linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem              (truncate_pagecache)
  66 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock             (exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  76 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page               (access_process_vm)
  80 *
  81 *  ->i_mutex                   (generic_perform_write)
  82 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock                   (fs/fs-writeback.c)
  86 *    ->mapping->tree_lock      (__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock           (vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock               (try_to_unmap_one)
  96 *    ->private_lock            (try_to_unmap_one)
  97 *    ->tree_lock               (try_to_unmap_one)
  98 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
  99 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
 100 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 107 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static void page_cache_tree_delete(struct address_space *mapping,
 114                                   struct page *page, void *shadow)
 115{
 116        struct radix_tree_node *node;
 117        unsigned long index;
 118        unsigned int offset;
 119        unsigned int tag;
 120        void **slot;
 121
 122        VM_BUG_ON(!PageLocked(page));
 123
 124        __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 125
 126        if (shadow) {
 127                mapping->nrexceptional++;
 128                /*
 129                 * Make sure the nrexceptional update is committed before
 130                 * the nrpages update so that final truncate racing
 131                 * with reclaim does not see both counters 0 at the
 132                 * same time and miss a shadow entry.
 133                 */
 134                smp_wmb();
 135        }
 136        mapping->nrpages--;
 137
 138        if (!node) {
 139                /* Clear direct pointer tags in root node */
 140                mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 141                radix_tree_replace_slot(slot, shadow);
 142                return;
 143        }
 144
 145        /* Clear tree tags for the removed page */
 146        index = page->index;
 147        offset = index & RADIX_TREE_MAP_MASK;
 148        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 149                if (test_bit(offset, node->tags[tag]))
 150                        radix_tree_tag_clear(&mapping->page_tree, index, tag);
 151        }
 152
 153        /* Delete page, swap shadow entry */
 154        radix_tree_replace_slot(slot, shadow);
 155        workingset_node_pages_dec(node);
 156        if (shadow)
 157                workingset_node_shadows_inc(node);
 158        else
 159                if (__radix_tree_delete_node(&mapping->page_tree, node))
 160                        return;
 161
 162        /*
 163         * Track node that only contains shadow entries.
 164         *
 165         * Avoid acquiring the list_lru lock if already tracked.  The
 166         * list_empty() test is safe as node->private_list is
 167         * protected by mapping->tree_lock.
 168         */
 169        if (!workingset_node_pages(node) &&
 170            list_empty(&node->private_list)) {
 171                node->private_data = mapping;
 172                list_lru_add(&workingset_shadow_nodes, &node->private_list);
 173        }
 174}
 175
 176/*
 177 * Delete a page from the page cache and free it. Caller has to make
 178 * sure the page is locked and that nobody else uses it - or that usage
 179 * is safe.  The caller must hold the mapping's tree_lock.
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow)
 182{
 183        struct address_space *mapping = page->mapping;
 184
 185        trace_mm_filemap_delete_from_page_cache(page);
 186        /*
 187         * if we're uptodate, flush out into the cleancache, otherwise
 188         * invalidate any existing cleancache entries.  We can't leave
 189         * stale data around in the cleancache once our page is gone
 190         */
 191        if (PageUptodate(page) && PageMappedToDisk(page))
 192                cleancache_put_page(page);
 193        else
 194                cleancache_invalidate_page(mapping, page);
 195
 196        VM_BUG_ON_PAGE(page_mapped(page), page);
 197        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 198                int mapcount;
 199
 200                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 201                         current->comm, page_to_pfn(page));
 202                dump_page(page, "still mapped when deleted");
 203                dump_stack();
 204                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 205
 206                mapcount = page_mapcount(page);
 207                if (mapping_exiting(mapping) &&
 208                    page_count(page) >= mapcount + 2) {
 209                        /*
 210                         * All vmas have already been torn down, so it's
 211                         * a good bet that actually the page is unmapped,
 212                         * and we'd prefer not to leak it: if we're wrong,
 213                         * some other bad page check should catch it later.
 214                         */
 215                        page_mapcount_reset(page);
 216                        atomic_sub(mapcount, &page->_count);
 217                }
 218        }
 219
 220        page_cache_tree_delete(mapping, page, shadow);
 221
 222        page->mapping = NULL;
 223        /* Leave page->index set: truncation lookup relies upon it */
 224
 225        /* hugetlb pages do not participate in page cache accounting. */
 226        if (!PageHuge(page))
 227                __dec_zone_page_state(page, NR_FILE_PAGES);
 228        if (PageSwapBacked(page))
 229                __dec_zone_page_state(page, NR_SHMEM);
 230
 231        /*
 232         * At this point page must be either written or cleaned by truncate.
 233         * Dirty page here signals a bug and loss of unwritten data.
 234         *
 235         * This fixes dirty accounting after removing the page entirely but
 236         * leaves PageDirty set: it has no effect for truncated page and
 237         * anyway will be cleared before returning page into buddy allocator.
 238         */
 239        if (WARN_ON_ONCE(PageDirty(page)))
 240                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 241}
 242
 243/**
 244 * delete_from_page_cache - delete page from page cache
 245 * @page: the page which the kernel is trying to remove from page cache
 246 *
 247 * This must be called only on pages that have been verified to be in the page
 248 * cache and locked.  It will never put the page into the free list, the caller
 249 * has a reference on the page.
 250 */
 251void delete_from_page_cache(struct page *page)
 252{
 253        struct address_space *mapping = page->mapping;
 254        unsigned long flags;
 255
 256        void (*freepage)(struct page *);
 257
 258        BUG_ON(!PageLocked(page));
 259
 260        freepage = mapping->a_ops->freepage;
 261
 262        spin_lock_irqsave(&mapping->tree_lock, flags);
 263        __delete_from_page_cache(page, NULL);
 264        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 265
 266        if (freepage)
 267                freepage(page);
 268        put_page(page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272static int filemap_check_errors(struct address_space *mapping)
 273{
 274        int ret = 0;
 275        /* Check for outstanding write errors */
 276        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 277            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 278                ret = -ENOSPC;
 279        if (test_bit(AS_EIO, &mapping->flags) &&
 280            test_and_clear_bit(AS_EIO, &mapping->flags))
 281                ret = -EIO;
 282        return ret;
 283}
 284
 285/**
 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 287 * @mapping:    address space structure to write
 288 * @start:      offset in bytes where the range starts
 289 * @end:        offset in bytes where the range ends (inclusive)
 290 * @sync_mode:  enable synchronous operation
 291 *
 292 * Start writeback against all of a mapping's dirty pages that lie
 293 * within the byte offsets <start, end> inclusive.
 294 *
 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 296 * opposed to a regular memory cleansing writeback.  The difference between
 297 * these two operations is that if a dirty page/buffer is encountered, it must
 298 * be waited upon, and not just skipped over.
 299 */
 300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 301                                loff_t end, int sync_mode)
 302{
 303        int ret;
 304        struct writeback_control wbc = {
 305                .sync_mode = sync_mode,
 306                .nr_to_write = LONG_MAX,
 307                .range_start = start,
 308                .range_end = end,
 309        };
 310
 311        if (!mapping_cap_writeback_dirty(mapping))
 312                return 0;
 313
 314        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 315        ret = do_writepages(mapping, &wbc);
 316        wbc_detach_inode(&wbc);
 317        return ret;
 318}
 319
 320static inline int __filemap_fdatawrite(struct address_space *mapping,
 321        int sync_mode)
 322{
 323        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 324}
 325
 326int filemap_fdatawrite(struct address_space *mapping)
 327{
 328        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 329}
 330EXPORT_SYMBOL(filemap_fdatawrite);
 331
 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 333                                loff_t end)
 334{
 335        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 336}
 337EXPORT_SYMBOL(filemap_fdatawrite_range);
 338
 339/**
 340 * filemap_flush - mostly a non-blocking flush
 341 * @mapping:    target address_space
 342 *
 343 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 344 * purposes - I/O may not be started against all dirty pages.
 345 */
 346int filemap_flush(struct address_space *mapping)
 347{
 348        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 349}
 350EXPORT_SYMBOL(filemap_flush);
 351
 352static int __filemap_fdatawait_range(struct address_space *mapping,
 353                                     loff_t start_byte, loff_t end_byte)
 354{
 355        pgoff_t index = start_byte >> PAGE_SHIFT;
 356        pgoff_t end = end_byte >> PAGE_SHIFT;
 357        struct pagevec pvec;
 358        int nr_pages;
 359        int ret = 0;
 360
 361        if (end_byte < start_byte)
 362                goto out;
 363
 364        pagevec_init(&pvec, 0);
 365        while ((index <= end) &&
 366                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 367                        PAGECACHE_TAG_WRITEBACK,
 368                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 369                unsigned i;
 370
 371                for (i = 0; i < nr_pages; i++) {
 372                        struct page *page = pvec.pages[i];
 373
 374                        /* until radix tree lookup accepts end_index */
 375                        if (page->index > end)
 376                                continue;
 377
 378                        wait_on_page_writeback(page);
 379                        if (TestClearPageError(page))
 380                                ret = -EIO;
 381                }
 382                pagevec_release(&pvec);
 383                cond_resched();
 384        }
 385out:
 386        return ret;
 387}
 388
 389/**
 390 * filemap_fdatawait_range - wait for writeback to complete
 391 * @mapping:            address space structure to wait for
 392 * @start_byte:         offset in bytes where the range starts
 393 * @end_byte:           offset in bytes where the range ends (inclusive)
 394 *
 395 * Walk the list of under-writeback pages of the given address space
 396 * in the given range and wait for all of them.  Check error status of
 397 * the address space and return it.
 398 *
 399 * Since the error status of the address space is cleared by this function,
 400 * callers are responsible for checking the return value and handling and/or
 401 * reporting the error.
 402 */
 403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 404                            loff_t end_byte)
 405{
 406        int ret, ret2;
 407
 408        ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 409        ret2 = filemap_check_errors(mapping);
 410        if (!ret)
 411                ret = ret2;
 412
 413        return ret;
 414}
 415EXPORT_SYMBOL(filemap_fdatawait_range);
 416
 417/**
 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 419 * @mapping: address space structure to wait for
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 423 * does not clear error status of the address space.
 424 *
 425 * Use this function if callers don't handle errors themselves.  Expected
 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 427 * fsfreeze(8)
 428 */
 429void filemap_fdatawait_keep_errors(struct address_space *mapping)
 430{
 431        loff_t i_size = i_size_read(mapping->host);
 432
 433        if (i_size == 0)
 434                return;
 435
 436        __filemap_fdatawait_range(mapping, 0, i_size - 1);
 437}
 438
 439/**
 440 * filemap_fdatawait - wait for all under-writeback pages to complete
 441 * @mapping: address space structure to wait for
 442 *
 443 * Walk the list of under-writeback pages of the given address space
 444 * and wait for all of them.  Check error status of the address space
 445 * and return it.
 446 *
 447 * Since the error status of the address space is cleared by this function,
 448 * callers are responsible for checking the return value and handling and/or
 449 * reporting the error.
 450 */
 451int filemap_fdatawait(struct address_space *mapping)
 452{
 453        loff_t i_size = i_size_read(mapping->host);
 454
 455        if (i_size == 0)
 456                return 0;
 457
 458        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 459}
 460EXPORT_SYMBOL(filemap_fdatawait);
 461
 462int filemap_write_and_wait(struct address_space *mapping)
 463{
 464        int err = 0;
 465
 466        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 467            (dax_mapping(mapping) && mapping->nrexceptional)) {
 468                err = filemap_fdatawrite(mapping);
 469                /*
 470                 * Even if the above returned error, the pages may be
 471                 * written partially (e.g. -ENOSPC), so we wait for it.
 472                 * But the -EIO is special case, it may indicate the worst
 473                 * thing (e.g. bug) happened, so we avoid waiting for it.
 474                 */
 475                if (err != -EIO) {
 476                        int err2 = filemap_fdatawait(mapping);
 477                        if (!err)
 478                                err = err2;
 479                }
 480        } else {
 481                err = filemap_check_errors(mapping);
 482        }
 483        return err;
 484}
 485EXPORT_SYMBOL(filemap_write_and_wait);
 486
 487/**
 488 * filemap_write_and_wait_range - write out & wait on a file range
 489 * @mapping:    the address_space for the pages
 490 * @lstart:     offset in bytes where the range starts
 491 * @lend:       offset in bytes where the range ends (inclusive)
 492 *
 493 * Write out and wait upon file offsets lstart->lend, inclusive.
 494 *
 495 * Note that `lend' is inclusive (describes the last byte to be written) so
 496 * that this function can be used to write to the very end-of-file (end = -1).
 497 */
 498int filemap_write_and_wait_range(struct address_space *mapping,
 499                                 loff_t lstart, loff_t lend)
 500{
 501        int err = 0;
 502
 503        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 504            (dax_mapping(mapping) && mapping->nrexceptional)) {
 505                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 506                                                 WB_SYNC_ALL);
 507                /* See comment of filemap_write_and_wait() */
 508                if (err != -EIO) {
 509                        int err2 = filemap_fdatawait_range(mapping,
 510                                                lstart, lend);
 511                        if (!err)
 512                                err = err2;
 513                }
 514        } else {
 515                err = filemap_check_errors(mapping);
 516        }
 517        return err;
 518}
 519EXPORT_SYMBOL(filemap_write_and_wait_range);
 520
 521/**
 522 * replace_page_cache_page - replace a pagecache page with a new one
 523 * @old:        page to be replaced
 524 * @new:        page to replace with
 525 * @gfp_mask:   allocation mode
 526 *
 527 * This function replaces a page in the pagecache with a new one.  On
 528 * success it acquires the pagecache reference for the new page and
 529 * drops it for the old page.  Both the old and new pages must be
 530 * locked.  This function does not add the new page to the LRU, the
 531 * caller must do that.
 532 *
 533 * The remove + add is atomic.  The only way this function can fail is
 534 * memory allocation failure.
 535 */
 536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 537{
 538        int error;
 539
 540        VM_BUG_ON_PAGE(!PageLocked(old), old);
 541        VM_BUG_ON_PAGE(!PageLocked(new), new);
 542        VM_BUG_ON_PAGE(new->mapping, new);
 543
 544        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 545        if (!error) {
 546                struct address_space *mapping = old->mapping;
 547                void (*freepage)(struct page *);
 548                unsigned long flags;
 549
 550                pgoff_t offset = old->index;
 551                freepage = mapping->a_ops->freepage;
 552
 553                get_page(new);
 554                new->mapping = mapping;
 555                new->index = offset;
 556
 557                spin_lock_irqsave(&mapping->tree_lock, flags);
 558                __delete_from_page_cache(old, NULL);
 559                error = radix_tree_insert(&mapping->page_tree, offset, new);
 560                BUG_ON(error);
 561                mapping->nrpages++;
 562
 563                /*
 564                 * hugetlb pages do not participate in page cache accounting.
 565                 */
 566                if (!PageHuge(new))
 567                        __inc_zone_page_state(new, NR_FILE_PAGES);
 568                if (PageSwapBacked(new))
 569                        __inc_zone_page_state(new, NR_SHMEM);
 570                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 571                mem_cgroup_migrate(old, new);
 572                radix_tree_preload_end();
 573                if (freepage)
 574                        freepage(old);
 575                put_page(old);
 576        }
 577
 578        return error;
 579}
 580EXPORT_SYMBOL_GPL(replace_page_cache_page);
 581
 582static int page_cache_tree_insert(struct address_space *mapping,
 583                                  struct page *page, void **shadowp)
 584{
 585        struct radix_tree_node *node;
 586        void **slot;
 587        int error;
 588
 589        error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 590                                    &node, &slot);
 591        if (error)
 592                return error;
 593        if (*slot) {
 594                void *p;
 595
 596                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 597                if (!radix_tree_exceptional_entry(p))
 598                        return -EEXIST;
 599
 600                if (WARN_ON(dax_mapping(mapping)))
 601                        return -EINVAL;
 602
 603                if (shadowp)
 604                        *shadowp = p;
 605                mapping->nrexceptional--;
 606                if (node)
 607                        workingset_node_shadows_dec(node);
 608        }
 609        radix_tree_replace_slot(slot, page);
 610        mapping->nrpages++;
 611        if (node) {
 612                workingset_node_pages_inc(node);
 613                /*
 614                 * Don't track node that contains actual pages.
 615                 *
 616                 * Avoid acquiring the list_lru lock if already
 617                 * untracked.  The list_empty() test is safe as
 618                 * node->private_list is protected by
 619                 * mapping->tree_lock.
 620                 */
 621                if (!list_empty(&node->private_list))
 622                        list_lru_del(&workingset_shadow_nodes,
 623                                     &node->private_list);
 624        }
 625        return 0;
 626}
 627
 628static int __add_to_page_cache_locked(struct page *page,
 629                                      struct address_space *mapping,
 630                                      pgoff_t offset, gfp_t gfp_mask,
 631                                      void **shadowp)
 632{
 633        int huge = PageHuge(page);
 634        struct mem_cgroup *memcg;
 635        int error;
 636
 637        VM_BUG_ON_PAGE(!PageLocked(page), page);
 638        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 639
 640        if (!huge) {
 641                error = mem_cgroup_try_charge(page, current->mm,
 642                                              gfp_mask, &memcg, false);
 643                if (error)
 644                        return error;
 645        }
 646
 647        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 648        if (error) {
 649                if (!huge)
 650                        mem_cgroup_cancel_charge(page, memcg, false);
 651                return error;
 652        }
 653
 654        get_page(page);
 655        page->mapping = mapping;
 656        page->index = offset;
 657
 658        spin_lock_irq(&mapping->tree_lock);
 659        error = page_cache_tree_insert(mapping, page, shadowp);
 660        radix_tree_preload_end();
 661        if (unlikely(error))
 662                goto err_insert;
 663
 664        /* hugetlb pages do not participate in page cache accounting. */
 665        if (!huge)
 666                __inc_zone_page_state(page, NR_FILE_PAGES);
 667        spin_unlock_irq(&mapping->tree_lock);
 668        if (!huge)
 669                mem_cgroup_commit_charge(page, memcg, false, false);
 670        trace_mm_filemap_add_to_page_cache(page);
 671        return 0;
 672err_insert:
 673        page->mapping = NULL;
 674        /* Leave page->index set: truncation relies upon it */
 675        spin_unlock_irq(&mapping->tree_lock);
 676        if (!huge)
 677                mem_cgroup_cancel_charge(page, memcg, false);
 678        put_page(page);
 679        return error;
 680}
 681
 682/**
 683 * add_to_page_cache_locked - add a locked page to the pagecache
 684 * @page:       page to add
 685 * @mapping:    the page's address_space
 686 * @offset:     page index
 687 * @gfp_mask:   page allocation mode
 688 *
 689 * This function is used to add a page to the pagecache. It must be locked.
 690 * This function does not add the page to the LRU.  The caller must do that.
 691 */
 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 693                pgoff_t offset, gfp_t gfp_mask)
 694{
 695        return __add_to_page_cache_locked(page, mapping, offset,
 696                                          gfp_mask, NULL);
 697}
 698EXPORT_SYMBOL(add_to_page_cache_locked);
 699
 700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 701                                pgoff_t offset, gfp_t gfp_mask)
 702{
 703        void *shadow = NULL;
 704        int ret;
 705
 706        __SetPageLocked(page);
 707        ret = __add_to_page_cache_locked(page, mapping, offset,
 708                                         gfp_mask, &shadow);
 709        if (unlikely(ret))
 710                __ClearPageLocked(page);
 711        else {
 712                /*
 713                 * The page might have been evicted from cache only
 714                 * recently, in which case it should be activated like
 715                 * any other repeatedly accessed page.
 716                 */
 717                if (shadow && workingset_refault(shadow)) {
 718                        SetPageActive(page);
 719                        workingset_activation(page);
 720                } else
 721                        ClearPageActive(page);
 722                lru_cache_add(page);
 723        }
 724        return ret;
 725}
 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 727
 728#ifdef CONFIG_NUMA
 729struct page *__page_cache_alloc(gfp_t gfp)
 730{
 731        int n;
 732        struct page *page;
 733
 734        if (cpuset_do_page_mem_spread()) {
 735                unsigned int cpuset_mems_cookie;
 736                do {
 737                        cpuset_mems_cookie = read_mems_allowed_begin();
 738                        n = cpuset_mem_spread_node();
 739                        page = __alloc_pages_node(n, gfp, 0);
 740                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 741
 742                return page;
 743        }
 744        return alloc_pages(gfp, 0);
 745}
 746EXPORT_SYMBOL(__page_cache_alloc);
 747#endif
 748
 749/*
 750 * In order to wait for pages to become available there must be
 751 * waitqueues associated with pages. By using a hash table of
 752 * waitqueues where the bucket discipline is to maintain all
 753 * waiters on the same queue and wake all when any of the pages
 754 * become available, and for the woken contexts to check to be
 755 * sure the appropriate page became available, this saves space
 756 * at a cost of "thundering herd" phenomena during rare hash
 757 * collisions.
 758 */
 759wait_queue_head_t *page_waitqueue(struct page *page)
 760{
 761        const struct zone *zone = page_zone(page);
 762
 763        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 764}
 765EXPORT_SYMBOL(page_waitqueue);
 766
 767void wait_on_page_bit(struct page *page, int bit_nr)
 768{
 769        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 770
 771        if (test_bit(bit_nr, &page->flags))
 772                __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 773                                                        TASK_UNINTERRUPTIBLE);
 774}
 775EXPORT_SYMBOL(wait_on_page_bit);
 776
 777int wait_on_page_bit_killable(struct page *page, int bit_nr)
 778{
 779        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 780
 781        if (!test_bit(bit_nr, &page->flags))
 782                return 0;
 783
 784        return __wait_on_bit(page_waitqueue(page), &wait,
 785                             bit_wait_io, TASK_KILLABLE);
 786}
 787
 788int wait_on_page_bit_killable_timeout(struct page *page,
 789                                       int bit_nr, unsigned long timeout)
 790{
 791        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 792
 793        wait.key.timeout = jiffies + timeout;
 794        if (!test_bit(bit_nr, &page->flags))
 795                return 0;
 796        return __wait_on_bit(page_waitqueue(page), &wait,
 797                             bit_wait_io_timeout, TASK_KILLABLE);
 798}
 799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 800
 801/**
 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 803 * @page: Page defining the wait queue of interest
 804 * @waiter: Waiter to add to the queue
 805 *
 806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 807 */
 808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 809{
 810        wait_queue_head_t *q = page_waitqueue(page);
 811        unsigned long flags;
 812
 813        spin_lock_irqsave(&q->lock, flags);
 814        __add_wait_queue(q, waiter);
 815        spin_unlock_irqrestore(&q->lock, flags);
 816}
 817EXPORT_SYMBOL_GPL(add_page_wait_queue);
 818
 819/**
 820 * unlock_page - unlock a locked page
 821 * @page: the page
 822 *
 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 827 *
 828 * The mb is necessary to enforce ordering between the clear_bit and the read
 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 830 */
 831void unlock_page(struct page *page)
 832{
 833        page = compound_head(page);
 834        VM_BUG_ON_PAGE(!PageLocked(page), page);
 835        clear_bit_unlock(PG_locked, &page->flags);
 836        smp_mb__after_atomic();
 837        wake_up_page(page, PG_locked);
 838}
 839EXPORT_SYMBOL(unlock_page);
 840
 841/**
 842 * end_page_writeback - end writeback against a page
 843 * @page: the page
 844 */
 845void end_page_writeback(struct page *page)
 846{
 847        /*
 848         * TestClearPageReclaim could be used here but it is an atomic
 849         * operation and overkill in this particular case. Failing to
 850         * shuffle a page marked for immediate reclaim is too mild to
 851         * justify taking an atomic operation penalty at the end of
 852         * ever page writeback.
 853         */
 854        if (PageReclaim(page)) {
 855                ClearPageReclaim(page);
 856                rotate_reclaimable_page(page);
 857        }
 858
 859        if (!test_clear_page_writeback(page))
 860                BUG();
 861
 862        smp_mb__after_atomic();
 863        wake_up_page(page, PG_writeback);
 864}
 865EXPORT_SYMBOL(end_page_writeback);
 866
 867/*
 868 * After completing I/O on a page, call this routine to update the page
 869 * flags appropriately
 870 */
 871void page_endio(struct page *page, int rw, int err)
 872{
 873        if (rw == READ) {
 874                if (!err) {
 875                        SetPageUptodate(page);
 876                } else {
 877                        ClearPageUptodate(page);
 878                        SetPageError(page);
 879                }
 880                unlock_page(page);
 881        } else { /* rw == WRITE */
 882                if (err) {
 883                        SetPageError(page);
 884                        if (page->mapping)
 885                                mapping_set_error(page->mapping, err);
 886                }
 887                end_page_writeback(page);
 888        }
 889}
 890EXPORT_SYMBOL_GPL(page_endio);
 891
 892/**
 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 894 * @page: the page to lock
 895 */
 896void __lock_page(struct page *page)
 897{
 898        struct page *page_head = compound_head(page);
 899        DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 900
 901        __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 902                                                        TASK_UNINTERRUPTIBLE);
 903}
 904EXPORT_SYMBOL(__lock_page);
 905
 906int __lock_page_killable(struct page *page)
 907{
 908        struct page *page_head = compound_head(page);
 909        DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 910
 911        return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 912                                        bit_wait_io, TASK_KILLABLE);
 913}
 914EXPORT_SYMBOL_GPL(__lock_page_killable);
 915
 916/*
 917 * Return values:
 918 * 1 - page is locked; mmap_sem is still held.
 919 * 0 - page is not locked.
 920 *     mmap_sem has been released (up_read()), unless flags had both
 921 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 922 *     which case mmap_sem is still held.
 923 *
 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 925 * with the page locked and the mmap_sem unperturbed.
 926 */
 927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 928                         unsigned int flags)
 929{
 930        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 931                /*
 932                 * CAUTION! In this case, mmap_sem is not released
 933                 * even though return 0.
 934                 */
 935                if (flags & FAULT_FLAG_RETRY_NOWAIT)
 936                        return 0;
 937
 938                up_read(&mm->mmap_sem);
 939                if (flags & FAULT_FLAG_KILLABLE)
 940                        wait_on_page_locked_killable(page);
 941                else
 942                        wait_on_page_locked(page);
 943                return 0;
 944        } else {
 945                if (flags & FAULT_FLAG_KILLABLE) {
 946                        int ret;
 947
 948                        ret = __lock_page_killable(page);
 949                        if (ret) {
 950                                up_read(&mm->mmap_sem);
 951                                return 0;
 952                        }
 953                } else
 954                        __lock_page(page);
 955                return 1;
 956        }
 957}
 958
 959/**
 960 * page_cache_next_hole - find the next hole (not-present entry)
 961 * @mapping: mapping
 962 * @index: index
 963 * @max_scan: maximum range to search
 964 *
 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 966 * lowest indexed hole.
 967 *
 968 * Returns: the index of the hole if found, otherwise returns an index
 969 * outside of the set specified (in which case 'return - index >=
 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 971 * be returned.
 972 *
 973 * page_cache_next_hole may be called under rcu_read_lock. However,
 974 * like radix_tree_gang_lookup, this will not atomically search a
 975 * snapshot of the tree at a single point in time. For example, if a
 976 * hole is created at index 5, then subsequently a hole is created at
 977 * index 10, page_cache_next_hole covering both indexes may return 10
 978 * if called under rcu_read_lock.
 979 */
 980pgoff_t page_cache_next_hole(struct address_space *mapping,
 981                             pgoff_t index, unsigned long max_scan)
 982{
 983        unsigned long i;
 984
 985        for (i = 0; i < max_scan; i++) {
 986                struct page *page;
 987
 988                page = radix_tree_lookup(&mapping->page_tree, index);
 989                if (!page || radix_tree_exceptional_entry(page))
 990                        break;
 991                index++;
 992                if (index == 0)
 993                        break;
 994        }
 995
 996        return index;
 997}
 998EXPORT_SYMBOL(page_cache_next_hole);
 999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022                             pgoff_t index, unsigned long max_scan)
1023{
1024        unsigned long i;
1025
1026        for (i = 0; i < max_scan; i++) {
1027                struct page *page;
1028
1029                page = radix_tree_lookup(&mapping->page_tree, index);
1030                if (!page || radix_tree_exceptional_entry(page))
1031                        break;
1032                index--;
1033                if (index == ULONG_MAX)
1034                        break;
1035        }
1036
1037        return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041/**
1042 * find_get_entry - find and get a page cache entry
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset.  If there is a
1047 * page cache page, it is returned with an increased refcount.
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
1051 *
1052 * Otherwise, %NULL is returned.
1053 */
1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055{
1056        void **pagep;
1057        struct page *page;
1058
1059        rcu_read_lock();
1060repeat:
1061        page = NULL;
1062        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063        if (pagep) {
1064                page = radix_tree_deref_slot(pagep);
1065                if (unlikely(!page))
1066                        goto out;
1067                if (radix_tree_exception(page)) {
1068                        if (radix_tree_deref_retry(page))
1069                                goto repeat;
1070                        /*
1071                         * A shadow entry of a recently evicted page,
1072                         * or a swap entry from shmem/tmpfs.  Return
1073                         * it without attempting to raise page count.
1074                         */
1075                        goto out;
1076                }
1077                if (!page_cache_get_speculative(page))
1078                        goto repeat;
1079
1080                /*
1081                 * Has the page moved?
1082                 * This is part of the lockless pagecache protocol. See
1083                 * include/linux/pagemap.h for details.
1084                 */
1085                if (unlikely(page != *pagep)) {
1086                        put_page(page);
1087                        goto repeat;
1088                }
1089        }
1090out:
1091        rcu_read_unlock();
1092
1093        return page;
1094}
1095EXPORT_SYMBOL(find_get_entry);
1096
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
1101 *
1102 * Looks up the page cache slot at @mapping & @offset.  If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114{
1115        struct page *page;
1116
1117repeat:
1118        page = find_get_entry(mapping, offset);
1119        if (page && !radix_tree_exception(page)) {
1120                lock_page(page);
1121                /* Has the page been truncated? */
1122                if (unlikely(page->mapping != mapping)) {
1123                        unlock_page(page);
1124                        put_page(page);
1125                        goto repeat;
1126                }
1127                VM_BUG_ON_PAGE(page->index != offset, page);
1128        }
1129        return page;
1130}
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 *              @gfp_mask and added to the page cache and the VM's LRU
1148 *              list. The page is returned locked and with an increased
1149 *              refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
1155 */
1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157        int fgp_flags, gfp_t gfp_mask)
1158{
1159        struct page *page;
1160
1161repeat:
1162        page = find_get_entry(mapping, offset);
1163        if (radix_tree_exceptional_entry(page))
1164                page = NULL;
1165        if (!page)
1166                goto no_page;
1167
1168        if (fgp_flags & FGP_LOCK) {
1169                if (fgp_flags & FGP_NOWAIT) {
1170                        if (!trylock_page(page)) {
1171                                put_page(page);
1172                                return NULL;
1173                        }
1174                } else {
1175                        lock_page(page);
1176                }
1177
1178                /* Has the page been truncated? */
1179                if (unlikely(page->mapping != mapping)) {
1180                        unlock_page(page);
1181                        put_page(page);
1182                        goto repeat;
1183                }
1184                VM_BUG_ON_PAGE(page->index != offset, page);
1185        }
1186
1187        if (page && (fgp_flags & FGP_ACCESSED))
1188                mark_page_accessed(page);
1189
1190no_page:
1191        if (!page && (fgp_flags & FGP_CREAT)) {
1192                int err;
1193                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194                        gfp_mask |= __GFP_WRITE;
1195                if (fgp_flags & FGP_NOFS)
1196                        gfp_mask &= ~__GFP_FS;
1197
1198                page = __page_cache_alloc(gfp_mask);
1199                if (!page)
1200                        return NULL;
1201
1202                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203                        fgp_flags |= FGP_LOCK;
1204
1205                /* Init accessed so avoid atomic mark_page_accessed later */
1206                if (fgp_flags & FGP_ACCESSED)
1207                        __SetPageReferenced(page);
1208
1209                err = add_to_page_cache_lru(page, mapping, offset,
1210                                gfp_mask & GFP_RECLAIM_MASK);
1211                if (unlikely(err)) {
1212                        put_page(page);
1213                        page = NULL;
1214                        if (err == -EEXIST)
1215                                goto repeat;
1216                }
1217        }
1218
1219        return page;
1220}
1221EXPORT_SYMBOL(pagecache_get_page);
1222
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping:    The address_space to search
1226 * @start:      The starting page cache index
1227 * @nr_entries: The maximum number of entries
1228 * @entries:    Where the resulting entries are placed
1229 * @indices:    The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping.  The entries are placed at
1233 * @entries.  find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes.  There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247                          pgoff_t start, unsigned int nr_entries,
1248                          struct page **entries, pgoff_t *indices)
1249{
1250        void **slot;
1251        unsigned int ret = 0;
1252        struct radix_tree_iter iter;
1253
1254        if (!nr_entries)
1255                return 0;
1256
1257        rcu_read_lock();
1258        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259                struct page *page;
1260repeat:
1261                page = radix_tree_deref_slot(slot);
1262                if (unlikely(!page))
1263                        continue;
1264                if (radix_tree_exception(page)) {
1265                        if (radix_tree_deref_retry(page)) {
1266                                slot = radix_tree_iter_retry(&iter);
1267                                continue;
1268                        }
1269                        /*
1270                         * A shadow entry of a recently evicted page, a swap
1271                         * entry from shmem/tmpfs or a DAX entry.  Return it
1272                         * without attempting to raise page count.
1273                         */
1274                        goto export;
1275                }
1276                if (!page_cache_get_speculative(page))
1277                        goto repeat;
1278
1279                /* Has the page moved? */
1280                if (unlikely(page != *slot)) {
1281                        put_page(page);
1282                        goto repeat;
1283                }
1284export:
1285                indices[ret] = iter.index;
1286                entries[ret] = page;
1287                if (++ret == nr_entries)
1288                        break;
1289        }
1290        rcu_read_unlock();
1291        return ret;
1292}
1293
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping:    The address_space to search
1297 * @start:      The starting page index
1298 * @nr_pages:   The maximum number of pages
1299 * @pages:      Where the resulting pages are placed
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes.  There may be holes in the indices due to not-present pages.
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311                            unsigned int nr_pages, struct page **pages)
1312{
1313        struct radix_tree_iter iter;
1314        void **slot;
1315        unsigned ret = 0;
1316
1317        if (unlikely(!nr_pages))
1318                return 0;
1319
1320        rcu_read_lock();
1321        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322                struct page *page;
1323repeat:
1324                page = radix_tree_deref_slot(slot);
1325                if (unlikely(!page))
1326                        continue;
1327
1328                if (radix_tree_exception(page)) {
1329                        if (radix_tree_deref_retry(page)) {
1330                                slot = radix_tree_iter_retry(&iter);
1331                                continue;
1332                        }
1333                        /*
1334                         * A shadow entry of a recently evicted page,
1335                         * or a swap entry from shmem/tmpfs.  Skip
1336                         * over it.
1337                         */
1338                        continue;
1339                }
1340
1341                if (!page_cache_get_speculative(page))
1342                        goto repeat;
1343
1344                /* Has the page moved? */
1345                if (unlikely(page != *slot)) {
1346                        put_page(page);
1347                        goto repeat;
1348                }
1349
1350                pages[ret] = page;
1351                if (++ret == nr_pages)
1352                        break;
1353        }
1354
1355        rcu_read_unlock();
1356        return ret;
1357}
1358
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping:    The address_space to search
1362 * @index:      The starting page index
1363 * @nr_pages:   The maximum number of pages
1364 * @pages:      Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372                               unsigned int nr_pages, struct page **pages)
1373{
1374        struct radix_tree_iter iter;
1375        void **slot;
1376        unsigned int ret = 0;
1377
1378        if (unlikely(!nr_pages))
1379                return 0;
1380
1381        rcu_read_lock();
1382        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383                struct page *page;
1384repeat:
1385                page = radix_tree_deref_slot(slot);
1386                /* The hole, there no reason to continue */
1387                if (unlikely(!page))
1388                        break;
1389
1390                if (radix_tree_exception(page)) {
1391                        if (radix_tree_deref_retry(page)) {
1392                                slot = radix_tree_iter_retry(&iter);
1393                                continue;
1394                        }
1395                        /*
1396                         * A shadow entry of a recently evicted page,
1397                         * or a swap entry from shmem/tmpfs.  Stop
1398                         * looking for contiguous pages.
1399                         */
1400                        break;
1401                }
1402
1403                if (!page_cache_get_speculative(page))
1404                        goto repeat;
1405
1406                /* Has the page moved? */
1407                if (unlikely(page != *slot)) {
1408                        put_page(page);
1409                        goto repeat;
1410                }
1411
1412                /*
1413                 * must check mapping and index after taking the ref.
1414                 * otherwise we can get both false positives and false
1415                 * negatives, which is just confusing to the caller.
1416                 */
1417                if (page->mapping == NULL || page->index != iter.index) {
1418                        put_page(page);
1419                        break;
1420                }
1421
1422                pages[ret] = page;
1423                if (++ret == nr_pages)
1424                        break;
1425        }
1426        rcu_read_unlock();
1427        return ret;
1428}
1429EXPORT_SYMBOL(find_get_pages_contig);
1430
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping:    the address_space to search
1434 * @index:      the starting page index
1435 * @tag:        the tag index
1436 * @nr_pages:   the maximum number of pages
1437 * @pages:      where the resulting pages are placed
1438 *
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag.   We update @index to index the next page for the traversal.
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443                        int tag, unsigned int nr_pages, struct page **pages)
1444{
1445        struct radix_tree_iter iter;
1446        void **slot;
1447        unsigned ret = 0;
1448
1449        if (unlikely(!nr_pages))
1450                return 0;
1451
1452        rcu_read_lock();
1453        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454                                   &iter, *index, tag) {
1455                struct page *page;
1456repeat:
1457                page = radix_tree_deref_slot(slot);
1458                if (unlikely(!page))
1459                        continue;
1460
1461                if (radix_tree_exception(page)) {
1462                        if (radix_tree_deref_retry(page)) {
1463                                slot = radix_tree_iter_retry(&iter);
1464                                continue;
1465                        }
1466                        /*
1467                         * A shadow entry of a recently evicted page.
1468                         *
1469                         * Those entries should never be tagged, but
1470                         * this tree walk is lockless and the tags are
1471                         * looked up in bulk, one radix tree node at a
1472                         * time, so there is a sizable window for page
1473                         * reclaim to evict a page we saw tagged.
1474                         *
1475                         * Skip over it.
1476                         */
1477                        continue;
1478                }
1479
1480                if (!page_cache_get_speculative(page))
1481                        goto repeat;
1482
1483                /* Has the page moved? */
1484                if (unlikely(page != *slot)) {
1485                        put_page(page);
1486                        goto repeat;
1487                }
1488
1489                pages[ret] = page;
1490                if (++ret == nr_pages)
1491                        break;
1492        }
1493
1494        rcu_read_unlock();
1495
1496        if (ret)
1497                *index = pages[ret - 1]->index + 1;
1498
1499        return ret;
1500}
1501EXPORT_SYMBOL(find_get_pages_tag);
1502
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping:    the address_space to search
1506 * @start:      the starting page cache index
1507 * @tag:        the tag index
1508 * @nr_entries: the maximum number of entries
1509 * @entries:    where the resulting entries are placed
1510 * @indices:    the cache indices corresponding to the entries in @entries
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516                        int tag, unsigned int nr_entries,
1517                        struct page **entries, pgoff_t *indices)
1518{
1519        void **slot;
1520        unsigned int ret = 0;
1521        struct radix_tree_iter iter;
1522
1523        if (!nr_entries)
1524                return 0;
1525
1526        rcu_read_lock();
1527        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528                                   &iter, start, tag) {
1529                struct page *page;
1530repeat:
1531                page = radix_tree_deref_slot(slot);
1532                if (unlikely(!page))
1533                        continue;
1534                if (radix_tree_exception(page)) {
1535                        if (radix_tree_deref_retry(page)) {
1536                                slot = radix_tree_iter_retry(&iter);
1537                                continue;
1538                        }
1539
1540                        /*
1541                         * A shadow entry of a recently evicted page, a swap
1542                         * entry from shmem/tmpfs or a DAX entry.  Return it
1543                         * without attempting to raise page count.
1544                         */
1545                        goto export;
1546                }
1547                if (!page_cache_get_speculative(page))
1548                        goto repeat;
1549
1550                /* Has the page moved? */
1551                if (unlikely(page != *slot)) {
1552                        put_page(page);
1553                        goto repeat;
1554                }
1555export:
1556                indices[ret] = iter.index;
1557                entries[ret] = page;
1558                if (++ret == nr_entries)
1559                        break;
1560        }
1561        rcu_read_unlock();
1562        return ret;
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 *      ---R__________________________________________B__________
1571 *         ^ reading here                             ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582                                        struct file_ra_state *ra)
1583{
1584        ra->ra_pages /= 4;
1585}
1586
1587/**
1588 * do_generic_file_read - generic file read routine
1589 * @filp:       the file to read
1590 * @ppos:       current file position
1591 * @iter:       data destination
1592 * @written:    already copied
1593 *
1594 * This is a generic file read routine, and uses the
1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
1599 */
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601                struct iov_iter *iter, ssize_t written)
1602{
1603        struct address_space *mapping = filp->f_mapping;
1604        struct inode *inode = mapping->host;
1605        struct file_ra_state *ra = &filp->f_ra;
1606        pgoff_t index;
1607        pgoff_t last_index;
1608        pgoff_t prev_index;
1609        unsigned long offset;      /* offset into pagecache page */
1610        unsigned int prev_offset;
1611        int error = 0;
1612
1613        index = *ppos >> PAGE_SHIFT;
1614        prev_index = ra->prev_pos >> PAGE_SHIFT;
1615        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617        offset = *ppos & ~PAGE_MASK;
1618
1619        for (;;) {
1620                struct page *page;
1621                pgoff_t end_index;
1622                loff_t isize;
1623                unsigned long nr, ret;
1624
1625                cond_resched();
1626find_page:
1627                page = find_get_page(mapping, index);
1628                if (!page) {
1629                        page_cache_sync_readahead(mapping,
1630                                        ra, filp,
1631                                        index, last_index - index);
1632                        page = find_get_page(mapping, index);
1633                        if (unlikely(page == NULL))
1634                                goto no_cached_page;
1635                }
1636                if (PageReadahead(page)) {
1637                        page_cache_async_readahead(mapping,
1638                                        ra, filp, page,
1639                                        index, last_index - index);
1640                }
1641                if (!PageUptodate(page)) {
1642                        /*
1643                         * See comment in do_read_cache_page on why
1644                         * wait_on_page_locked is used to avoid unnecessarily
1645                         * serialisations and why it's safe.
1646                         */
1647                        wait_on_page_locked_killable(page);
1648                        if (PageUptodate(page))
1649                                goto page_ok;
1650
1651                        if (inode->i_blkbits == PAGE_SHIFT ||
1652                                        !mapping->a_ops->is_partially_uptodate)
1653                                goto page_not_up_to_date;
1654                        if (!trylock_page(page))
1655                                goto page_not_up_to_date;
1656                        /* Did it get truncated before we got the lock? */
1657                        if (!page->mapping)
1658                                goto page_not_up_to_date_locked;
1659                        if (!mapping->a_ops->is_partially_uptodate(page,
1660                                                        offset, iter->count))
1661                                goto page_not_up_to_date_locked;
1662                        unlock_page(page);
1663                }
1664page_ok:
1665                /*
1666                 * i_size must be checked after we know the page is Uptodate.
1667                 *
1668                 * Checking i_size after the check allows us to calculate
1669                 * the correct value for "nr", which means the zero-filled
1670                 * part of the page is not copied back to userspace (unless
1671                 * another truncate extends the file - this is desired though).
1672                 */
1673
1674                isize = i_size_read(inode);
1675                end_index = (isize - 1) >> PAGE_SHIFT;
1676                if (unlikely(!isize || index > end_index)) {
1677                        put_page(page);
1678                        goto out;
1679                }
1680
1681                /* nr is the maximum number of bytes to copy from this page */
1682                nr = PAGE_SIZE;
1683                if (index == end_index) {
1684                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685                        if (nr <= offset) {
1686                                put_page(page);
1687                                goto out;
1688                        }
1689                }
1690                nr = nr - offset;
1691
1692                /* If users can be writing to this page using arbitrary
1693                 * virtual addresses, take care about potential aliasing
1694                 * before reading the page on the kernel side.
1695                 */
1696                if (mapping_writably_mapped(mapping))
1697                        flush_dcache_page(page);
1698
1699                /*
1700                 * When a sequential read accesses a page several times,
1701                 * only mark it as accessed the first time.
1702                 */
1703                if (prev_index != index || offset != prev_offset)
1704                        mark_page_accessed(page);
1705                prev_index = index;
1706
1707                /*
1708                 * Ok, we have the page, and it's up-to-date, so
1709                 * now we can copy it to user space...
1710                 */
1711
1712                ret = copy_page_to_iter(page, offset, nr, iter);
1713                offset += ret;
1714                index += offset >> PAGE_SHIFT;
1715                offset &= ~PAGE_MASK;
1716                prev_offset = offset;
1717
1718                put_page(page);
1719                written += ret;
1720                if (!iov_iter_count(iter))
1721                        goto out;
1722                if (ret < nr) {
1723                        error = -EFAULT;
1724                        goto out;
1725                }
1726                continue;
1727
1728page_not_up_to_date:
1729                /* Get exclusive access to the page ... */
1730                error = lock_page_killable(page);
1731                if (unlikely(error))
1732                        goto readpage_error;
1733
1734page_not_up_to_date_locked:
1735                /* Did it get truncated before we got the lock? */
1736                if (!page->mapping) {
1737                        unlock_page(page);
1738                        put_page(page);
1739                        continue;
1740                }
1741
1742                /* Did somebody else fill it already? */
1743                if (PageUptodate(page)) {
1744                        unlock_page(page);
1745                        goto page_ok;
1746                }
1747
1748readpage:
1749                /*
1750                 * A previous I/O error may have been due to temporary
1751                 * failures, eg. multipath errors.
1752                 * PG_error will be set again if readpage fails.
1753                 */
1754                ClearPageError(page);
1755                /* Start the actual read. The read will unlock the page. */
1756                error = mapping->a_ops->readpage(filp, page);
1757
1758                if (unlikely(error)) {
1759                        if (error == AOP_TRUNCATED_PAGE) {
1760                                put_page(page);
1761                                error = 0;
1762                                goto find_page;
1763                        }
1764                        goto readpage_error;
1765                }
1766
1767                if (!PageUptodate(page)) {
1768                        error = lock_page_killable(page);
1769                        if (unlikely(error))
1770                                goto readpage_error;
1771                        if (!PageUptodate(page)) {
1772                                if (page->mapping == NULL) {
1773                                        /*
1774                                         * invalidate_mapping_pages got it
1775                                         */
1776                                        unlock_page(page);
1777                                        put_page(page);
1778                                        goto find_page;
1779                                }
1780                                unlock_page(page);
1781                                shrink_readahead_size_eio(filp, ra);
1782                                error = -EIO;
1783                                goto readpage_error;
1784                        }
1785                        unlock_page(page);
1786                }
1787
1788                goto page_ok;
1789
1790readpage_error:
1791                /* UHHUH! A synchronous read error occurred. Report it */
1792                put_page(page);
1793                goto out;
1794
1795no_cached_page:
1796                /*
1797                 * Ok, it wasn't cached, so we need to create a new
1798                 * page..
1799                 */
1800                page = page_cache_alloc_cold(mapping);
1801                if (!page) {
1802                        error = -ENOMEM;
1803                        goto out;
1804                }
1805                error = add_to_page_cache_lru(page, mapping, index,
1806                                mapping_gfp_constraint(mapping, GFP_KERNEL));
1807                if (error) {
1808                        put_page(page);
1809                        if (error == -EEXIST) {
1810                                error = 0;
1811                                goto find_page;
1812                        }
1813                        goto out;
1814                }
1815                goto readpage;
1816        }
1817
1818out:
1819        ra->prev_pos = prev_index;
1820        ra->prev_pos <<= PAGE_SHIFT;
1821        ra->prev_pos |= prev_offset;
1822
1823        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824        file_accessed(filp);
1825        return written ? written : error;
1826}
1827
1828/**
1829 * generic_file_read_iter - generic filesystem read routine
1830 * @iocb:       kernel I/O control block
1831 * @iter:       destination for the data read
1832 *
1833 * This is the "read_iter()" routine for all filesystems
1834 * that can use the page cache directly.
1835 */
1836ssize_t
1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838{
1839        struct file *file = iocb->ki_filp;
1840        ssize_t retval = 0;
1841        loff_t *ppos = &iocb->ki_pos;
1842        loff_t pos = *ppos;
1843        size_t count = iov_iter_count(iter);
1844
1845        if (!count)
1846                goto out; /* skip atime */
1847
1848        if (iocb->ki_flags & IOCB_DIRECT) {
1849                struct address_space *mapping = file->f_mapping;
1850                struct inode *inode = mapping->host;
1851                loff_t size;
1852
1853                size = i_size_read(inode);
1854                retval = filemap_write_and_wait_range(mapping, pos,
1855                                        pos + count - 1);
1856                if (!retval) {
1857                        struct iov_iter data = *iter;
1858                        retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859                }
1860
1861                if (retval > 0) {
1862                        *ppos = pos + retval;
1863                        iov_iter_advance(iter, retval);
1864                }
1865
1866                /*
1867                 * Btrfs can have a short DIO read if we encounter
1868                 * compressed extents, so if there was an error, or if
1869                 * we've already read everything we wanted to, or if
1870                 * there was a short read because we hit EOF, go ahead
1871                 * and return.  Otherwise fallthrough to buffered io for
1872                 * the rest of the read.  Buffered reads will not work for
1873                 * DAX files, so don't bother trying.
1874                 */
1875                if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876                    IS_DAX(inode)) {
1877                        file_accessed(file);
1878                        goto out;
1879                }
1880        }
1881
1882        retval = do_generic_file_read(file, ppos, iter, retval);
1883out:
1884        return retval;
1885}
1886EXPORT_SYMBOL(generic_file_read_iter);
1887
1888#ifdef CONFIG_MMU
1889/**
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file:       file to read
1892 * @offset:     page index
1893 * @gfp_mask:   memory allocation flags
1894 *
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
1897 */
1898static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1899{
1900        struct address_space *mapping = file->f_mapping;
1901        struct page *page;
1902        int ret;
1903
1904        do {
1905                page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906                if (!page)
1907                        return -ENOMEM;
1908
1909                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910                if (ret == 0)
1911                        ret = mapping->a_ops->readpage(file, page);
1912                else if (ret == -EEXIST)
1913                        ret = 0; /* losing race to add is OK */
1914
1915                put_page(page);
1916
1917        } while (ret == AOP_TRUNCATED_PAGE);
1918
1919        return ret;
1920}
1921
1922#define MMAP_LOTSAMISS  (100)
1923
1924/*
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
1927 */
1928static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929                                   struct file_ra_state *ra,
1930                                   struct file *file,
1931                                   pgoff_t offset)
1932{
1933        struct address_space *mapping = file->f_mapping;
1934
1935        /* If we don't want any read-ahead, don't bother */
1936        if (vma->vm_flags & VM_RAND_READ)
1937                return;
1938        if (!ra->ra_pages)
1939                return;
1940
1941        if (vma->vm_flags & VM_SEQ_READ) {
1942                page_cache_sync_readahead(mapping, ra, file, offset,
1943                                          ra->ra_pages);
1944                return;
1945        }
1946
1947        /* Avoid banging the cache line if not needed */
1948        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949                ra->mmap_miss++;
1950
1951        /*
1952         * Do we miss much more than hit in this file? If so,
1953         * stop bothering with read-ahead. It will only hurt.
1954         */
1955        if (ra->mmap_miss > MMAP_LOTSAMISS)
1956                return;
1957
1958        /*
1959         * mmap read-around
1960         */
1961        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1962        ra->size = ra->ra_pages;
1963        ra->async_size = ra->ra_pages / 4;
1964        ra_submit(ra, mapping, file);
1965}
1966
1967/*
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
1970 */
1971static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972                                    struct file_ra_state *ra,
1973                                    struct file *file,
1974                                    struct page *page,
1975                                    pgoff_t offset)
1976{
1977        struct address_space *mapping = file->f_mapping;
1978
1979        /* If we don't want any read-ahead, don't bother */
1980        if (vma->vm_flags & VM_RAND_READ)
1981                return;
1982        if (ra->mmap_miss > 0)
1983                ra->mmap_miss--;
1984        if (PageReadahead(page))
1985                page_cache_async_readahead(mapping, ra, file,
1986                                           page, offset, ra->ra_pages);
1987}
1988
1989/**
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma:        vma in which the fault was taken
1992 * @vmf:        struct vm_fault containing details of the fault
1993 *
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1996 *
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2000 *
2001 * vma->vm_mm->mmap_sem must be held on entry.
2002 *
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2007 *
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2010 *
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2012 */
2013int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015        int error;
2016        struct file *file = vma->vm_file;
2017        struct address_space *mapping = file->f_mapping;
2018        struct file_ra_state *ra = &file->f_ra;
2019        struct inode *inode = mapping->host;
2020        pgoff_t offset = vmf->pgoff;
2021        struct page *page;
2022        loff_t size;
2023        int ret = 0;
2024
2025        size = round_up(i_size_read(inode), PAGE_SIZE);
2026        if (offset >= size >> PAGE_SHIFT)
2027                return VM_FAULT_SIGBUS;
2028
2029        /*
2030         * Do we have something in the page cache already?
2031         */
2032        page = find_get_page(mapping, offset);
2033        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034                /*
2035                 * We found the page, so try async readahead before
2036                 * waiting for the lock.
2037                 */
2038                do_async_mmap_readahead(vma, ra, file, page, offset);
2039        } else if (!page) {
2040                /* No page in the page cache at all */
2041                do_sync_mmap_readahead(vma, ra, file, offset);
2042                count_vm_event(PGMAJFAULT);
2043                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044                ret = VM_FAULT_MAJOR;
2045retry_find:
2046                page = find_get_page(mapping, offset);
2047                if (!page)
2048                        goto no_cached_page;
2049        }
2050
2051        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052                put_page(page);
2053                return ret | VM_FAULT_RETRY;
2054        }
2055
2056        /* Did it get truncated? */
2057        if (unlikely(page->mapping != mapping)) {
2058                unlock_page(page);
2059                put_page(page);
2060                goto retry_find;
2061        }
2062        VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064        /*
2065         * We have a locked page in the page cache, now we need to check
2066         * that it's up-to-date. If not, it is going to be due to an error.
2067         */
2068        if (unlikely(!PageUptodate(page)))
2069                goto page_not_uptodate;
2070
2071        /*
2072         * Found the page and have a reference on it.
2073         * We must recheck i_size under page lock.
2074         */
2075        size = round_up(i_size_read(inode), PAGE_SIZE);
2076        if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077                unlock_page(page);
2078                put_page(page);
2079                return VM_FAULT_SIGBUS;
2080        }
2081
2082        vmf->page = page;
2083        return ret | VM_FAULT_LOCKED;
2084
2085no_cached_page:
2086        /*
2087         * We're only likely to ever get here if MADV_RANDOM is in
2088         * effect.
2089         */
2090        error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092        /*
2093         * The page we want has now been added to the page cache.
2094         * In the unlikely event that someone removed it in the
2095         * meantime, we'll just come back here and read it again.
2096         */
2097        if (error >= 0)
2098                goto retry_find;
2099
2100        /*
2101         * An error return from page_cache_read can result if the
2102         * system is low on memory, or a problem occurs while trying
2103         * to schedule I/O.
2104         */
2105        if (error == -ENOMEM)
2106                return VM_FAULT_OOM;
2107        return VM_FAULT_SIGBUS;
2108
2109page_not_uptodate:
2110        /*
2111         * Umm, take care of errors if the page isn't up-to-date.
2112         * Try to re-read it _once_. We do this synchronously,
2113         * because there really aren't any performance issues here
2114         * and we need to check for errors.
2115         */
2116        ClearPageError(page);
2117        error = mapping->a_ops->readpage(file, page);
2118        if (!error) {
2119                wait_on_page_locked(page);
2120                if (!PageUptodate(page))
2121                        error = -EIO;
2122        }
2123        put_page(page);
2124
2125        if (!error || error == AOP_TRUNCATED_PAGE)
2126                goto retry_find;
2127
2128        /* Things didn't work out. Return zero to tell the mm layer so. */
2129        shrink_readahead_size_eio(file, ra);
2130        return VM_FAULT_SIGBUS;
2131}
2132EXPORT_SYMBOL(filemap_fault);
2133
2134void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2135{
2136        struct radix_tree_iter iter;
2137        void **slot;
2138        struct file *file = vma->vm_file;
2139        struct address_space *mapping = file->f_mapping;
2140        loff_t size;
2141        struct page *page;
2142        unsigned long address = (unsigned long) vmf->virtual_address;
2143        unsigned long addr;
2144        pte_t *pte;
2145
2146        rcu_read_lock();
2147        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148                if (iter.index > vmf->max_pgoff)
2149                        break;
2150repeat:
2151                page = radix_tree_deref_slot(slot);
2152                if (unlikely(!page))
2153                        goto next;
2154                if (radix_tree_exception(page)) {
2155                        if (radix_tree_deref_retry(page)) {
2156                                slot = radix_tree_iter_retry(&iter);
2157                                continue;
2158                        }
2159                        goto next;
2160                }
2161
2162                if (!page_cache_get_speculative(page))
2163                        goto repeat;
2164
2165                /* Has the page moved? */
2166                if (unlikely(page != *slot)) {
2167                        put_page(page);
2168                        goto repeat;
2169                }
2170
2171                if (!PageUptodate(page) ||
2172                                PageReadahead(page) ||
2173                                PageHWPoison(page))
2174                        goto skip;
2175                if (!trylock_page(page))
2176                        goto skip;
2177
2178                if (page->mapping != mapping || !PageUptodate(page))
2179                        goto unlock;
2180
2181                size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182                if (page->index >= size >> PAGE_SHIFT)
2183                        goto unlock;
2184
2185                pte = vmf->pte + page->index - vmf->pgoff;
2186                if (!pte_none(*pte))
2187                        goto unlock;
2188
2189                if (file->f_ra.mmap_miss > 0)
2190                        file->f_ra.mmap_miss--;
2191                addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192                do_set_pte(vma, addr, page, pte, false, false);
2193                unlock_page(page);
2194                goto next;
2195unlock:
2196                unlock_page(page);
2197skip:
2198                put_page(page);
2199next:
2200                if (iter.index == vmf->max_pgoff)
2201                        break;
2202        }
2203        rcu_read_unlock();
2204}
2205EXPORT_SYMBOL(filemap_map_pages);
2206
2207int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208{
2209        struct page *page = vmf->page;
2210        struct inode *inode = file_inode(vma->vm_file);
2211        int ret = VM_FAULT_LOCKED;
2212
2213        sb_start_pagefault(inode->i_sb);
2214        file_update_time(vma->vm_file);
2215        lock_page(page);
2216        if (page->mapping != inode->i_mapping) {
2217                unlock_page(page);
2218                ret = VM_FAULT_NOPAGE;
2219                goto out;
2220        }
2221        /*
2222         * We mark the page dirty already here so that when freeze is in
2223         * progress, we are guaranteed that writeback during freezing will
2224         * see the dirty page and writeprotect it again.
2225         */
2226        set_page_dirty(page);
2227        wait_for_stable_page(page);
2228out:
2229        sb_end_pagefault(inode->i_sb);
2230        return ret;
2231}
2232EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234const struct vm_operations_struct generic_file_vm_ops = {
2235        .fault          = filemap_fault,
2236        .map_pages      = filemap_map_pages,
2237        .page_mkwrite   = filemap_page_mkwrite,
2238};
2239
2240/* This is used for a general mmap of a disk file */
2241
2242int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243{
2244        struct address_space *mapping = file->f_mapping;
2245
2246        if (!mapping->a_ops->readpage)
2247                return -ENOEXEC;
2248        file_accessed(file);
2249        vma->vm_ops = &generic_file_vm_ops;
2250        return 0;
2251}
2252
2253/*
2254 * This is for filesystems which do not implement ->writepage.
2255 */
2256int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257{
2258        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259                return -EINVAL;
2260        return generic_file_mmap(file, vma);
2261}
2262#else
2263int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2264{
2265        return -ENOSYS;
2266}
2267int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268{
2269        return -ENOSYS;
2270}
2271#endif /* CONFIG_MMU */
2272
2273EXPORT_SYMBOL(generic_file_mmap);
2274EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276static struct page *wait_on_page_read(struct page *page)
2277{
2278        if (!IS_ERR(page)) {
2279                wait_on_page_locked(page);
2280                if (!PageUptodate(page)) {
2281                        put_page(page);
2282                        page = ERR_PTR(-EIO);
2283                }
2284        }
2285        return page;
2286}
2287
2288static struct page *do_read_cache_page(struct address_space *mapping,
2289                                pgoff_t index,
2290                                int (*filler)(void *, struct page *),
2291                                void *data,
2292                                gfp_t gfp)
2293{
2294        struct page *page;
2295        int err;
2296repeat:
2297        page = find_get_page(mapping, index);
2298        if (!page) {
2299                page = __page_cache_alloc(gfp | __GFP_COLD);
2300                if (!page)
2301                        return ERR_PTR(-ENOMEM);
2302                err = add_to_page_cache_lru(page, mapping, index, gfp);
2303                if (unlikely(err)) {
2304                        put_page(page);
2305                        if (err == -EEXIST)
2306                                goto repeat;
2307                        /* Presumably ENOMEM for radix tree node */
2308                        return ERR_PTR(err);
2309                }
2310
2311filler:
2312                err = filler(data, page);
2313                if (err < 0) {
2314                        put_page(page);
2315                        return ERR_PTR(err);
2316                }
2317
2318                page = wait_on_page_read(page);
2319                if (IS_ERR(page))
2320                        return page;
2321                goto out;
2322        }
2323        if (PageUptodate(page))
2324                goto out;
2325
2326        /*
2327         * Page is not up to date and may be locked due one of the following
2328         * case a: Page is being filled and the page lock is held
2329         * case b: Read/write error clearing the page uptodate status
2330         * case c: Truncation in progress (page locked)
2331         * case d: Reclaim in progress
2332         *
2333         * Case a, the page will be up to date when the page is unlocked.
2334         *    There is no need to serialise on the page lock here as the page
2335         *    is pinned so the lock gives no additional protection. Even if the
2336         *    the page is truncated, the data is still valid if PageUptodate as
2337         *    it's a race vs truncate race.
2338         * Case b, the page will not be up to date
2339         * Case c, the page may be truncated but in itself, the data may still
2340         *    be valid after IO completes as it's a read vs truncate race. The
2341         *    operation must restart if the page is not uptodate on unlock but
2342         *    otherwise serialising on page lock to stabilise the mapping gives
2343         *    no additional guarantees to the caller as the page lock is
2344         *    released before return.
2345         * Case d, similar to truncation. If reclaim holds the page lock, it
2346         *    will be a race with remove_mapping that determines if the mapping
2347         *    is valid on unlock but otherwise the data is valid and there is
2348         *    no need to serialise with page lock.
2349         *
2350         * As the page lock gives no additional guarantee, we optimistically
2351         * wait on the page to be unlocked and check if it's up to date and
2352         * use the page if it is. Otherwise, the page lock is required to
2353         * distinguish between the different cases. The motivation is that we
2354         * avoid spurious serialisations and wakeups when multiple processes
2355         * wait on the same page for IO to complete.
2356         */
2357        wait_on_page_locked(page);
2358        if (PageUptodate(page))
2359                goto out;
2360
2361        /* Distinguish between all the cases under the safety of the lock */
2362        lock_page(page);
2363
2364        /* Case c or d, restart the operation */
2365        if (!page->mapping) {
2366                unlock_page(page);
2367                put_page(page);
2368                goto repeat;
2369        }
2370
2371        /* Someone else locked and filled the page in a very small window */
2372        if (PageUptodate(page)) {
2373                unlock_page(page);
2374                goto out;
2375        }
2376        goto filler;
2377
2378out:
2379        mark_page_accessed(page);
2380        return page;
2381}
2382
2383/**
2384 * read_cache_page - read into page cache, fill it if needed
2385 * @mapping:    the page's address_space
2386 * @index:      the page index
2387 * @filler:     function to perform the read
2388 * @data:       first arg to filler(data, page) function, often left as NULL
2389 *
2390 * Read into the page cache. If a page already exists, and PageUptodate() is
2391 * not set, try to fill the page and wait for it to become unlocked.
2392 *
2393 * If the page does not get brought uptodate, return -EIO.
2394 */
2395struct page *read_cache_page(struct address_space *mapping,
2396                                pgoff_t index,
2397                                int (*filler)(void *, struct page *),
2398                                void *data)
2399{
2400        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2401}
2402EXPORT_SYMBOL(read_cache_page);
2403
2404/**
2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406 * @mapping:    the page's address_space
2407 * @index:      the page index
2408 * @gfp:        the page allocator flags to use if allocating
2409 *
2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411 * any new page allocations done using the specified allocation flags.
2412 *
2413 * If the page does not get brought uptodate, return -EIO.
2414 */
2415struct page *read_cache_page_gfp(struct address_space *mapping,
2416                                pgoff_t index,
2417                                gfp_t gfp)
2418{
2419        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422}
2423EXPORT_SYMBOL(read_cache_page_gfp);
2424
2425/*
2426 * Performs necessary checks before doing a write
2427 *
2428 * Can adjust writing position or amount of bytes to write.
2429 * Returns appropriate error code that caller should return or
2430 * zero in case that write should be allowed.
2431 */
2432inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433{
2434        struct file *file = iocb->ki_filp;
2435        struct inode *inode = file->f_mapping->host;
2436        unsigned long limit = rlimit(RLIMIT_FSIZE);
2437        loff_t pos;
2438
2439        if (!iov_iter_count(from))
2440                return 0;
2441
2442        /* FIXME: this is for backwards compatibility with 2.4 */
2443        if (iocb->ki_flags & IOCB_APPEND)
2444                iocb->ki_pos = i_size_read(inode);
2445
2446        pos = iocb->ki_pos;
2447
2448        if (limit != RLIM_INFINITY) {
2449                if (iocb->ki_pos >= limit) {
2450                        send_sig(SIGXFSZ, current, 0);
2451                        return -EFBIG;
2452                }
2453                iov_iter_truncate(from, limit - (unsigned long)pos);
2454        }
2455
2456        /*
2457         * LFS rule
2458         */
2459        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460                                !(file->f_flags & O_LARGEFILE))) {
2461                if (pos >= MAX_NON_LFS)
2462                        return -EFBIG;
2463                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464        }
2465
2466        /*
2467         * Are we about to exceed the fs block limit ?
2468         *
2469         * If we have written data it becomes a short write.  If we have
2470         * exceeded without writing data we send a signal and return EFBIG.
2471         * Linus frestrict idea will clean these up nicely..
2472         */
2473        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474                return -EFBIG;
2475
2476        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477        return iov_iter_count(from);
2478}
2479EXPORT_SYMBOL(generic_write_checks);
2480
2481int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482                                loff_t pos, unsigned len, unsigned flags,
2483                                struct page **pagep, void **fsdata)
2484{
2485        const struct address_space_operations *aops = mapping->a_ops;
2486
2487        return aops->write_begin(file, mapping, pos, len, flags,
2488                                                        pagep, fsdata);
2489}
2490EXPORT_SYMBOL(pagecache_write_begin);
2491
2492int pagecache_write_end(struct file *file, struct address_space *mapping,
2493                                loff_t pos, unsigned len, unsigned copied,
2494                                struct page *page, void *fsdata)
2495{
2496        const struct address_space_operations *aops = mapping->a_ops;
2497
2498        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2499}
2500EXPORT_SYMBOL(pagecache_write_end);
2501
2502ssize_t
2503generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2504{
2505        struct file     *file = iocb->ki_filp;
2506        struct address_space *mapping = file->f_mapping;
2507        struct inode    *inode = mapping->host;
2508        ssize_t         written;
2509        size_t          write_len;
2510        pgoff_t         end;
2511        struct iov_iter data;
2512
2513        write_len = iov_iter_count(from);
2514        end = (pos + write_len - 1) >> PAGE_SHIFT;
2515
2516        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517        if (written)
2518                goto out;
2519
2520        /*
2521         * After a write we want buffered reads to be sure to go to disk to get
2522         * the new data.  We invalidate clean cached page from the region we're
2523         * about to write.  We do this *before* the write so that we can return
2524         * without clobbering -EIOCBQUEUED from ->direct_IO().
2525         */
2526        if (mapping->nrpages) {
2527                written = invalidate_inode_pages2_range(mapping,
2528                                        pos >> PAGE_SHIFT, end);
2529                /*
2530                 * If a page can not be invalidated, return 0 to fall back
2531                 * to buffered write.
2532                 */
2533                if (written) {
2534                        if (written == -EBUSY)
2535                                return 0;
2536                        goto out;
2537                }
2538        }
2539
2540        data = *from;
2541        written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543        /*
2544         * Finally, try again to invalidate clean pages which might have been
2545         * cached by non-direct readahead, or faulted in by get_user_pages()
2546         * if the source of the write was an mmap'ed region of the file
2547         * we're writing.  Either one is a pretty crazy thing to do,
2548         * so we don't support it 100%.  If this invalidation
2549         * fails, tough, the write still worked...
2550         */
2551        if (mapping->nrpages) {
2552                invalidate_inode_pages2_range(mapping,
2553                                              pos >> PAGE_SHIFT, end);
2554        }
2555
2556        if (written > 0) {
2557                pos += written;
2558                iov_iter_advance(from, written);
2559                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560                        i_size_write(inode, pos);
2561                        mark_inode_dirty(inode);
2562                }
2563                iocb->ki_pos = pos;
2564        }
2565out:
2566        return written;
2567}
2568EXPORT_SYMBOL(generic_file_direct_write);
2569
2570/*
2571 * Find or create a page at the given pagecache position. Return the locked
2572 * page. This function is specifically for buffered writes.
2573 */
2574struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575                                        pgoff_t index, unsigned flags)
2576{
2577        struct page *page;
2578        int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
2580        if (flags & AOP_FLAG_NOFS)
2581                fgp_flags |= FGP_NOFS;
2582
2583        page = pagecache_get_page(mapping, index, fgp_flags,
2584                        mapping_gfp_mask(mapping));
2585        if (page)
2586                wait_for_stable_page(page);
2587
2588        return page;
2589}
2590EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592ssize_t generic_perform_write(struct file *file,
2593                                struct iov_iter *i, loff_t pos)
2594{
2595        struct address_space *mapping = file->f_mapping;
2596        const struct address_space_operations *a_ops = mapping->a_ops;
2597        long status = 0;
2598        ssize_t written = 0;
2599        unsigned int flags = 0;
2600
2601        /*
2602         * Copies from kernel address space cannot fail (NFSD is a big user).
2603         */
2604        if (!iter_is_iovec(i))
2605                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607        do {
2608                struct page *page;
2609                unsigned long offset;   /* Offset into pagecache page */
2610                unsigned long bytes;    /* Bytes to write to page */
2611                size_t copied;          /* Bytes copied from user */
2612                void *fsdata;
2613
2614                offset = (pos & (PAGE_SIZE - 1));
2615                bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616                                                iov_iter_count(i));
2617
2618again:
2619                /*
2620                 * Bring in the user page that we will copy from _first_.
2621                 * Otherwise there's a nasty deadlock on copying from the
2622                 * same page as we're writing to, without it being marked
2623                 * up-to-date.
2624                 *
2625                 * Not only is this an optimisation, but it is also required
2626                 * to check that the address is actually valid, when atomic
2627                 * usercopies are used, below.
2628                 */
2629                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630                        status = -EFAULT;
2631                        break;
2632                }
2633
2634                if (fatal_signal_pending(current)) {
2635                        status = -EINTR;
2636                        break;
2637                }
2638
2639                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640                                                &page, &fsdata);
2641                if (unlikely(status < 0))
2642                        break;
2643
2644                if (mapping_writably_mapped(mapping))
2645                        flush_dcache_page(page);
2646
2647                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2648                flush_dcache_page(page);
2649
2650                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651                                                page, fsdata);
2652                if (unlikely(status < 0))
2653                        break;
2654                copied = status;
2655
2656                cond_resched();
2657
2658                iov_iter_advance(i, copied);
2659                if (unlikely(copied == 0)) {
2660                        /*
2661                         * If we were unable to copy any data at all, we must
2662                         * fall back to a single segment length write.
2663                         *
2664                         * If we didn't fallback here, we could livelock
2665                         * because not all segments in the iov can be copied at
2666                         * once without a pagefault.
2667                         */
2668                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669                                                iov_iter_single_seg_count(i));
2670                        goto again;
2671                }
2672                pos += copied;
2673                written += copied;
2674
2675                balance_dirty_pages_ratelimited(mapping);
2676        } while (iov_iter_count(i));
2677
2678        return written ? written : status;
2679}
2680EXPORT_SYMBOL(generic_perform_write);
2681
2682/**
2683 * __generic_file_write_iter - write data to a file
2684 * @iocb:       IO state structure (file, offset, etc.)
2685 * @from:       iov_iter with data to write
2686 *
2687 * This function does all the work needed for actually writing data to a
2688 * file. It does all basic checks, removes SUID from the file, updates
2689 * modification times and calls proper subroutines depending on whether we
2690 * do direct IO or a standard buffered write.
2691 *
2692 * It expects i_mutex to be grabbed unless we work on a block device or similar
2693 * object which does not need locking at all.
2694 *
2695 * This function does *not* take care of syncing data in case of O_SYNC write.
2696 * A caller has to handle it. This is mainly due to the fact that we want to
2697 * avoid syncing under i_mutex.
2698 */
2699ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2700{
2701        struct file *file = iocb->ki_filp;
2702        struct address_space * mapping = file->f_mapping;
2703        struct inode    *inode = mapping->host;
2704        ssize_t         written = 0;
2705        ssize_t         err;
2706        ssize_t         status;
2707
2708        /* We can write back this queue in page reclaim */
2709        current->backing_dev_info = inode_to_bdi(inode);
2710        err = file_remove_privs(file);
2711        if (err)
2712                goto out;
2713
2714        err = file_update_time(file);
2715        if (err)
2716                goto out;
2717
2718        if (iocb->ki_flags & IOCB_DIRECT) {
2719                loff_t pos, endbyte;
2720
2721                written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2722                /*
2723                 * If the write stopped short of completing, fall back to
2724                 * buffered writes.  Some filesystems do this for writes to
2725                 * holes, for example.  For DAX files, a buffered write will
2726                 * not succeed (even if it did, DAX does not handle dirty
2727                 * page-cache pages correctly).
2728                 */
2729                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730                        goto out;
2731
2732                status = generic_perform_write(file, from, pos = iocb->ki_pos);
2733                /*
2734                 * If generic_perform_write() returned a synchronous error
2735                 * then we want to return the number of bytes which were
2736                 * direct-written, or the error code if that was zero.  Note
2737                 * that this differs from normal direct-io semantics, which
2738                 * will return -EFOO even if some bytes were written.
2739                 */
2740                if (unlikely(status < 0)) {
2741                        err = status;
2742                        goto out;
2743                }
2744                /*
2745                 * We need to ensure that the page cache pages are written to
2746                 * disk and invalidated to preserve the expected O_DIRECT
2747                 * semantics.
2748                 */
2749                endbyte = pos + status - 1;
2750                err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751                if (err == 0) {
2752                        iocb->ki_pos = endbyte + 1;
2753                        written += status;
2754                        invalidate_mapping_pages(mapping,
2755                                                 pos >> PAGE_SHIFT,
2756                                                 endbyte >> PAGE_SHIFT);
2757                } else {
2758                        /*
2759                         * We don't know how much we wrote, so just return
2760                         * the number of bytes which were direct-written
2761                         */
2762                }
2763        } else {
2764                written = generic_perform_write(file, from, iocb->ki_pos);
2765                if (likely(written > 0))
2766                        iocb->ki_pos += written;
2767        }
2768out:
2769        current->backing_dev_info = NULL;
2770        return written ? written : err;
2771}
2772EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774/**
2775 * generic_file_write_iter - write data to a file
2776 * @iocb:       IO state structure
2777 * @from:       iov_iter with data to write
2778 *
2779 * This is a wrapper around __generic_file_write_iter() to be used by most
2780 * filesystems. It takes care of syncing the file in case of O_SYNC file
2781 * and acquires i_mutex as needed.
2782 */
2783ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2784{
2785        struct file *file = iocb->ki_filp;
2786        struct inode *inode = file->f_mapping->host;
2787        ssize_t ret;
2788
2789        inode_lock(inode);
2790        ret = generic_write_checks(iocb, from);
2791        if (ret > 0)
2792                ret = __generic_file_write_iter(iocb, from);
2793        inode_unlock(inode);
2794
2795        if (ret > 0) {
2796                ssize_t err;
2797
2798                err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799                if (err < 0)
2800                        ret = err;
2801        }
2802        return ret;
2803}
2804EXPORT_SYMBOL(generic_file_write_iter);
2805
2806/**
2807 * try_to_release_page() - release old fs-specific metadata on a page
2808 *
2809 * @page: the page which the kernel is trying to free
2810 * @gfp_mask: memory allocation flags (and I/O mode)
2811 *
2812 * The address_space is to try to release any data against the page
2813 * (presumably at page->private).  If the release was successful, return `1'.
2814 * Otherwise return zero.
2815 *
2816 * This may also be called if PG_fscache is set on a page, indicating that the
2817 * page is known to the local caching routines.
2818 *
2819 * The @gfp_mask argument specifies whether I/O may be performed to release
2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2821 *
2822 */
2823int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824{
2825        struct address_space * const mapping = page->mapping;
2826
2827        BUG_ON(!PageLocked(page));
2828        if (PageWriteback(page))
2829                return 0;
2830
2831        if (mapping && mapping->a_ops->releasepage)
2832                return mapping->a_ops->releasepage(page, gfp_mask);
2833        return try_to_free_buffers(page);
2834}
2835
2836EXPORT_SYMBOL(try_to_release_page);
2837