia Derbey to make it RCU safe.
  10 *
  11 * Small id to pointer translation service.
  12 *
  13 * It uses a radix tree like structure as a sparse array indexed
  14 * by the id to obtain the pointer.  The bitmap makes allocating
  15 * a new id quick.
  16 *
  17 * You call it to allocate an id (an int) an associate with that id a
  18 * pointer or what ever, we treat it as a (void *).  You can pass this
  19 * id to a user for him to pass back at a later time.  You then pass
  20 * that id to this code and it returns your pointer.
  21 */
  22
  23#ifndef TEST                        // to test in user space...
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/export.h>
  27#endif
  28#include <linux/err.h>
  29#include <linux/string.h>
  30#include <linux/idr.h>
  31#include <linux/spinlock.h>
  32#include <linux/percpu.h>
  33
  34#define MAX_IDR_SHIFT           (sizeof(int) * 8 - 1)
  35#define MAX_IDR_BIT             (1U << MAX_IDR_SHIFT)
  36
  37/* Leave the possibility of an incomplete final layer */
  38#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
  39
  40/* Number of id_layer structs to leave in free list */
  41#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
  42
  43static struct kmem_cache *idr_layer_cache;
  44static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
  45static DEFINE_PER_CPU(int, idr_preload_cnt);
  46static DEFINE_SPINLOCK(simple_ida_lock);
  47
  48/* the maximum ID which can be allocated given idr->layers */
  49static int idr_max(int layers)
  50{
  51        int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
  52
  53        return (1 << bits) - 1;
  54}
  55
  56/*
  57 * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
  58 * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
  59 * so on.
  60 */
  61static int idr_layer_prefix_mask(int layer)
  62{
  63        return ~idr_max(layer + 1);
  64}
  65
  66static struct idr_layer *get_from_free_list(struct idr *idp)
  67{
  68        struct idr_layer *p;
  69        unsigned long flags;
  70
  71        spin_lock_irqsave(&idp->lock, flags);
  72        if ((p = idp->id_free)) {
  73                idp->id_free = p->ary[0];
  74                idp->id_free_cnt--;
  75                p->ary[0] = NULL;
  76        }
  77        spin_unlock_irqrestore(&idp->lock, flags);
  78        return(p);
  79}
  80
  81/**
  82 * idr_layer_alloc - allocate a new idr_layer
  83 * @gfp_mask: allocation mask
  84 * @layer_idr: optional idr to allocate from
  85 *
  86 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
  87 * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
  88 * an idr_layer from @idr->id_free.
  89 *
  90 * @layer_idr is to maintain backward compatibility with the old alloc
  91 * interface - idr_pre_get() and idr_get_new*() - and will be removed
  92 * together with per-pool preload buffer.
  93 */
  94static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
  95{
  96        struct idr_layer *new;
  97
  98        /* this is the old path, bypass to get_from_free_list() */
  99        if (layer_idr)
 100                return get_from_free_list(layer_idr);
 101
 102        /*
 103         * Try to allocate directly from kmem_cache.  We want to try this
 104         * before preload buffer; otherwise, non-preloading idr_alloc()
 105         * users will end up taking advantage of preloading ones.  As the
 106         * following is allowed to fail for preloaded cases, suppress
 107         * warning this time.
 108         */
 109        new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
 110        if (new)
 111                return new;
 112
 113        /*
 114         * Try to fetch one from the per-cpu preload buffer if in process
 115         * context.  See idr_preload() for details.
 116         */
 117        if (!in_interrupt()) {
 118                preempt_disable();
 119                new = __this_cpu_read(idr_preload_head);
 120                if (new) {
 121                        __this_cpu_write(idr_preload_head, new->ary[0]);
 122                        __this_cpu_dec(idr_preload_cnt);
 123                        new->ary[0] = NULL;
 124                }
 125                preempt_enable();
 126                if (new)
 127                        return new;
 128        }
 129
 130        /*
 131         * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
 132         * that memory allocation failure warning is printed as intended.
 133         */
 134        return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 135}
 136
 137static void idr_layer_rcu_free(struct rcu_head *head)
 138{
 139        struct idr_layer *layer;
 140
 141        layer = container_of(head, struct idr_layer, rcu_head);
 142        kmem_cache_free(idr_layer_cache, layer);
 143}
 144
 145static inline void free_layer(struct idr *idr, struct idr_layer *p)
 146{
 147        if (idr->hint == p)
 148                RCU_INIT_POINTER(idr->hint, NULL);
 149        call_rcu(&p->rcu_head, idr_layer_rcu_free);
 150}
 151
 152/* only called when idp->lock is held */
 153static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
 154{
 155        p->ary[0] = idp->id_free;
 156        idp->id_free = p;
 157        idp->id_free_cnt++;
 158}
 159
 160static void move_to_free_list(struct idr *idp, struct idr_layer *p)
 161{
 162        unsigned long flags;
 163
 164        /*
 165         * Depends on the return element being zeroed.
 166         */
 167        spin_lock_irqsave(&idp->lock, flags);
 168        __move_to_free_list(idp, p);
 169        spin_unlock_irqrestore(&idp->lock, flags);
 170}
 171
 172static void idr_mark_full(struct idr_layer **pa, int id)
 173{
 174        struct idr_layer *p = pa[0];
 175        int l = 0;
 176
 177        __set_bit(id & IDR_MASK, p->bitmap);
 178        /*
 179         * If this layer is full mark the bit in the layer above to
 180         * show that this part of the radix tree is full.  This may
 181         * complete the layer above and require walking up the radix
 182         * tree.
 183         */
 184        while (bitmap_full(p->bitmap, IDR_SIZE)) {
 185                if (!(p = pa[++l]))
 186                        break;
 187                id = id >> IDR_BITS;
 188                __set_bit((id & IDR_MASK), p->bitmap);
 189        }
 190}
 191
 192static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 193{
 194        while (idp->id_free_cnt < MAX_IDR_FREE) {
 195                struct idr_layer *new;
 196                new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 197                if (new == NULL)
 198                        return (0);
 199                move_to_free_list(idp, new);
 200        }
 201        return 1;
 202}
 203
 204/**
 205 * sub_alloc - try to allocate an id without growing the tree depth
 206 * @idp: idr handle
 207 * @starting_id: id to start search at
 208 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
 209 * @gfp_mask: allocation mask for idr_layer_alloc()
 210 * @layer_idr: optional idr passed to idr_layer_alloc()
 211 *
 212 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
 213 * growing its depth.  Returns
 214 *
 215 *  the allocated id >= 0 if successful,
 216 *  -EAGAIN if the tree needs to grow for allocation to succeed,
 217 *  -ENOSPC if the id space is exhausted,
 218 *  -ENOMEM if more idr_layers need to be allocated.
 219 */
 220static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
 221                     gfp_t gfp_mask, struct idr *layer_idr)
 222{
 223        int n, m, sh;
 224        struct idr_layer *p, *new;
 225        int l, id, oid;
 226
 227        id = *starting_id;
 228 restart:
 229        p = idp->top;
 230        l = idp->layers;
 231        pa[l--] = NULL;
 232        while (1) {
 233                /*
 234                 * We run around this while until we reach the leaf node...
 235                 */
 236                n = (id >> (IDR_BITS*l)) & IDR_MASK;
 237                m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
 238                if (m == IDR_SIZE) {
 239                        /* no space available go back to previous layer. */
 240                        l++;
 241                        oid = id;
 242                        id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 243
 244                        /* if already at the top layer, we need to grow */
 245                        if (id > idr_max(idp->layers)) {
 246                                *starting_id = id;
 247                                return -EAGAIN;
 248                        }
 249                        p = pa[l];
 250                        BUG_ON(!p);
 251
 252                        /* If we need to go up one layer, continue the
 253                         * loop; otherwise, restart from the top.
 254                         */
 255                        sh = IDR_BITS * (l + 1);
 256                        if (oid >> sh == id >> sh)
 257                                continue;
 258                        else
 259                                goto restart;
 260                }
 261                if (m != n) {
 262                        sh = IDR_BITS*l;
 263                        id = ((id >> sh) ^ n ^ m) << sh;
 264                }
 265                if ((id >= MAX_IDR_BIT) || (id < 0))
 266                        return -ENOSPC;
 267                if (l == 0)
 268                        break;
 269                /*
 270                 * Create the layer below if it is missing.
 271                 */
 272                if (!p->ary[m]) {
 273                        new = idr_layer_alloc(gfp_mask, layer_idr);
 274                        if (!new)
 275                                return -ENOMEM;
 276                        new->layer = l-1;
 277                        new->prefix = id & idr_layer_prefix_mask(new->layer);
 278                        rcu_assign_pointer(p->ary[m], new);
 279                        p->count++;
 280                }
 281                pa[l--] = p;
 282                p = p->ary[m];
 283        }
 284
 285        pa[l] = p;
 286        return id;
 287}
 288
 289static int idr_get_empty_slot(struct idr *idp, int starting_id,
 290                              struct idr_layer **pa, gfp_t gfp_mask,
 291                              struct idr *layer_idr)
 292{
 293        struct idr_layer *p, *new;
 294        int layers, v, id;
 295        unsigned long flags;
 296
 297        id = starting_id;
 298build_up:
 299        p = idp->top;
 300        layers = idp->layers;
 301        if (unlikely(!p)) {
 302                if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
 303                        return -ENOMEM;
 304                p->layer = 0;
 305                layers = 1;
 306        }
 307        /*
 308         * Add a new layer to the top of the tree if the requested
 309         * id is larger than the currently allocated space.
 310         */
 311        while (id > idr_max(layers)) {
 312                layers++;
 313                if (!p->count) {
 314                        /* special case: if the tree is currently empty,
 315                         * then we grow the tree by moving the top node
 316                         * upwards.
 317                         */
 318                        p->layer++;
 319                        WARN_ON_ONCE(p->prefix);
 320                        continue;
 321                }
 322                if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
 323                        /*
 324                         * The allocation failed.  If we built part of
 325                         * the structure tear it down.
 326                         */
 327                        spin_lock_irqsave(&idp->lock, flags);
 328                        for (new = p; p && p != idp->top; new = p) {
 329                                p = p->ary[0];
 330                                new->ary[0] = NULL;
 331                                new->count = 0;
 332                                bitmap_clear(new->bitmap, 0, IDR_SIZE);
 333                                __move_to_free_list(idp, new);
 334                        }
 335                        spin_unlock_irqrestore(&idp->lock, flags);
 336                        return -ENOMEM;
 337                }
 338                new->ary[0] = p;
 339                new->count = 1;
 340                new->layer = layers-1;
 341                new->prefix = id & idr_layer_prefix_mask(new->layer);
 342                if (bitmap_full(p->bitmap, IDR_SIZE))
 343                        __set_bit(0, new->bitmap);
 344                p = new;
 345        }
 346        rcu_assign_pointer(idp->top, p);
 347        idp->layers = layers;
 348        v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
 349        if (v == -EAGAIN)
 350                goto build_up;
 351        return(v);
 352}
 353
 354/*
 355 * @id and @pa are from a successful allocation from idr_get_empty_slot().
 356 * Install the user pointer @ptr and mark the slot full.
 357 */
 358static void idr_fill_slot(struct idr *idr, void *ptr, int id,
 359                          struct idr_layer **pa)
 360{
 361        /* update hint used for lookup, cleared from free_layer() */
 362        rcu_assign_pointer(idr->hint, pa[0]);
 363
 364        rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
 365        pa[0]->count++;
 366        idr_mark_full(pa, id);
 367}
 368
 369
 370/**
 371 * idr_preload - preload for idr_alloc()
 372 * @gfp_mask: allocation mask to use for preloading
 373 *
 374 * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
 375 * process context and each idr_preload() invocation should be matched with
 376 * idr_preload_end().  Note that preemption is disabled while preloaded.
 377 *
 378 * The first idr_alloc() in the preloaded section can be treated as if it
 379 * were invoked with @gfp_mask used for preloading.  This allows using more
 380 * permissive allocation masks for idrs protected by spinlocks.
 381 *
 382 * For example, if idr_alloc() below fails, the failure can be treated as
 383 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
 384 *
 385 *      idr_preload(GFP_KERNEL);
 386 *      spin_lock(lock);
 387 *
 388 *      id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
 389 *
 390 *      spin_unlock(lock);
 391 *      idr_preload_end();
 392 *      if (id < 0)
 393 *              error;
 394 */
 395void idr_preload(gfp_t gfp_mask)
 396{
 397        /*
 398         * Consuming preload buffer from non-process context breaks preload
 399         * allocation guarantee.  Disallow usage from those contexts.
 400         */
 401        WARN_ON_ONCE(in_interrupt());
 402        might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 403
 404        preempt_disable();
 405
 406        /*
 407         * idr_alloc() is likely to succeed w/o full idr_layer buffer and
 408         * return value from idr_alloc() needs to be checked for failure
 409         * anyway.  Silently give up if allocation fails.  The caller can
 410         * treat failures from idr_alloc() as if idr_alloc() were called
 411         * with @gfp_mask which should be enough.
 412         */
 413        while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
 414                struct idr_layer *new;
 415
 416                preempt_enable();
 417                new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 418                preempt_disable();
 419                if (!new)
 420                        break;
 421
 422                /* link the new one to per-cpu preload list */
 423                new->ary[0] = __this_cpu_read(idr_preload_head);
 424                __this_cpu_write(idr_preload_head, new);
 425                __this_cpu_inc(idr_preload_cnt);
 426        }
 427}
 428EXPORT_SYMBOL(idr_preload);
 429
 430/**
 431 * idr_alloc - allocate new idr entry
 432 * @idr: the (initialized) idr
 433 * @ptr: pointer to be associated with the new id
 434 * @start: the minimum id (inclusive)
 435 * @end: the maximum id (exclusive, <= 0 for max)
 436 * @gfp_mask: memory allocation flags
 437 *
 438 * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
 439 * available in the specified range, returns -ENOSPC.  On memory allocation
 440 * failure, returns -ENOMEM.
 441 *
 442 * Note that @end is treated as max when <= 0.  This is to always allow
 443 * using @start + N as @end as long as N is inside integer range.
 444 *
 445 * The user is responsible for exclusively synchronizing all operations
 446 * which may modify @idr.  However, read-only accesses such as idr_find()
 447 * or iteration can be performed under RCU read lock provided the user
 448 * destroys @ptr in RCU-safe way after removal from idr.
 449 */
 450int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
 451{
 452        int max = end > 0 ? end - 1 : INT_MAX;  /* inclusive upper limit */
 453        struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 454        int id;
 455
 456        might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 457
 458        /* sanity checks */
 459        if (WARN_ON_ONCE(start < 0))
 460                return -EINVAL;
 461        if (unlikely(max < start))
 462                return -ENOSPC;
 463
 464        /* allocate id */
 465        id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
 466        if (unlikely(id < 0))
 467                return id;
 468        if (unlikely(id > max))
 469                return -ENOSPC;
 470
 471        idr_fill_slot(idr, ptr, id, pa);
 472        return id;
 473}
 474EXPORT_SYMBOL_GPL(idr_alloc);
 475
 476/**
 477 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
 478 * @idr: the (initialized) idr
 479 * @ptr: pointer to be associated with the new id
 480 * @start: the minimum id (inclusive)
 481 * @end: the maximum id (exclusive, <= 0 for max)
 482 * @gfp_mask: memory allocation flags
 483 *
 484 * Essentially the same as idr_alloc, but prefers to allocate progressively
 485 * higher ids if it can. If the "cur" counter wraps, then it will start again
 486 * at the "start" end of the range and allocate one that has already been used.
 487 */
 488int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
 489                        gfp_t gfp_mask)
 490{
 491        int id;
 492
 493        id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
 494        if (id == -ENOSPC)
 495                id = idr_alloc(idr, ptr, start, end, gfp_mask);
 496
 497        if (likely(id >= 0))
 498                idr->cur = id + 1;
 499        return id;
 500}
 501EXPORT_SYMBOL(idr_alloc_cyclic);
 502
 503static void idr_remove_warning(int id)
 504{
 505        WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
 506}
 507
 508static void sub_remove(struct idr *idp, int shift, int id)
 509{
 510        struct idr_layer *p = idp->top;
 511        struct idr_layer **pa[MAX_IDR_LEVEL + 1];
 512        struct idr_layer ***paa = &pa[0];
 513        struct idr_layer *to_free;
 514        int n;
 515
 516        *paa = NULL;
 517        *++paa = &idp->top;
 518
 519        while ((shift > 0) && p) {
 520                n = (id >> shift) & IDR_MASK;
 521                __clear_bit(n, p->bitmap);
 522                *++paa = &p->ary[n];
 523                p = p->ary[n];
 524                shift -= IDR_BITS;
 525        }
 526        n = id & IDR_MASK;
 527        if (likely(p != NULL && test_bit(n, p->bitmap))) {
 528                __clear_bit(n, p->bitmap);
 529                RCU_INIT_POINTER(p->ary[n], NULL);
 530                to_free = NULL;
 531                while(*paa && ! --((**paa)->count)){
 532                        if (to_free)
 533                                free_layer(idp, to_free);
 534                        to_free = **paa;
 535                        **paa-- = NULL;
 536                }
 537                if (!*paa)
 538                        idp->layers = 0;
 539                if (to_free)
 540                        free_layer(idp, to_free);
 541        } else
 542                idr_remove_warning(id);
 543}
 544
 545/**
 546 * idr_remove - remove the given id and free its slot
 547 * @idp: idr handle
 548 * @id: unique key
 549 */
 550void idr_remove(struct idr *idp, int id)
 551{
 552        struct idr_layer *p;
 553        struct idr_layer *to_free;
 554
 555        if (id < 0)
 556                return;
 557
 558        if (id > idr_max(idp->layers)) {
 559                idr_remove_warning(id);
 560                return;
 561        }
 562
 563        sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 564        if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 565            idp->top->ary[0]) {
 566                /*
 567                 * Single child at leftmost slot: we can shrink the tree.
 568                 * This level is not needed anymore since when layers are
 569                 * inserted, they are inserted at the top of the existing
 570                 * tree.
 571                 */
 572                to_free = idp->top;
 573                p = idp->top->ary[0];
 574                rcu_assign_pointer(idp->top, p);
 575                --idp->layers;
 576                to_free->count = 0;
 577                bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
 578                free_layer(idp, to_free);
 579        }
 580}
 581EXPORT_SYMBOL(idr_remove);
 582
 583static void __idr_remove_all(struct idr *idp)
 584{
 585        int n, id, max;
 586        int bt_mask;
 587        struct idr_layer *p;
 588        struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 589        struct idr_layer **paa = &pa[0];
 590
 591        n = idp->layers * IDR_BITS;
 592        *paa = idp->top;
 593        RCU_INIT_POINTER(idp->top, NULL);
 594        max = idr_max(idp->layers);
 595
 596        id = 0;
 597        while (id >= 0 && id <= max) {
 598                p = *paa;
 599                while (n > IDR_BITS && p) {
 600                        n -= IDR_BITS;
 601                        p = p->ary[(id >> n) & IDR_MASK];
 602                        *++paa = p;
 603                }
 604
 605                bt_mask = id;
 606                id += 1 << n;
 607                /* Get the highest bit that the above add changed from 0->1. */
 608                while (n < fls(id ^ bt_mask)) {
 609                        if (*paa)
 610                                free_layer(idp, *paa);
 611                        n += IDR_BITS;
 612                        --paa;
 613                }
 614        }
 615        idp->layers = 0;
 616}
 617
 618/**
 619 * idr_destroy - release all cached layers within an idr tree
 620 * @idp: idr handle
 621 *
 622 * Free all id mappings and all idp_layers.  After this function, @idp is
 623 * completely unused and can be freed / recycled.  The caller is
 624 * responsible for ensuring that no one else accesses @idp during or after
 625 * idr_destroy().
 626 *
 627 * A typical clean-up sequence for objects stored in an idr tree will use
 628 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 629 * free up the id mappings and cached idr_layers.
 630 */
 631void idr_destroy(struct idr *idp)
 632{
 633        __idr_remove_all(idp);
 634
 635        while (idp->id_free_cnt) {
 636                struct idr_layer *p = get_from_free_list(idp);
 637                kmem_cache_free(idr_layer_cache, p);
 638        }
 639}
 640EXPORT_SYMBOL(idr_destroy);
 641
 642void *idr_find_slowpath(struct idr *idp, int id)
 643{
 644        int n;
 645        struct idr_layer *p;
 646
 647        if (id < 0)
 648                return NULL;
 649
 650        p = rcu_dereference_raw(idp->top);
 651        if (!p)
 652                return NULL;
 653        n = (p->layer+1) * IDR_BITS;
 654
 655        if (id > idr_max(p->layer + 1))
 656                return NULL;
 657        BUG_ON(n == 0);
 658
 659        while (n > 0 && p) {
 660                n -= IDR_BITS;
 661                BUG_ON(n != p->layer*IDR_BITS);
 662                p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 663        }
 664        return((void *)p);
 665}
 666EXPORT_SYMBOL(idr_find_slowpath);
 667
 668/**
 669 * idr_for_each - iterate through all stored pointers
 670 * @idp: idr handle
 671 * @fn: function to be called for each pointer
 672 * @data: data passed back to callback function
 673 *
 674 * Iterate over the pointers registered with the given idr.  The
 675 * callback function will be called for each pointer currently
 676 * registered, passing the id, the pointer and the data pointer passed
 677 * to this function.  It is not safe to modify the idr tree while in
 678 * the callback, so functions such as idr_get_new and idr_remove are
 679 * not allowed.
 680 *
 681 * We check the return of @fn each time. If it returns anything other
 682 * than %0, we break out and return that value.
 683 *
 684 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 685 */
 686int idr_for_each(struct idr *idp,
 687                 int (*fn)(int id, void *p, void *data), void *data)
 688{
 689        int n, id, max, error = 0;
 690        struct idr_layer *p;
 691        struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 692        struct idr_layer **paa = &pa[0];
 693
 694        n = idp->layers * IDR_BITS;
 695        *paa = rcu_dereference_raw(idp->top);
 696        max = idr_max(idp->layers);
 697
 698        id = 0;
 699        while (id >= 0 && id <= max) {
 700                p = *paa;
 701                while (n > 0 && p) {
 702                        n -= IDR_BITS;
 703                        p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 704                        *++paa = p;
 705                }
 706
 707                if (p) {
 708                        error = fn(id, (void *)p, data);
 709                        if (error)
 710                                break;
 711                }
 712
 713                id += 1 << n;
 714                while (n < fls(id)) {
 715                        n += IDR_BITS;
 716                        --paa;
 717                }
 718        }
 719
 720        return error;
 721}
 722EXPORT_SYMBOL(idr_for_each);
 723
 724/**
 725 * idr_get_next - lookup next object of id to given id.
 726 * @idp: idr handle
 727 * @nextidp:  pointer to lookup key
 728 *
 729 * Returns pointer to registered object with id, which is next number to
 730 * given id. After being looked up, *@nextidp will be updated for the next
 731 * iteration.
 732 *
 733 * This function can be called under rcu_read_lock(), given that the leaf
 734 * pointers lifetimes are correctly managed.
 735 */
 736void *idr_get_next(struct idr *idp, int *nextidp)
 737{
 738        struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
 739        struct idr_layer **paa = &pa[0];
 740        int id = *nextidp;
 741        int n, max;
 742
 743        /* find first ent */
 744        p = *paa = rcu_dereference_raw(idp->top);
 745        if (!p)
 746                return NULL;
 747        n = (p->layer + 1) * IDR_BITS;
 748        max = idr_max(p->layer + 1);
 749
 750        while (id >= 0 && id <= max) {
 751                p = *paa;
 752                while (n > 0 && p) {
 753                        n -= IDR_BITS;
 754                        p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 755                        *++paa = p;
 756                }
 757
 758                if (p) {
 759                        *nextidp = id;
 760                        return p;
 761                }
 762
 763                /*
 764                 * Proceed to the next layer at the current level.  Unlike
 765                 * idr_for_each(), @id isn't guaranteed to be aligned to
 766                 * layer boundary at this point and adding 1 << n may
 767                 * incorrectly skip IDs.  Make sure we jump to the
 768                 * beginning of the next layer using round_up().
 769                 */
 770                id = round_up(id + 1, 1 << n);
 771                while (n < fls(id)) {
 772                        n += IDR_BITS;
 773                        --paa;
 774                }
 775        }
 776        return NULL;
 777}
 778EXPORT_SYMBOL(idr_get_next);
 779
 780
 781/**
 782 * idr_replace - replace pointer for given id
 783 * @idp: idr handle
 784 * @ptr: pointer you want associated with the id
 785 * @id: lookup key
 786 *
 787 * Replace the pointer registered with an id and return the old value.
 788 * A %-ENOENT return indicates that @id was not found.
 789 * A %-EINVAL return indicates that @id was not within valid constraints.
 790 *
 791 * The caller must serialize with writers.
 792 */
 793void *idr_replace(struct idr *idp, void *ptr, int id)
 794{
 795        int n;
 796        struct idr_layer *p, *old_p;
 797
 798        if (id < 0)
 799                return ERR_PTR(-EINVAL);
 800
 801        p = idp->top;
 802        if (!p)
 803                return ERR_PTR(-ENOENT);
 804
 805        if (id > idr_max(p->layer + 1))
 806                return ERR_PTR(-ENOENT);
 807
 808        n = p->layer * IDR_BITS;
 809        while ((n > 0) && p) {
 810                p = p->ary[(id >> n) & IDR_MASK];
 811                n -= IDR_BITS;
 812        }
 813
 814        n = id & IDR_MASK;
 815        if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
 816                return ERR_PTR(-ENOENT);
 817
 818        old_p = p->ary[n];
 819        rcu_assign_pointer(p->ary[n], ptr);
 820
 821        return old_p;
 822}
 823EXPORT_SYMBOL(idr_replace);
 824
 825void __init idr_init_cache(void)
 826{
 827        idr_layer_cache = kmem_cache_create("idr_layer_cache",
 828                                sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 829}
 830
 831/**
 832 * idr_init - initialize idr handle
 833 * @idp:        idr handle
 834 *
 835 * This function is use to set up the handle (@idp) that you will pass
 836 * to the rest of the functions.
 837 */
 838void idr_init(struct idr *idp)
 839{
 840        memset(idp, 0, sizeof(struct idr));
 841        spin_lock_init(&idp->lock);
 842}
 843EXPORT_SYMBOL(idr_init);
 844
 845static int idr_has_entry(int id, void *p, void *data)
 846{
 847        return 1;
 848}
 849
 850bool idr_is_empty(struct idr *idp)
 851{
 852        return !idr_for_each(idp, idr_has_entry, NULL);
 853}
 854EXPORT_SYMBOL(idr_is_empty);
 855
 856/**
 857 * DOC: IDA description
 858 * IDA - IDR based ID allocator
 859 *
 860 * This is id allocator without id -> pointer translation.  Memory
 861 * usage is much lower than full blown idr because each id only
 862 * occupies a bit.  ida uses a custom leaf node which contains
 863 * IDA_BITMAP_BITS slots.
 864 *
 865 * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 866 */
 867
 868static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 869{
 870        unsigned long flags;
 871
 872        if (!ida->free_bitmap) {
 873                spin_lock_irqsave(&ida->idr.lock, flags);
 874                if (!ida->free_bitmap) {
 875                        ida->free_bitmap = bitmap;
 876                        bitmap = NULL;
 877                }
 878                spin_unlock_irqrestore(&ida->idr.lock, flags);
 879        }
 880
 881        kfree(bitmap);
 882}
 883
 884/**
 885 * ida_pre_get - reserve resources for ida allocation
 886 * @ida:        ida handle
 887 * @gfp_mask:   memory allocation flag
 888 *
 889 * This function should be called prior to locking and calling the
 890 * following function.  It preallocates enough memory to satisfy the
 891 * worst possible allocation.
 892 *
 893 * If the system is REALLY out of memory this function returns %0,
 894 * otherwise %1.
 895 */
 896int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 897{
 898        /* allocate idr_layers */
 899        if (!__idr_pre_get(&ida->idr, gfp_mask))
 900                return 0;
 901
 902        /* allocate free_bitmap */
 903        if (!ida->free_bitmap) {
 904                struct ida_bitmap *bitmap;
 905
 906                bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 907                if (!bitmap)
 908                        return 0;
 909
 910                free_bitmap(ida, bitmap);
 911        }
 912
 913        return 1;
 914}
 915EXPORT_SYMBOL(ida_pre_get);
 916
 917/**
 918 * ida_get_new_above - allocate new ID above or equal to a start id
 919 * @ida:        ida handle
 920 * @starting_id: id to start search at
 921 * @p_id:       pointer to the allocated handle
 922 *
 923 * Allocate new ID above or equal to @starting_id.  It should be called
 924 * with any required locks.
 925 *
 926 * If memory is required, it will return %-EAGAIN, you should unlock
 927 * and go back to the ida_pre_get() call.  If the ida is full, it will
 928 * return %-ENOSPC.
 929 *
 930 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 931 */
 932int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 933{
 934        struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 935        struct ida_bitmap *bitmap;
 936        unsigned long flags;
 937        int idr_id = starting_id / IDA_BITMAP_BITS;
 938        int offset = starting_id % IDA_BITMAP_BITS;
 939        int t, id;
 940
 941 restart:
 942        /* get vacant slot */
 943        t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
 944        if (t < 0)
 945                return t == -ENOMEM ? -EAGAIN : t;
 946
 947        if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
 948                return -ENOSPC;
 949
 950        if (t != idr_id)
 951                offset = 0;
 952        idr_id = t;
 953
 954        /* if bitmap isn't there, create a new one */
 955        bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 956        if (!bitmap) {
 957                spin_lock_irqsave(&ida->idr.lock, flags);
 958                bitmap = ida->free_bitmap;
 959                ida->free_bitmap = NULL;
 960                spin_unlock_irqrestore(&ida->idr.lock, flags);
 961
 962                if (!bitmap)
 963                        return -EAGAIN;
 964
 965                memset(bitmap, 0, sizeof(struct ida_bitmap));
 966                rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 967                                (void *)bitmap);
 968                pa[0]->count++;
 969        }
 970
 971        /* lookup for empty slot */
 972        t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 973        if (t == IDA_BITMAP_BITS) {
 974                /* no empty slot after offset, continue to the next chunk */
 975                idr_id++;
 976                offset = 0;
 977                goto restart;
 978        }
 979
 980        id = idr_id * IDA_BITMAP_BITS + t;
 981        if (id >= MAX_IDR_BIT)
 982                return -ENOSPC;
 983
 984        __set_bit(t, bitmap->bitmap);
 985        if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 986                idr_mark_full(pa, idr_id);
 987
 988        *p_id = id;
 989
 990        /* Each leaf node can handle nearly a thousand slots and the
 991         * whole idea of ida is to have small memory foot print.
 992         * Throw away extra resources one by one after each successful
 993         * allocation.
 994         */
 995        if (ida->idr.id_free_cnt || ida->free_bitmap) {
 996                struct idr_layer *p = get_from_free_list(&ida->idr);
 997                if (p)
 998                        kmem_cache_free(idr_layer_cache, p);
 999        }
1000
1001        return 0;
1002}
1003EXPORT_SYMBOL(ida_get_new_above);
1004
1005/**
1006 * ida_remove - remove the given ID
1007 * @ida:        ida handle
1008 * @id:         ID to free
1009 */
1010void ida_remove(struct ida *ida, int id)
1011{
1012        struct idr_layer *p = ida->idr.top;
1013        int shift = (ida->idr.layers - 1) * IDR_BITS;
1014        int idr_id = id / IDA_BITMAP_BITS;
1015        int offset = id % IDA_BITMAP_BITS;
1016        int n;
1017        struct ida_bitmap *bitmap;
1018
1019        if (idr_id > idr_max(ida->idr.layers))
1020                goto err;
1021
1022        /* clear full bits while looking up the leaf idr_layer */
1023        while ((shift > 0) && p) {
1024                n = (idr_id >> shift) & IDR_MASK;
1025                __clear_bit(n, p->bitmap);
1026                p = p->ary[n];
1027                shift -= IDR_BITS;
1028        }
1029
1030        if (p == NULL)
1031                goto err;
1032
1033        n = idr_id & IDR_MASK;
1034        __clear_bit(n, p->bitmap);
1035
1036        bitmap = (void *)p->ary[n];
1037        if (!bitmap || !test_bit(offset, bitmap->bitmap))
1038                goto err;
1039
1040        /* update bitmap and remove it if empty */
1041        __clear_bit(offset, bitmap->bitmap);
1042        if (--bitmap->nr_busy == 0) {
1043                __set_bit(n, p->bitmap);        /* to please idr_remove() */
1044                idr_remove(&ida->idr, idr_id);
1045                free_bitmap(ida, bitmap);
1046        }
1047
1048        return;
1049
1050 err:
1051        WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1052}
1053EXPORT_SYMBOL(ida_remove);
1054
1055/**
1056 * ida_destroy - release all cached layers within an ida tree
1057 * @ida:                ida handle
1058 */
1059void ida_destroy(struct ida *ida)
1060{
1061        idr_destroy(&ida->idr);
1062        kfree(ida->free_bitmap);
1063}
1064EXPORT_SYMBOL(ida_destroy);
1065
1066/**
1067 * ida_simple_get - get a new id.
1068 * @ida: the (initialized) ida.
1069 * @start: the minimum id (inclusive, < 0x8000000)
1070 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1071 * @gfp_mask: memory allocation flags
1072 *
1073 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1074 * On memory allocation failure, returns -ENOMEM.
1075 *
1076 * Use ida_simple_remove() to get rid of an id.
1077 */
1078int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1079                   gfp_t gfp_mask)
1080{
1081        int ret, id;
1082        unsigned int max;
1083        unsigned long flags;
1084
1085        BUG_ON((int)start < 0);
1086        BUG_ON((int)end < 0);
1087
1088        if (end == 0)
1089                max = 0x80000000;
1090        else {
1091                BUG_ON(end < start);
1092                max = end - 1;
1093        }
1094
1095again:
1096        if (!ida_pre_get(ida, gfp_mask))
1097                return -ENOMEM;
1098
1099        spin_lock_irqsave(&simple_ida_lock, flags);
1100        ret = ida_get_new_above(ida, start, &id);
1101        if (!ret) {
1102                if (id > max) {
1103                        ida_remove(ida, id);
1104                        ret = -ENOSPC;
1105                } else {
1106                        ret = id;
1107                }
1108        }
1109        spin_unlock_irqrestore(&simple_ida_lock, flags);
1110
1111        if (unlikely(ret == -EAGAIN))
1112                goto again;
1113
1114        return ret;
1115}
1116EXPORT_SYMBOL(ida_simple_get);
1117
1118/**
1119 * ida_simple_remove - remove an allocated id.
1120 * @ida: the (initialized) ida.
1121 * @id: the id returned by ida_simple_get.
1122 */
1123void ida_simple_remove(struct ida *ida, unsigned int id)
1124{
1125        unsigned long flags;
1126
1127        BUG_ON((int)id < 0);
1128        spin_lock_irqsave(&simple_ida_lock, flags);
1129        ida_remove(ida, id);
1130        spin_unlock_irqrestore(&simple_ida_lock, flags);
1131}
1132EXPORT_SYMBOL(ida_simple_remove);
1133
1134/**
1135 * ida_init - initialize ida handle
1136 * @ida:        ida handle
1137 *
1138 * This function is use to set up the handle (@ida) that you will pass
1139 * to the rest of the functions.
1140 */
1141void ida_init(struct ida *ida)
1142{
1143        memset(ida, 0, sizeof(struct ida));
1144        idr_init(&ida->idr);
1145
1146}
1147EXPORT_SYMBOL(ida_init);
1148