linux/lib/scatterlist.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   3 *
   4 * Scatterlist handling helpers.
   5 *
   6 * This source code is licensed under the GNU General Public License,
   7 * Version 2. See the file COPYING for more details.
   8 */
   9#include <linux/export.h>
  10#include <linux/slab.h>
  11#include <linux/scatterlist.h>
  12#include <linux/highmem.h>
  13#include <linux/kmemleak.h>
  14
  15/**
  16 * sg_next - return the next scatterlist entry in a list
  17 * @sg:         The current sg entry
  18 *
  19 * Description:
  20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  21 *   of a chained scatterlist, it could jump to the start of a new
  22 *   scatterlist array.
  23 *
  24 **/
  25struct scatterlist *sg_next(struct scatterlist *sg)
  26{
  27#ifdef CONFIG_DEBUG_SG
  28        BUG_ON(sg->sg_magic != SG_MAGIC);
  29#endif
  30        if (sg_is_last(sg))
  31                return NULL;
  32
  33        sg++;
  34        if (unlikely(sg_is_chain(sg)))
  35                sg = sg_chain_ptr(sg);
  36
  37        return sg;
  38}
  39EXPORT_SYMBOL(sg_next);
  40
  41/**
  42 * sg_nents - return total count of entries in scatterlist
  43 * @sg:         The scatterlist
  44 *
  45 * Description:
  46 * Allows to know how many entries are in sg, taking into acount
  47 * chaining as well
  48 *
  49 **/
  50int sg_nents(struct scatterlist *sg)
  51{
  52        int nents;
  53        for (nents = 0; sg; sg = sg_next(sg))
  54                nents++;
  55        return nents;
  56}
  57EXPORT_SYMBOL(sg_nents);
  58
  59/**
  60 * sg_nents_for_len - return total count of entries in scatterlist
  61 *                    needed to satisfy the supplied length
  62 * @sg:         The scatterlist
  63 * @len:        The total required length
  64 *
  65 * Description:
  66 * Determines the number of entries in sg that are required to meet
  67 * the supplied length, taking into acount chaining as well
  68 *
  69 * Returns:
  70 *   the number of sg entries needed, negative error on failure
  71 *
  72 **/
  73int sg_nents_for_len(struct scatterlist *sg, u64 len)
  74{
  75        int nents;
  76        u64 total;
  77
  78        if (!len)
  79                return 0;
  80
  81        for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  82                nents++;
  83                total += sg->length;
  84                if (total >= len)
  85                        return nents;
  86        }
  87
  88        return -EINVAL;
  89}
  90EXPORT_SYMBOL(sg_nents_for_len);
  91
  92/**
  93 * sg_last - return the last scatterlist entry in a list
  94 * @sgl:        First entry in the scatterlist
  95 * @nents:      Number of entries in the scatterlist
  96 *
  97 * Description:
  98 *   Should only be used casually, it (currently) scans the entire list
  99 *   to get the last entry.
 100 *
 101 *   Note that the @sgl@ pointer passed in need not be the first one,
 102 *   the important bit is that @nents@ denotes the number of entries that
 103 *   exist from @sgl@.
 104 *
 105 **/
 106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 107{
 108        struct scatterlist *sg, *ret = NULL;
 109        unsigned int i;
 110
 111        for_each_sg(sgl, sg, nents, i)
 112                ret = sg;
 113
 114#ifdef CONFIG_DEBUG_SG
 115        BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 116        BUG_ON(!sg_is_last(ret));
 117#endif
 118        return ret;
 119}
 120EXPORT_SYMBOL(sg_last);
 121
 122/**
 123 * sg_init_table - Initialize SG table
 124 * @sgl:           The SG table
 125 * @nents:         Number of entries in table
 126 *
 127 * Notes:
 128 *   If this is part of a chained sg table, sg_mark_end() should be
 129 *   used only on the last table part.
 130 *
 131 **/
 132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 133{
 134        memset(sgl, 0, sizeof(*sgl) * nents);
 135#ifdef CONFIG_DEBUG_SG
 136        {
 137                unsigned int i;
 138                for (i = 0; i < nents; i++)
 139                        sgl[i].sg_magic = SG_MAGIC;
 140        }
 141#endif
 142        sg_mark_end(&sgl[nents - 1]);
 143}
 144EXPORT_SYMBOL(sg_init_table);
 145
 146/**
 147 * sg_init_one - Initialize a single entry sg list
 148 * @sg:          SG entry
 149 * @buf:         Virtual address for IO
 150 * @buflen:      IO length
 151 *
 152 **/
 153void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 154{
 155        sg_init_table(sg, 1);
 156        sg_set_buf(sg, buf, buflen);
 157}
 158EXPORT_SYMBOL(sg_init_one);
 159
 160/*
 161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 162 * helpers.
 163 */
 164static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 165{
 166        if (nents == SG_MAX_SINGLE_ALLOC) {
 167                /*
 168                 * Kmemleak doesn't track page allocations as they are not
 169                 * commonly used (in a raw form) for kernel data structures.
 170                 * As we chain together a list of pages and then a normal
 171                 * kmalloc (tracked by kmemleak), in order to for that last
 172                 * allocation not to become decoupled (and thus a
 173                 * false-positive) we need to inform kmemleak of all the
 174                 * intermediate allocations.
 175                 */
 176                void *ptr = (void *) __get_free_page(gfp_mask);
 177                kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 178                return ptr;
 179        } else
 180                return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 181}
 182
 183static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 184{
 185        if (nents == SG_MAX_SINGLE_ALLOC) {
 186                kmemleak_free(sg);
 187                free_page((unsigned long) sg);
 188        } else
 189                kfree(sg);
 190}
 191
 192/**
 193 * __sg_free_table - Free a previously mapped sg table
 194 * @table:      The sg table header to use
 195 * @max_ents:   The maximum number of entries per single scatterlist
 196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 197 * @free_fn:    Free function
 198 *
 199 *  Description:
 200 *    Free an sg table previously allocated and setup with
 201 *    __sg_alloc_table().  The @max_ents value must be identical to
 202 *    that previously used with __sg_alloc_table().
 203 *
 204 **/
 205void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 206                     bool skip_first_chunk, sg_free_fn *free_fn)
 207{
 208        struct scatterlist *sgl, *next;
 209
 210        if (unlikely(!table->sgl))
 211                return;
 212
 213        sgl = table->sgl;
 214        while (table->orig_nents) {
 215                unsigned int alloc_size = table->orig_nents;
 216                unsigned int sg_size;
 217
 218                /*
 219                 * If we have more than max_ents segments left,
 220                 * then assign 'next' to the sg table after the current one.
 221                 * sg_size is then one less than alloc size, since the last
 222                 * element is the chain pointer.
 223                 */
 224                if (alloc_size > max_ents) {
 225                        next = sg_chain_ptr(&sgl[max_ents - 1]);
 226                        alloc_size = max_ents;
 227                        sg_size = alloc_size - 1;
 228                } else {
 229                        sg_size = alloc_size;
 230                        next = NULL;
 231                }
 232
 233                table->orig_nents -= sg_size;
 234                if (skip_first_chunk)
 235                        skip_first_chunk = false;
 236                else
 237                        free_fn(sgl, alloc_size);
 238                sgl = next;
 239        }
 240
 241        table->sgl = NULL;
 242}
 243EXPORT_SYMBOL(__sg_free_table);
 244
 245/**
 246 * sg_free_table - Free a previously allocated sg table
 247 * @table:      The mapped sg table header
 248 *
 249 **/
 250void sg_free_table(struct sg_table *table)
 251{
 252        __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 253}
 254EXPORT_SYMBOL(sg_free_table);
 255
 256/**
 257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 258 * @table:      The sg table header to use
 259 * @nents:      Number of entries in sg list
 260 * @max_ents:   The maximum number of entries the allocator returns per call
 261 * @gfp_mask:   GFP allocation mask
 262 * @alloc_fn:   Allocator to use
 263 *
 264 * Description:
 265 *   This function returns a @table @nents long. The allocator is
 266 *   defined to return scatterlist chunks of maximum size @max_ents.
 267 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 268 *   chained in units of @max_ents.
 269 *
 270 * Notes:
 271 *   If this function returns non-0 (eg failure), the caller must call
 272 *   __sg_free_table() to cleanup any leftover allocations.
 273 *
 274 **/
 275int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 276                     unsigned int max_ents, struct scatterlist *first_chunk,
 277                     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 278{
 279        struct scatterlist *sg, *prv;
 280        unsigned int left;
 281
 282        memset(table, 0, sizeof(*table));
 283
 284        if (nents == 0)
 285                return -EINVAL;
 286#ifndef CONFIG_ARCH_HAS_SG_CHAIN
 287        if (WARN_ON_ONCE(nents > max_ents))
 288                return -EINVAL;
 289#endif
 290
 291        left = nents;
 292        prv = NULL;
 293        do {
 294                unsigned int sg_size, alloc_size = left;
 295
 296                if (alloc_size > max_ents) {
 297                        alloc_size = max_ents;
 298                        sg_size = alloc_size - 1;
 299                } else
 300                        sg_size = alloc_size;
 301
 302                left -= sg_size;
 303
 304                if (first_chunk) {
 305                        sg = first_chunk;
 306                        first_chunk = NULL;
 307                } else {
 308                        sg = alloc_fn(alloc_size, gfp_mask);
 309                }
 310                if (unlikely(!sg)) {
 311                        /*
 312                         * Adjust entry count to reflect that the last
 313                         * entry of the previous table won't be used for
 314                         * linkage.  Without this, sg_kfree() may get
 315                         * confused.
 316                         */
 317                        if (prv)
 318                                table->nents = ++table->orig_nents;
 319
 320                        return -ENOMEM;
 321                }
 322
 323                sg_init_table(sg, alloc_size);
 324                table->nents = table->orig_nents += sg_size;
 325
 326                /*
 327                 * If this is the first mapping, assign the sg table header.
 328                 * If this is not the first mapping, chain previous part.
 329                 */
 330                if (prv)
 331                        sg_chain(prv, max_ents, sg);
 332                else
 333                        table->sgl = sg;
 334
 335                /*
 336                 * If no more entries after this one, mark the end
 337                 */
 338                if (!left)
 339                        sg_mark_end(&sg[sg_size - 1]);
 340
 341                prv = sg;
 342        } while (left);
 343
 344        return 0;
 345}
 346EXPORT_SYMBOL(__sg_alloc_table);
 347
 348/**
 349 * sg_alloc_table - Allocate and initialize an sg table
 350 * @table:      The sg table header to use
 351 * @nents:      Number of entries in sg list
 352 * @gfp_mask:   GFP allocation mask
 353 *
 354 *  Description:
 355 *    Allocate and initialize an sg table. If @nents@ is larger than
 356 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 357 *
 358 **/
 359int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 360{
 361        int ret;
 362
 363        ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 364                               NULL, gfp_mask, sg_kmalloc);
 365        if (unlikely(ret))
 366                __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 367
 368        return ret;
 369}
 370EXPORT_SYMBOL(sg_alloc_table);
 371
 372/**
 373 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 374 *                             an array of pages
 375 * @sgt:        The sg table header to use
 376 * @pages:      Pointer to an array of page pointers
 377 * @n_pages:    Number of pages in the pages array
 378 * @offset:     Offset from start of the first page to the start of a buffer
 379 * @size:       Number of valid bytes in the buffer (after offset)
 380 * @gfp_mask:   GFP allocation mask
 381 *
 382 *  Description:
 383 *    Allocate and initialize an sg table from a list of pages. Contiguous
 384 *    ranges of the pages are squashed into a single scatterlist node. A user
 385 *    may provide an offset at a start and a size of valid data in a buffer
 386 *    specified by the page array. The returned sg table is released by
 387 *    sg_free_table.
 388 *
 389 * Returns:
 390 *   0 on success, negative error on failure
 391 */
 392int sg_alloc_table_from_pages(struct sg_table *sgt,
 393        struct page **pages, unsigned int n_pages,
 394        unsigned long offset, unsigned long size,
 395        gfp_t gfp_mask)
 396{
 397        unsigned int chunks;
 398        unsigned int i;
 399        unsigned int cur_page;
 400        int ret;
 401        struct scatterlist *s;
 402
 403        /* compute number of contiguous chunks */
 404        chunks = 1;
 405        for (i = 1; i < n_pages; ++i)
 406                if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
 407                        ++chunks;
 408
 409        ret = sg_alloc_table(sgt, chunks, gfp_mask);
 410        if (unlikely(ret))
 411                return ret;
 412
 413        /* merging chunks and putting them into the scatterlist */
 414        cur_page = 0;
 415        for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
 416                unsigned long chunk_size;
 417                unsigned int j;
 418
 419                /* look for the end of the current chunk */
 420                for (j = cur_page + 1; j < n_pages; ++j)
 421                        if (page_to_pfn(pages[j]) !=
 422                            page_to_pfn(pages[j - 1]) + 1)
 423                                break;
 424
 425                chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 426                sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 427                size -= chunk_size;
 428                offset = 0;
 429                cur_page = j;
 430        }
 431
 432        return 0;
 433}
 434EXPORT_SYMBOL(sg_alloc_table_from_pages);
 435
 436void __sg_page_iter_start(struct sg_page_iter *piter,
 437                          struct scatterlist *sglist, unsigned int nents,
 438                          unsigned long pgoffset)
 439{
 440        piter->__pg_advance = 0;
 441        piter->__nents = nents;
 442
 443        piter->sg = sglist;
 444        piter->sg_pgoffset = pgoffset;
 445}
 446EXPORT_SYMBOL(__sg_page_iter_start);
 447
 448static int sg_page_count(struct scatterlist *sg)
 449{
 450        return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 451}
 452
 453bool __sg_page_iter_next(struct sg_page_iter *piter)
 454{
 455        if (!piter->__nents || !piter->sg)
 456                return false;
 457
 458        piter->sg_pgoffset += piter->__pg_advance;
 459        piter->__pg_advance = 1;
 460
 461        while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 462                piter->sg_pgoffset -= sg_page_count(piter->sg);
 463                piter->sg = sg_next(piter->sg);
 464                if (!--piter->__nents || !piter->sg)
 465                        return false;
 466        }
 467
 468        return true;
 469}
 470EXPORT_SYMBOL(__sg_page_iter_next);
 471
 472/**
 473 * sg_miter_start - start mapping iteration over a sg list
 474 * @miter: sg mapping iter to be started
 475 * @sgl: sg list to iterate over
 476 * @nents: number of sg entries
 477 *
 478 * Description:
 479 *   Starts mapping iterator @miter.
 480 *
 481 * Context:
 482 *   Don't care.
 483 */
 484void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 485                    unsigned int nents, unsigned int flags)
 486{
 487        memset(miter, 0, sizeof(struct sg_mapping_iter));
 488
 489        __sg_page_iter_start(&miter->piter, sgl, nents, 0);
 490        WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 491        miter->__flags = flags;
 492}
 493EXPORT_SYMBOL(sg_miter_start);
 494
 495static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 496{
 497        if (!miter->__remaining) {
 498                struct scatterlist *sg;
 499                unsigned long pgoffset;
 500
 501                if (!__sg_page_iter_next(&miter->piter))
 502                        return false;
 503
 504                sg = miter->piter.sg;
 505                pgoffset = miter->piter.sg_pgoffset;
 506
 507                miter->__offset = pgoffset ? 0 : sg->offset;
 508                miter->__remaining = sg->offset + sg->length -
 509                                (pgoffset << PAGE_SHIFT) - miter->__offset;
 510                miter->__remaining = min_t(unsigned long, miter->__remaining,
 511                                           PAGE_SIZE - miter->__offset);
 512        }
 513
 514        return true;
 515}
 516
 517/**
 518 * sg_miter_skip - reposition mapping iterator
 519 * @miter: sg mapping iter to be skipped
 520 * @offset: number of bytes to plus the current location
 521 *
 522 * Description:
 523 *   Sets the offset of @miter to its current location plus @offset bytes.
 524 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 525 *   stops @miter.
 526 *
 527 * Context:
 528 *   Don't care if @miter is stopped, or not proceeded yet.
 529 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 530 *
 531 * Returns:
 532 *   true if @miter contains the valid mapping.  false if end of sg
 533 *   list is reached.
 534 */
 535bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 536{
 537        sg_miter_stop(miter);
 538
 539        while (offset) {
 540                off_t consumed;
 541
 542                if (!sg_miter_get_next_page(miter))
 543                        return false;
 544
 545                consumed = min_t(off_t, offset, miter->__remaining);
 546                miter->__offset += consumed;
 547                miter->__remaining -= consumed;
 548                offset -= consumed;
 549        }
 550
 551        return true;
 552}
 553EXPORT_SYMBOL(sg_miter_skip);
 554
 555/**
 556 * sg_miter_next - proceed mapping iterator to the next mapping
 557 * @miter: sg mapping iter to proceed
 558 *
 559 * Description:
 560 *   Proceeds @miter to the next mapping.  @miter should have been started
 561 *   using sg_miter_start().  On successful return, @miter->page,
 562 *   @miter->addr and @miter->length point to the current mapping.
 563 *
 564 * Context:
 565 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 566 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 567 *
 568 * Returns:
 569 *   true if @miter contains the next mapping.  false if end of sg
 570 *   list is reached.
 571 */
 572bool sg_miter_next(struct sg_mapping_iter *miter)
 573{
 574        sg_miter_stop(miter);
 575
 576        /*
 577         * Get to the next page if necessary.
 578         * __remaining, __offset is adjusted by sg_miter_stop
 579         */
 580        if (!sg_miter_get_next_page(miter))
 581                return false;
 582
 583        miter->page = sg_page_iter_page(&miter->piter);
 584        miter->consumed = miter->length = miter->__remaining;
 585
 586        if (miter->__flags & SG_MITER_ATOMIC)
 587                miter->addr = kmap_atomic(miter->page) + miter->__offset;
 588        else
 589                miter->addr = kmap(miter->page) + miter->__offset;
 590
 591        return true;
 592}
 593EXPORT_SYMBOL(sg_miter_next);
 594
 595/**
 596 * sg_miter_stop - stop mapping iteration
 597 * @miter: sg mapping iter to be stopped
 598 *
 599 * Description:
 600 *   Stops mapping iterator @miter.  @miter should have been started
 601 *   using sg_miter_start().  A stopped iteration can be resumed by
 602 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 603 *   need to be released during iteration.
 604 *
 605 * Context:
 606 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 607 *   otherwise.
 608 */
 609void sg_miter_stop(struct sg_mapping_iter *miter)
 610{
 611        WARN_ON(miter->consumed > miter->length);
 612
 613        /* drop resources from the last iteration */
 614        if (miter->addr) {
 615                miter->__offset += miter->consumed;
 616                miter->__remaining -= miter->consumed;
 617
 618                if ((miter->__flags & SG_MITER_TO_SG) &&
 619                    !PageSlab(miter->page))
 620                        flush_kernel_dcache_page(miter->page);
 621
 622                if (miter->__flags & SG_MITER_ATOMIC) {
 623                        WARN_ON_ONCE(preemptible());
 624                        kunmap_atomic(miter->addr);
 625                } else
 626                        kunmap(miter->page);
 627
 628                miter->page = NULL;
 629                miter->addr = NULL;
 630                miter->length = 0;
 631                miter->consumed = 0;
 632        }
 633}
 634EXPORT_SYMBOL(sg_miter_stop);
 635
 636/**
 637 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 638 * @sgl:                 The SG list
 639 * @nents:               Number of SG entries
 640 * @buf:                 Where to copy from
 641 * @buflen:              The number of bytes to copy
 642 * @skip:                Number of bytes to skip before copying
 643 * @to_buffer:           transfer direction (true == from an sg list to a
 644 *                       buffer, false == from a buffer to an sg list
 645 *
 646 * Returns the number of copied bytes.
 647 *
 648 **/
 649size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 650                      size_t buflen, off_t skip, bool to_buffer)
 651{
 652        unsigned int offset = 0;
 653        struct sg_mapping_iter miter;
 654        unsigned long flags;
 655        unsigned int sg_flags = SG_MITER_ATOMIC;
 656
 657        if (to_buffer)
 658                sg_flags |= SG_MITER_FROM_SG;
 659        else
 660                sg_flags |= SG_MITER_TO_SG;
 661
 662        sg_miter_start(&miter, sgl, nents, sg_flags);
 663
 664        if (!sg_miter_skip(&miter, skip))
 665                return false;
 666
 667        local_irq_save(flags);
 668
 669        while (sg_miter_next(&miter) && offset < buflen) {
 670                unsigned int len;
 671
 672                len = min(miter.length, buflen - offset);
 673
 674                if (to_buffer)
 675                        memcpy(buf + offset, miter.addr, len);
 676                else
 677                        memcpy(miter.addr, buf + offset, len);
 678
 679                offset += len;
 680        }
 681
 682        sg_miter_stop(&miter);
 683
 684        local_irq_restore(flags);
 685        return offset;
 686}
 687EXPORT_SYMBOL(sg_copy_buffer);
 688
 689/**
 690 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 691 * @sgl:                 The SG list
 692 * @nents:               Number of SG entries
 693 * @buf:                 Where to copy from
 694 * @buflen:              The number of bytes to copy
 695 *
 696 * Returns the number of copied bytes.
 697 *
 698 **/
 699size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 700                           const void *buf, size_t buflen)
 701{
 702        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 703}
 704EXPORT_SYMBOL(sg_copy_from_buffer);
 705
 706/**
 707 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 708 * @sgl:                 The SG list
 709 * @nents:               Number of SG entries
 710 * @buf:                 Where to copy to
 711 * @buflen:              The number of bytes to copy
 712 *
 713 * Returns the number of copied bytes.
 714 *
 715 **/
 716size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 717                         void *buf, size_t buflen)
 718{
 719        return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 720}
 721EXPORT_SYMBOL(sg_copy_to_buffer);
 722
 723/**
 724 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 725 * @sgl:                 The SG list
 726 * @nents:               Number of SG entries
 727 * @buf:                 Where to copy from
 728 * @buflen:              The number of bytes to copy
 729 * @skip:                Number of bytes to skip before copying
 730 *
 731 * Returns the number of copied bytes.
 732 *
 733 **/
 734size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 735                            const void *buf, size_t buflen, off_t skip)
 736{
 737        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
 738}
 739EXPORT_SYMBOL(sg_pcopy_from_buffer);
 740
 741/**
 742 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
 743 * @sgl:                 The SG list
 744 * @nents:               Number of SG entries
 745 * @buf:                 Where to copy to
 746 * @buflen:              The number of bytes to copy
 747 * @skip:                Number of bytes to skip before copying
 748 *
 749 * Returns the number of copied bytes.
 750 *
 751 **/
 752size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 753                          void *buf, size_t buflen, off_t skip)
 754{
 755        return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
 756}
 757EXPORT_SYMBOL(sg_pcopy_to_buffer);
 758