linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/kthread.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38enum scan_result {
  39        SCAN_FAIL,
  40        SCAN_SUCCEED,
  41        SCAN_PMD_NULL,
  42        SCAN_EXCEED_NONE_PTE,
  43        SCAN_PTE_NON_PRESENT,
  44        SCAN_PAGE_RO,
  45        SCAN_NO_REFERENCED_PAGE,
  46        SCAN_PAGE_NULL,
  47        SCAN_SCAN_ABORT,
  48        SCAN_PAGE_COUNT,
  49        SCAN_PAGE_LRU,
  50        SCAN_PAGE_LOCK,
  51        SCAN_PAGE_ANON,
  52        SCAN_PAGE_COMPOUND,
  53        SCAN_ANY_PROCESS,
  54        SCAN_VMA_NULL,
  55        SCAN_VMA_CHECK,
  56        SCAN_ADDRESS_RANGE,
  57        SCAN_SWAP_CACHE_PAGE,
  58        SCAN_DEL_PAGE_LRU,
  59        SCAN_ALLOC_HUGE_PAGE_FAIL,
  60        SCAN_CGROUP_CHARGE_FAIL
  61};
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/huge_memory.h>
  65
  66/*
  67 * By default transparent hugepage support is disabled in order that avoid
  68 * to risk increase the memory footprint of applications without a guaranteed
  69 * benefit. When transparent hugepage support is enabled, is for all mappings,
  70 * and khugepaged scans all mappings.
  71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  72 * for all hugepage allocations.
  73 */
  74unsigned long transparent_hugepage_flags __read_mostly =
  75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  76        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  77#endif
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  79        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  80#endif
  81        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  82        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  83        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  84
  85/* default scan 8*512 pte (or vmas) every 30 second */
  86static unsigned int khugepaged_pages_to_scan __read_mostly;
  87static unsigned int khugepaged_pages_collapsed;
  88static unsigned int khugepaged_full_scans;
  89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  90/* during fragmentation poll the hugepage allocator once every minute */
  91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  92static struct task_struct *khugepaged_thread __read_mostly;
  93static DEFINE_MUTEX(khugepaged_mutex);
  94static DEFINE_SPINLOCK(khugepaged_mm_lock);
  95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  96/*
  97 * default collapse hugepages if there is at least one pte mapped like
  98 * it would have happened if the vma was large enough during page
  99 * fault.
 100 */
 101static unsigned int khugepaged_max_ptes_none __read_mostly;
 102
 103static int khugepaged(void *none);
 104static int khugepaged_slab_init(void);
 105static void khugepaged_slab_exit(void);
 106
 107#define MM_SLOTS_HASH_BITS 10
 108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 109
 110static struct kmem_cache *mm_slot_cache __read_mostly;
 111
 112/**
 113 * struct mm_slot - hash lookup from mm to mm_slot
 114 * @hash: hash collision list
 115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 116 * @mm: the mm that this information is valid for
 117 */
 118struct mm_slot {
 119        struct hlist_node hash;
 120        struct list_head mm_node;
 121        struct mm_struct *mm;
 122};
 123
 124/**
 125 * struct khugepaged_scan - cursor for scanning
 126 * @mm_head: the head of the mm list to scan
 127 * @mm_slot: the current mm_slot we are scanning
 128 * @address: the next address inside that to be scanned
 129 *
 130 * There is only the one khugepaged_scan instance of this cursor structure.
 131 */
 132struct khugepaged_scan {
 133        struct list_head mm_head;
 134        struct mm_slot *mm_slot;
 135        unsigned long address;
 136};
 137static struct khugepaged_scan khugepaged_scan = {
 138        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 139};
 140
 141static struct shrinker deferred_split_shrinker;
 142
 143static void set_recommended_min_free_kbytes(void)
 144{
 145        struct zone *zone;
 146        int nr_zones = 0;
 147        unsigned long recommended_min;
 148
 149        for_each_populated_zone(zone)
 150                nr_zones++;
 151
 152        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 153        recommended_min = pageblock_nr_pages * nr_zones * 2;
 154
 155        /*
 156         * Make sure that on average at least two pageblocks are almost free
 157         * of another type, one for a migratetype to fall back to and a
 158         * second to avoid subsequent fallbacks of other types There are 3
 159         * MIGRATE_TYPES we care about.
 160         */
 161        recommended_min += pageblock_nr_pages * nr_zones *
 162                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 163
 164        /* don't ever allow to reserve more than 5% of the lowmem */
 165        recommended_min = min(recommended_min,
 166                              (unsigned long) nr_free_buffer_pages() / 20);
 167        recommended_min <<= (PAGE_SHIFT-10);
 168
 169        if (recommended_min > min_free_kbytes) {
 170                if (user_min_free_kbytes >= 0)
 171                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 172                                min_free_kbytes, recommended_min);
 173
 174                min_free_kbytes = recommended_min;
 175        }
 176        setup_per_zone_wmarks();
 177}
 178
 179static int start_stop_khugepaged(void)
 180{
 181        int err = 0;
 182        if (khugepaged_enabled()) {
 183                if (!khugepaged_thread)
 184                        khugepaged_thread = kthread_run(khugepaged, NULL,
 185                                                        "khugepaged");
 186                if (IS_ERR(khugepaged_thread)) {
 187                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 188                        err = PTR_ERR(khugepaged_thread);
 189                        khugepaged_thread = NULL;
 190                        goto fail;
 191                }
 192
 193                if (!list_empty(&khugepaged_scan.mm_head))
 194                        wake_up_interruptible(&khugepaged_wait);
 195
 196                set_recommended_min_free_kbytes();
 197        } else if (khugepaged_thread) {
 198                kthread_stop(khugepaged_thread);
 199                khugepaged_thread = NULL;
 200        }
 201fail:
 202        return err;
 203}
 204
 205static atomic_t huge_zero_refcount;
 206struct page *huge_zero_page __read_mostly;
 207
 208struct page *get_huge_zero_page(void)
 209{
 210        struct page *zero_page;
 211retry:
 212        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 213                return READ_ONCE(huge_zero_page);
 214
 215        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 216                        HPAGE_PMD_ORDER);
 217        if (!zero_page) {
 218                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 219                return NULL;
 220        }
 221        count_vm_event(THP_ZERO_PAGE_ALLOC);
 222        preempt_disable();
 223        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 224                preempt_enable();
 225                __free_pages(zero_page, compound_order(zero_page));
 226                goto retry;
 227        }
 228
 229        /* We take additional reference here. It will be put back by shrinker */
 230        atomic_set(&huge_zero_refcount, 2);
 231        preempt_enable();
 232        return READ_ONCE(huge_zero_page);
 233}
 234
 235void put_huge_zero_page(void)
 236{
 237        /*
 238         * Counter should never go to zero here. Only shrinker can put
 239         * last reference.
 240         */
 241        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 242}
 243
 244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 245                                        struct shrink_control *sc)
 246{
 247        /* we can free zero page only if last reference remains */
 248        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 249}
 250
 251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 252                                       struct shrink_control *sc)
 253{
 254        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 255                struct page *zero_page = xchg(&huge_zero_page, NULL);
 256                BUG_ON(zero_page == NULL);
 257                __free_pages(zero_page, compound_order(zero_page));
 258                return HPAGE_PMD_NR;
 259        }
 260
 261        return 0;
 262}
 263
 264static struct shrinker huge_zero_page_shrinker = {
 265        .count_objects = shrink_huge_zero_page_count,
 266        .scan_objects = shrink_huge_zero_page_scan,
 267        .seeks = DEFAULT_SEEKS,
 268};
 269
 270#ifdef CONFIG_SYSFS
 271
 272static ssize_t triple_flag_store(struct kobject *kobj,
 273                                 struct kobj_attribute *attr,
 274                                 const char *buf, size_t count,
 275                                 enum transparent_hugepage_flag enabled,
 276                                 enum transparent_hugepage_flag deferred,
 277                                 enum transparent_hugepage_flag req_madv)
 278{
 279        if (!memcmp("defer", buf,
 280                    min(sizeof("defer")-1, count))) {
 281                if (enabled == deferred)
 282                        return -EINVAL;
 283                clear_bit(enabled, &transparent_hugepage_flags);
 284                clear_bit(req_madv, &transparent_hugepage_flags);
 285                set_bit(deferred, &transparent_hugepage_flags);
 286        } else if (!memcmp("always", buf,
 287                    min(sizeof("always")-1, count))) {
 288                clear_bit(deferred, &transparent_hugepage_flags);
 289                clear_bit(req_madv, &transparent_hugepage_flags);
 290                set_bit(enabled, &transparent_hugepage_flags);
 291        } else if (!memcmp("madvise", buf,
 292                           min(sizeof("madvise")-1, count))) {
 293                clear_bit(enabled, &transparent_hugepage_flags);
 294                clear_bit(deferred, &transparent_hugepage_flags);
 295                set_bit(req_madv, &transparent_hugepage_flags);
 296        } else if (!memcmp("never", buf,
 297                           min(sizeof("never")-1, count))) {
 298                clear_bit(enabled, &transparent_hugepage_flags);
 299                clear_bit(req_madv, &transparent_hugepage_flags);
 300                clear_bit(deferred, &transparent_hugepage_flags);
 301        } else
 302                return -EINVAL;
 303
 304        return count;
 305}
 306
 307static ssize_t enabled_show(struct kobject *kobj,
 308                            struct kobj_attribute *attr, char *buf)
 309{
 310        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 311                return sprintf(buf, "[always] madvise never\n");
 312        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 313                return sprintf(buf, "always [madvise] never\n");
 314        else
 315                return sprintf(buf, "always madvise [never]\n");
 316}
 317
 318static ssize_t enabled_store(struct kobject *kobj,
 319                             struct kobj_attribute *attr,
 320                             const char *buf, size_t count)
 321{
 322        ssize_t ret;
 323
 324        ret = triple_flag_store(kobj, attr, buf, count,
 325                                TRANSPARENT_HUGEPAGE_FLAG,
 326                                TRANSPARENT_HUGEPAGE_FLAG,
 327                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 328
 329        if (ret > 0) {
 330                int err;
 331
 332                mutex_lock(&khugepaged_mutex);
 333                err = start_stop_khugepaged();
 334                mutex_unlock(&khugepaged_mutex);
 335
 336                if (err)
 337                        ret = err;
 338        }
 339
 340        return ret;
 341}
 342static struct kobj_attribute enabled_attr =
 343        __ATTR(enabled, 0644, enabled_show, enabled_store);
 344
 345static ssize_t single_flag_show(struct kobject *kobj,
 346                                struct kobj_attribute *attr, char *buf,
 347                                enum transparent_hugepage_flag flag)
 348{
 349        return sprintf(buf, "%d\n",
 350                       !!test_bit(flag, &transparent_hugepage_flags));
 351}
 352
 353static ssize_t single_flag_store(struct kobject *kobj,
 354                                 struct kobj_attribute *attr,
 355                                 const char *buf, size_t count,
 356                                 enum transparent_hugepage_flag flag)
 357{
 358        unsigned long value;
 359        int ret;
 360
 361        ret = kstrtoul(buf, 10, &value);
 362        if (ret < 0)
 363                return ret;
 364        if (value > 1)
 365                return -EINVAL;
 366
 367        if (value)
 368                set_bit(flag, &transparent_hugepage_flags);
 369        else
 370                clear_bit(flag, &transparent_hugepage_flags);
 371
 372        return count;
 373}
 374
 375/*
 376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 378 * memory just to allocate one more hugepage.
 379 */
 380static ssize_t defrag_show(struct kobject *kobj,
 381                           struct kobj_attribute *attr, char *buf)
 382{
 383        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 384                return sprintf(buf, "[always] defer madvise never\n");
 385        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 386                return sprintf(buf, "always [defer] madvise never\n");
 387        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 388                return sprintf(buf, "always defer [madvise] never\n");
 389        else
 390                return sprintf(buf, "always defer madvise [never]\n");
 391
 392}
 393static ssize_t defrag_store(struct kobject *kobj,
 394                            struct kobj_attribute *attr,
 395                            const char *buf, size_t count)
 396{
 397        return triple_flag_store(kobj, attr, buf, count,
 398                                 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 399                                 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 400                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 401}
 402static struct kobj_attribute defrag_attr =
 403        __ATTR(defrag, 0644, defrag_show, defrag_store);
 404
 405static ssize_t use_zero_page_show(struct kobject *kobj,
 406                struct kobj_attribute *attr, char *buf)
 407{
 408        return single_flag_show(kobj, attr, buf,
 409                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 410}
 411static ssize_t use_zero_page_store(struct kobject *kobj,
 412                struct kobj_attribute *attr, const char *buf, size_t count)
 413{
 414        return single_flag_store(kobj, attr, buf, count,
 415                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 416}
 417static struct kobj_attribute use_zero_page_attr =
 418        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 419#ifdef CONFIG_DEBUG_VM
 420static ssize_t debug_cow_show(struct kobject *kobj,
 421                                struct kobj_attribute *attr, char *buf)
 422{
 423        return single_flag_show(kobj, attr, buf,
 424                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 425}
 426static ssize_t debug_cow_store(struct kobject *kobj,
 427                               struct kobj_attribute *attr,
 428                               const char *buf, size_t count)
 429{
 430        return single_flag_store(kobj, attr, buf, count,
 431                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 432}
 433static struct kobj_attribute debug_cow_attr =
 434        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 435#endif /* CONFIG_DEBUG_VM */
 436
 437static struct attribute *hugepage_attr[] = {
 438        &enabled_attr.attr,
 439        &defrag_attr.attr,
 440        &use_zero_page_attr.attr,
 441#ifdef CONFIG_DEBUG_VM
 442        &debug_cow_attr.attr,
 443#endif
 444        NULL,
 445};
 446
 447static struct attribute_group hugepage_attr_group = {
 448        .attrs = hugepage_attr,
 449};
 450
 451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 452                                         struct kobj_attribute *attr,
 453                                         char *buf)
 454{
 455        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 456}
 457
 458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 459                                          struct kobj_attribute *attr,
 460                                          const char *buf, size_t count)
 461{
 462        unsigned long msecs;
 463        int err;
 464
 465        err = kstrtoul(buf, 10, &msecs);
 466        if (err || msecs > UINT_MAX)
 467                return -EINVAL;
 468
 469        khugepaged_scan_sleep_millisecs = msecs;
 470        wake_up_interruptible(&khugepaged_wait);
 471
 472        return count;
 473}
 474static struct kobj_attribute scan_sleep_millisecs_attr =
 475        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 476               scan_sleep_millisecs_store);
 477
 478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 479                                          struct kobj_attribute *attr,
 480                                          char *buf)
 481{
 482        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 483}
 484
 485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 486                                           struct kobj_attribute *attr,
 487                                           const char *buf, size_t count)
 488{
 489        unsigned long msecs;
 490        int err;
 491
 492        err = kstrtoul(buf, 10, &msecs);
 493        if (err || msecs > UINT_MAX)
 494                return -EINVAL;
 495
 496        khugepaged_alloc_sleep_millisecs = msecs;
 497        wake_up_interruptible(&khugepaged_wait);
 498
 499        return count;
 500}
 501static struct kobj_attribute alloc_sleep_millisecs_attr =
 502        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 503               alloc_sleep_millisecs_store);
 504
 505static ssize_t pages_to_scan_show(struct kobject *kobj,
 506                                  struct kobj_attribute *attr,
 507                                  char *buf)
 508{
 509        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 510}
 511static ssize_t pages_to_scan_store(struct kobject *kobj,
 512                                   struct kobj_attribute *attr,
 513                                   const char *buf, size_t count)
 514{
 515        int err;
 516        unsigned long pages;
 517
 518        err = kstrtoul(buf, 10, &pages);
 519        if (err || !pages || pages > UINT_MAX)
 520                return -EINVAL;
 521
 522        khugepaged_pages_to_scan = pages;
 523
 524        return count;
 525}
 526static struct kobj_attribute pages_to_scan_attr =
 527        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 528               pages_to_scan_store);
 529
 530static ssize_t pages_collapsed_show(struct kobject *kobj,
 531                                    struct kobj_attribute *attr,
 532                                    char *buf)
 533{
 534        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 535}
 536static struct kobj_attribute pages_collapsed_attr =
 537        __ATTR_RO(pages_collapsed);
 538
 539static ssize_t full_scans_show(struct kobject *kobj,
 540                               struct kobj_attribute *attr,
 541                               char *buf)
 542{
 543        return sprintf(buf, "%u\n", khugepaged_full_scans);
 544}
 545static struct kobj_attribute full_scans_attr =
 546        __ATTR_RO(full_scans);
 547
 548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 549                                      struct kobj_attribute *attr, char *buf)
 550{
 551        return single_flag_show(kobj, attr, buf,
 552                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 553}
 554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 555                                       struct kobj_attribute *attr,
 556                                       const char *buf, size_t count)
 557{
 558        return single_flag_store(kobj, attr, buf, count,
 559                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 560}
 561static struct kobj_attribute khugepaged_defrag_attr =
 562        __ATTR(defrag, 0644, khugepaged_defrag_show,
 563               khugepaged_defrag_store);
 564
 565/*
 566 * max_ptes_none controls if khugepaged should collapse hugepages over
 567 * any unmapped ptes in turn potentially increasing the memory
 568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 569 * reduce the available free memory in the system as it
 570 * runs. Increasing max_ptes_none will instead potentially reduce the
 571 * free memory in the system during the khugepaged scan.
 572 */
 573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 574                                             struct kobj_attribute *attr,
 575                                             char *buf)
 576{
 577        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 578}
 579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 580                                              struct kobj_attribute *attr,
 581                                              const char *buf, size_t count)
 582{
 583        int err;
 584        unsigned long max_ptes_none;
 585
 586        err = kstrtoul(buf, 10, &max_ptes_none);
 587        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 588                return -EINVAL;
 589
 590        khugepaged_max_ptes_none = max_ptes_none;
 591
 592        return count;
 593}
 594static struct kobj_attribute khugepaged_max_ptes_none_attr =
 595        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 596               khugepaged_max_ptes_none_store);
 597
 598static struct attribute *khugepaged_attr[] = {
 599        &khugepaged_defrag_attr.attr,
 600        &khugepaged_max_ptes_none_attr.attr,
 601        &pages_to_scan_attr.attr,
 602        &pages_collapsed_attr.attr,
 603        &full_scans_attr.attr,
 604        &scan_sleep_millisecs_attr.attr,
 605        &alloc_sleep_millisecs_attr.attr,
 606        NULL,
 607};
 608
 609static struct attribute_group khugepaged_attr_group = {
 610        .attrs = khugepaged_attr,
 611        .name = "khugepaged",
 612};
 613
 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 615{
 616        int err;
 617
 618        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 619        if (unlikely(!*hugepage_kobj)) {
 620                pr_err("failed to create transparent hugepage kobject\n");
 621                return -ENOMEM;
 622        }
 623
 624        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 625        if (err) {
 626                pr_err("failed to register transparent hugepage group\n");
 627                goto delete_obj;
 628        }
 629
 630        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 631        if (err) {
 632                pr_err("failed to register transparent hugepage group\n");
 633                goto remove_hp_group;
 634        }
 635
 636        return 0;
 637
 638remove_hp_group:
 639        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 640delete_obj:
 641        kobject_put(*hugepage_kobj);
 642        return err;
 643}
 644
 645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 646{
 647        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 648        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 649        kobject_put(hugepage_kobj);
 650}
 651#else
 652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 653{
 654        return 0;
 655}
 656
 657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 658{
 659}
 660#endif /* CONFIG_SYSFS */
 661
 662static int __init hugepage_init(void)
 663{
 664        int err;
 665        struct kobject *hugepage_kobj;
 666
 667        if (!has_transparent_hugepage()) {
 668                transparent_hugepage_flags = 0;
 669                return -EINVAL;
 670        }
 671
 672        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 673        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 674        /*
 675         * hugepages can't be allocated by the buddy allocator
 676         */
 677        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 678        /*
 679         * we use page->mapping and page->index in second tail page
 680         * as list_head: assuming THP order >= 2
 681         */
 682        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 683
 684        err = hugepage_init_sysfs(&hugepage_kobj);
 685        if (err)
 686                goto err_sysfs;
 687
 688        err = khugepaged_slab_init();
 689        if (err)
 690                goto err_slab;
 691
 692        err = register_shrinker(&huge_zero_page_shrinker);
 693        if (err)
 694                goto err_hzp_shrinker;
 695        err = register_shrinker(&deferred_split_shrinker);
 696        if (err)
 697                goto err_split_shrinker;
 698
 699        /*
 700         * By default disable transparent hugepages on smaller systems,
 701         * where the extra memory used could hurt more than TLB overhead
 702         * is likely to save.  The admin can still enable it through /sys.
 703         */
 704        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 705                transparent_hugepage_flags = 0;
 706                return 0;
 707        }
 708
 709        err = start_stop_khugepaged();
 710        if (err)
 711                goto err_khugepaged;
 712
 713        return 0;
 714err_khugepaged:
 715        unregister_shrinker(&deferred_split_shrinker);
 716err_split_shrinker:
 717        unregister_shrinker(&huge_zero_page_shrinker);
 718err_hzp_shrinker:
 719        khugepaged_slab_exit();
 720err_slab:
 721        hugepage_exit_sysfs(hugepage_kobj);
 722err_sysfs:
 723        return err;
 724}
 725subsys_initcall(hugepage_init);
 726
 727static int __init setup_transparent_hugepage(char *str)
 728{
 729        int ret = 0;
 730        if (!str)
 731                goto out;
 732        if (!strcmp(str, "always")) {
 733                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 734                        &transparent_hugepage_flags);
 735                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 736                          &transparent_hugepage_flags);
 737                ret = 1;
 738        } else if (!strcmp(str, "madvise")) {
 739                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 740                          &transparent_hugepage_flags);
 741                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 742                        &transparent_hugepage_flags);
 743                ret = 1;
 744        } else if (!strcmp(str, "never")) {
 745                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 746                          &transparent_hugepage_flags);
 747                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 748                          &transparent_hugepage_flags);
 749                ret = 1;
 750        }
 751out:
 752        if (!ret)
 753                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 754        return ret;
 755}
 756__setup("transparent_hugepage=", setup_transparent_hugepage);
 757
 758pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 759{
 760        if (likely(vma->vm_flags & VM_WRITE))
 761                pmd = pmd_mkwrite(pmd);
 762        return pmd;
 763}
 764
 765static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 766{
 767        pmd_t entry;
 768        entry = mk_pmd(page, prot);
 769        entry = pmd_mkhuge(entry);
 770        return entry;
 771}
 772
 773static inline struct list_head *page_deferred_list(struct page *page)
 774{
 775        /*
 776         * ->lru in the tail pages is occupied by compound_head.
 777         * Let's use ->mapping + ->index in the second tail page as list_head.
 778         */
 779        return (struct list_head *)&page[2].mapping;
 780}
 781
 782void prep_transhuge_page(struct page *page)
 783{
 784        /*
 785         * we use page->mapping and page->indexlru in second tail page
 786         * as list_head: assuming THP order >= 2
 787         */
 788
 789        INIT_LIST_HEAD(page_deferred_list(page));
 790        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 791}
 792
 793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 794                                        struct vm_area_struct *vma,
 795                                        unsigned long address, pmd_t *pmd,
 796                                        struct page *page, gfp_t gfp,
 797                                        unsigned int flags)
 798{
 799        struct mem_cgroup *memcg;
 800        pgtable_t pgtable;
 801        spinlock_t *ptl;
 802        unsigned long haddr = address & HPAGE_PMD_MASK;
 803
 804        VM_BUG_ON_PAGE(!PageCompound(page), page);
 805
 806        if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 807                put_page(page);
 808                count_vm_event(THP_FAULT_FALLBACK);
 809                return VM_FAULT_FALLBACK;
 810        }
 811
 812        pgtable = pte_alloc_one(mm, haddr);
 813        if (unlikely(!pgtable)) {
 814                mem_cgroup_cancel_charge(page, memcg, true);
 815                put_page(page);
 816                return VM_FAULT_OOM;
 817        }
 818
 819        clear_huge_page(page, haddr, HPAGE_PMD_NR);
 820        /*
 821         * The memory barrier inside __SetPageUptodate makes sure that
 822         * clear_huge_page writes become visible before the set_pmd_at()
 823         * write.
 824         */
 825        __SetPageUptodate(page);
 826
 827        ptl = pmd_lock(mm, pmd);
 828        if (unlikely(!pmd_none(*pmd))) {
 829                spin_unlock(ptl);
 830                mem_cgroup_cancel_charge(page, memcg, true);
 831                put_page(page);
 832                pte_free(mm, pgtable);
 833        } else {
 834                pmd_t entry;
 835
 836                /* Deliver the page fault to userland */
 837                if (userfaultfd_missing(vma)) {
 838                        int ret;
 839
 840                        spin_unlock(ptl);
 841                        mem_cgroup_cancel_charge(page, memcg, true);
 842                        put_page(page);
 843                        pte_free(mm, pgtable);
 844                        ret = handle_userfault(vma, address, flags,
 845                                               VM_UFFD_MISSING);
 846                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 847                        return ret;
 848                }
 849
 850                entry = mk_huge_pmd(page, vma->vm_page_prot);
 851                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 852                page_add_new_anon_rmap(page, vma, haddr, true);
 853                mem_cgroup_commit_charge(page, memcg, false, true);
 854                lru_cache_add_active_or_unevictable(page, vma);
 855                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 856                set_pmd_at(mm, haddr, pmd, entry);
 857                add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 858                atomic_long_inc(&mm->nr_ptes);
 859                spin_unlock(ptl);
 860                count_vm_event(THP_FAULT_ALLOC);
 861        }
 862
 863        return 0;
 864}
 865
 866/*
 867 * If THP is set to always then directly reclaim/compact as necessary
 868 * If set to defer then do no reclaim and defer to khugepaged
 869 * If set to madvise and the VMA is flagged then directly reclaim/compact
 870 */
 871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 872{
 873        gfp_t reclaim_flags = 0;
 874
 875        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
 876            (vma->vm_flags & VM_HUGEPAGE))
 877                reclaim_flags = __GFP_DIRECT_RECLAIM;
 878        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 879                reclaim_flags = __GFP_KSWAPD_RECLAIM;
 880        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 881                reclaim_flags = __GFP_DIRECT_RECLAIM;
 882
 883        return GFP_TRANSHUGE | reclaim_flags;
 884}
 885
 886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 888{
 889        return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
 890}
 891
 892/* Caller must hold page table lock. */
 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 894                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 895                struct page *zero_page)
 896{
 897        pmd_t entry;
 898        if (!pmd_none(*pmd))
 899                return false;
 900        entry = mk_pmd(zero_page, vma->vm_page_prot);
 901        entry = pmd_mkhuge(entry);
 902        if (pgtable)
 903                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 904        set_pmd_at(mm, haddr, pmd, entry);
 905        atomic_long_inc(&mm->nr_ptes);
 906        return true;
 907}
 908
 909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 910                               unsigned long address, pmd_t *pmd,
 911                               unsigned int flags)
 912{
 913        gfp_t gfp;
 914        struct page *page;
 915        unsigned long haddr = address & HPAGE_PMD_MASK;
 916
 917        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 918                return VM_FAULT_FALLBACK;
 919        if (unlikely(anon_vma_prepare(vma)))
 920                return VM_FAULT_OOM;
 921        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 922                return VM_FAULT_OOM;
 923        if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 924                        transparent_hugepage_use_zero_page()) {
 925                spinlock_t *ptl;
 926                pgtable_t pgtable;
 927                struct page *zero_page;
 928                bool set;
 929                int ret;
 930                pgtable = pte_alloc_one(mm, haddr);
 931                if (unlikely(!pgtable))
 932                        return VM_FAULT_OOM;
 933                zero_page = get_huge_zero_page();
 934                if (unlikely(!zero_page)) {
 935                        pte_free(mm, pgtable);
 936                        count_vm_event(THP_FAULT_FALLBACK);
 937                        return VM_FAULT_FALLBACK;
 938                }
 939                ptl = pmd_lock(mm, pmd);
 940                ret = 0;
 941                set = false;
 942                if (pmd_none(*pmd)) {
 943                        if (userfaultfd_missing(vma)) {
 944                                spin_unlock(ptl);
 945                                ret = handle_userfault(vma, address, flags,
 946                                                       VM_UFFD_MISSING);
 947                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 948                        } else {
 949                                set_huge_zero_page(pgtable, mm, vma,
 950                                                   haddr, pmd,
 951                                                   zero_page);
 952                                spin_unlock(ptl);
 953                                set = true;
 954                        }
 955                } else
 956                        spin_unlock(ptl);
 957                if (!set) {
 958                        pte_free(mm, pgtable);
 959                        put_huge_zero_page();
 960                }
 961                return ret;
 962        }
 963        gfp = alloc_hugepage_direct_gfpmask(vma);
 964        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 965        if (unlikely(!page)) {
 966                count_vm_event(THP_FAULT_FALLBACK);
 967                return VM_FAULT_FALLBACK;
 968        }
 969        prep_transhuge_page(page);
 970        return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 971                                            flags);
 972}
 973
 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 975                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 976{
 977        struct mm_struct *mm = vma->vm_mm;
 978        pmd_t entry;
 979        spinlock_t *ptl;
 980
 981        ptl = pmd_lock(mm, pmd);
 982        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 983        if (pfn_t_devmap(pfn))
 984                entry = pmd_mkdevmap(entry);
 985        if (write) {
 986                entry = pmd_mkyoung(pmd_mkdirty(entry));
 987                entry = maybe_pmd_mkwrite(entry, vma);
 988        }
 989        set_pmd_at(mm, addr, pmd, entry);
 990        update_mmu_cache_pmd(vma, addr, pmd);
 991        spin_unlock(ptl);
 992}
 993
 994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 995                        pmd_t *pmd, pfn_t pfn, bool write)
 996{
 997        pgprot_t pgprot = vma->vm_page_prot;
 998        /*
 999         * If we had pmd_special, we could avoid all these restrictions,
1000         * but we need to be consistent with PTEs and architectures that
1001         * can't support a 'special' bit.
1002         */
1003        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005                                                (VM_PFNMAP|VM_MIXEDMAP));
1006        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007        BUG_ON(!pfn_t_devmap(pfn));
1008
1009        if (addr < vma->vm_start || addr >= vma->vm_end)
1010                return VM_FAULT_SIGBUS;
1011        if (track_pfn_insert(vma, &pgprot, pfn))
1012                return VM_FAULT_SIGBUS;
1013        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014        return VM_FAULT_NOPAGE;
1015}
1016
1017static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018                pmd_t *pmd)
1019{
1020        pmd_t _pmd;
1021
1022        /*
1023         * We should set the dirty bit only for FOLL_WRITE but for now
1024         * the dirty bit in the pmd is meaningless.  And if the dirty
1025         * bit will become meaningful and we'll only set it with
1026         * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027         * set the young bit, instead of the current set_pmd_at.
1028         */
1029        _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031                                pmd, _pmd,  1))
1032                update_mmu_cache_pmd(vma, addr, pmd);
1033}
1034
1035struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036                pmd_t *pmd, int flags)
1037{
1038        unsigned long pfn = pmd_pfn(*pmd);
1039        struct mm_struct *mm = vma->vm_mm;
1040        struct dev_pagemap *pgmap;
1041        struct page *page;
1042
1043        assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046                return NULL;
1047
1048        if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049                /* pass */;
1050        else
1051                return NULL;
1052
1053        if (flags & FOLL_TOUCH)
1054                touch_pmd(vma, addr, pmd);
1055
1056        /*
1057         * device mapped pages can only be returned if the
1058         * caller will manage the page reference count.
1059         */
1060        if (!(flags & FOLL_GET))
1061                return ERR_PTR(-EEXIST);
1062
1063        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064        pgmap = get_dev_pagemap(pfn, NULL);
1065        if (!pgmap)
1066                return ERR_PTR(-EFAULT);
1067        page = pfn_to_page(pfn);
1068        get_page(page);
1069        put_dev_pagemap(pgmap);
1070
1071        return page;
1072}
1073
1074int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076                  struct vm_area_struct *vma)
1077{
1078        spinlock_t *dst_ptl, *src_ptl;
1079        struct page *src_page;
1080        pmd_t pmd;
1081        pgtable_t pgtable = NULL;
1082        int ret;
1083
1084        if (!vma_is_dax(vma)) {
1085                ret = -ENOMEM;
1086                pgtable = pte_alloc_one(dst_mm, addr);
1087                if (unlikely(!pgtable))
1088                        goto out;
1089        }
1090
1091        dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092        src_ptl = pmd_lockptr(src_mm, src_pmd);
1093        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094
1095        ret = -EAGAIN;
1096        pmd = *src_pmd;
1097        if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098                pte_free(dst_mm, pgtable);
1099                goto out_unlock;
1100        }
1101        /*
1102         * When page table lock is held, the huge zero pmd should not be
1103         * under splitting since we don't split the page itself, only pmd to
1104         * a page table.
1105         */
1106        if (is_huge_zero_pmd(pmd)) {
1107                struct page *zero_page;
1108                /*
1109                 * get_huge_zero_page() will never allocate a new page here,
1110                 * since we already have a zero page to copy. It just takes a
1111                 * reference.
1112                 */
1113                zero_page = get_huge_zero_page();
1114                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115                                zero_page);
1116                ret = 0;
1117                goto out_unlock;
1118        }
1119
1120        if (!vma_is_dax(vma)) {
1121                /* thp accounting separate from pmd_devmap accounting */
1122                src_page = pmd_page(pmd);
1123                VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124                get_page(src_page);
1125                page_dup_rmap(src_page, true);
1126                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127                atomic_long_inc(&dst_mm->nr_ptes);
1128                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129        }
1130
1131        pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132        pmd = pmd_mkold(pmd_wrprotect(pmd));
1133        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134
1135        ret = 0;
1136out_unlock:
1137        spin_unlock(src_ptl);
1138        spin_unlock(dst_ptl);
1139out:
1140        return ret;
1141}
1142
1143void huge_pmd_set_accessed(struct mm_struct *mm,
1144                           struct vm_area_struct *vma,
1145                           unsigned long address,
1146                           pmd_t *pmd, pmd_t orig_pmd,
1147                           int dirty)
1148{
1149        spinlock_t *ptl;
1150        pmd_t entry;
1151        unsigned long haddr;
1152
1153        ptl = pmd_lock(mm, pmd);
1154        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155                goto unlock;
1156
1157        entry = pmd_mkyoung(orig_pmd);
1158        haddr = address & HPAGE_PMD_MASK;
1159        if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160                update_mmu_cache_pmd(vma, address, pmd);
1161
1162unlock:
1163        spin_unlock(ptl);
1164}
1165
1166static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167                                        struct vm_area_struct *vma,
1168                                        unsigned long address,
1169                                        pmd_t *pmd, pmd_t orig_pmd,
1170                                        struct page *page,
1171                                        unsigned long haddr)
1172{
1173        struct mem_cgroup *memcg;
1174        spinlock_t *ptl;
1175        pgtable_t pgtable;
1176        pmd_t _pmd;
1177        int ret = 0, i;
1178        struct page **pages;
1179        unsigned long mmun_start;       /* For mmu_notifiers */
1180        unsigned long mmun_end;         /* For mmu_notifiers */
1181
1182        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183                        GFP_KERNEL);
1184        if (unlikely(!pages)) {
1185                ret |= VM_FAULT_OOM;
1186                goto out;
1187        }
1188
1189        for (i = 0; i < HPAGE_PMD_NR; i++) {
1190                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191                                               __GFP_OTHER_NODE,
1192                                               vma, address, page_to_nid(page));
1193                if (unlikely(!pages[i] ||
1194                             mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195                                                   &memcg, false))) {
1196                        if (pages[i])
1197                                put_page(pages[i]);
1198                        while (--i >= 0) {
1199                                memcg = (void *)page_private(pages[i]);
1200                                set_page_private(pages[i], 0);
1201                                mem_cgroup_cancel_charge(pages[i], memcg,
1202                                                false);
1203                                put_page(pages[i]);
1204                        }
1205                        kfree(pages);
1206                        ret |= VM_FAULT_OOM;
1207                        goto out;
1208                }
1209                set_page_private(pages[i], (unsigned long)memcg);
1210        }
1211
1212        for (i = 0; i < HPAGE_PMD_NR; i++) {
1213                copy_user_highpage(pages[i], page + i,
1214                                   haddr + PAGE_SIZE * i, vma);
1215                __SetPageUptodate(pages[i]);
1216                cond_resched();
1217        }
1218
1219        mmun_start = haddr;
1220        mmun_end   = haddr + HPAGE_PMD_SIZE;
1221        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222
1223        ptl = pmd_lock(mm, pmd);
1224        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225                goto out_free_pages;
1226        VM_BUG_ON_PAGE(!PageHead(page), page);
1227
1228        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229        /* leave pmd empty until pte is filled */
1230
1231        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232        pmd_populate(mm, &_pmd, pgtable);
1233
1234        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235                pte_t *pte, entry;
1236                entry = mk_pte(pages[i], vma->vm_page_prot);
1237                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238                memcg = (void *)page_private(pages[i]);
1239                set_page_private(pages[i], 0);
1240                page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242                lru_cache_add_active_or_unevictable(pages[i], vma);
1243                pte = pte_offset_map(&_pmd, haddr);
1244                VM_BUG_ON(!pte_none(*pte));
1245                set_pte_at(mm, haddr, pte, entry);
1246                pte_unmap(pte);
1247        }
1248        kfree(pages);
1249
1250        smp_wmb(); /* make pte visible before pmd */
1251        pmd_populate(mm, pmd, pgtable);
1252        page_remove_rmap(page, true);
1253        spin_unlock(ptl);
1254
1255        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256
1257        ret |= VM_FAULT_WRITE;
1258        put_page(page);
1259
1260out:
1261        return ret;
1262
1263out_free_pages:
1264        spin_unlock(ptl);
1265        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266        for (i = 0; i < HPAGE_PMD_NR; i++) {
1267                memcg = (void *)page_private(pages[i]);
1268                set_page_private(pages[i], 0);
1269                mem_cgroup_cancel_charge(pages[i], memcg, false);
1270                put_page(pages[i]);
1271        }
1272        kfree(pages);
1273        goto out;
1274}
1275
1276int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278{
1279        spinlock_t *ptl;
1280        int ret = 0;
1281        struct page *page = NULL, *new_page;
1282        struct mem_cgroup *memcg;
1283        unsigned long haddr;
1284        unsigned long mmun_start;       /* For mmu_notifiers */
1285        unsigned long mmun_end;         /* For mmu_notifiers */
1286        gfp_t huge_gfp;                 /* for allocation and charge */
1287
1288        ptl = pmd_lockptr(mm, pmd);
1289        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290        haddr = address & HPAGE_PMD_MASK;
1291        if (is_huge_zero_pmd(orig_pmd))
1292                goto alloc;
1293        spin_lock(ptl);
1294        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295                goto out_unlock;
1296
1297        page = pmd_page(orig_pmd);
1298        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299        /*
1300         * We can only reuse the page if nobody else maps the huge page or it's
1301         * part.
1302         */
1303        if (page_trans_huge_mapcount(page, NULL) == 1) {
1304                pmd_t entry;
1305                entry = pmd_mkyoung(orig_pmd);
1306                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307                if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308                        update_mmu_cache_pmd(vma, address, pmd);
1309                ret |= VM_FAULT_WRITE;
1310                goto out_unlock;
1311        }
1312        get_page(page);
1313        spin_unlock(ptl);
1314alloc:
1315        if (transparent_hugepage_enabled(vma) &&
1316            !transparent_hugepage_debug_cow()) {
1317                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319        } else
1320                new_page = NULL;
1321
1322        if (likely(new_page)) {
1323                prep_transhuge_page(new_page);
1324        } else {
1325                if (!page) {
1326                        split_huge_pmd(vma, pmd, address);
1327                        ret |= VM_FAULT_FALLBACK;
1328                } else {
1329                        ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330                                        pmd, orig_pmd, page, haddr);
1331                        if (ret & VM_FAULT_OOM) {
1332                                split_huge_pmd(vma, pmd, address);
1333                                ret |= VM_FAULT_FALLBACK;
1334                        }
1335                        put_page(page);
1336                }
1337                count_vm_event(THP_FAULT_FALLBACK);
1338                goto out;
1339        }
1340
1341        if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342                                           true))) {
1343                put_page(new_page);
1344                if (page) {
1345                        split_huge_pmd(vma, pmd, address);
1346                        put_page(page);
1347                } else
1348                        split_huge_pmd(vma, pmd, address);
1349                ret |= VM_FAULT_FALLBACK;
1350                count_vm_event(THP_FAULT_FALLBACK);
1351                goto out;
1352        }
1353
1354        count_vm_event(THP_FAULT_ALLOC);
1355
1356        if (!page)
1357                clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358        else
1359                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360        __SetPageUptodate(new_page);
1361
1362        mmun_start = haddr;
1363        mmun_end   = haddr + HPAGE_PMD_SIZE;
1364        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365
1366        spin_lock(ptl);
1367        if (page)
1368                put_page(page);
1369        if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370                spin_unlock(ptl);
1371                mem_cgroup_cancel_charge(new_page, memcg, true);
1372                put_page(new_page);
1373                goto out_mn;
1374        } else {
1375                pmd_t entry;
1376                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378                pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379                page_add_new_anon_rmap(new_page, vma, haddr, true);
1380                mem_cgroup_commit_charge(new_page, memcg, false, true);
1381                lru_cache_add_active_or_unevictable(new_page, vma);
1382                set_pmd_at(mm, haddr, pmd, entry);
1383                update_mmu_cache_pmd(vma, address, pmd);
1384                if (!page) {
1385                        add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386                        put_huge_zero_page();
1387                } else {
1388                        VM_BUG_ON_PAGE(!PageHead(page), page);
1389                        page_remove_rmap(page, true);
1390                        put_page(page);
1391                }
1392                ret |= VM_FAULT_WRITE;
1393        }
1394        spin_unlock(ptl);
1395out_mn:
1396        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397out:
1398        return ret;
1399out_unlock:
1400        spin_unlock(ptl);
1401        return ret;
1402}
1403
1404struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405                                   unsigned long addr,
1406                                   pmd_t *pmd,
1407                                   unsigned int flags)
1408{
1409        struct mm_struct *mm = vma->vm_mm;
1410        struct page *page = NULL;
1411
1412        assert_spin_locked(pmd_lockptr(mm, pmd));
1413
1414        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415                goto out;
1416
1417        /* Avoid dumping huge zero page */
1418        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419                return ERR_PTR(-EFAULT);
1420
1421        /* Full NUMA hinting faults to serialise migration in fault paths */
1422        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423                goto out;
1424
1425        page = pmd_page(*pmd);
1426        VM_BUG_ON_PAGE(!PageHead(page), page);
1427        if (flags & FOLL_TOUCH)
1428                touch_pmd(vma, addr, pmd);
1429        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430                /*
1431                 * We don't mlock() pte-mapped THPs. This way we can avoid
1432                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433                 *
1434                 * In most cases the pmd is the only mapping of the page as we
1435                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436                 * writable private mappings in populate_vma_page_range().
1437                 *
1438                 * The only scenario when we have the page shared here is if we
1439                 * mlocking read-only mapping shared over fork(). We skip
1440                 * mlocking such pages.
1441                 */
1442                if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443                                page->mapping && trylock_page(page)) {
1444                        lru_add_drain();
1445                        if (page->mapping)
1446                                mlock_vma_page(page);
1447                        unlock_page(page);
1448                }
1449        }
1450        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451        VM_BUG_ON_PAGE(!PageCompound(page), page);
1452        if (flags & FOLL_GET)
1453                get_page(page);
1454
1455out:
1456        return page;
1457}
1458
1459/* NUMA hinting page fault entry point for trans huge pmds */
1460int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461                                unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462{
1463        spinlock_t *ptl;
1464        struct anon_vma *anon_vma = NULL;
1465        struct page *page;
1466        unsigned long haddr = addr & HPAGE_PMD_MASK;
1467        int page_nid = -1, this_nid = numa_node_id();
1468        int target_nid, last_cpupid = -1;
1469        bool page_locked;
1470        bool migrated = false;
1471        bool was_writable;
1472        int flags = 0;
1473
1474        /* A PROT_NONE fault should not end up here */
1475        BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476
1477        ptl = pmd_lock(mm, pmdp);
1478        if (unlikely(!pmd_same(pmd, *pmdp)))
1479                goto out_unlock;
1480
1481        /*
1482         * If there are potential migrations, wait for completion and retry
1483         * without disrupting NUMA hinting information. Do not relock and
1484         * check_same as the page may no longer be mapped.
1485         */
1486        if (unlikely(pmd_trans_migrating(*pmdp))) {
1487                page = pmd_page(*pmdp);
1488                spin_unlock(ptl);
1489                wait_on_page_locked(page);
1490                goto out;
1491        }
1492
1493        page = pmd_page(pmd);
1494        BUG_ON(is_huge_zero_page(page));
1495        page_nid = page_to_nid(page);
1496        last_cpupid = page_cpupid_last(page);
1497        count_vm_numa_event(NUMA_HINT_FAULTS);
1498        if (page_nid == this_nid) {
1499                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500                flags |= TNF_FAULT_LOCAL;
1501        }
1502
1503        /* See similar comment in do_numa_page for explanation */
1504        if (!(vma->vm_flags & VM_WRITE))
1505                flags |= TNF_NO_GROUP;
1506
1507        /*
1508         * Acquire the page lock to serialise THP migrations but avoid dropping
1509         * page_table_lock if at all possible
1510         */
1511        page_locked = trylock_page(page);
1512        target_nid = mpol_misplaced(page, vma, haddr);
1513        if (target_nid == -1) {
1514                /* If the page was locked, there are no parallel migrations */
1515                if (page_locked)
1516                        goto clear_pmdnuma;
1517        }
1518
1519        /* Migration could have started since the pmd_trans_migrating check */
1520        if (!page_locked) {
1521                spin_unlock(ptl);
1522                wait_on_page_locked(page);
1523                page_nid = -1;
1524                goto out;
1525        }
1526
1527        /*
1528         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529         * to serialises splits
1530         */
1531        get_page(page);
1532        spin_unlock(ptl);
1533        anon_vma = page_lock_anon_vma_read(page);
1534
1535        /* Confirm the PMD did not change while page_table_lock was released */
1536        spin_lock(ptl);
1537        if (unlikely(!pmd_same(pmd, *pmdp))) {
1538                unlock_page(page);
1539                put_page(page);
1540                page_nid = -1;
1541                goto out_unlock;
1542        }
1543
1544        /* Bail if we fail to protect against THP splits for any reason */
1545        if (unlikely(!anon_vma)) {
1546                put_page(page);
1547                page_nid = -1;
1548                goto clear_pmdnuma;
1549        }
1550
1551        /*
1552         * Migrate the THP to the requested node, returns with page unlocked
1553         * and access rights restored.
1554         */
1555        spin_unlock(ptl);
1556        migrated = migrate_misplaced_transhuge_page(mm, vma,
1557                                pmdp, pmd, addr, page, target_nid);
1558        if (migrated) {
1559                flags |= TNF_MIGRATED;
1560                page_nid = target_nid;
1561        } else
1562                flags |= TNF_MIGRATE_FAIL;
1563
1564        goto out;
1565clear_pmdnuma:
1566        BUG_ON(!PageLocked(page));
1567        was_writable = pmd_write(pmd);
1568        pmd = pmd_modify(pmd, vma->vm_page_prot);
1569        pmd = pmd_mkyoung(pmd);
1570        if (was_writable)
1571                pmd = pmd_mkwrite(pmd);
1572        set_pmd_at(mm, haddr, pmdp, pmd);
1573        update_mmu_cache_pmd(vma, addr, pmdp);
1574        unlock_page(page);
1575out_unlock:
1576        spin_unlock(ptl);
1577
1578out:
1579        if (anon_vma)
1580                page_unlock_anon_vma_read(anon_vma);
1581
1582        if (page_nid != -1)
1583                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584
1585        return 0;
1586}
1587
1588int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589                pmd_t *pmd, unsigned long addr, unsigned long next)
1590
1591{
1592        spinlock_t *ptl;
1593        pmd_t orig_pmd;
1594        struct page *page;
1595        struct mm_struct *mm = tlb->mm;
1596        int ret = 0;
1597
1598        ptl = pmd_trans_huge_lock(pmd, vma);
1599        if (!ptl)
1600                goto out_unlocked;
1601
1602        orig_pmd = *pmd;
1603        if (is_huge_zero_pmd(orig_pmd)) {
1604                ret = 1;
1605                goto out;
1606        }
1607
1608        page = pmd_page(orig_pmd);
1609        /*
1610         * If other processes are mapping this page, we couldn't discard
1611         * the page unless they all do MADV_FREE so let's skip the page.
1612         */
1613        if (page_mapcount(page) != 1)
1614                goto out;
1615
1616        if (!trylock_page(page))
1617                goto out;
1618
1619        /*
1620         * If user want to discard part-pages of THP, split it so MADV_FREE
1621         * will deactivate only them.
1622         */
1623        if (next - addr != HPAGE_PMD_SIZE) {
1624                get_page(page);
1625                spin_unlock(ptl);
1626                if (split_huge_page(page)) {
1627                        put_page(page);
1628                        unlock_page(page);
1629                        goto out_unlocked;
1630                }
1631                put_page(page);
1632                unlock_page(page);
1633                ret = 1;
1634                goto out_unlocked;
1635        }
1636
1637        if (PageDirty(page))
1638                ClearPageDirty(page);
1639        unlock_page(page);
1640
1641        if (PageActive(page))
1642                deactivate_page(page);
1643
1644        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645                orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646                        tlb->fullmm);
1647                orig_pmd = pmd_mkold(orig_pmd);
1648                orig_pmd = pmd_mkclean(orig_pmd);
1649
1650                set_pmd_at(mm, addr, pmd, orig_pmd);
1651                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652        }
1653        ret = 1;
1654out:
1655        spin_unlock(ptl);
1656out_unlocked:
1657        return ret;
1658}
1659
1660int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661                 pmd_t *pmd, unsigned long addr)
1662{
1663        pmd_t orig_pmd;
1664        spinlock_t *ptl;
1665
1666        ptl = __pmd_trans_huge_lock(pmd, vma);
1667        if (!ptl)
1668                return 0;
1669        /*
1670         * For architectures like ppc64 we look at deposited pgtable
1671         * when calling pmdp_huge_get_and_clear. So do the
1672         * pgtable_trans_huge_withdraw after finishing pmdp related
1673         * operations.
1674         */
1675        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676                        tlb->fullmm);
1677        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678        if (vma_is_dax(vma)) {
1679                spin_unlock(ptl);
1680                if (is_huge_zero_pmd(orig_pmd))
1681                        tlb_remove_page(tlb, pmd_page(orig_pmd));
1682        } else if (is_huge_zero_pmd(orig_pmd)) {
1683                pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684                atomic_long_dec(&tlb->mm->nr_ptes);
1685                spin_unlock(ptl);
1686                tlb_remove_page(tlb, pmd_page(orig_pmd));
1687        } else {
1688                struct page *page = pmd_page(orig_pmd);
1689                page_remove_rmap(page, true);
1690                VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691                add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692                VM_BUG_ON_PAGE(!PageHead(page), page);
1693                pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694                atomic_long_dec(&tlb->mm->nr_ptes);
1695                spin_unlock(ptl);
1696                tlb_remove_page(tlb, page);
1697        }
1698        return 1;
1699}
1700
1701bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702                  unsigned long old_addr,
1703                  unsigned long new_addr, unsigned long old_end,
1704                  pmd_t *old_pmd, pmd_t *new_pmd)
1705{
1706        spinlock_t *old_ptl, *new_ptl;
1707        pmd_t pmd;
1708
1709        struct mm_struct *mm = vma->vm_mm;
1710
1711        if ((old_addr & ~HPAGE_PMD_MASK) ||
1712            (new_addr & ~HPAGE_PMD_MASK) ||
1713            old_end - old_addr < HPAGE_PMD_SIZE ||
1714            (new_vma->vm_flags & VM_NOHUGEPAGE))
1715                return false;
1716
1717        /*
1718         * The destination pmd shouldn't be established, free_pgtables()
1719         * should have release it.
1720         */
1721        if (WARN_ON(!pmd_none(*new_pmd))) {
1722                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723                return false;
1724        }
1725
1726        /*
1727         * We don't have to worry about the ordering of src and dst
1728         * ptlocks because exclusive mmap_sem prevents deadlock.
1729         */
1730        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731        if (old_ptl) {
1732                new_ptl = pmd_lockptr(mm, new_pmd);
1733                if (new_ptl != old_ptl)
1734                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1736                VM_BUG_ON(!pmd_none(*new_pmd));
1737
1738                if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739                                vma_is_anonymous(vma)) {
1740                        pgtable_t pgtable;
1741                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743                }
1744                set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1745                if (new_ptl != old_ptl)
1746                        spin_unlock(new_ptl);
1747                spin_unlock(old_ptl);
1748                return true;
1749        }
1750        return false;
1751}
1752
1753/*
1754 * Returns
1755 *  - 0 if PMD could not be locked
1756 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758 */
1759int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760                unsigned long addr, pgprot_t newprot, int prot_numa)
1761{
1762        struct mm_struct *mm = vma->vm_mm;
1763        spinlock_t *ptl;
1764        int ret = 0;
1765
1766        ptl = __pmd_trans_huge_lock(pmd, vma);
1767        if (ptl) {
1768                pmd_t entry;
1769                bool preserve_write = prot_numa && pmd_write(*pmd);
1770                ret = 1;
1771
1772                /*
1773                 * Avoid trapping faults against the zero page. The read-only
1774                 * data is likely to be read-cached on the local CPU and
1775                 * local/remote hits to the zero page are not interesting.
1776                 */
1777                if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778                        spin_unlock(ptl);
1779                        return ret;
1780                }
1781
1782                if (!prot_numa || !pmd_protnone(*pmd)) {
1783                        entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784                        entry = pmd_modify(entry, newprot);
1785                        if (preserve_write)
1786                                entry = pmd_mkwrite(entry);
1787                        ret = HPAGE_PMD_NR;
1788                        set_pmd_at(mm, addr, pmd, entry);
1789                        BUG_ON(!preserve_write && pmd_write(entry));
1790                }
1791                spin_unlock(ptl);
1792        }
1793
1794        return ret;
1795}
1796
1797/*
1798 * Returns true if a given pmd maps a thp, false otherwise.
1799 *
1800 * Note that if it returns true, this routine returns without unlocking page
1801 * table lock. So callers must unlock it.
1802 */
1803spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1804{
1805        spinlock_t *ptl;
1806        ptl = pmd_lock(vma->vm_mm, pmd);
1807        if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1808                return ptl;
1809        spin_unlock(ptl);
1810        return NULL;
1811}
1812
1813#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1814
1815int hugepage_madvise(struct vm_area_struct *vma,
1816                     unsigned long *vm_flags, int advice)
1817{
1818        switch (advice) {
1819        case MADV_HUGEPAGE:
1820#ifdef CONFIG_S390
1821                /*
1822                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823                 * can't handle this properly after s390_enable_sie, so we simply
1824                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825                 */
1826                if (mm_has_pgste(vma->vm_mm))
1827                        return 0;
1828#endif
1829                /*
1830                 * Be somewhat over-protective like KSM for now!
1831                 */
1832                if (*vm_flags & VM_NO_THP)
1833                        return -EINVAL;
1834                *vm_flags &= ~VM_NOHUGEPAGE;
1835                *vm_flags |= VM_HUGEPAGE;
1836                /*
1837                 * If the vma become good for khugepaged to scan,
1838                 * register it here without waiting a page fault that
1839                 * may not happen any time soon.
1840                 */
1841                if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842                        return -ENOMEM;
1843                break;
1844        case MADV_NOHUGEPAGE:
1845                /*
1846                 * Be somewhat over-protective like KSM for now!
1847                 */
1848                if (*vm_flags & VM_NO_THP)
1849                        return -EINVAL;
1850                *vm_flags &= ~VM_HUGEPAGE;
1851                *vm_flags |= VM_NOHUGEPAGE;
1852                /*
1853                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854                 * this vma even if we leave the mm registered in khugepaged if
1855                 * it got registered before VM_NOHUGEPAGE was set.
1856                 */
1857                break;
1858        }
1859
1860        return 0;
1861}
1862
1863static int __init khugepaged_slab_init(void)
1864{
1865        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866                                          sizeof(struct mm_slot),
1867                                          __alignof__(struct mm_slot), 0, NULL);
1868        if (!mm_slot_cache)
1869                return -ENOMEM;
1870
1871        return 0;
1872}
1873
1874static void __init khugepaged_slab_exit(void)
1875{
1876        kmem_cache_destroy(mm_slot_cache);
1877}
1878
1879static inline struct mm_slot *alloc_mm_slot(void)
1880{
1881        if (!mm_slot_cache)     /* initialization failed */
1882                return NULL;
1883        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884}
1885
1886static inline void free_mm_slot(struct mm_slot *mm_slot)
1887{
1888        kmem_cache_free(mm_slot_cache, mm_slot);
1889}
1890
1891static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892{
1893        struct mm_slot *mm_slot;
1894
1895        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1896                if (mm == mm_slot->mm)
1897                        return mm_slot;
1898
1899        return NULL;
1900}
1901
1902static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903                                    struct mm_slot *mm_slot)
1904{
1905        mm_slot->mm = mm;
1906        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907}
1908
1909static inline int khugepaged_test_exit(struct mm_struct *mm)
1910{
1911        return atomic_read(&mm->mm_users) == 0;
1912}
1913
1914int __khugepaged_enter(struct mm_struct *mm)
1915{
1916        struct mm_slot *mm_slot;
1917        int wakeup;
1918
1919        mm_slot = alloc_mm_slot();
1920        if (!mm_slot)
1921                return -ENOMEM;
1922
1923        /* __khugepaged_exit() must not run from under us */
1924        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926                free_mm_slot(mm_slot);
1927                return 0;
1928        }
1929
1930        spin_lock(&khugepaged_mm_lock);
1931        insert_to_mm_slots_hash(mm, mm_slot);
1932        /*
1933         * Insert just behind the scanning cursor, to let the area settle
1934         * down a little.
1935         */
1936        wakeup = list_empty(&khugepaged_scan.mm_head);
1937        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938        spin_unlock(&khugepaged_mm_lock);
1939
1940        atomic_inc(&mm->mm_count);
1941        if (wakeup)
1942                wake_up_interruptible(&khugepaged_wait);
1943
1944        return 0;
1945}
1946
1947int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948                               unsigned long vm_flags)
1949{
1950        unsigned long hstart, hend;
1951        if (!vma->anon_vma)
1952                /*
1953                 * Not yet faulted in so we will register later in the
1954                 * page fault if needed.
1955                 */
1956                return 0;
1957        if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958                /* khugepaged not yet working on file or special mappings */
1959                return 0;
1960        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961        hend = vma->vm_end & HPAGE_PMD_MASK;
1962        if (hstart < hend)
1963                return khugepaged_enter(vma, vm_flags);
1964        return 0;
1965}
1966
1967void __khugepaged_exit(struct mm_struct *mm)
1968{
1969        struct mm_slot *mm_slot;
1970        int free = 0;
1971
1972        spin_lock(&khugepaged_mm_lock);
1973        mm_slot = get_mm_slot(mm);
1974        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975                hash_del(&mm_slot->hash);
1976                list_del(&mm_slot->mm_node);
1977                free = 1;
1978        }
1979        spin_unlock(&khugepaged_mm_lock);
1980
1981        if (free) {
1982                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983                free_mm_slot(mm_slot);
1984                mmdrop(mm);
1985        } else if (mm_slot) {
1986                /*
1987                 * This is required to serialize against
1988                 * khugepaged_test_exit() (which is guaranteed to run
1989                 * under mmap sem read mode). Stop here (after we
1990                 * return all pagetables will be destroyed) until
1991                 * khugepaged has finished working on the pagetables
1992                 * under the mmap_sem.
1993                 */
1994                down_write(&mm->mmap_sem);
1995                up_write(&mm->mmap_sem);
1996        }
1997}
1998
1999static void release_pte_page(struct page *page)
2000{
2001        /* 0 stands for page_is_file_cache(page) == false */
2002        dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003        unlock_page(page);
2004        putback_lru_page(page);
2005}
2006
2007static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008{
2009        while (--_pte >= pte) {
2010                pte_t pteval = *_pte;
2011                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012                        release_pte_page(pte_page(pteval));
2013        }
2014}
2015
2016static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017                                        unsigned long address,
2018                                        pte_t *pte)
2019{
2020        struct page *page = NULL;
2021        pte_t *_pte;
2022        int none_or_zero = 0, result = 0;
2023        bool referenced = false, writable = false;
2024
2025        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026             _pte++, address += PAGE_SIZE) {
2027                pte_t pteval = *_pte;
2028                if (pte_none(pteval) || (pte_present(pteval) &&
2029                                is_zero_pfn(pte_pfn(pteval)))) {
2030                        if (!userfaultfd_armed(vma) &&
2031                            ++none_or_zero <= khugepaged_max_ptes_none) {
2032                                continue;
2033                        } else {
2034                                result = SCAN_EXCEED_NONE_PTE;
2035                                goto out;
2036                        }
2037                }
2038                if (!pte_present(pteval)) {
2039                        result = SCAN_PTE_NON_PRESENT;
2040                        goto out;
2041                }
2042                page = vm_normal_page(vma, address, pteval);
2043                if (unlikely(!page)) {
2044                        result = SCAN_PAGE_NULL;
2045                        goto out;
2046                }
2047
2048                VM_BUG_ON_PAGE(PageCompound(page), page);
2049                VM_BUG_ON_PAGE(!PageAnon(page), page);
2050                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051
2052                /*
2053                 * We can do it before isolate_lru_page because the
2054                 * page can't be freed from under us. NOTE: PG_lock
2055                 * is needed to serialize against split_huge_page
2056                 * when invoked from the VM.
2057                 */
2058                if (!trylock_page(page)) {
2059                        result = SCAN_PAGE_LOCK;
2060                        goto out;
2061                }
2062
2063                /*
2064                 * cannot use mapcount: can't collapse if there's a gup pin.
2065                 * The page must only be referenced by the scanned process
2066                 * and page swap cache.
2067                 */
2068                if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069                        unlock_page(page);
2070                        result = SCAN_PAGE_COUNT;
2071                        goto out;
2072                }
2073                if (pte_write(pteval)) {
2074                        writable = true;
2075                } else {
2076                        if (PageSwapCache(page) &&
2077                            !reuse_swap_page(page, NULL)) {
2078                                unlock_page(page);
2079                                result = SCAN_SWAP_CACHE_PAGE;
2080                                goto out;
2081                        }
2082                        /*
2083                         * Page is not in the swap cache. It can be collapsed
2084                         * into a THP.
2085                         */
2086                }
2087
2088                /*
2089                 * Isolate the page to avoid collapsing an hugepage
2090                 * currently in use by the VM.
2091                 */
2092                if (isolate_lru_page(page)) {
2093                        unlock_page(page);
2094                        result = SCAN_DEL_PAGE_LRU;
2095                        goto out;
2096                }
2097                /* 0 stands for page_is_file_cache(page) == false */
2098                inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099                VM_BUG_ON_PAGE(!PageLocked(page), page);
2100                VM_BUG_ON_PAGE(PageLRU(page), page);
2101
2102                /* If there is no mapped pte young don't collapse the page */
2103                if (pte_young(pteval) ||
2104                    page_is_young(page) || PageReferenced(page) ||
2105                    mmu_notifier_test_young(vma->vm_mm, address))
2106                        referenced = true;
2107        }
2108        if (likely(writable)) {
2109                if (likely(referenced)) {
2110                        result = SCAN_SUCCEED;
2111                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112                                                            referenced, writable, result);
2113                        return 1;
2114                }
2115        } else {
2116                result = SCAN_PAGE_RO;
2117        }
2118
2119out:
2120        release_pte_pages(pte, _pte);
2121        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122                                            referenced, writable, result);
2123        return 0;
2124}
2125
2126static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127                                      struct vm_area_struct *vma,
2128                                      unsigned long address,
2129                                      spinlock_t *ptl)
2130{
2131        pte_t *_pte;
2132        for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133                pte_t pteval = *_pte;
2134                struct page *src_page;
2135
2136                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137                        clear_user_highpage(page, address);
2138                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139                        if (is_zero_pfn(pte_pfn(pteval))) {
2140                                /*
2141                                 * ptl mostly unnecessary.
2142                                 */
2143                                spin_lock(ptl);
2144                                /*
2145                                 * paravirt calls inside pte_clear here are
2146                                 * superfluous.
2147                                 */
2148                                pte_clear(vma->vm_mm, address, _pte);
2149                                spin_unlock(ptl);
2150                        }
2151                } else {
2152                        src_page = pte_page(pteval);
2153                        copy_user_highpage(page, src_page, address, vma);
2154                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2155                        release_pte_page(src_page);
2156                        /*
2157                         * ptl mostly unnecessary, but preempt has to
2158                         * be disabled to update the per-cpu stats
2159                         * inside page_remove_rmap().
2160                         */
2161                        spin_lock(ptl);
2162                        /*
2163                         * paravirt calls inside pte_clear here are
2164                         * superfluous.
2165                         */
2166                        pte_clear(vma->vm_mm, address, _pte);
2167                        page_remove_rmap(src_page, false);
2168                        spin_unlock(ptl);
2169                        free_page_and_swap_cache(src_page);
2170                }
2171
2172                address += PAGE_SIZE;
2173                page++;
2174        }
2175}
2176
2177static void khugepaged_alloc_sleep(void)
2178{
2179        DEFINE_WAIT(wait);
2180
2181        add_wait_queue(&khugepaged_wait, &wait);
2182        freezable_schedule_timeout_interruptible(
2183                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184        remove_wait_queue(&khugepaged_wait, &wait);
2185}
2186
2187static int khugepaged_node_load[MAX_NUMNODES];
2188
2189static bool khugepaged_scan_abort(int nid)
2190{
2191        int i;
2192
2193        /*
2194         * If zone_reclaim_mode is disabled, then no extra effort is made to
2195         * allocate memory locally.
2196         */
2197        if (!zone_reclaim_mode)
2198                return false;
2199
2200        /* If there is a count for this node already, it must be acceptable */
2201        if (khugepaged_node_load[nid])
2202                return false;
2203
2204        for (i = 0; i < MAX_NUMNODES; i++) {
2205                if (!khugepaged_node_load[i])
2206                        continue;
2207                if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208                        return true;
2209        }
2210        return false;
2211}
2212
2213#ifdef CONFIG_NUMA
2214static int khugepaged_find_target_node(void)
2215{
2216        static int last_khugepaged_target_node = NUMA_NO_NODE;
2217        int nid, target_node = 0, max_value = 0;
2218
2219        /* find first node with max normal pages hit */
2220        for (nid = 0; nid < MAX_NUMNODES; nid++)
2221                if (khugepaged_node_load[nid] > max_value) {
2222                        max_value = khugepaged_node_load[nid];
2223                        target_node = nid;
2224                }
2225
2226        /* do some balance if several nodes have the same hit record */
2227        if (target_node <= last_khugepaged_target_node)
2228                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229                                nid++)
2230                        if (max_value == khugepaged_node_load[nid]) {
2231                                target_node = nid;
2232                                break;
2233                        }
2234
2235        last_khugepaged_target_node = target_node;
2236        return target_node;
2237}
2238
2239static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240{
2241        if (IS_ERR(*hpage)) {
2242                if (!*wait)
2243                        return false;
2244
2245                *wait = false;
2246                *hpage = NULL;
2247                khugepaged_alloc_sleep();
2248        } else if (*hpage) {
2249                put_page(*hpage);
2250                *hpage = NULL;
2251        }
2252
2253        return true;
2254}
2255
2256static struct page *
2257khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258                       unsigned long address, int node)
2259{
2260        VM_BUG_ON_PAGE(*hpage, *hpage);
2261
2262        /*
2263         * Before allocating the hugepage, release the mmap_sem read lock.
2264         * The allocation can take potentially a long time if it involves
2265         * sync compaction, and we do not need to hold the mmap_sem during
2266         * that. We will recheck the vma after taking it again in write mode.
2267         */
2268        up_read(&mm->mmap_sem);
2269
2270        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271        if (unlikely(!*hpage)) {
2272                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273                *hpage = ERR_PTR(-ENOMEM);
2274                return NULL;
2275        }
2276
2277        prep_transhuge_page(*hpage);
2278        count_vm_event(THP_COLLAPSE_ALLOC);
2279        return *hpage;
2280}
2281#else
2282static int khugepaged_find_target_node(void)
2283{
2284        return 0;
2285}
2286
2287static inline struct page *alloc_khugepaged_hugepage(void)
2288{
2289        struct page *page;
2290
2291        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292                           HPAGE_PMD_ORDER);
2293        if (page)
2294                prep_transhuge_page(page);
2295        return page;
2296}
2297
2298static struct page *khugepaged_alloc_hugepage(bool *wait)
2299{
2300        struct page *hpage;
2301
2302        do {
2303                hpage = alloc_khugepaged_hugepage();
2304                if (!hpage) {
2305                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306                        if (!*wait)
2307                                return NULL;
2308
2309                        *wait = false;
2310                        khugepaged_alloc_sleep();
2311                } else
2312                        count_vm_event(THP_COLLAPSE_ALLOC);
2313        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314
2315        return hpage;
2316}
2317
2318static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319{
2320        if (!*hpage)
2321                *hpage = khugepaged_alloc_hugepage(wait);
2322
2323        if (unlikely(!*hpage))
2324                return false;
2325
2326        return true;
2327}
2328
2329static struct page *
2330khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331                       unsigned long address, int node)
2332{
2333        up_read(&mm->mmap_sem);
2334        VM_BUG_ON(!*hpage);
2335
2336        return  *hpage;
2337}
2338#endif
2339
2340static bool hugepage_vma_check(struct vm_area_struct *vma)
2341{
2342        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343            (vma->vm_flags & VM_NOHUGEPAGE))
2344                return false;
2345        if (!vma->anon_vma || vma->vm_ops)
2346                return false;
2347        if (is_vma_temporary_stack(vma))
2348                return false;
2349        return !(vma->vm_flags & VM_NO_THP);
2350}
2351
2352static void collapse_huge_page(struct mm_struct *mm,
2353                                   unsigned long address,
2354                                   struct page **hpage,
2355                                   struct vm_area_struct *vma,
2356                                   int node)
2357{
2358        pmd_t *pmd, _pmd;
2359        pte_t *pte;
2360        pgtable_t pgtable;
2361        struct page *new_page;
2362        spinlock_t *pmd_ptl, *pte_ptl;
2363        int isolated = 0, result = 0;
2364        unsigned long hstart, hend;
2365        struct mem_cgroup *memcg;
2366        unsigned long mmun_start;       /* For mmu_notifiers */
2367        unsigned long mmun_end;         /* For mmu_notifiers */
2368        gfp_t gfp;
2369
2370        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371
2372        /* Only allocate from the target node */
2373        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374
2375        /* release the mmap_sem read lock. */
2376        new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377        if (!new_page) {
2378                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379                goto out_nolock;
2380        }
2381
2382        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383                result = SCAN_CGROUP_CHARGE_FAIL;
2384                goto out_nolock;
2385        }
2386
2387        /*
2388         * Prevent all access to pagetables with the exception of
2389         * gup_fast later hanlded by the ptep_clear_flush and the VM
2390         * handled by the anon_vma lock + PG_lock.
2391         */
2392        down_write(&mm->mmap_sem);
2393        if (unlikely(khugepaged_test_exit(mm))) {
2394                result = SCAN_ANY_PROCESS;
2395                goto out;
2396        }
2397
2398        vma = find_vma(mm, address);
2399        if (!vma) {
2400                result = SCAN_VMA_NULL;
2401                goto out;
2402        }
2403        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404        hend = vma->vm_end & HPAGE_PMD_MASK;
2405        if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406                result = SCAN_ADDRESS_RANGE;
2407                goto out;
2408        }
2409        if (!hugepage_vma_check(vma)) {
2410                result = SCAN_VMA_CHECK;
2411                goto out;
2412        }
2413        pmd = mm_find_pmd(mm, address);
2414        if (!pmd) {
2415                result = SCAN_PMD_NULL;
2416                goto out;
2417        }
2418
2419        anon_vma_lock_write(vma->anon_vma);
2420
2421        pte = pte_offset_map(pmd, address);
2422        pte_ptl = pte_lockptr(mm, pmd);
2423
2424        mmun_start = address;
2425        mmun_end   = address + HPAGE_PMD_SIZE;
2426        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428        /*
2429         * After this gup_fast can't run anymore. This also removes
2430         * any huge TLB entry from the CPU so we won't allow
2431         * huge and small TLB entries for the same virtual address
2432         * to avoid the risk of CPU bugs in that area.
2433         */
2434        _pmd = pmdp_collapse_flush(vma, address, pmd);
2435        spin_unlock(pmd_ptl);
2436        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437
2438        spin_lock(pte_ptl);
2439        isolated = __collapse_huge_page_isolate(vma, address, pte);
2440        spin_unlock(pte_ptl);
2441
2442        if (unlikely(!isolated)) {
2443                pte_unmap(pte);
2444                spin_lock(pmd_ptl);
2445                BUG_ON(!pmd_none(*pmd));
2446                /*
2447                 * We can only use set_pmd_at when establishing
2448                 * hugepmds and never for establishing regular pmds that
2449                 * points to regular pagetables. Use pmd_populate for that
2450                 */
2451                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452                spin_unlock(pmd_ptl);
2453                anon_vma_unlock_write(vma->anon_vma);
2454                result = SCAN_FAIL;
2455                goto out;
2456        }
2457
2458        /*
2459         * All pages are isolated and locked so anon_vma rmap
2460         * can't run anymore.
2461         */
2462        anon_vma_unlock_write(vma->anon_vma);
2463
2464        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465        pte_unmap(pte);
2466        __SetPageUptodate(new_page);
2467        pgtable = pmd_pgtable(_pmd);
2468
2469        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2471
2472        /*
2473         * spin_lock() below is not the equivalent of smp_wmb(), so
2474         * this is needed to avoid the copy_huge_page writes to become
2475         * visible after the set_pmd_at() write.
2476         */
2477        smp_wmb();
2478
2479        spin_lock(pmd_ptl);
2480        BUG_ON(!pmd_none(*pmd));
2481        page_add_new_anon_rmap(new_page, vma, address, true);
2482        mem_cgroup_commit_charge(new_page, memcg, false, true);
2483        lru_cache_add_active_or_unevictable(new_page, vma);
2484        pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485        set_pmd_at(mm, address, pmd, _pmd);
2486        update_mmu_cache_pmd(vma, address, pmd);
2487        spin_unlock(pmd_ptl);
2488
2489        *hpage = NULL;
2490
2491        khugepaged_pages_collapsed++;
2492        result = SCAN_SUCCEED;
2493out_up_write:
2494        up_write(&mm->mmap_sem);
2495        trace_mm_collapse_huge_page(mm, isolated, result);
2496        return;
2497
2498out_nolock:
2499        trace_mm_collapse_huge_page(mm, isolated, result);
2500        return;
2501out:
2502        mem_cgroup_cancel_charge(new_page, memcg, true);
2503        goto out_up_write;
2504}
2505
2506static int khugepaged_scan_pmd(struct mm_struct *mm,
2507                               struct vm_area_struct *vma,
2508                               unsigned long address,
2509                               struct page **hpage)
2510{
2511        pmd_t *pmd;
2512        pte_t *pte, *_pte;
2513        int ret = 0, none_or_zero = 0, result = 0;
2514        struct page *page = NULL;
2515        unsigned long _address;
2516        spinlock_t *ptl;
2517        int node = NUMA_NO_NODE;
2518        bool writable = false, referenced = false;
2519
2520        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521
2522        pmd = mm_find_pmd(mm, address);
2523        if (!pmd) {
2524                result = SCAN_PMD_NULL;
2525                goto out;
2526        }
2527
2528        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531             _pte++, _address += PAGE_SIZE) {
2532                pte_t pteval = *_pte;
2533                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534                        if (!userfaultfd_armed(vma) &&
2535                            ++none_or_zero <= khugepaged_max_ptes_none) {
2536                                continue;
2537                        } else {
2538                                result = SCAN_EXCEED_NONE_PTE;
2539                                goto out_unmap;
2540                        }
2541                }
2542                if (!pte_present(pteval)) {
2543                        result = SCAN_PTE_NON_PRESENT;
2544                        goto out_unmap;
2545                }
2546                if (pte_write(pteval))
2547                        writable = true;
2548
2549                page = vm_normal_page(vma, _address, pteval);
2550                if (unlikely(!page)) {
2551                        result = SCAN_PAGE_NULL;
2552                        goto out_unmap;
2553                }
2554
2555                /* TODO: teach khugepaged to collapse THP mapped with pte */
2556                if (PageCompound(page)) {
2557                        result = SCAN_PAGE_COMPOUND;
2558                        goto out_unmap;
2559                }
2560
2561                /*
2562                 * Record which node the original page is from and save this
2563                 * information to khugepaged_node_load[].
2564                 * Khupaged will allocate hugepage from the node has the max
2565                 * hit record.
2566                 */
2567                node = page_to_nid(page);
2568                if (khugepaged_scan_abort(node)) {
2569                        result = SCAN_SCAN_ABORT;
2570                        goto out_unmap;
2571                }
2572                khugepaged_node_load[node]++;
2573                if (!PageLRU(page)) {
2574                        result = SCAN_PAGE_LRU;
2575                        goto out_unmap;
2576                }
2577                if (PageLocked(page)) {
2578                        result = SCAN_PAGE_LOCK;
2579                        goto out_unmap;
2580                }
2581                if (!PageAnon(page)) {
2582                        result = SCAN_PAGE_ANON;
2583                        goto out_unmap;
2584                }
2585
2586                /*
2587                 * cannot use mapcount: can't collapse if there's a gup pin.
2588                 * The page must only be referenced by the scanned process
2589                 * and page swap cache.
2590                 */
2591                if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592                        result = SCAN_PAGE_COUNT;
2593                        goto out_unmap;
2594                }
2595                if (pte_young(pteval) ||
2596                    page_is_young(page) || PageReferenced(page) ||
2597                    mmu_notifier_test_young(vma->vm_mm, address))
2598                        referenced = true;
2599        }
2600        if (writable) {
2601                if (referenced) {
2602                        result = SCAN_SUCCEED;
2603                        ret = 1;
2604                } else {
2605                        result = SCAN_NO_REFERENCED_PAGE;
2606                }
2607        } else {
2608                result = SCAN_PAGE_RO;
2609        }
2610out_unmap:
2611        pte_unmap_unlock(pte, ptl);
2612        if (ret) {
2613                node = khugepaged_find_target_node();
2614                /* collapse_huge_page will return with the mmap_sem released */
2615                collapse_huge_page(mm, address, hpage, vma, node);
2616        }
2617out:
2618        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619                                     none_or_zero, result);
2620        return ret;
2621}
2622
2623static void collect_mm_slot(struct mm_slot *mm_slot)
2624{
2625        struct mm_struct *mm = mm_slot->mm;
2626
2627        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628
2629        if (khugepaged_test_exit(mm)) {
2630                /* free mm_slot */
2631                hash_del(&mm_slot->hash);
2632                list_del(&mm_slot->mm_node);
2633
2634                /*
2635                 * Not strictly needed because the mm exited already.
2636                 *
2637                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638                 */
2639
2640                /* khugepaged_mm_lock actually not necessary for the below */
2641                free_mm_slot(mm_slot);
2642                mmdrop(mm);
2643        }
2644}
2645
2646static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647                                            struct page **hpage)
2648        __releases(&khugepaged_mm_lock)
2649        __acquires(&khugepaged_mm_lock)
2650{
2651        struct mm_slot *mm_slot;
2652        struct mm_struct *mm;
2653        struct vm_area_struct *vma;
2654        int progress = 0;
2655
2656        VM_BUG_ON(!pages);
2657        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658
2659        if (khugepaged_scan.mm_slot)
2660                mm_slot = khugepaged_scan.mm_slot;
2661        else {
2662                mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663                                     struct mm_slot, mm_node);
2664                khugepaged_scan.address = 0;
2665                khugepaged_scan.mm_slot = mm_slot;
2666        }
2667        spin_unlock(&khugepaged_mm_lock);
2668
2669        mm = mm_slot->mm;
2670        down_read(&mm->mmap_sem);
2671        if (unlikely(khugepaged_test_exit(mm)))
2672                vma = NULL;
2673        else
2674                vma = find_vma(mm, khugepaged_scan.address);
2675
2676        progress++;
2677        for (; vma; vma = vma->vm_next) {
2678                unsigned long hstart, hend;
2679
2680                cond_resched();
2681                if (unlikely(khugepaged_test_exit(mm))) {
2682                        progress++;
2683                        break;
2684                }
2685                if (!hugepage_vma_check(vma)) {
2686skip:
2687                        progress++;
2688                        continue;
2689                }
2690                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691                hend = vma->vm_end & HPAGE_PMD_MASK;
2692                if (hstart >= hend)
2693                        goto skip;
2694                if (khugepaged_scan.address > hend)
2695                        goto skip;
2696                if (khugepaged_scan.address < hstart)
2697                        khugepaged_scan.address = hstart;
2698                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699
2700                while (khugepaged_scan.address < hend) {
2701                        int ret;
2702                        cond_resched();
2703                        if (unlikely(khugepaged_test_exit(mm)))
2704                                goto breakouterloop;
2705
2706                        VM_BUG_ON(khugepaged_scan.address < hstart ||
2707                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
2708                                  hend);
2709                        ret = khugepaged_scan_pmd(mm, vma,
2710                                                  khugepaged_scan.address,
2711                                                  hpage);
2712                        /* move to next address */
2713                        khugepaged_scan.address += HPAGE_PMD_SIZE;
2714                        progress += HPAGE_PMD_NR;
2715                        if (ret)
2716                                /* we released mmap_sem so break loop */
2717                                goto breakouterloop_mmap_sem;
2718                        if (progress >= pages)
2719                                goto breakouterloop;
2720                }
2721        }
2722breakouterloop:
2723        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724breakouterloop_mmap_sem:
2725
2726        spin_lock(&khugepaged_mm_lock);
2727        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728        /*
2729         * Release the current mm_slot if this mm is about to die, or
2730         * if we scanned all vmas of this mm.
2731         */
2732        if (khugepaged_test_exit(mm) || !vma) {
2733                /*
2734                 * Make sure that if mm_users is reaching zero while
2735                 * khugepaged runs here, khugepaged_exit will find
2736                 * mm_slot not pointing to the exiting mm.
2737                 */
2738                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739                        khugepaged_scan.mm_slot = list_entry(
2740                                mm_slot->mm_node.next,
2741                                struct mm_slot, mm_node);
2742                        khugepaged_scan.address = 0;
2743                } else {
2744                        khugepaged_scan.mm_slot = NULL;
2745                        khugepaged_full_scans++;
2746                }
2747
2748                collect_mm_slot(mm_slot);
2749        }
2750
2751        return progress;
2752}
2753
2754static int khugepaged_has_work(void)
2755{
2756        return !list_empty(&khugepaged_scan.mm_head) &&
2757                khugepaged_enabled();
2758}
2759
2760static int khugepaged_wait_event(void)
2761{
2762        return !list_empty(&khugepaged_scan.mm_head) ||
2763                kthread_should_stop();
2764}
2765
2766static void khugepaged_do_scan(void)
2767{
2768        struct page *hpage = NULL;
2769        unsigned int progress = 0, pass_through_head = 0;
2770        unsigned int pages = khugepaged_pages_to_scan;
2771        bool wait = true;
2772
2773        barrier(); /* write khugepaged_pages_to_scan to local stack */
2774
2775        while (progress < pages) {
2776                if (!khugepaged_prealloc_page(&hpage, &wait))
2777                        break;
2778
2779                cond_resched();
2780
2781                if (unlikely(kthread_should_stop() || try_to_freeze()))
2782                        break;
2783
2784                spin_lock(&khugepaged_mm_lock);
2785                if (!khugepaged_scan.mm_slot)
2786                        pass_through_head++;
2787                if (khugepaged_has_work() &&
2788                    pass_through_head < 2)
2789                        progress += khugepaged_scan_mm_slot(pages - progress,
2790                                                            &hpage);
2791                else
2792                        progress = pages;
2793                spin_unlock(&khugepaged_mm_lock);
2794        }
2795
2796        if (!IS_ERR_OR_NULL(hpage))
2797                put_page(hpage);
2798}
2799
2800static void khugepaged_wait_work(void)
2801{
2802        if (khugepaged_has_work()) {
2803                if (!khugepaged_scan_sleep_millisecs)
2804                        return;
2805
2806                wait_event_freezable_timeout(khugepaged_wait,
2807                                             kthread_should_stop(),
2808                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809                return;
2810        }
2811
2812        if (khugepaged_enabled())
2813                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814}
2815
2816static int khugepaged(void *none)
2817{
2818        struct mm_slot *mm_slot;
2819
2820        set_freezable();
2821        set_user_nice(current, MAX_NICE);
2822
2823        while (!kthread_should_stop()) {
2824                khugepaged_do_scan();
2825                khugepaged_wait_work();
2826        }
2827
2828        spin_lock(&khugepaged_mm_lock);
2829        mm_slot = khugepaged_scan.mm_slot;
2830        khugepaged_scan.mm_slot = NULL;
2831        if (mm_slot)
2832                collect_mm_slot(mm_slot);
2833        spin_unlock(&khugepaged_mm_lock);
2834        return 0;
2835}
2836
2837static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838                unsigned long haddr, pmd_t *pmd)
2839{
2840        struct mm_struct *mm = vma->vm_mm;
2841        pgtable_t pgtable;
2842        pmd_t _pmd;
2843        int i;
2844
2845        /* leave pmd empty until pte is filled */
2846        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2847
2848        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849        pmd_populate(mm, &_pmd, pgtable);
2850
2851        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852                pte_t *pte, entry;
2853                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854                entry = pte_mkspecial(entry);
2855                pte = pte_offset_map(&_pmd, haddr);
2856                VM_BUG_ON(!pte_none(*pte));
2857                set_pte_at(mm, haddr, pte, entry);
2858                pte_unmap(pte);
2859        }
2860        smp_wmb(); /* make pte visible before pmd */
2861        pmd_populate(mm, pmd, pgtable);
2862        put_huge_zero_page();
2863}
2864
2865static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866                unsigned long haddr, bool freeze)
2867{
2868        struct mm_struct *mm = vma->vm_mm;
2869        struct page *page;
2870        pgtable_t pgtable;
2871        pmd_t _pmd;
2872        bool young, write, dirty;
2873        unsigned long addr;
2874        int i;
2875
2876        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879        VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2880
2881        count_vm_event(THP_SPLIT_PMD);
2882
2883        if (vma_is_dax(vma)) {
2884                pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885                if (is_huge_zero_pmd(_pmd))
2886                        put_huge_zero_page();
2887                return;
2888        } else if (is_huge_zero_pmd(*pmd)) {
2889                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890        }
2891
2892        page = pmd_page(*pmd);
2893        VM_BUG_ON_PAGE(!page_count(page), page);
2894        page_ref_add(page, HPAGE_PMD_NR - 1);
2895        write = pmd_write(*pmd);
2896        young = pmd_young(*pmd);
2897        dirty = pmd_dirty(*pmd);
2898
2899        pmdp_huge_split_prepare(vma, haddr, pmd);
2900        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901        pmd_populate(mm, &_pmd, pgtable);
2902
2903        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904                pte_t entry, *pte;
2905                /*
2906                 * Note that NUMA hinting access restrictions are not
2907                 * transferred to avoid any possibility of altering
2908                 * permissions across VMAs.
2909                 */
2910                if (freeze) {
2911                        swp_entry_t swp_entry;
2912                        swp_entry = make_migration_entry(page + i, write);
2913                        entry = swp_entry_to_pte(swp_entry);
2914                } else {
2915                        entry = mk_pte(page + i, vma->vm_page_prot);
2916                        entry = maybe_mkwrite(entry, vma);
2917                        if (!write)
2918                                entry = pte_wrprotect(entry);
2919                        if (!young)
2920                                entry = pte_mkold(entry);
2921                }
2922                if (dirty)
2923                        SetPageDirty(page + i);
2924                pte = pte_offset_map(&_pmd, addr);
2925                BUG_ON(!pte_none(*pte));
2926                set_pte_at(mm, addr, pte, entry);
2927                atomic_inc(&page[i]._mapcount);
2928                pte_unmap(pte);
2929        }
2930
2931        /*
2932         * Set PG_double_map before dropping compound_mapcount to avoid
2933         * false-negative page_mapped().
2934         */
2935        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936                for (i = 0; i < HPAGE_PMD_NR; i++)
2937                        atomic_inc(&page[i]._mapcount);
2938        }
2939
2940        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941                /* Last compound_mapcount is gone. */
2942                __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943                if (TestClearPageDoubleMap(page)) {
2944                        /* No need in mapcount reference anymore */
2945                        for (i = 0; i < HPAGE_PMD_NR; i++)
2946                                atomic_dec(&page[i]._mapcount);
2947                }
2948        }
2949
2950        smp_wmb(); /* make pte visible before pmd */
2951        /*
2952         * Up to this point the pmd is present and huge and userland has the
2953         * whole access to the hugepage during the split (which happens in
2954         * place). If we overwrite the pmd with the not-huge version pointing
2955         * to the pte here (which of course we could if all CPUs were bug
2956         * free), userland could trigger a small page size TLB miss on the
2957         * small sized TLB while the hugepage TLB entry is still established in
2958         * the huge TLB. Some CPU doesn't like that.
2959         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960         * 383 on page 93. Intel should be safe but is also warns that it's
2961         * only safe if the permission and cache attributes of the two entries
2962         * loaded in the two TLB is identical (which should be the case here).
2963         * But it is generally safer to never allow small and huge TLB entries
2964         * for the same virtual address to be loaded simultaneously. So instead
2965         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966         * current pmd notpresent (atomically because here the pmd_trans_huge
2967         * and pmd_trans_splitting must remain set at all times on the pmd
2968         * until the split is complete for this pmd), then we flush the SMP TLB
2969         * and finally we write the non-huge version of the pmd entry with
2970         * pmd_populate.
2971         */
2972        pmdp_invalidate(vma, haddr, pmd);
2973        pmd_populate(mm, pmd, pgtable);
2974
2975        if (freeze) {
2976                for (i = 0; i < HPAGE_PMD_NR; i++) {
2977                        page_remove_rmap(page + i, false);
2978                        put_page(page + i);
2979                }
2980        }
2981}
2982
2983void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984                unsigned long address, bool freeze)
2985{
2986        spinlock_t *ptl;
2987        struct mm_struct *mm = vma->vm_mm;
2988        unsigned long haddr = address & HPAGE_PMD_MASK;
2989
2990        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991        ptl = pmd_lock(mm, pmd);
2992        if (pmd_trans_huge(*pmd)) {
2993                struct page *page = pmd_page(*pmd);
2994                if (PageMlocked(page))
2995                        clear_page_mlock(page);
2996        } else if (!pmd_devmap(*pmd))
2997                goto out;
2998        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999out:
3000        spin_unlock(ptl);
3001        mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002}
3003
3004void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005                bool freeze, struct page *page)
3006{
3007        pgd_t *pgd;
3008        pud_t *pud;
3009        pmd_t *pmd;
3010
3011        pgd = pgd_offset(vma->vm_mm, address);
3012        if (!pgd_present(*pgd))
3013                return;
3014
3015        pud = pud_offset(pgd, address);
3016        if (!pud_present(*pud))
3017                return;
3018
3019        pmd = pmd_offset(pud, address);
3020        if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021                return;
3022
3023        /*
3024         * If caller asks to setup a migration entries, we need a page to check
3025         * pmd against. Otherwise we can end up replacing wrong page.
3026         */
3027        VM_BUG_ON(freeze && !page);
3028        if (page && page != pmd_page(*pmd))
3029                return;
3030
3031        /*
3032         * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033         * materialize from under us.
3034         */
3035        __split_huge_pmd(vma, pmd, address, freeze);
3036}
3037
3038void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039                             unsigned long start,
3040                             unsigned long end,
3041                             long adjust_next)
3042{
3043        /*
3044         * If the new start address isn't hpage aligned and it could
3045         * previously contain an hugepage: check if we need to split
3046         * an huge pmd.
3047         */
3048        if (start & ~HPAGE_PMD_MASK &&
3049            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051                split_huge_pmd_address(vma, start, false, NULL);
3052
3053        /*
3054         * If the new end address isn't hpage aligned and it could
3055         * previously contain an hugepage: check if we need to split
3056         * an huge pmd.
3057         */
3058        if (end & ~HPAGE_PMD_MASK &&
3059            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061                split_huge_pmd_address(vma, end, false, NULL);
3062
3063        /*
3064         * If we're also updating the vma->vm_next->vm_start, if the new
3065         * vm_next->vm_start isn't page aligned and it could previously
3066         * contain an hugepage: check if we need to split an huge pmd.
3067         */
3068        if (adjust_next > 0) {
3069                struct vm_area_struct *next = vma->vm_next;
3070                unsigned long nstart = next->vm_start;
3071                nstart += adjust_next << PAGE_SHIFT;
3072                if (nstart & ~HPAGE_PMD_MASK &&
3073                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075                        split_huge_pmd_address(next, nstart, false, NULL);
3076        }
3077}
3078
3079static void freeze_page(struct page *page)
3080{
3081        enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082                TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083        int i, ret;
3084
3085        VM_BUG_ON_PAGE(!PageHead(page), page);
3086
3087        /* We only need TTU_SPLIT_HUGE_PMD once */
3088        ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089        for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090                /* Cut short if the page is unmapped */
3091                if (page_count(page) == 1)
3092                        return;
3093
3094                ret = try_to_unmap(page + i, ttu_flags);
3095        }
3096        VM_BUG_ON(ret);
3097}
3098
3099static void unfreeze_page(struct page *page)
3100{
3101        int i;
3102
3103        for (i = 0; i < HPAGE_PMD_NR; i++)
3104                remove_migration_ptes(page + i, page + i, true);
3105}
3106
3107static void __split_huge_page_tail(struct page *head, int tail,
3108                struct lruvec *lruvec, struct list_head *list)
3109{
3110        struct page *page_tail = head + tail;
3111
3112        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113        VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114
3115        /*
3116         * tail_page->_count is zero and not changing from under us. But
3117         * get_page_unless_zero() may be running from under us on the
3118         * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119         * would then run atomic_set() concurrently with
3120         * get_page_unless_zero(), and atomic_set() is implemented in C not
3121         * using locked ops. spin_unlock on x86 sometime uses locked ops
3122         * because of PPro errata 66, 92, so unless somebody can guarantee
3123         * atomic_set() here would be safe on all archs (and not only on x86),
3124         * it's safer to use atomic_inc().
3125         */
3126        page_ref_inc(page_tail);
3127
3128        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129        page_tail->flags |= (head->flags &
3130                        ((1L << PG_referenced) |
3131                         (1L << PG_swapbacked) |
3132                         (1L << PG_mlocked) |
3133                         (1L << PG_uptodate) |
3134                         (1L << PG_active) |
3135                         (1L << PG_locked) |
3136                         (1L << PG_unevictable) |
3137                         (1L << PG_dirty)));
3138
3139        /*
3140         * After clearing PageTail the gup refcount can be released.
3141         * Page flags also must be visible before we make the page non-compound.
3142         */
3143        smp_wmb();
3144
3145        clear_compound_head(page_tail);
3146
3147        if (page_is_young(head))
3148                set_page_young(page_tail);
3149        if (page_is_idle(head))
3150                set_page_idle(page_tail);
3151
3152        /* ->mapping in first tail page is compound_mapcount */
3153        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154                        page_tail);
3155        page_tail->mapping = head->mapping;
3156
3157        page_tail->index = head->index + tail;
3158        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3159        lru_add_page_tail(head, page_tail, lruvec, list);
3160}
3161
3162static void __split_huge_page(struct page *page, struct list_head *list)
3163{
3164        struct page *head = compound_head(page);
3165        struct zone *zone = page_zone(head);
3166        struct lruvec *lruvec;
3167        int i;
3168
3169        /* prevent PageLRU to go away from under us, and freeze lru stats */
3170        spin_lock_irq(&zone->lru_lock);
3171        lruvec = mem_cgroup_page_lruvec(head, zone);
3172
3173        /* complete memcg works before add pages to LRU */
3174        mem_cgroup_split_huge_fixup(head);
3175
3176        for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3177                __split_huge_page_tail(head, i, lruvec, list);
3178
3179        ClearPageCompound(head);
3180        spin_unlock_irq(&zone->lru_lock);
3181
3182        unfreeze_page(head);
3183
3184        for (i = 0; i < HPAGE_PMD_NR; i++) {
3185                struct page *subpage = head + i;
3186                if (subpage == page)
3187                        continue;
3188                unlock_page(subpage);
3189
3190                /*
3191                 * Subpages may be freed if there wasn't any mapping
3192                 * like if add_to_swap() is running on a lru page that
3193                 * had its mapping zapped. And freeing these pages
3194                 * requires taking the lru_lock so we do the put_page
3195                 * of the tail pages after the split is complete.
3196                 */
3197                put_page(subpage);
3198        }
3199}
3200
3201int total_mapcount(struct page *page)
3202{
3203        int i, ret;
3204
3205        VM_BUG_ON_PAGE(PageTail(page), page);
3206
3207        if (likely(!PageCompound(page)))
3208                return atomic_read(&page->_mapcount) + 1;
3209
3210        ret = compound_mapcount(page);
3211        if (PageHuge(page))
3212                return ret;
3213        for (i = 0; i < HPAGE_PMD_NR; i++)
3214                ret += atomic_read(&page[i]._mapcount) + 1;
3215        if (PageDoubleMap(page))
3216                ret -= HPAGE_PMD_NR;
3217        return ret;
3218}
3219
3220/*
3221 * This calculates accurately how many mappings a transparent hugepage
3222 * has (unlike page_mapcount() which isn't fully accurate). This full
3223 * accuracy is primarily needed to know if copy-on-write faults can
3224 * reuse the page and change the mapping to read-write instead of
3225 * copying them. At the same time this returns the total_mapcount too.
3226 *
3227 * The function returns the highest mapcount any one of the subpages
3228 * has. If the return value is one, even if different processes are
3229 * mapping different subpages of the transparent hugepage, they can
3230 * all reuse it, because each process is reusing a different subpage.
3231 *
3232 * The total_mapcount is instead counting all virtual mappings of the
3233 * subpages. If the total_mapcount is equal to "one", it tells the
3234 * caller all mappings belong to the same "mm" and in turn the
3235 * anon_vma of the transparent hugepage can become the vma->anon_vma
3236 * local one as no other process may be mapping any of the subpages.
3237 *
3238 * It would be more accurate to replace page_mapcount() with
3239 * page_trans_huge_mapcount(), however we only use
3240 * page_trans_huge_mapcount() in the copy-on-write faults where we
3241 * need full accuracy to avoid breaking page pinning, because
3242 * page_trans_huge_mapcount() is slower than page_mapcount().
3243 */
3244int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245{
3246        int i, ret, _total_mapcount, mapcount;
3247
3248        /* hugetlbfs shouldn't call it */
3249        VM_BUG_ON_PAGE(PageHuge(page), page);
3250
3251        if (likely(!PageTransCompound(page))) {
3252                mapcount = atomic_read(&page->_mapcount) + 1;
3253                if (total_mapcount)
3254                        *total_mapcount = mapcount;
3255                return mapcount;
3256        }
3257
3258        page = compound_head(page);
3259
3260        _total_mapcount = ret = 0;
3261        for (i = 0; i < HPAGE_PMD_NR; i++) {
3262                mapcount = atomic_read(&page[i]._mapcount) + 1;
3263                ret = max(ret, mapcount);
3264                _total_mapcount += mapcount;
3265        }
3266        if (PageDoubleMap(page)) {
3267                ret -= 1;
3268                _total_mapcount -= HPAGE_PMD_NR;
3269        }
3270        mapcount = compound_mapcount(page);
3271        ret += mapcount;
3272        _total_mapcount += mapcount;
3273        if (total_mapcount)
3274                *total_mapcount = _total_mapcount;
3275        return ret;
3276}
3277
3278/*
3279 * This function splits huge page into normal pages. @page can point to any
3280 * subpage of huge page to split. Split doesn't change the position of @page.
3281 *
3282 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283 * The huge page must be locked.
3284 *
3285 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286 *
3287 * Both head page and tail pages will inherit mapping, flags, and so on from
3288 * the hugepage.
3289 *
3290 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291 * they are not mapped.
3292 *
3293 * Returns 0 if the hugepage is split successfully.
3294 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295 * us.
3296 */
3297int split_huge_page_to_list(struct page *page, struct list_head *list)
3298{
3299        struct page *head = compound_head(page);
3300        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301        struct anon_vma *anon_vma;
3302        int count, mapcount, ret;
3303        bool mlocked;
3304        unsigned long flags;
3305
3306        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307        VM_BUG_ON_PAGE(!PageAnon(page), page);
3308        VM_BUG_ON_PAGE(!PageLocked(page), page);
3309        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310        VM_BUG_ON_PAGE(!PageCompound(page), page);
3311
3312        /*
3313         * The caller does not necessarily hold an mmap_sem that would prevent
3314         * the anon_vma disappearing so we first we take a reference to it
3315         * and then lock the anon_vma for write. This is similar to
3316         * page_lock_anon_vma_read except the write lock is taken to serialise
3317         * against parallel split or collapse operations.
3318         */
3319        anon_vma = page_get_anon_vma(head);
3320        if (!anon_vma) {
3321                ret = -EBUSY;
3322                goto out;
3323        }
3324        anon_vma_lock_write(anon_vma);
3325
3326        /*
3327         * Racy check if we can split the page, before freeze_page() will
3328         * split PMDs
3329         */
3330        if (total_mapcount(head) != page_count(head) - 1) {
3331                ret = -EBUSY;
3332                goto out_unlock;
3333        }
3334
3335        mlocked = PageMlocked(page);
3336        freeze_page(head);
3337        VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338
3339        /* Make sure the page is not on per-CPU pagevec as it takes pin */
3340        if (mlocked)
3341                lru_add_drain();
3342
3343        /* Prevent deferred_split_scan() touching ->_count */
3344        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3345        count = page_count(head);
3346        mapcount = total_mapcount(head);
3347        if (!mapcount && count == 1) {
3348                if (!list_empty(page_deferred_list(head))) {
3349                        pgdata->split_queue_len--;
3350                        list_del(page_deferred_list(head));
3351                }
3352                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353                __split_huge_page(page, list);
3354                ret = 0;
3355        } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357                pr_alert("total_mapcount: %u, page_count(): %u\n",
3358                                mapcount, count);
3359                if (PageTail(page))
3360                        dump_page(head, NULL);
3361                dump_page(page, "total_mapcount(head) > 0");
3362                BUG();
3363        } else {
3364                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3365                unfreeze_page(head);
3366                ret = -EBUSY;
3367        }
3368
3369out_unlock:
3370        anon_vma_unlock_write(anon_vma);
3371        put_anon_vma(anon_vma);
3372out:
3373        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374        return ret;
3375}
3376
3377void free_transhuge_page(struct page *page)
3378{
3379        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380        unsigned long flags;
3381
3382        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383        if (!list_empty(page_deferred_list(page))) {
3384                pgdata->split_queue_len--;
3385                list_del(page_deferred_list(page));
3386        }
3387        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388        free_compound_page(page);
3389}
3390
3391void deferred_split_huge_page(struct page *page)
3392{
3393        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394        unsigned long flags;
3395
3396        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397
3398        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399        if (list_empty(page_deferred_list(page))) {
3400                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402                pgdata->split_queue_len++;
3403        }
3404        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405}
3406
3407static unsigned long deferred_split_count(struct shrinker *shrink,
3408                struct shrink_control *sc)
3409{
3410        struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411        return ACCESS_ONCE(pgdata->split_queue_len);
3412}
3413
3414static unsigned long deferred_split_scan(struct shrinker *shrink,
3415                struct shrink_control *sc)
3416{
3417        struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418        unsigned long flags;
3419        LIST_HEAD(list), *pos, *next;
3420        struct page *page;
3421        int split = 0;
3422
3423        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424        /* Take pin on all head pages to avoid freeing them under us */
3425        list_for_each_safe(pos, next, &pgdata->split_queue) {
3426                page = list_entry((void *)pos, struct page, mapping);
3427                page = compound_head(page);
3428                if (get_page_unless_zero(page)) {
3429                        list_move(page_deferred_list(page), &list);
3430                } else {
3431                        /* We lost race with put_compound_page() */
3432                        list_del_init(page_deferred_list(page));
3433                        pgdata->split_queue_len--;
3434                }
3435                if (!--sc->nr_to_scan)
3436                        break;
3437        }
3438        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439
3440        list_for_each_safe(pos, next, &list) {
3441                page = list_entry((void *)pos, struct page, mapping);
3442                lock_page(page);
3443                /* split_huge_page() removes page from list on success */
3444                if (!split_huge_page(page))
3445                        split++;
3446                unlock_page(page);
3447                put_page(page);
3448        }
3449
3450        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451        list_splice_tail(&list, &pgdata->split_queue);
3452        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453
3454        /*
3455         * Stop shrinker if we didn't split any page, but the queue is empty.
3456         * This can happen if pages were freed under us.
3457         */
3458        if (!split && list_empty(&pgdata->split_queue))
3459                return SHRINK_STOP;
3460        return split;
3461}
3462
3463static struct shrinker deferred_split_shrinker = {
3464        .count_objects = deferred_split_count,
3465        .scan_objects = deferred_split_scan,
3466        .seeks = DEFAULT_SEEKS,
3467        .flags = SHRINKER_NUMA_AWARE,
3468};
3469
3470#ifdef CONFIG_DEBUG_FS
3471static int split_huge_pages_set(void *data, u64 val)
3472{
3473        struct zone *zone;
3474        struct page *page;
3475        unsigned long pfn, max_zone_pfn;
3476        unsigned long total = 0, split = 0;
3477
3478        if (val != 1)
3479                return -EINVAL;
3480
3481        for_each_populated_zone(zone) {
3482                max_zone_pfn = zone_end_pfn(zone);
3483                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484                        if (!pfn_valid(pfn))
3485                                continue;
3486
3487                        page = pfn_to_page(pfn);
3488                        if (!get_page_unless_zero(page))
3489                                continue;
3490
3491                        if (zone != page_zone(page))
3492                                goto next;
3493
3494                        if (!PageHead(page) || !PageAnon(page) ||
3495                                        PageHuge(page))
3496                                goto next;
3497
3498                        total++;
3499                        lock_page(page);
3500                        if (!split_huge_page(page))
3501                                split++;
3502                        unlock_page(page);
3503next:
3504                        put_page(page);
3505                }
3506        }
3507
3508        pr_info("%lu of %lu THP split\n", split, total);
3509
3510        return 0;
3511}
3512DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513                "%llu\n");
3514
3515static int __init split_huge_pages_debugfs(void)
3516{
3517        void *ret;
3518
3519        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520                        &split_huge_pages_fops);
3521        if (!ret)
3522                pr_warn("Failed to create split_huge_pages in debugfs");
3523        return 0;
3524}
3525late_initcall(split_huge_pages_debugfs);
3526#endif
3527