linux/mm/frontswap.c
<<
>>
Prefs
   1/*
   2 * Frontswap frontend
   3 *
   4 * This code provides the generic "frontend" layer to call a matching
   5 * "backend" driver implementation of frontswap.  See
   6 * Documentation/vm/frontswap.txt for more information.
   7 *
   8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
   9 * Author: Dan Magenheimer
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2.
  12 */
  13
  14#include <linux/mman.h>
  15#include <linux/swap.h>
  16#include <linux/swapops.h>
  17#include <linux/security.h>
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/frontswap.h>
  21#include <linux/swapfile.h>
  22
  23/*
  24 * frontswap_ops are added by frontswap_register_ops, and provide the
  25 * frontswap "backend" implementation functions.  Multiple implementations
  26 * may be registered, but implementations can never deregister.  This
  27 * is a simple singly-linked list of all registered implementations.
  28 */
  29static struct frontswap_ops *frontswap_ops __read_mostly;
  30
  31#define for_each_frontswap_ops(ops)             \
  32        for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
  33
  34/*
  35 * If enabled, frontswap_store will return failure even on success.  As
  36 * a result, the swap subsystem will always write the page to swap, in
  37 * effect converting frontswap into a writethrough cache.  In this mode,
  38 * there is no direct reduction in swap writes, but a frontswap backend
  39 * can unilaterally "reclaim" any pages in use with no data loss, thus
  40 * providing increases control over maximum memory usage due to frontswap.
  41 */
  42static bool frontswap_writethrough_enabled __read_mostly;
  43
  44/*
  45 * If enabled, the underlying tmem implementation is capable of doing
  46 * exclusive gets, so frontswap_load, on a successful tmem_get must
  47 * mark the page as no longer in frontswap AND mark it dirty.
  48 */
  49static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
  50
  51#ifdef CONFIG_DEBUG_FS
  52/*
  53 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
  54 * properly configured).  These are for information only so are not protected
  55 * against increment races.
  56 */
  57static u64 frontswap_loads;
  58static u64 frontswap_succ_stores;
  59static u64 frontswap_failed_stores;
  60static u64 frontswap_invalidates;
  61
  62static inline void inc_frontswap_loads(void) {
  63        frontswap_loads++;
  64}
  65static inline void inc_frontswap_succ_stores(void) {
  66        frontswap_succ_stores++;
  67}
  68static inline void inc_frontswap_failed_stores(void) {
  69        frontswap_failed_stores++;
  70}
  71static inline void inc_frontswap_invalidates(void) {
  72        frontswap_invalidates++;
  73}
  74#else
  75static inline void inc_frontswap_loads(void) { }
  76static inline void inc_frontswap_succ_stores(void) { }
  77static inline void inc_frontswap_failed_stores(void) { }
  78static inline void inc_frontswap_invalidates(void) { }
  79#endif
  80
  81/*
  82 * Due to the asynchronous nature of the backends loading potentially
  83 * _after_ the swap system has been activated, we have chokepoints
  84 * on all frontswap functions to not call the backend until the backend
  85 * has registered.
  86 *
  87 * This would not guards us against the user deciding to call swapoff right as
  88 * we are calling the backend to initialize (so swapon is in action).
  89 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
  90 * OK. The other scenario where calls to frontswap_store (called via
  91 * swap_writepage) is racing with frontswap_invalidate_area (called via
  92 * swapoff) is again guarded by the swap subsystem.
  93 *
  94 * While no backend is registered all calls to frontswap_[store|load|
  95 * invalidate_area|invalidate_page] are ignored or fail.
  96 *
  97 * The time between the backend being registered and the swap file system
  98 * calling the backend (via the frontswap_* functions) is indeterminate as
  99 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
 100 * That is OK as we are comfortable missing some of these calls to the newly
 101 * registered backend.
 102 *
 103 * Obviously the opposite (unloading the backend) must be done after all
 104 * the frontswap_[store|load|invalidate_area|invalidate_page] start
 105 * ignoring or failing the requests.  However, there is currently no way
 106 * to unload a backend once it is registered.
 107 */
 108
 109/*
 110 * Register operations for frontswap
 111 */
 112void frontswap_register_ops(struct frontswap_ops *ops)
 113{
 114        DECLARE_BITMAP(a, MAX_SWAPFILES);
 115        DECLARE_BITMAP(b, MAX_SWAPFILES);
 116        struct swap_info_struct *si;
 117        unsigned int i;
 118
 119        bitmap_zero(a, MAX_SWAPFILES);
 120        bitmap_zero(b, MAX_SWAPFILES);
 121
 122        spin_lock(&swap_lock);
 123        plist_for_each_entry(si, &swap_active_head, list) {
 124                if (!WARN_ON(!si->frontswap_map))
 125                        set_bit(si->type, a);
 126        }
 127        spin_unlock(&swap_lock);
 128
 129        /* the new ops needs to know the currently active swap devices */
 130        for_each_set_bit(i, a, MAX_SWAPFILES)
 131                ops->init(i);
 132
 133        /*
 134         * Setting frontswap_ops must happen after the ops->init() calls
 135         * above; cmpxchg implies smp_mb() which will ensure the init is
 136         * complete at this point.
 137         */
 138        do {
 139                ops->next = frontswap_ops;
 140        } while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
 141
 142        spin_lock(&swap_lock);
 143        plist_for_each_entry(si, &swap_active_head, list) {
 144                if (si->frontswap_map)
 145                        set_bit(si->type, b);
 146        }
 147        spin_unlock(&swap_lock);
 148
 149        /*
 150         * On the very unlikely chance that a swap device was added or
 151         * removed between setting the "a" list bits and the ops init
 152         * calls, we re-check and do init or invalidate for any changed
 153         * bits.
 154         */
 155        if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
 156                for (i = 0; i < MAX_SWAPFILES; i++) {
 157                        if (!test_bit(i, a) && test_bit(i, b))
 158                                ops->init(i);
 159                        else if (test_bit(i, a) && !test_bit(i, b))
 160                                ops->invalidate_area(i);
 161                }
 162        }
 163}
 164EXPORT_SYMBOL(frontswap_register_ops);
 165
 166/*
 167 * Enable/disable frontswap writethrough (see above).
 168 */
 169void frontswap_writethrough(bool enable)
 170{
 171        frontswap_writethrough_enabled = enable;
 172}
 173EXPORT_SYMBOL(frontswap_writethrough);
 174
 175/*
 176 * Enable/disable frontswap exclusive gets (see above).
 177 */
 178void frontswap_tmem_exclusive_gets(bool enable)
 179{
 180        frontswap_tmem_exclusive_gets_enabled = enable;
 181}
 182EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
 183
 184/*
 185 * Called when a swap device is swapon'd.
 186 */
 187void __frontswap_init(unsigned type, unsigned long *map)
 188{
 189        struct swap_info_struct *sis = swap_info[type];
 190        struct frontswap_ops *ops;
 191
 192        BUG_ON(sis == NULL);
 193
 194        /*
 195         * p->frontswap is a bitmap that we MUST have to figure out which page
 196         * has gone in frontswap. Without it there is no point of continuing.
 197         */
 198        if (WARN_ON(!map))
 199                return;
 200        /*
 201         * Irregardless of whether the frontswap backend has been loaded
 202         * before this function or it will be later, we _MUST_ have the
 203         * p->frontswap set to something valid to work properly.
 204         */
 205        frontswap_map_set(sis, map);
 206
 207        for_each_frontswap_ops(ops)
 208                ops->init(type);
 209}
 210EXPORT_SYMBOL(__frontswap_init);
 211
 212bool __frontswap_test(struct swap_info_struct *sis,
 213                                pgoff_t offset)
 214{
 215        if (sis->frontswap_map)
 216                return test_bit(offset, sis->frontswap_map);
 217        return false;
 218}
 219EXPORT_SYMBOL(__frontswap_test);
 220
 221static inline void __frontswap_set(struct swap_info_struct *sis,
 222                                   pgoff_t offset)
 223{
 224        set_bit(offset, sis->frontswap_map);
 225        atomic_inc(&sis->frontswap_pages);
 226}
 227
 228static inline void __frontswap_clear(struct swap_info_struct *sis,
 229                                     pgoff_t offset)
 230{
 231        clear_bit(offset, sis->frontswap_map);
 232        atomic_dec(&sis->frontswap_pages);
 233}
 234
 235/*
 236 * "Store" data from a page to frontswap and associate it with the page's
 237 * swaptype and offset.  Page must be locked and in the swap cache.
 238 * If frontswap already contains a page with matching swaptype and
 239 * offset, the frontswap implementation may either overwrite the data and
 240 * return success or invalidate the page from frontswap and return failure.
 241 */
 242int __frontswap_store(struct page *page)
 243{
 244        int ret = -1;
 245        swp_entry_t entry = { .val = page_private(page), };
 246        int type = swp_type(entry);
 247        struct swap_info_struct *sis = swap_info[type];
 248        pgoff_t offset = swp_offset(entry);
 249        struct frontswap_ops *ops;
 250
 251        /*
 252         * Return if no backend registed.
 253         * Don't need to inc frontswap_failed_stores here.
 254         */
 255        if (!frontswap_ops)
 256                return -1;
 257
 258        BUG_ON(!PageLocked(page));
 259        BUG_ON(sis == NULL);
 260
 261        /*
 262         * If a dup, we must remove the old page first; we can't leave the
 263         * old page no matter if the store of the new page succeeds or fails,
 264         * and we can't rely on the new page replacing the old page as we may
 265         * not store to the same implementation that contains the old page.
 266         */
 267        if (__frontswap_test(sis, offset)) {
 268                __frontswap_clear(sis, offset);
 269                for_each_frontswap_ops(ops)
 270                        ops->invalidate_page(type, offset);
 271        }
 272
 273        /* Try to store in each implementation, until one succeeds. */
 274        for_each_frontswap_ops(ops) {
 275                ret = ops->store(type, offset, page);
 276                if (!ret) /* successful store */
 277                        break;
 278        }
 279        if (ret == 0) {
 280                __frontswap_set(sis, offset);
 281                inc_frontswap_succ_stores();
 282        } else {
 283                inc_frontswap_failed_stores();
 284        }
 285        if (frontswap_writethrough_enabled)
 286                /* report failure so swap also writes to swap device */
 287                ret = -1;
 288        return ret;
 289}
 290EXPORT_SYMBOL(__frontswap_store);
 291
 292/*
 293 * "Get" data from frontswap associated with swaptype and offset that were
 294 * specified when the data was put to frontswap and use it to fill the
 295 * specified page with data. Page must be locked and in the swap cache.
 296 */
 297int __frontswap_load(struct page *page)
 298{
 299        int ret = -1;
 300        swp_entry_t entry = { .val = page_private(page), };
 301        int type = swp_type(entry);
 302        struct swap_info_struct *sis = swap_info[type];
 303        pgoff_t offset = swp_offset(entry);
 304        struct frontswap_ops *ops;
 305
 306        if (!frontswap_ops)
 307                return -1;
 308
 309        BUG_ON(!PageLocked(page));
 310        BUG_ON(sis == NULL);
 311        if (!__frontswap_test(sis, offset))
 312                return -1;
 313
 314        /* Try loading from each implementation, until one succeeds. */
 315        for_each_frontswap_ops(ops) {
 316                ret = ops->load(type, offset, page);
 317                if (!ret) /* successful load */
 318                        break;
 319        }
 320        if (ret == 0) {
 321                inc_frontswap_loads();
 322                if (frontswap_tmem_exclusive_gets_enabled) {
 323                        SetPageDirty(page);
 324                        __frontswap_clear(sis, offset);
 325                }
 326        }
 327        return ret;
 328}
 329EXPORT_SYMBOL(__frontswap_load);
 330
 331/*
 332 * Invalidate any data from frontswap associated with the specified swaptype
 333 * and offset so that a subsequent "get" will fail.
 334 */
 335void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
 336{
 337        struct swap_info_struct *sis = swap_info[type];
 338        struct frontswap_ops *ops;
 339
 340        if (!frontswap_ops)
 341                return;
 342
 343        BUG_ON(sis == NULL);
 344        if (!__frontswap_test(sis, offset))
 345                return;
 346
 347        for_each_frontswap_ops(ops)
 348                ops->invalidate_page(type, offset);
 349        __frontswap_clear(sis, offset);
 350        inc_frontswap_invalidates();
 351}
 352EXPORT_SYMBOL(__frontswap_invalidate_page);
 353
 354/*
 355 * Invalidate all data from frontswap associated with all offsets for the
 356 * specified swaptype.
 357 */
 358void __frontswap_invalidate_area(unsigned type)
 359{
 360        struct swap_info_struct *sis = swap_info[type];
 361        struct frontswap_ops *ops;
 362
 363        if (!frontswap_ops)
 364                return;
 365
 366        BUG_ON(sis == NULL);
 367        if (sis->frontswap_map == NULL)
 368                return;
 369
 370        for_each_frontswap_ops(ops)
 371                ops->invalidate_area(type);
 372        atomic_set(&sis->frontswap_pages, 0);
 373        bitmap_zero(sis->frontswap_map, sis->max);
 374}
 375EXPORT_SYMBOL(__frontswap_invalidate_area);
 376
 377static unsigned long __frontswap_curr_pages(void)
 378{
 379        unsigned long totalpages = 0;
 380        struct swap_info_struct *si = NULL;
 381
 382        assert_spin_locked(&swap_lock);
 383        plist_for_each_entry(si, &swap_active_head, list)
 384                totalpages += atomic_read(&si->frontswap_pages);
 385        return totalpages;
 386}
 387
 388static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
 389                                        int *swapid)
 390{
 391        int ret = -EINVAL;
 392        struct swap_info_struct *si = NULL;
 393        int si_frontswap_pages;
 394        unsigned long total_pages_to_unuse = total;
 395        unsigned long pages = 0, pages_to_unuse = 0;
 396
 397        assert_spin_locked(&swap_lock);
 398        plist_for_each_entry(si, &swap_active_head, list) {
 399                si_frontswap_pages = atomic_read(&si->frontswap_pages);
 400                if (total_pages_to_unuse < si_frontswap_pages) {
 401                        pages = pages_to_unuse = total_pages_to_unuse;
 402                } else {
 403                        pages = si_frontswap_pages;
 404                        pages_to_unuse = 0; /* unuse all */
 405                }
 406                /* ensure there is enough RAM to fetch pages from frontswap */
 407                if (security_vm_enough_memory_mm(current->mm, pages)) {
 408                        ret = -ENOMEM;
 409                        continue;
 410                }
 411                vm_unacct_memory(pages);
 412                *unused = pages_to_unuse;
 413                *swapid = si->type;
 414                ret = 0;
 415                break;
 416        }
 417
 418        return ret;
 419}
 420
 421/*
 422 * Used to check if it's necessory and feasible to unuse pages.
 423 * Return 1 when nothing to do, 0 when need to shink pages,
 424 * error code when there is an error.
 425 */
 426static int __frontswap_shrink(unsigned long target_pages,
 427                                unsigned long *pages_to_unuse,
 428                                int *type)
 429{
 430        unsigned long total_pages = 0, total_pages_to_unuse;
 431
 432        assert_spin_locked(&swap_lock);
 433
 434        total_pages = __frontswap_curr_pages();
 435        if (total_pages <= target_pages) {
 436                /* Nothing to do */
 437                *pages_to_unuse = 0;
 438                return 1;
 439        }
 440        total_pages_to_unuse = total_pages - target_pages;
 441        return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
 442}
 443
 444/*
 445 * Frontswap, like a true swap device, may unnecessarily retain pages
 446 * under certain circumstances; "shrink" frontswap is essentially a
 447 * "partial swapoff" and works by calling try_to_unuse to attempt to
 448 * unuse enough frontswap pages to attempt to -- subject to memory
 449 * constraints -- reduce the number of pages in frontswap to the
 450 * number given in the parameter target_pages.
 451 */
 452void frontswap_shrink(unsigned long target_pages)
 453{
 454        unsigned long pages_to_unuse = 0;
 455        int uninitialized_var(type), ret;
 456
 457        /*
 458         * we don't want to hold swap_lock while doing a very
 459         * lengthy try_to_unuse, but swap_list may change
 460         * so restart scan from swap_active_head each time
 461         */
 462        spin_lock(&swap_lock);
 463        ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
 464        spin_unlock(&swap_lock);
 465        if (ret == 0)
 466                try_to_unuse(type, true, pages_to_unuse);
 467        return;
 468}
 469EXPORT_SYMBOL(frontswap_shrink);
 470
 471/*
 472 * Count and return the number of frontswap pages across all
 473 * swap devices.  This is exported so that backend drivers can
 474 * determine current usage without reading debugfs.
 475 */
 476unsigned long frontswap_curr_pages(void)
 477{
 478        unsigned long totalpages = 0;
 479
 480        spin_lock(&swap_lock);
 481        totalpages = __frontswap_curr_pages();
 482        spin_unlock(&swap_lock);
 483
 484        return totalpages;
 485}
 486EXPORT_SYMBOL(frontswap_curr_pages);
 487
 488static int __init init_frontswap(void)
 489{
 490#ifdef CONFIG_DEBUG_FS
 491        struct dentry *root = debugfs_create_dir("frontswap", NULL);
 492        if (root == NULL)
 493                return -ENXIO;
 494        debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
 495        debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
 496        debugfs_create_u64("failed_stores", S_IRUGO, root,
 497                                &frontswap_failed_stores);
 498        debugfs_create_u64("invalidates", S_IRUGO,
 499                                root, &frontswap_invalidates);
 500#endif
 501        return 0;
 502}
 503
 504module_init(init_frontswap);
 505