linux/lib/swiotlb.c
<<
>>
Prefs
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
  13 *                      unnecessary i-cache flushing.
  14 * 04/07/.. ak          Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville    Add support for syncing ranges, support syncing for
  16 *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb      Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33
  34#include <asm/io.h>
  35#include <asm/dma.h>
  36
  37#include <linux/init.h>
  38#include <linux/bootmem.h>
  39#include <linux/iommu-helper.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/swiotlb.h>
  43
  44#define OFFSET(val,align) ((unsigned long)      \
  45                           ( (val) & ( (align) - 1)))
  46
  47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  48
  49/*
  50 * Minimum IO TLB size to bother booting with.  Systems with mainly
  51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  52 * allocate a contiguous 1MB, we're probably in trouble anyway.
  53 */
  54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  55
  56int swiotlb_force;
  57
  58/*
  59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  61 * API.
  62 */
  63static phys_addr_t io_tlb_start, io_tlb_end;
  64
  65/*
  66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  68 */
  69static unsigned long io_tlb_nslabs;
  70
  71/*
  72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  73 */
  74static unsigned long io_tlb_overflow = 32*1024;
  75
  76static phys_addr_t io_tlb_overflow_buffer;
  77
  78/*
  79 * This is a free list describing the number of free entries available from
  80 * each index
  81 */
  82static unsigned int *io_tlb_list;
  83static unsigned int io_tlb_index;
  84
  85/*
  86 * We need to save away the original address corresponding to a mapped entry
  87 * for the sync operations.
  88 */
  89#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  90static phys_addr_t *io_tlb_orig_addr;
  91
  92/*
  93 * Protect the above data structures in the map and unmap calls
  94 */
  95static DEFINE_SPINLOCK(io_tlb_lock);
  96
  97static int late_alloc;
  98
  99static int __init
 100setup_io_tlb_npages(char *str)
 101{
 102        if (isdigit(*str)) {
 103                io_tlb_nslabs = simple_strtoul(str, &str, 0);
 104                /* avoid tail segment of size < IO_TLB_SEGSIZE */
 105                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 106        }
 107        if (*str == ',')
 108                ++str;
 109        if (!strcmp(str, "force"))
 110                swiotlb_force = 1;
 111
 112        return 0;
 113}
 114early_param("swiotlb", setup_io_tlb_npages);
 115/* make io_tlb_overflow tunable too? */
 116
 117unsigned long swiotlb_nr_tbl(void)
 118{
 119        return io_tlb_nslabs;
 120}
 121EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 122
 123/* default to 64MB */
 124#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 125unsigned long swiotlb_size_or_default(void)
 126{
 127        unsigned long size;
 128
 129        size = io_tlb_nslabs << IO_TLB_SHIFT;
 130
 131        return size ? size : (IO_TLB_DEFAULT_SIZE);
 132}
 133
 134/* Note that this doesn't work with highmem page */
 135static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 136                                      volatile void *address)
 137{
 138        return phys_to_dma(hwdev, virt_to_phys(address));
 139}
 140
 141static bool no_iotlb_memory;
 142
 143void swiotlb_print_info(void)
 144{
 145        unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 146        unsigned char *vstart, *vend;
 147
 148        if (no_iotlb_memory) {
 149                pr_warn("software IO TLB: No low mem\n");
 150                return;
 151        }
 152
 153        vstart = phys_to_virt(io_tlb_start);
 154        vend = phys_to_virt(io_tlb_end);
 155
 156        printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 157               (unsigned long long)io_tlb_start,
 158               (unsigned long long)io_tlb_end,
 159               bytes >> 20, vstart, vend - 1);
 160}
 161
 162int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 163{
 164        void *v_overflow_buffer;
 165        unsigned long i, bytes;
 166
 167        bytes = nslabs << IO_TLB_SHIFT;
 168
 169        io_tlb_nslabs = nslabs;
 170        io_tlb_start = __pa(tlb);
 171        io_tlb_end = io_tlb_start + bytes;
 172
 173        /*
 174         * Get the overflow emergency buffer
 175         */
 176        v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 177                                                PAGE_ALIGN(io_tlb_overflow),
 178                                                PAGE_SIZE);
 179        if (!v_overflow_buffer)
 180                return -ENOMEM;
 181
 182        io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 183
 184        /*
 185         * Allocate and initialize the free list array.  This array is used
 186         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 187         * between io_tlb_start and io_tlb_end.
 188         */
 189        io_tlb_list = memblock_virt_alloc(
 190                                PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 191                                PAGE_SIZE);
 192        io_tlb_orig_addr = memblock_virt_alloc(
 193                                PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 194                                PAGE_SIZE);
 195        for (i = 0; i < io_tlb_nslabs; i++) {
 196                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 197                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 198        }
 199        io_tlb_index = 0;
 200
 201        if (verbose)
 202                swiotlb_print_info();
 203
 204        return 0;
 205}
 206
 207/*
 208 * Statically reserve bounce buffer space and initialize bounce buffer data
 209 * structures for the software IO TLB used to implement the DMA API.
 210 */
 211void  __init
 212swiotlb_init(int verbose)
 213{
 214        size_t default_size = IO_TLB_DEFAULT_SIZE;
 215        unsigned char *vstart;
 216        unsigned long bytes;
 217
 218        if (!io_tlb_nslabs) {
 219                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 220                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 221        }
 222
 223        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 224
 225        /* Get IO TLB memory from the low pages */
 226        vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 227        if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 228                return;
 229
 230        if (io_tlb_start)
 231                memblock_free_early(io_tlb_start,
 232                                    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 233        pr_warn("Cannot allocate SWIOTLB buffer");
 234        no_iotlb_memory = true;
 235}
 236
 237/*
 238 * Systems with larger DMA zones (those that don't support ISA) can
 239 * initialize the swiotlb later using the slab allocator if needed.
 240 * This should be just like above, but with some error catching.
 241 */
 242int
 243swiotlb_late_init_with_default_size(size_t default_size)
 244{
 245        unsigned long bytes, req_nslabs = io_tlb_nslabs;
 246        unsigned char *vstart = NULL;
 247        unsigned int order;
 248        int rc = 0;
 249
 250        if (!io_tlb_nslabs) {
 251                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 252                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 253        }
 254
 255        /*
 256         * Get IO TLB memory from the low pages
 257         */
 258        order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 259        io_tlb_nslabs = SLABS_PER_PAGE << order;
 260        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 261
 262        while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 263                vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 264                                                  order);
 265                if (vstart)
 266                        break;
 267                order--;
 268        }
 269
 270        if (!vstart) {
 271                io_tlb_nslabs = req_nslabs;
 272                return -ENOMEM;
 273        }
 274        if (order != get_order(bytes)) {
 275                printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 276                       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 277                io_tlb_nslabs = SLABS_PER_PAGE << order;
 278        }
 279        rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 280        if (rc)
 281                free_pages((unsigned long)vstart, order);
 282        return rc;
 283}
 284
 285int
 286swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 287{
 288        unsigned long i, bytes;
 289        unsigned char *v_overflow_buffer;
 290
 291        bytes = nslabs << IO_TLB_SHIFT;
 292
 293        io_tlb_nslabs = nslabs;
 294        io_tlb_start = virt_to_phys(tlb);
 295        io_tlb_end = io_tlb_start + bytes;
 296
 297        memset(tlb, 0, bytes);
 298
 299        /*
 300         * Get the overflow emergency buffer
 301         */
 302        v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 303                                                     get_order(io_tlb_overflow));
 304        if (!v_overflow_buffer)
 305                goto cleanup2;
 306
 307        io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 308
 309        /*
 310         * Allocate and initialize the free list array.  This array is used
 311         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 312         * between io_tlb_start and io_tlb_end.
 313         */
 314        io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 315                                      get_order(io_tlb_nslabs * sizeof(int)));
 316        if (!io_tlb_list)
 317                goto cleanup3;
 318
 319        io_tlb_orig_addr = (phys_addr_t *)
 320                __get_free_pages(GFP_KERNEL,
 321                                 get_order(io_tlb_nslabs *
 322                                           sizeof(phys_addr_t)));
 323        if (!io_tlb_orig_addr)
 324                goto cleanup4;
 325
 326        for (i = 0; i < io_tlb_nslabs; i++) {
 327                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 328                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 329        }
 330        io_tlb_index = 0;
 331
 332        swiotlb_print_info();
 333
 334        late_alloc = 1;
 335
 336        return 0;
 337
 338cleanup4:
 339        free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 340                                                         sizeof(int)));
 341        io_tlb_list = NULL;
 342cleanup3:
 343        free_pages((unsigned long)v_overflow_buffer,
 344                   get_order(io_tlb_overflow));
 345        io_tlb_overflow_buffer = 0;
 346cleanup2:
 347        io_tlb_end = 0;
 348        io_tlb_start = 0;
 349        io_tlb_nslabs = 0;
 350        return -ENOMEM;
 351}
 352
 353void __init swiotlb_free(void)
 354{
 355        if (!io_tlb_orig_addr)
 356                return;
 357
 358        if (late_alloc) {
 359                free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 360                           get_order(io_tlb_overflow));
 361                free_pages((unsigned long)io_tlb_orig_addr,
 362                           get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 363                free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 364                                                                 sizeof(int)));
 365                free_pages((unsigned long)phys_to_virt(io_tlb_start),
 366                           get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 367        } else {
 368                memblock_free_late(io_tlb_overflow_buffer,
 369                                   PAGE_ALIGN(io_tlb_overflow));
 370                memblock_free_late(__pa(io_tlb_orig_addr),
 371                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 372                memblock_free_late(__pa(io_tlb_list),
 373                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 374                memblock_free_late(io_tlb_start,
 375                                   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 376        }
 377        io_tlb_nslabs = 0;
 378}
 379
 380int is_swiotlb_buffer(phys_addr_t paddr)
 381{
 382        return paddr >= io_tlb_start && paddr < io_tlb_end;
 383}
 384
 385/*
 386 * Bounce: copy the swiotlb buffer back to the original dma location
 387 */
 388static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 389                           size_t size, enum dma_data_direction dir)
 390{
 391        unsigned long pfn = PFN_DOWN(orig_addr);
 392        unsigned char *vaddr = phys_to_virt(tlb_addr);
 393
 394        if (PageHighMem(pfn_to_page(pfn))) {
 395                /* The buffer does not have a mapping.  Map it in and copy */
 396                unsigned int offset = orig_addr & ~PAGE_MASK;
 397                char *buffer;
 398                unsigned int sz = 0;
 399                unsigned long flags;
 400
 401                while (size) {
 402                        sz = min_t(size_t, PAGE_SIZE - offset, size);
 403
 404                        local_irq_save(flags);
 405                        buffer = kmap_atomic(pfn_to_page(pfn));
 406                        if (dir == DMA_TO_DEVICE)
 407                                memcpy(vaddr, buffer + offset, sz);
 408                        else
 409                                memcpy(buffer + offset, vaddr, sz);
 410                        kunmap_atomic(buffer);
 411                        local_irq_restore(flags);
 412
 413                        size -= sz;
 414                        pfn++;
 415                        vaddr += sz;
 416                        offset = 0;
 417                }
 418        } else if (dir == DMA_TO_DEVICE) {
 419                memcpy(vaddr, phys_to_virt(orig_addr), size);
 420        } else {
 421                memcpy(phys_to_virt(orig_addr), vaddr, size);
 422        }
 423}
 424
 425phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 426                                   dma_addr_t tbl_dma_addr,
 427                                   phys_addr_t orig_addr, size_t size,
 428                                   enum dma_data_direction dir)
 429{
 430        unsigned long flags;
 431        phys_addr_t tlb_addr;
 432        unsigned int nslots, stride, index, wrap;
 433        int i;
 434        unsigned long mask;
 435        unsigned long offset_slots;
 436        unsigned long max_slots;
 437
 438        if (no_iotlb_memory)
 439                panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 440
 441        mask = dma_get_seg_boundary(hwdev);
 442
 443        tbl_dma_addr &= mask;
 444
 445        offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 446
 447        /*
 448         * Carefully handle integer overflow which can occur when mask == ~0UL.
 449         */
 450        max_slots = mask + 1
 451                    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 452                    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 453
 454        /*
 455         * For mappings greater than a page, we limit the stride (and
 456         * hence alignment) to a page size.
 457         */
 458        nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 459        if (size > PAGE_SIZE)
 460                stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 461        else
 462                stride = 1;
 463
 464        BUG_ON(!nslots);
 465
 466        /*
 467         * Find suitable number of IO TLB entries size that will fit this
 468         * request and allocate a buffer from that IO TLB pool.
 469         */
 470        spin_lock_irqsave(&io_tlb_lock, flags);
 471        index = ALIGN(io_tlb_index, stride);
 472        if (index >= io_tlb_nslabs)
 473                index = 0;
 474        wrap = index;
 475
 476        do {
 477                while (iommu_is_span_boundary(index, nslots, offset_slots,
 478                                              max_slots)) {
 479                        index += stride;
 480                        if (index >= io_tlb_nslabs)
 481                                index = 0;
 482                        if (index == wrap)
 483                                goto not_found;
 484                }
 485
 486                /*
 487                 * If we find a slot that indicates we have 'nslots' number of
 488                 * contiguous buffers, we allocate the buffers from that slot
 489                 * and mark the entries as '0' indicating unavailable.
 490                 */
 491                if (io_tlb_list[index] >= nslots) {
 492                        int count = 0;
 493
 494                        for (i = index; i < (int) (index + nslots); i++)
 495                                io_tlb_list[i] = 0;
 496                        for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 497                                io_tlb_list[i] = ++count;
 498                        tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 499
 500                        /*
 501                         * Update the indices to avoid searching in the next
 502                         * round.
 503                         */
 504                        io_tlb_index = ((index + nslots) < io_tlb_nslabs
 505                                        ? (index + nslots) : 0);
 506
 507                        goto found;
 508                }
 509                index += stride;
 510                if (index >= io_tlb_nslabs)
 511                        index = 0;
 512        } while (index != wrap);
 513
 514not_found:
 515        spin_unlock_irqrestore(&io_tlb_lock, flags);
 516        if (printk_ratelimit())
 517                dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 518        return SWIOTLB_MAP_ERROR;
 519found:
 520        spin_unlock_irqrestore(&io_tlb_lock, flags);
 521
 522        /*
 523         * Save away the mapping from the original address to the DMA address.
 524         * This is needed when we sync the memory.  Then we sync the buffer if
 525         * needed.
 526         */
 527        for (i = 0; i < nslots; i++)
 528                io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 529        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 530                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 531
 532        return tlb_addr;
 533}
 534EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 535
 536/*
 537 * Allocates bounce buffer and returns its kernel virtual address.
 538 */
 539
 540static phys_addr_t
 541map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 542           enum dma_data_direction dir)
 543{
 544        dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
 545
 546        return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
 547}
 548
 549/*
 550 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 551 */
 552void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 553                              size_t size, enum dma_data_direction dir)
 554{
 555        unsigned long flags;
 556        int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 557        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 558        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 559
 560        /*
 561         * First, sync the memory before unmapping the entry
 562         */
 563        if (orig_addr != INVALID_PHYS_ADDR &&
 564            ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 565                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 566
 567        /*
 568         * Return the buffer to the free list by setting the corresponding
 569         * entries to indicate the number of contiguous entries available.
 570         * While returning the entries to the free list, we merge the entries
 571         * with slots below and above the pool being returned.
 572         */
 573        spin_lock_irqsave(&io_tlb_lock, flags);
 574        {
 575                count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 576                         io_tlb_list[index + nslots] : 0);
 577                /*
 578                 * Step 1: return the slots to the free list, merging the
 579                 * slots with superceeding slots
 580                 */
 581                for (i = index + nslots - 1; i >= index; i--) {
 582                        io_tlb_list[i] = ++count;
 583                        io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 584                }
 585                /*
 586                 * Step 2: merge the returned slots with the preceding slots,
 587                 * if available (non zero)
 588                 */
 589                for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 590                        io_tlb_list[i] = ++count;
 591        }
 592        spin_unlock_irqrestore(&io_tlb_lock, flags);
 593}
 594EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 595
 596void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 597                             size_t size, enum dma_data_direction dir,
 598                             enum dma_sync_target target)
 599{
 600        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 601        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 602
 603        if (orig_addr == INVALID_PHYS_ADDR)
 604                return;
 605        orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 606
 607        switch (target) {
 608        case SYNC_FOR_CPU:
 609                if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 610                        swiotlb_bounce(orig_addr, tlb_addr,
 611                                       size, DMA_FROM_DEVICE);
 612                else
 613                        BUG_ON(dir != DMA_TO_DEVICE);
 614                break;
 615        case SYNC_FOR_DEVICE:
 616                if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 617                        swiotlb_bounce(orig_addr, tlb_addr,
 618                                       size, DMA_TO_DEVICE);
 619                else
 620                        BUG_ON(dir != DMA_FROM_DEVICE);
 621                break;
 622        default:
 623                BUG();
 624        }
 625}
 626EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 627
 628void *
 629swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 630                       dma_addr_t *dma_handle, gfp_t flags)
 631{
 632        dma_addr_t dev_addr;
 633        void *ret;
 634        int order = get_order(size);
 635        u64 dma_mask = DMA_BIT_MASK(32);
 636
 637        if (hwdev && hwdev->coherent_dma_mask)
 638                dma_mask = hwdev->coherent_dma_mask;
 639
 640        ret = (void *)__get_free_pages(flags, order);
 641        if (ret) {
 642                dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 643                if (dev_addr + size - 1 > dma_mask) {
 644                        /*
 645                         * The allocated memory isn't reachable by the device.
 646                         */
 647                        free_pages((unsigned long) ret, order);
 648                        ret = NULL;
 649                }
 650        }
 651        if (!ret) {
 652                /*
 653                 * We are either out of memory or the device can't DMA to
 654                 * GFP_DMA memory; fall back on map_single(), which
 655                 * will grab memory from the lowest available address range.
 656                 */
 657                phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
 658                if (paddr == SWIOTLB_MAP_ERROR)
 659                        goto err_warn;
 660
 661                ret = phys_to_virt(paddr);
 662                dev_addr = phys_to_dma(hwdev, paddr);
 663
 664                /* Confirm address can be DMA'd by device */
 665                if (dev_addr + size - 1 > dma_mask) {
 666                        printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 667                               (unsigned long long)dma_mask,
 668                               (unsigned long long)dev_addr);
 669
 670                        /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 671                        swiotlb_tbl_unmap_single(hwdev, paddr,
 672                                                 size, DMA_TO_DEVICE);
 673                        goto err_warn;
 674                }
 675        }
 676
 677        *dma_handle = dev_addr;
 678        memset(ret, 0, size);
 679
 680        return ret;
 681
 682err_warn:
 683        pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 684                dev_name(hwdev), size);
 685        dump_stack();
 686
 687        return NULL;
 688}
 689EXPORT_SYMBOL(swiotlb_alloc_coherent);
 690
 691void
 692swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 693                      dma_addr_t dev_addr)
 694{
 695        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 696
 697        WARN_ON(irqs_disabled());
 698        if (!is_swiotlb_buffer(paddr))
 699                free_pages((unsigned long)vaddr, get_order(size));
 700        else
 701                /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
 702                swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
 703}
 704EXPORT_SYMBOL(swiotlb_free_coherent);
 705
 706static void
 707swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 708             int do_panic)
 709{
 710        /*
 711         * Ran out of IOMMU space for this operation. This is very bad.
 712         * Unfortunately the drivers cannot handle this operation properly.
 713         * unless they check for dma_mapping_error (most don't)
 714         * When the mapping is small enough return a static buffer to limit
 715         * the damage, or panic when the transfer is too big.
 716         */
 717        printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
 718               "device %s\n", size, dev ? dev_name(dev) : "?");
 719
 720        if (size <= io_tlb_overflow || !do_panic)
 721                return;
 722
 723        if (dir == DMA_BIDIRECTIONAL)
 724                panic("DMA: Random memory could be DMA accessed\n");
 725        if (dir == DMA_FROM_DEVICE)
 726                panic("DMA: Random memory could be DMA written\n");
 727        if (dir == DMA_TO_DEVICE)
 728                panic("DMA: Random memory could be DMA read\n");
 729}
 730
 731/*
 732 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 733 * physical address to use is returned.
 734 *
 735 * Once the device is given the dma address, the device owns this memory until
 736 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 737 */
 738dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 739                            unsigned long offset, size_t size,
 740                            enum dma_data_direction dir,
 741                            struct dma_attrs *attrs)
 742{
 743        phys_addr_t map, phys = page_to_phys(page) + offset;
 744        dma_addr_t dev_addr = phys_to_dma(dev, phys);
 745
 746        BUG_ON(dir == DMA_NONE);
 747        /*
 748         * If the address happens to be in the device's DMA window,
 749         * we can safely return the device addr and not worry about bounce
 750         * buffering it.
 751         */
 752        if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
 753                return dev_addr;
 754
 755        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 756
 757        /* Oh well, have to allocate and map a bounce buffer. */
 758        map = map_single(dev, phys, size, dir);
 759        if (map == SWIOTLB_MAP_ERROR) {
 760                swiotlb_full(dev, size, dir, 1);
 761                return phys_to_dma(dev, io_tlb_overflow_buffer);
 762        }
 763
 764        dev_addr = phys_to_dma(dev, map);
 765
 766        /* Ensure that the address returned is DMA'ble */
 767        if (!dma_capable(dev, dev_addr, size)) {
 768                swiotlb_tbl_unmap_single(dev, map, size, dir);
 769                return phys_to_dma(dev, io_tlb_overflow_buffer);
 770        }
 771
 772        return dev_addr;
 773}
 774EXPORT_SYMBOL_GPL(swiotlb_map_page);
 775
 776/*
 777 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 778 * match what was provided for in a previous swiotlb_map_page call.  All
 779 * other usages are undefined.
 780 *
 781 * After this call, reads by the cpu to the buffer are guaranteed to see
 782 * whatever the device wrote there.
 783 */
 784static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 785                         size_t size, enum dma_data_direction dir)
 786{
 787        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 788
 789        BUG_ON(dir == DMA_NONE);
 790
 791        if (is_swiotlb_buffer(paddr)) {
 792                swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
 793                return;
 794        }
 795
 796        if (dir != DMA_FROM_DEVICE)
 797                return;
 798
 799        /*
 800         * phys_to_virt doesn't work with hihgmem page but we could
 801         * call dma_mark_clean() with hihgmem page here. However, we
 802         * are fine since dma_mark_clean() is null on POWERPC. We can
 803         * make dma_mark_clean() take a physical address if necessary.
 804         */
 805        dma_mark_clean(phys_to_virt(paddr), size);
 806}
 807
 808void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 809                        size_t size, enum dma_data_direction dir,
 810                        struct dma_attrs *attrs)
 811{
 812        unmap_single(hwdev, dev_addr, size, dir);
 813}
 814EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 815
 816/*
 817 * Make physical memory consistent for a single streaming mode DMA translation
 818 * after a transfer.
 819 *
 820 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 821 * using the cpu, yet do not wish to teardown the dma mapping, you must
 822 * call this function before doing so.  At the next point you give the dma
 823 * address back to the card, you must first perform a
 824 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 825 */
 826static void
 827swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 828                    size_t size, enum dma_data_direction dir,
 829                    enum dma_sync_target target)
 830{
 831        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 832
 833        BUG_ON(dir == DMA_NONE);
 834
 835        if (is_swiotlb_buffer(paddr)) {
 836                swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 837                return;
 838        }
 839
 840        if (dir != DMA_FROM_DEVICE)
 841                return;
 842
 843        dma_mark_clean(phys_to_virt(paddr), size);
 844}
 845
 846void
 847swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 848                            size_t size, enum dma_data_direction dir)
 849{
 850        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 851}
 852EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 853
 854void
 855swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 856                               size_t size, enum dma_data_direction dir)
 857{
 858        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 859}
 860EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 861
 862/*
 863 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 864 * This is the scatter-gather version of the above swiotlb_map_page
 865 * interface.  Here the scatter gather list elements are each tagged with the
 866 * appropriate dma address and length.  They are obtained via
 867 * sg_dma_{address,length}(SG).
 868 *
 869 * NOTE: An implementation may be able to use a smaller number of
 870 *       DMA address/length pairs than there are SG table elements.
 871 *       (for example via virtual mapping capabilities)
 872 *       The routine returns the number of addr/length pairs actually
 873 *       used, at most nents.
 874 *
 875 * Device ownership issues as mentioned above for swiotlb_map_page are the
 876 * same here.
 877 */
 878int
 879swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 880                     enum dma_data_direction dir, struct dma_attrs *attrs)
 881{
 882        struct scatterlist *sg;
 883        int i;
 884
 885        BUG_ON(dir == DMA_NONE);
 886
 887        for_each_sg(sgl, sg, nelems, i) {
 888                phys_addr_t paddr = sg_phys(sg);
 889                dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 890
 891                if (swiotlb_force ||
 892                    !dma_capable(hwdev, dev_addr, sg->length)) {
 893                        phys_addr_t map = map_single(hwdev, sg_phys(sg),
 894                                                     sg->length, dir);
 895                        if (map == SWIOTLB_MAP_ERROR) {
 896                                /* Don't panic here, we expect map_sg users
 897                                   to do proper error handling. */
 898                                swiotlb_full(hwdev, sg->length, dir, 0);
 899                                swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 900                                                       attrs);
 901                                sg_dma_len(sgl) = 0;
 902                                return 0;
 903                        }
 904                        sg->dma_address = phys_to_dma(hwdev, map);
 905                } else
 906                        sg->dma_address = dev_addr;
 907                sg_dma_len(sg) = sg->length;
 908        }
 909        return nelems;
 910}
 911EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 912
 913int
 914swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 915               enum dma_data_direction dir)
 916{
 917        return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 918}
 919EXPORT_SYMBOL(swiotlb_map_sg);
 920
 921/*
 922 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 923 * concerning calls here are the same as for swiotlb_unmap_page() above.
 924 */
 925void
 926swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 927                       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
 928{
 929        struct scatterlist *sg;
 930        int i;
 931
 932        BUG_ON(dir == DMA_NONE);
 933
 934        for_each_sg(sgl, sg, nelems, i)
 935                unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
 936
 937}
 938EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 939
 940void
 941swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 942                 enum dma_data_direction dir)
 943{
 944        return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 945}
 946EXPORT_SYMBOL(swiotlb_unmap_sg);
 947
 948/*
 949 * Make physical memory consistent for a set of streaming mode DMA translations
 950 * after a transfer.
 951 *
 952 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 953 * and usage.
 954 */
 955static void
 956swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 957                int nelems, enum dma_data_direction dir,
 958                enum dma_sync_target target)
 959{
 960        struct scatterlist *sg;
 961        int i;
 962
 963        for_each_sg(sgl, sg, nelems, i)
 964                swiotlb_sync_single(hwdev, sg->dma_address,
 965                                    sg_dma_len(sg), dir, target);
 966}
 967
 968void
 969swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 970                        int nelems, enum dma_data_direction dir)
 971{
 972        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 973}
 974EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
 975
 976void
 977swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 978                           int nelems, enum dma_data_direction dir)
 979{
 980        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 981}
 982EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
 983
 984int
 985swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 986{
 987        return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
 988}
 989EXPORT_SYMBOL(swiotlb_dma_mapping_error);
 990
 991/*
 992 * Return whether the given device DMA address mask can be supported
 993 * properly.  For example, if your device can only drive the low 24-bits
 994 * during bus mastering, then you would pass 0x00ffffff as the mask to
 995 * this function.
 996 */
 997int
 998swiotlb_dma_supported(struct device *hwdev, u64 mask)
 999{
1000        return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1001}
1002EXPORT_SYMBOL(swiotlb_dma_supported);
1003