linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/rmap.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/page-isolation.h>
  25#include <linux/jhash.h>
  26
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30
  31#include <linux/io.h>
  32#include <linux/hugetlb.h>
  33#include <linux/hugetlb_cgroup.h>
  34#include <linux/node.h>
  35#include "internal.h"
  36
  37int hugepages_treat_as_movable;
  38
  39int hugetlb_max_hstate __read_mostly;
  40unsigned int default_hstate_idx;
  41struct hstate hstates[HUGE_MAX_HSTATE];
  42/*
  43 * Minimum page order among possible hugepage sizes, set to a proper value
  44 * at boot time.
  45 */
  46static unsigned int minimum_order __read_mostly = UINT_MAX;
  47
  48__initdata LIST_HEAD(huge_boot_pages);
  49
  50/* for command line parsing */
  51static struct hstate * __initdata parsed_hstate;
  52static unsigned long __initdata default_hstate_max_huge_pages;
  53static unsigned long __initdata default_hstate_size;
  54
  55/*
  56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  57 * free_huge_pages, and surplus_huge_pages.
  58 */
  59DEFINE_SPINLOCK(hugetlb_lock);
  60
  61/*
  62 * Serializes faults on the same logical page.  This is used to
  63 * prevent spurious OOMs when the hugepage pool is fully utilized.
  64 */
  65static int num_fault_mutexes;
  66struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  67
  68/* Forward declaration */
  69static int hugetlb_acct_memory(struct hstate *h, long delta);
  70
  71static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  72{
  73        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  74
  75        spin_unlock(&spool->lock);
  76
  77        /* If no pages are used, and no other handles to the subpool
  78         * remain, give up any reservations mased on minimum size and
  79         * free the subpool */
  80        if (free) {
  81                if (spool->min_hpages != -1)
  82                        hugetlb_acct_memory(spool->hstate,
  83                                                -spool->min_hpages);
  84                kfree(spool);
  85        }
  86}
  87
  88struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  89                                                long min_hpages)
  90{
  91        struct hugepage_subpool *spool;
  92
  93        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  94        if (!spool)
  95                return NULL;
  96
  97        spin_lock_init(&spool->lock);
  98        spool->count = 1;
  99        spool->max_hpages = max_hpages;
 100        spool->hstate = h;
 101        spool->min_hpages = min_hpages;
 102
 103        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 104                kfree(spool);
 105                return NULL;
 106        }
 107        spool->rsv_hpages = min_hpages;
 108
 109        return spool;
 110}
 111
 112void hugepage_put_subpool(struct hugepage_subpool *spool)
 113{
 114        spin_lock(&spool->lock);
 115        BUG_ON(!spool->count);
 116        spool->count--;
 117        unlock_or_release_subpool(spool);
 118}
 119
 120/*
 121 * Subpool accounting for allocating and reserving pages.
 122 * Return -ENOMEM if there are not enough resources to satisfy the
 123 * the request.  Otherwise, return the number of pages by which the
 124 * global pools must be adjusted (upward).  The returned value may
 125 * only be different than the passed value (delta) in the case where
 126 * a subpool minimum size must be manitained.
 127 */
 128static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 129                                      long delta)
 130{
 131        long ret = delta;
 132
 133        if (!spool)
 134                return ret;
 135
 136        spin_lock(&spool->lock);
 137
 138        if (spool->max_hpages != -1) {          /* maximum size accounting */
 139                if ((spool->used_hpages + delta) <= spool->max_hpages)
 140                        spool->used_hpages += delta;
 141                else {
 142                        ret = -ENOMEM;
 143                        goto unlock_ret;
 144                }
 145        }
 146
 147        if (spool->min_hpages != -1) {          /* minimum size accounting */
 148                if (delta > spool->rsv_hpages) {
 149                        /*
 150                         * Asking for more reserves than those already taken on
 151                         * behalf of subpool.  Return difference.
 152                         */
 153                        ret = delta - spool->rsv_hpages;
 154                        spool->rsv_hpages = 0;
 155                } else {
 156                        ret = 0;        /* reserves already accounted for */
 157                        spool->rsv_hpages -= delta;
 158                }
 159        }
 160
 161unlock_ret:
 162        spin_unlock(&spool->lock);
 163        return ret;
 164}
 165
 166/*
 167 * Subpool accounting for freeing and unreserving pages.
 168 * Return the number of global page reservations that must be dropped.
 169 * The return value may only be different than the passed value (delta)
 170 * in the case where a subpool minimum size must be maintained.
 171 */
 172static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 173                                       long delta)
 174{
 175        long ret = delta;
 176
 177        if (!spool)
 178                return delta;
 179
 180        spin_lock(&spool->lock);
 181
 182        if (spool->max_hpages != -1)            /* maximum size accounting */
 183                spool->used_hpages -= delta;
 184
 185        if (spool->min_hpages != -1) {          /* minimum size accounting */
 186                if (spool->rsv_hpages + delta <= spool->min_hpages)
 187                        ret = 0;
 188                else
 189                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 190
 191                spool->rsv_hpages += delta;
 192                if (spool->rsv_hpages > spool->min_hpages)
 193                        spool->rsv_hpages = spool->min_hpages;
 194        }
 195
 196        /*
 197         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 198         * quota reference, free it now.
 199         */
 200        unlock_or_release_subpool(spool);
 201
 202        return ret;
 203}
 204
 205static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 206{
 207        return HUGETLBFS_SB(inode->i_sb)->spool;
 208}
 209
 210static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 211{
 212        return subpool_inode(file_inode(vma->vm_file));
 213}
 214
 215/*
 216 * Region tracking -- allows tracking of reservations and instantiated pages
 217 *                    across the pages in a mapping.
 218 *
 219 * The region data structures are embedded into a resv_map and protected
 220 * by a resv_map's lock.  The set of regions within the resv_map represent
 221 * reservations for huge pages, or huge pages that have already been
 222 * instantiated within the map.  The from and to elements are huge page
 223 * indicies into the associated mapping.  from indicates the starting index
 224 * of the region.  to represents the first index past the end of  the region.
 225 *
 226 * For example, a file region structure with from == 0 and to == 4 represents
 227 * four huge pages in a mapping.  It is important to note that the to element
 228 * represents the first element past the end of the region. This is used in
 229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 230 *
 231 * Interval notation of the form [from, to) will be used to indicate that
 232 * the endpoint from is inclusive and to is exclusive.
 233 */
 234struct file_region {
 235        struct list_head link;
 236        long from;
 237        long to;
 238};
 239
 240/*
 241 * Add the huge page range represented by [f, t) to the reserve
 242 * map.  In the normal case, existing regions will be expanded
 243 * to accommodate the specified range.  Sufficient regions should
 244 * exist for expansion due to the previous call to region_chg
 245 * with the same range.  However, it is possible that region_del
 246 * could have been called after region_chg and modifed the map
 247 * in such a way that no region exists to be expanded.  In this
 248 * case, pull a region descriptor from the cache associated with
 249 * the map and use that for the new range.
 250 *
 251 * Return the number of new huge pages added to the map.  This
 252 * number is greater than or equal to zero.
 253 */
 254static long region_add(struct resv_map *resv, long f, long t)
 255{
 256        struct list_head *head = &resv->regions;
 257        struct file_region *rg, *nrg, *trg;
 258        long add = 0;
 259
 260        spin_lock(&resv->lock);
 261        /* Locate the region we are either in or before. */
 262        list_for_each_entry(rg, head, link)
 263                if (f <= rg->to)
 264                        break;
 265
 266        /*
 267         * If no region exists which can be expanded to include the
 268         * specified range, the list must have been modified by an
 269         * interleving call to region_del().  Pull a region descriptor
 270         * from the cache and use it for this range.
 271         */
 272        if (&rg->link == head || t < rg->from) {
 273                VM_BUG_ON(resv->region_cache_count <= 0);
 274
 275                resv->region_cache_count--;
 276                nrg = list_first_entry(&resv->region_cache, struct file_region,
 277                                        link);
 278                list_del(&nrg->link);
 279
 280                nrg->from = f;
 281                nrg->to = t;
 282                list_add(&nrg->link, rg->link.prev);
 283
 284                add += t - f;
 285                goto out_locked;
 286        }
 287
 288        /* Round our left edge to the current segment if it encloses us. */
 289        if (f > rg->from)
 290                f = rg->from;
 291
 292        /* Check for and consume any regions we now overlap with. */
 293        nrg = rg;
 294        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 295                if (&rg->link == head)
 296                        break;
 297                if (rg->from > t)
 298                        break;
 299
 300                /* If this area reaches higher then extend our area to
 301                 * include it completely.  If this is not the first area
 302                 * which we intend to reuse, free it. */
 303                if (rg->to > t)
 304                        t = rg->to;
 305                if (rg != nrg) {
 306                        /* Decrement return value by the deleted range.
 307                         * Another range will span this area so that by
 308                         * end of routine add will be >= zero
 309                         */
 310                        add -= (rg->to - rg->from);
 311                        list_del(&rg->link);
 312                        kfree(rg);
 313                }
 314        }
 315
 316        add += (nrg->from - f);         /* Added to beginning of region */
 317        nrg->from = f;
 318        add += t - nrg->to;             /* Added to end of region */
 319        nrg->to = t;
 320
 321out_locked:
 322        resv->adds_in_progress--;
 323        spin_unlock(&resv->lock);
 324        VM_BUG_ON(add < 0);
 325        return add;
 326}
 327
 328/*
 329 * Examine the existing reserve map and determine how many
 330 * huge pages in the specified range [f, t) are NOT currently
 331 * represented.  This routine is called before a subsequent
 332 * call to region_add that will actually modify the reserve
 333 * map to add the specified range [f, t).  region_chg does
 334 * not change the number of huge pages represented by the
 335 * map.  However, if the existing regions in the map can not
 336 * be expanded to represent the new range, a new file_region
 337 * structure is added to the map as a placeholder.  This is
 338 * so that the subsequent region_add call will have all the
 339 * regions it needs and will not fail.
 340 *
 341 * Upon entry, region_chg will also examine the cache of region descriptors
 342 * associated with the map.  If there are not enough descriptors cached, one
 343 * will be allocated for the in progress add operation.
 344 *
 345 * Returns the number of huge pages that need to be added to the existing
 346 * reservation map for the range [f, t).  This number is greater or equal to
 347 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 348 * is needed and can not be allocated.
 349 */
 350static long region_chg(struct resv_map *resv, long f, long t)
 351{
 352        struct list_head *head = &resv->regions;
 353        struct file_region *rg, *nrg = NULL;
 354        long chg = 0;
 355
 356retry:
 357        spin_lock(&resv->lock);
 358retry_locked:
 359        resv->adds_in_progress++;
 360
 361        /*
 362         * Check for sufficient descriptors in the cache to accommodate
 363         * the number of in progress add operations.
 364         */
 365        if (resv->adds_in_progress > resv->region_cache_count) {
 366                struct file_region *trg;
 367
 368                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 369                /* Must drop lock to allocate a new descriptor. */
 370                resv->adds_in_progress--;
 371                spin_unlock(&resv->lock);
 372
 373                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 374                if (!trg) {
 375                        kfree(nrg);
 376                        return -ENOMEM;
 377                }
 378
 379                spin_lock(&resv->lock);
 380                list_add(&trg->link, &resv->region_cache);
 381                resv->region_cache_count++;
 382                goto retry_locked;
 383        }
 384
 385        /* Locate the region we are before or in. */
 386        list_for_each_entry(rg, head, link)
 387                if (f <= rg->to)
 388                        break;
 389
 390        /* If we are below the current region then a new region is required.
 391         * Subtle, allocate a new region at the position but make it zero
 392         * size such that we can guarantee to record the reservation. */
 393        if (&rg->link == head || t < rg->from) {
 394                if (!nrg) {
 395                        resv->adds_in_progress--;
 396                        spin_unlock(&resv->lock);
 397                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 398                        if (!nrg)
 399                                return -ENOMEM;
 400
 401                        nrg->from = f;
 402                        nrg->to   = f;
 403                        INIT_LIST_HEAD(&nrg->link);
 404                        goto retry;
 405                }
 406
 407                list_add(&nrg->link, rg->link.prev);
 408                chg = t - f;
 409                goto out_nrg;
 410        }
 411
 412        /* Round our left edge to the current segment if it encloses us. */
 413        if (f > rg->from)
 414                f = rg->from;
 415        chg = t - f;
 416
 417        /* Check for and consume any regions we now overlap with. */
 418        list_for_each_entry(rg, rg->link.prev, link) {
 419                if (&rg->link == head)
 420                        break;
 421                if (rg->from > t)
 422                        goto out;
 423
 424                /* We overlap with this area, if it extends further than
 425                 * us then we must extend ourselves.  Account for its
 426                 * existing reservation. */
 427                if (rg->to > t) {
 428                        chg += rg->to - t;
 429                        t = rg->to;
 430                }
 431                chg -= rg->to - rg->from;
 432        }
 433
 434out:
 435        spin_unlock(&resv->lock);
 436        /*  We already know we raced and no longer need the new region */
 437        kfree(nrg);
 438        return chg;
 439out_nrg:
 440        spin_unlock(&resv->lock);
 441        return chg;
 442}
 443
 444/*
 445 * Abort the in progress add operation.  The adds_in_progress field
 446 * of the resv_map keeps track of the operations in progress between
 447 * calls to region_chg and region_add.  Operations are sometimes
 448 * aborted after the call to region_chg.  In such cases, region_abort
 449 * is called to decrement the adds_in_progress counter.
 450 *
 451 * NOTE: The range arguments [f, t) are not needed or used in this
 452 * routine.  They are kept to make reading the calling code easier as
 453 * arguments will match the associated region_chg call.
 454 */
 455static void region_abort(struct resv_map *resv, long f, long t)
 456{
 457        spin_lock(&resv->lock);
 458        VM_BUG_ON(!resv->region_cache_count);
 459        resv->adds_in_progress--;
 460        spin_unlock(&resv->lock);
 461}
 462
 463/*
 464 * Delete the specified range [f, t) from the reserve map.  If the
 465 * t parameter is LONG_MAX, this indicates that ALL regions after f
 466 * should be deleted.  Locate the regions which intersect [f, t)
 467 * and either trim, delete or split the existing regions.
 468 *
 469 * Returns the number of huge pages deleted from the reserve map.
 470 * In the normal case, the return value is zero or more.  In the
 471 * case where a region must be split, a new region descriptor must
 472 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 473 * NOTE: If the parameter t == LONG_MAX, then we will never split
 474 * a region and possibly return -ENOMEM.  Callers specifying
 475 * t == LONG_MAX do not need to check for -ENOMEM error.
 476 */
 477static long region_del(struct resv_map *resv, long f, long t)
 478{
 479        struct list_head *head = &resv->regions;
 480        struct file_region *rg, *trg;
 481        struct file_region *nrg = NULL;
 482        long del = 0;
 483
 484retry:
 485        spin_lock(&resv->lock);
 486        list_for_each_entry_safe(rg, trg, head, link) {
 487                /*
 488                 * Skip regions before the range to be deleted.  file_region
 489                 * ranges are normally of the form [from, to).  However, there
 490                 * may be a "placeholder" entry in the map which is of the form
 491                 * (from, to) with from == to.  Check for placeholder entries
 492                 * at the beginning of the range to be deleted.
 493                 */
 494                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 495                        continue;
 496
 497                if (rg->from >= t)
 498                        break;
 499
 500                if (f > rg->from && t < rg->to) { /* Must split region */
 501                        /*
 502                         * Check for an entry in the cache before dropping
 503                         * lock and attempting allocation.
 504                         */
 505                        if (!nrg &&
 506                            resv->region_cache_count > resv->adds_in_progress) {
 507                                nrg = list_first_entry(&resv->region_cache,
 508                                                        struct file_region,
 509                                                        link);
 510                                list_del(&nrg->link);
 511                                resv->region_cache_count--;
 512                        }
 513
 514                        if (!nrg) {
 515                                spin_unlock(&resv->lock);
 516                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 517                                if (!nrg)
 518                                        return -ENOMEM;
 519                                goto retry;
 520                        }
 521
 522                        del += t - f;
 523
 524                        /* New entry for end of split region */
 525                        nrg->from = t;
 526                        nrg->to = rg->to;
 527                        INIT_LIST_HEAD(&nrg->link);
 528
 529                        /* Original entry is trimmed */
 530                        rg->to = f;
 531
 532                        list_add(&nrg->link, &rg->link);
 533                        nrg = NULL;
 534                        break;
 535                }
 536
 537                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 538                        del += rg->to - rg->from;
 539                        list_del(&rg->link);
 540                        kfree(rg);
 541                        continue;
 542                }
 543
 544                if (f <= rg->from) {    /* Trim beginning of region */
 545                        del += t - rg->from;
 546                        rg->from = t;
 547                } else {                /* Trim end of region */
 548                        del += rg->to - f;
 549                        rg->to = f;
 550                }
 551        }
 552
 553        spin_unlock(&resv->lock);
 554        kfree(nrg);
 555        return del;
 556}
 557
 558/*
 559 * A rare out of memory error was encountered which prevented removal of
 560 * the reserve map region for a page.  The huge page itself was free'ed
 561 * and removed from the page cache.  This routine will adjust the subpool
 562 * usage count, and the global reserve count if needed.  By incrementing
 563 * these counts, the reserve map entry which could not be deleted will
 564 * appear as a "reserved" entry instead of simply dangling with incorrect
 565 * counts.
 566 */
 567void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 568{
 569        struct hugepage_subpool *spool = subpool_inode(inode);
 570        long rsv_adjust;
 571
 572        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 573        if (restore_reserve && rsv_adjust) {
 574                struct hstate *h = hstate_inode(inode);
 575
 576                hugetlb_acct_memory(h, 1);
 577        }
 578}
 579
 580/*
 581 * Count and return the number of huge pages in the reserve map
 582 * that intersect with the range [f, t).
 583 */
 584static long region_count(struct resv_map *resv, long f, long t)
 585{
 586        struct list_head *head = &resv->regions;
 587        struct file_region *rg;
 588        long chg = 0;
 589
 590        spin_lock(&resv->lock);
 591        /* Locate each segment we overlap with, and count that overlap. */
 592        list_for_each_entry(rg, head, link) {
 593                long seg_from;
 594                long seg_to;
 595
 596                if (rg->to <= f)
 597                        continue;
 598                if (rg->from >= t)
 599                        break;
 600
 601                seg_from = max(rg->from, f);
 602                seg_to = min(rg->to, t);
 603
 604                chg += seg_to - seg_from;
 605        }
 606        spin_unlock(&resv->lock);
 607
 608        return chg;
 609}
 610
 611/*
 612 * Convert the address within this vma to the page offset within
 613 * the mapping, in pagecache page units; huge pages here.
 614 */
 615static pgoff_t vma_hugecache_offset(struct hstate *h,
 616                        struct vm_area_struct *vma, unsigned long address)
 617{
 618        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 619                        (vma->vm_pgoff >> huge_page_order(h));
 620}
 621
 622pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 623                                     unsigned long address)
 624{
 625        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 626}
 627
 628/*
 629 * Return the size of the pages allocated when backing a VMA. In the majority
 630 * cases this will be same size as used by the page table entries.
 631 */
 632unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 633{
 634        struct hstate *hstate;
 635
 636        if (!is_vm_hugetlb_page(vma))
 637                return PAGE_SIZE;
 638
 639        hstate = hstate_vma(vma);
 640
 641        return 1UL << huge_page_shift(hstate);
 642}
 643EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 644
 645/*
 646 * Return the page size being used by the MMU to back a VMA. In the majority
 647 * of cases, the page size used by the kernel matches the MMU size. On
 648 * architectures where it differs, an architecture-specific version of this
 649 * function is required.
 650 */
 651#ifndef vma_mmu_pagesize
 652unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 653{
 654        return vma_kernel_pagesize(vma);
 655}
 656#endif
 657
 658/*
 659 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 660 * bits of the reservation map pointer, which are always clear due to
 661 * alignment.
 662 */
 663#define HPAGE_RESV_OWNER    (1UL << 0)
 664#define HPAGE_RESV_UNMAPPED (1UL << 1)
 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 666
 667/*
 668 * These helpers are used to track how many pages are reserved for
 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 670 * is guaranteed to have their future faults succeed.
 671 *
 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 673 * the reserve counters are updated with the hugetlb_lock held. It is safe
 674 * to reset the VMA at fork() time as it is not in use yet and there is no
 675 * chance of the global counters getting corrupted as a result of the values.
 676 *
 677 * The private mapping reservation is represented in a subtly different
 678 * manner to a shared mapping.  A shared mapping has a region map associated
 679 * with the underlying file, this region map represents the backing file
 680 * pages which have ever had a reservation assigned which this persists even
 681 * after the page is instantiated.  A private mapping has a region map
 682 * associated with the original mmap which is attached to all VMAs which
 683 * reference it, this region map represents those offsets which have consumed
 684 * reservation ie. where pages have been instantiated.
 685 */
 686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 687{
 688        return (unsigned long)vma->vm_private_data;
 689}
 690
 691static void set_vma_private_data(struct vm_area_struct *vma,
 692                                                        unsigned long value)
 693{
 694        vma->vm_private_data = (void *)value;
 695}
 696
 697struct resv_map *resv_map_alloc(void)
 698{
 699        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 700        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 701
 702        if (!resv_map || !rg) {
 703                kfree(resv_map);
 704                kfree(rg);
 705                return NULL;
 706        }
 707
 708        kref_init(&resv_map->refs);
 709        spin_lock_init(&resv_map->lock);
 710        INIT_LIST_HEAD(&resv_map->regions);
 711
 712        resv_map->adds_in_progress = 0;
 713
 714        INIT_LIST_HEAD(&resv_map->region_cache);
 715        list_add(&rg->link, &resv_map->region_cache);
 716        resv_map->region_cache_count = 1;
 717
 718        return resv_map;
 719}
 720
 721void resv_map_release(struct kref *ref)
 722{
 723        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 724        struct list_head *head = &resv_map->region_cache;
 725        struct file_region *rg, *trg;
 726
 727        /* Clear out any active regions before we release the map. */
 728        region_del(resv_map, 0, LONG_MAX);
 729
 730        /* ... and any entries left in the cache */
 731        list_for_each_entry_safe(rg, trg, head, link) {
 732                list_del(&rg->link);
 733                kfree(rg);
 734        }
 735
 736        VM_BUG_ON(resv_map->adds_in_progress);
 737
 738        kfree(resv_map);
 739}
 740
 741static inline struct resv_map *inode_resv_map(struct inode *inode)
 742{
 743        return inode->i_mapping->private_data;
 744}
 745
 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 747{
 748        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 749        if (vma->vm_flags & VM_MAYSHARE) {
 750                struct address_space *mapping = vma->vm_file->f_mapping;
 751                struct inode *inode = mapping->host;
 752
 753                return inode_resv_map(inode);
 754
 755        } else {
 756                return (struct resv_map *)(get_vma_private_data(vma) &
 757                                                        ~HPAGE_RESV_MASK);
 758        }
 759}
 760
 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 762{
 763        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 764        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 765
 766        set_vma_private_data(vma, (get_vma_private_data(vma) &
 767                                HPAGE_RESV_MASK) | (unsigned long)map);
 768}
 769
 770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 771{
 772        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 776}
 777
 778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 779{
 780        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 781
 782        return (get_vma_private_data(vma) & flag) != 0;
 783}
 784
 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 787{
 788        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 789        if (!(vma->vm_flags & VM_MAYSHARE))
 790                vma->vm_private_data = (void *)0;
 791}
 792
 793/* Returns true if the VMA has associated reserve pages */
 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 795{
 796        if (vma->vm_flags & VM_NORESERVE) {
 797                /*
 798                 * This address is already reserved by other process(chg == 0),
 799                 * so, we should decrement reserved count. Without decrementing,
 800                 * reserve count remains after releasing inode, because this
 801                 * allocated page will go into page cache and is regarded as
 802                 * coming from reserved pool in releasing step.  Currently, we
 803                 * don't have any other solution to deal with this situation
 804                 * properly, so add work-around here.
 805                 */
 806                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 807                        return true;
 808                else
 809                        return false;
 810        }
 811
 812        /* Shared mappings always use reserves */
 813        if (vma->vm_flags & VM_MAYSHARE) {
 814                /*
 815                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 816                 * be a region map for all pages.  The only situation where
 817                 * there is no region map is if a hole was punched via
 818                 * fallocate.  In this case, there really are no reverves to
 819                 * use.  This situation is indicated if chg != 0.
 820                 */
 821                if (chg)
 822                        return false;
 823                else
 824                        return true;
 825        }
 826
 827        /*
 828         * Only the process that called mmap() has reserves for
 829         * private mappings.
 830         */
 831        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 832                return true;
 833
 834        return false;
 835}
 836
 837static void enqueue_huge_page(struct hstate *h, struct page *page)
 838{
 839        int nid = page_to_nid(page);
 840        list_move(&page->lru, &h->hugepage_freelists[nid]);
 841        h->free_huge_pages++;
 842        h->free_huge_pages_node[nid]++;
 843}
 844
 845static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 846{
 847        struct page *page;
 848
 849        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 850                if (!is_migrate_isolate_page(page))
 851                        break;
 852        /*
 853         * if 'non-isolated free hugepage' not found on the list,
 854         * the allocation fails.
 855         */
 856        if (&h->hugepage_freelists[nid] == &page->lru)
 857                return NULL;
 858        list_move(&page->lru, &h->hugepage_activelist);
 859        set_page_refcounted(page);
 860        h->free_huge_pages--;
 861        h->free_huge_pages_node[nid]--;
 862        return page;
 863}
 864
 865/* Movability of hugepages depends on migration support. */
 866static inline gfp_t htlb_alloc_mask(struct hstate *h)
 867{
 868        if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 869                return GFP_HIGHUSER_MOVABLE;
 870        else
 871                return GFP_HIGHUSER;
 872}
 873
 874static struct page *dequeue_huge_page_vma(struct hstate *h,
 875                                struct vm_area_struct *vma,
 876                                unsigned long address, int avoid_reserve,
 877                                long chg)
 878{
 879        struct page *page = NULL;
 880        struct mempolicy *mpol;
 881        nodemask_t *nodemask;
 882        struct zonelist *zonelist;
 883        struct zone *zone;
 884        struct zoneref *z;
 885        unsigned int cpuset_mems_cookie;
 886
 887        /*
 888         * A child process with MAP_PRIVATE mappings created by their parent
 889         * have no page reserves. This check ensures that reservations are
 890         * not "stolen". The child may still get SIGKILLed
 891         */
 892        if (!vma_has_reserves(vma, chg) &&
 893                        h->free_huge_pages - h->resv_huge_pages == 0)
 894                goto err;
 895
 896        /* If reserves cannot be used, ensure enough pages are in the pool */
 897        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 898                goto err;
 899
 900retry_cpuset:
 901        cpuset_mems_cookie = read_mems_allowed_begin();
 902        zonelist = huge_zonelist(vma, address,
 903                                        htlb_alloc_mask(h), &mpol, &nodemask);
 904
 905        for_each_zone_zonelist_nodemask(zone, z, zonelist,
 906                                                MAX_NR_ZONES - 1, nodemask) {
 907                if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 908                        page = dequeue_huge_page_node(h, zone_to_nid(zone));
 909                        if (page) {
 910                                if (avoid_reserve)
 911                                        break;
 912                                if (!vma_has_reserves(vma, chg))
 913                                        break;
 914
 915                                SetPagePrivate(page);
 916                                h->resv_huge_pages--;
 917                                break;
 918                        }
 919                }
 920        }
 921
 922        mpol_cond_put(mpol);
 923        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 924                goto retry_cpuset;
 925        return page;
 926
 927err:
 928        return NULL;
 929}
 930
 931/*
 932 * common helper functions for hstate_next_node_to_{alloc|free}.
 933 * We may have allocated or freed a huge page based on a different
 934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 935 * be outside of *nodes_allowed.  Ensure that we use an allowed
 936 * node for alloc or free.
 937 */
 938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 939{
 940        nid = next_node(nid, *nodes_allowed);
 941        if (nid == MAX_NUMNODES)
 942                nid = first_node(*nodes_allowed);
 943        VM_BUG_ON(nid >= MAX_NUMNODES);
 944
 945        return nid;
 946}
 947
 948static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 949{
 950        if (!node_isset(nid, *nodes_allowed))
 951                nid = next_node_allowed(nid, nodes_allowed);
 952        return nid;
 953}
 954
 955/*
 956 * returns the previously saved node ["this node"] from which to
 957 * allocate a persistent huge page for the pool and advance the
 958 * next node from which to allocate, handling wrap at end of node
 959 * mask.
 960 */
 961static int hstate_next_node_to_alloc(struct hstate *h,
 962                                        nodemask_t *nodes_allowed)
 963{
 964        int nid;
 965
 966        VM_BUG_ON(!nodes_allowed);
 967
 968        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 969        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 970
 971        return nid;
 972}
 973
 974/*
 975 * helper for free_pool_huge_page() - return the previously saved
 976 * node ["this node"] from which to free a huge page.  Advance the
 977 * next node id whether or not we find a free huge page to free so
 978 * that the next attempt to free addresses the next node.
 979 */
 980static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 981{
 982        int nid;
 983
 984        VM_BUG_ON(!nodes_allowed);
 985
 986        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 987        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 988
 989        return nid;
 990}
 991
 992#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
 993        for (nr_nodes = nodes_weight(*mask);                            \
 994                nr_nodes > 0 &&                                         \
 995                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
 996                nr_nodes--)
 997
 998#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
 999        for (nr_nodes = nodes_weight(*mask);                            \
1000                nr_nodes > 0 &&                                         \
1001                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1002                nr_nodes--)
1003
1004#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005static void destroy_compound_gigantic_page(struct page *page,
1006                                        unsigned int order)
1007{
1008        int i;
1009        int nr_pages = 1 << order;
1010        struct page *p = page + 1;
1011
1012        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013                clear_compound_head(p);
1014                set_page_refcounted(p);
1015        }
1016
1017        set_compound_order(page, 0);
1018        __ClearPageHead(page);
1019}
1020
1021static void free_gigantic_page(struct page *page, unsigned int order)
1022{
1023        free_contig_range(page_to_pfn(page), 1 << order);
1024}
1025
1026static int __alloc_gigantic_page(unsigned long start_pfn,
1027                                unsigned long nr_pages)
1028{
1029        unsigned long end_pfn = start_pfn + nr_pages;
1030        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031}
1032
1033static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034                                unsigned long nr_pages)
1035{
1036        unsigned long i, end_pfn = start_pfn + nr_pages;
1037        struct page *page;
1038
1039        for (i = start_pfn; i < end_pfn; i++) {
1040                if (!pfn_valid(i))
1041                        return false;
1042
1043                page = pfn_to_page(i);
1044
1045                if (PageReserved(page))
1046                        return false;
1047
1048                if (page_count(page) > 0)
1049                        return false;
1050
1051                if (PageHuge(page))
1052                        return false;
1053        }
1054
1055        return true;
1056}
1057
1058static bool zone_spans_last_pfn(const struct zone *zone,
1059                        unsigned long start_pfn, unsigned long nr_pages)
1060{
1061        unsigned long last_pfn = start_pfn + nr_pages - 1;
1062        return zone_spans_pfn(zone, last_pfn);
1063}
1064
1065static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066{
1067        unsigned long nr_pages = 1 << order;
1068        unsigned long ret, pfn, flags;
1069        struct zone *z;
1070
1071        z = NODE_DATA(nid)->node_zones;
1072        for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073                spin_lock_irqsave(&z->lock, flags);
1074
1075                pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076                while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077                        if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078                                /*
1079                                 * We release the zone lock here because
1080                                 * alloc_contig_range() will also lock the zone
1081                                 * at some point. If there's an allocation
1082                                 * spinning on this lock, it may win the race
1083                                 * and cause alloc_contig_range() to fail...
1084                                 */
1085                                spin_unlock_irqrestore(&z->lock, flags);
1086                                ret = __alloc_gigantic_page(pfn, nr_pages);
1087                                if (!ret)
1088                                        return pfn_to_page(pfn);
1089                                spin_lock_irqsave(&z->lock, flags);
1090                        }
1091                        pfn += nr_pages;
1092                }
1093
1094                spin_unlock_irqrestore(&z->lock, flags);
1095        }
1096
1097        return NULL;
1098}
1099
1100static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104{
1105        struct page *page;
1106
1107        page = alloc_gigantic_page(nid, huge_page_order(h));
1108        if (page) {
1109                prep_compound_gigantic_page(page, huge_page_order(h));
1110                prep_new_huge_page(h, page, nid);
1111        }
1112
1113        return page;
1114}
1115
1116static int alloc_fresh_gigantic_page(struct hstate *h,
1117                                nodemask_t *nodes_allowed)
1118{
1119        struct page *page = NULL;
1120        int nr_nodes, node;
1121
1122        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123                page = alloc_fresh_gigantic_page_node(h, node);
1124                if (page)
1125                        return 1;
1126        }
1127
1128        return 0;
1129}
1130
1131static inline bool gigantic_page_supported(void) { return true; }
1132#else
1133static inline bool gigantic_page_supported(void) { return false; }
1134static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135static inline void destroy_compound_gigantic_page(struct page *page,
1136                                                unsigned int order) { }
1137static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138                                        nodemask_t *nodes_allowed) { return 0; }
1139#endif
1140
1141static void update_and_free_page(struct hstate *h, struct page *page)
1142{
1143        int i;
1144
1145        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146                return;
1147
1148        h->nr_huge_pages--;
1149        h->nr_huge_pages_node[page_to_nid(page)]--;
1150        for (i = 0; i < pages_per_huge_page(h); i++) {
1151                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152                                1 << PG_referenced | 1 << PG_dirty |
1153                                1 << PG_active | 1 << PG_private |
1154                                1 << PG_writeback);
1155        }
1156        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158        set_page_refcounted(page);
1159        if (hstate_is_gigantic(h)) {
1160                destroy_compound_gigantic_page(page, huge_page_order(h));
1161                free_gigantic_page(page, huge_page_order(h));
1162        } else {
1163                __free_pages(page, huge_page_order(h));
1164        }
1165}
1166
1167struct hstate *size_to_hstate(unsigned long size)
1168{
1169        struct hstate *h;
1170
1171        for_each_hstate(h) {
1172                if (huge_page_size(h) == size)
1173                        return h;
1174        }
1175        return NULL;
1176}
1177
1178/*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184bool page_huge_active(struct page *page)
1185{
1186        VM_BUG_ON_PAGE(!PageHuge(page), page);
1187        return PageHead(page) && PagePrivate(&page[1]);
1188}
1189
1190/* never called for tail page */
1191static void set_page_huge_active(struct page *page)
1192{
1193        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194        SetPagePrivate(&page[1]);
1195}
1196
1197static void clear_page_huge_active(struct page *page)
1198{
1199        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200        ClearPagePrivate(&page[1]);
1201}
1202
1203void free_huge_page(struct page *page)
1204{
1205        /*
1206         * Can't pass hstate in here because it is called from the
1207         * compound page destructor.
1208         */
1209        struct hstate *h = page_hstate(page);
1210        int nid = page_to_nid(page);
1211        struct hugepage_subpool *spool =
1212                (struct hugepage_subpool *)page_private(page);
1213        bool restore_reserve;
1214
1215        set_page_private(page, 0);
1216        page->mapping = NULL;
1217        VM_BUG_ON_PAGE(page_count(page), page);
1218        VM_BUG_ON_PAGE(page_mapcount(page), page);
1219        restore_reserve = PagePrivate(page);
1220        ClearPagePrivate(page);
1221
1222        /*
1223         * A return code of zero implies that the subpool will be under its
1224         * minimum size if the reservation is not restored after page is free.
1225         * Therefore, force restore_reserve operation.
1226         */
1227        if (hugepage_subpool_put_pages(spool, 1) == 0)
1228                restore_reserve = true;
1229
1230        spin_lock(&hugetlb_lock);
1231        clear_page_huge_active(page);
1232        hugetlb_cgroup_uncharge_page(hstate_index(h),
1233                                     pages_per_huge_page(h), page);
1234        if (restore_reserve)
1235                h->resv_huge_pages++;
1236
1237        if (h->surplus_huge_pages_node[nid]) {
1238                /* remove the page from active list */
1239                list_del(&page->lru);
1240                update_and_free_page(h, page);
1241                h->surplus_huge_pages--;
1242                h->surplus_huge_pages_node[nid]--;
1243        } else {
1244                arch_clear_hugepage_flags(page);
1245                enqueue_huge_page(h, page);
1246        }
1247        spin_unlock(&hugetlb_lock);
1248}
1249
1250static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251{
1252        INIT_LIST_HEAD(&page->lru);
1253        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254        spin_lock(&hugetlb_lock);
1255        set_hugetlb_cgroup(page, NULL);
1256        h->nr_huge_pages++;
1257        h->nr_huge_pages_node[nid]++;
1258        spin_unlock(&hugetlb_lock);
1259        put_page(page); /* free it into the hugepage allocator */
1260}
1261
1262static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263{
1264        int i;
1265        int nr_pages = 1 << order;
1266        struct page *p = page + 1;
1267
1268        /* we rely on prep_new_huge_page to set the destructor */
1269        set_compound_order(page, order);
1270        __ClearPageReserved(page);
1271        __SetPageHead(page);
1272        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273                /*
1274                 * For gigantic hugepages allocated through bootmem at
1275                 * boot, it's safer to be consistent with the not-gigantic
1276                 * hugepages and clear the PG_reserved bit from all tail pages
1277                 * too.  Otherwse drivers using get_user_pages() to access tail
1278                 * pages may get the reference counting wrong if they see
1279                 * PG_reserved set on a tail page (despite the head page not
1280                 * having PG_reserved set).  Enforcing this consistency between
1281                 * head and tail pages allows drivers to optimize away a check
1282                 * on the head page when they need know if put_page() is needed
1283                 * after get_user_pages().
1284                 */
1285                __ClearPageReserved(p);
1286                set_page_count(p, 0);
1287                set_compound_head(p, page);
1288        }
1289        atomic_set(compound_mapcount_ptr(page), -1);
1290}
1291
1292/*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages.  See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297int PageHuge(struct page *page)
1298{
1299        if (!PageCompound(page))
1300                return 0;
1301
1302        page = compound_head(page);
1303        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304}
1305EXPORT_SYMBOL_GPL(PageHuge);
1306
1307/*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311int PageHeadHuge(struct page *page_head)
1312{
1313        if (!PageHead(page_head))
1314                return 0;
1315
1316        return get_compound_page_dtor(page_head) == free_huge_page;
1317}
1318
1319pgoff_t __basepage_index(struct page *page)
1320{
1321        struct page *page_head = compound_head(page);
1322        pgoff_t index = page_index(page_head);
1323        unsigned long compound_idx;
1324
1325        if (!PageHuge(page_head))
1326                return page_index(page);
1327
1328        if (compound_order(page_head) >= MAX_ORDER)
1329                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330        else
1331                compound_idx = page - page_head;
1332
1333        return (index << compound_order(page_head)) + compound_idx;
1334}
1335
1336static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337{
1338        struct page *page;
1339
1340        page = __alloc_pages_node(nid,
1341                htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                __GFP_REPEAT|__GFP_NOWARN,
1343                huge_page_order(h));
1344        if (page) {
1345                prep_new_huge_page(h, page, nid);
1346        }
1347
1348        return page;
1349}
1350
1351static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352{
1353        struct page *page;
1354        int nr_nodes, node;
1355        int ret = 0;
1356
1357        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                page = alloc_fresh_huge_page_node(h, node);
1359                if (page) {
1360                        ret = 1;
1361                        break;
1362                }
1363        }
1364
1365        if (ret)
1366                count_vm_event(HTLB_BUDDY_PGALLOC);
1367        else
1368                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370        return ret;
1371}
1372
1373/*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                         bool acct_surplus)
1381{
1382        int nr_nodes, node;
1383        int ret = 0;
1384
1385        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                /*
1387                 * If we're returning unused surplus pages, only examine
1388                 * nodes with surplus pages.
1389                 */
1390                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                    !list_empty(&h->hugepage_freelists[node])) {
1392                        struct page *page =
1393                                list_entry(h->hugepage_freelists[node].next,
1394                                          struct page, lru);
1395                        list_del(&page->lru);
1396                        h->free_huge_pages--;
1397                        h->free_huge_pages_node[node]--;
1398                        if (acct_surplus) {
1399                                h->surplus_huge_pages--;
1400                                h->surplus_huge_pages_node[node]--;
1401                        }
1402                        update_and_free_page(h, page);
1403                        ret = 1;
1404                        break;
1405                }
1406        }
1407
1408        return ret;
1409}
1410
1411/*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415static void dissolve_free_huge_page(struct page *page)
1416{
1417        spin_lock(&hugetlb_lock);
1418        if (PageHuge(page) && !page_count(page)) {
1419                struct hstate *h = page_hstate(page);
1420                int nid = page_to_nid(page);
1421                list_del(&page->lru);
1422                h->free_huge_pages--;
1423                h->free_huge_pages_node[nid]--;
1424                update_and_free_page(h, page);
1425        }
1426        spin_unlock(&hugetlb_lock);
1427}
1428
1429/*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435{
1436        unsigned long pfn;
1437
1438        if (!hugepages_supported())
1439                return;
1440
1441        VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443                dissolve_free_huge_page(pfn_to_page(pfn));
1444}
1445
1446/*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450 *    page from any node, and let the buddy allocator itself figure
1451 *    it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453 *    strictly from 'nid'
1454 */
1455static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456                struct vm_area_struct *vma, unsigned long addr, int nid)
1457{
1458        int order = huge_page_order(h);
1459        gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460        unsigned int cpuset_mems_cookie;
1461
1462        /*
1463         * We need a VMA to get a memory policy.  If we do not
1464         * have one, we use the 'nid' argument.
1465         *
1466         * The mempolicy stuff below has some non-inlined bits
1467         * and calls ->vm_ops.  That makes it hard to optimize at
1468         * compile-time, even when NUMA is off and it does
1469         * nothing.  This helps the compiler optimize it out.
1470         */
1471        if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472                /*
1473                 * If a specific node is requested, make sure to
1474                 * get memory from there, but only when a node
1475                 * is explicitly specified.
1476                 */
1477                if (nid != NUMA_NO_NODE)
1478                        gfp |= __GFP_THISNODE;
1479                /*
1480                 * Make sure to call something that can handle
1481                 * nid=NUMA_NO_NODE
1482                 */
1483                return alloc_pages_node(nid, gfp, order);
1484        }
1485
1486        /*
1487         * OK, so we have a VMA.  Fetch the mempolicy and try to
1488         * allocate a huge page with it.  We will only reach this
1489         * when CONFIG_NUMA=y.
1490         */
1491        do {
1492                struct page *page;
1493                struct mempolicy *mpol;
1494                struct zonelist *zl;
1495                nodemask_t *nodemask;
1496
1497                cpuset_mems_cookie = read_mems_allowed_begin();
1498                zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499                mpol_cond_put(mpol);
1500                page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501                if (page)
1502                        return page;
1503        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505        return NULL;
1506}
1507
1508/*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521                struct vm_area_struct *vma, unsigned long addr, int nid)
1522{
1523        struct page *page;
1524        unsigned int r_nid;
1525
1526        if (hstate_is_gigantic(h))
1527                return NULL;
1528
1529        /*
1530         * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531         * This makes sure the caller is picking _one_ of the modes with which
1532         * we can call this function, not both.
1533         */
1534        if (vma || (addr != -1)) {
1535                VM_WARN_ON_ONCE(addr == -1);
1536                VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537        }
1538        /*
1539         * Assume we will successfully allocate the surplus page to
1540         * prevent racing processes from causing the surplus to exceed
1541         * overcommit
1542         *
1543         * This however introduces a different race, where a process B
1544         * tries to grow the static hugepage pool while alloc_pages() is
1545         * called by process A. B will only examine the per-node
1546         * counters in determining if surplus huge pages can be
1547         * converted to normal huge pages in adjust_pool_surplus(). A
1548         * won't be able to increment the per-node counter, until the
1549         * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550         * no more huge pages can be converted from surplus to normal
1551         * state (and doesn't try to convert again). Thus, we have a
1552         * case where a surplus huge page exists, the pool is grown, and
1553         * the surplus huge page still exists after, even though it
1554         * should just have been converted to a normal huge page. This
1555         * does not leak memory, though, as the hugepage will be freed
1556         * once it is out of use. It also does not allow the counters to
1557         * go out of whack in adjust_pool_surplus() as we don't modify
1558         * the node values until we've gotten the hugepage and only the
1559         * per-node value is checked there.
1560         */
1561        spin_lock(&hugetlb_lock);
1562        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563                spin_unlock(&hugetlb_lock);
1564                return NULL;
1565        } else {
1566                h->nr_huge_pages++;
1567                h->surplus_huge_pages++;
1568        }
1569        spin_unlock(&hugetlb_lock);
1570
1571        page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573        spin_lock(&hugetlb_lock);
1574        if (page) {
1575                INIT_LIST_HEAD(&page->lru);
1576                r_nid = page_to_nid(page);
1577                set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578                set_hugetlb_cgroup(page, NULL);
1579                /*
1580                 * We incremented the global counters already
1581                 */
1582                h->nr_huge_pages_node[r_nid]++;
1583                h->surplus_huge_pages_node[r_nid]++;
1584                __count_vm_event(HTLB_BUDDY_PGALLOC);
1585        } else {
1586                h->nr_huge_pages--;
1587                h->surplus_huge_pages--;
1588                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589        }
1590        spin_unlock(&hugetlb_lock);
1591
1592        return page;
1593}
1594
1595/*
1596 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600static
1601struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602{
1603        unsigned long addr = -1;
1604
1605        return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606}
1607
1608/*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611static
1612struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613                struct vm_area_struct *vma, unsigned long addr)
1614{
1615        return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616}
1617
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
1625        struct page *page = NULL;
1626
1627        spin_lock(&hugetlb_lock);
1628        if (h->free_huge_pages - h->resv_huge_pages > 0)
1629                page = dequeue_huge_page_node(h, nid);
1630        spin_unlock(&hugetlb_lock);
1631
1632        if (!page)
1633                page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635        return page;
1636}
1637
1638/*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642static int gather_surplus_pages(struct hstate *h, int delta)
1643{
1644        struct list_head surplus_list;
1645        struct page *page, *tmp;
1646        int ret, i;
1647        int needed, allocated;
1648        bool alloc_ok = true;
1649
1650        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651        if (needed <= 0) {
1652                h->resv_huge_pages += delta;
1653                return 0;
1654        }
1655
1656        allocated = 0;
1657        INIT_LIST_HEAD(&surplus_list);
1658
1659        ret = -ENOMEM;
1660retry:
1661        spin_unlock(&hugetlb_lock);
1662        for (i = 0; i < needed; i++) {
1663                page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664                if (!page) {
1665                        alloc_ok = false;
1666                        break;
1667                }
1668                list_add(&page->lru, &surplus_list);
1669        }
1670        allocated += i;
1671
1672        /*
1673         * After retaking hugetlb_lock, we need to recalculate 'needed'
1674         * because either resv_huge_pages or free_huge_pages may have changed.
1675         */
1676        spin_lock(&hugetlb_lock);
1677        needed = (h->resv_huge_pages + delta) -
1678                        (h->free_huge_pages + allocated);
1679        if (needed > 0) {
1680                if (alloc_ok)
1681                        goto retry;
1682                /*
1683                 * We were not able to allocate enough pages to
1684                 * satisfy the entire reservation so we free what
1685                 * we've allocated so far.
1686                 */
1687                goto free;
1688        }
1689        /*
1690         * The surplus_list now contains _at_least_ the number of extra pages
1691         * needed to accommodate the reservation.  Add the appropriate number
1692         * of pages to the hugetlb pool and free the extras back to the buddy
1693         * allocator.  Commit the entire reservation here to prevent another
1694         * process from stealing the pages as they are added to the pool but
1695         * before they are reserved.
1696         */
1697        needed += allocated;
1698        h->resv_huge_pages += delta;
1699        ret = 0;
1700
1701        /* Free the needed pages to the hugetlb pool */
1702        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703                if ((--needed) < 0)
1704                        break;
1705                /*
1706                 * This page is now managed by the hugetlb allocator and has
1707                 * no users -- drop the buddy allocator's reference.
1708                 */
1709                put_page_testzero(page);
1710                VM_BUG_ON_PAGE(page_count(page), page);
1711                enqueue_huge_page(h, page);
1712        }
1713free:
1714        spin_unlock(&hugetlb_lock);
1715
1716        /* Free unnecessary surplus pages to the buddy allocator */
1717        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718                put_page(page);
1719        spin_lock(&hugetlb_lock);
1720
1721        return ret;
1722}
1723
1724/*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
1729 */
1730static void return_unused_surplus_pages(struct hstate *h,
1731                                        unsigned long unused_resv_pages)
1732{
1733        unsigned long nr_pages;
1734
1735        /* Uncommit the reservation */
1736        h->resv_huge_pages -= unused_resv_pages;
1737
1738        /* Cannot return gigantic pages currently */
1739        if (hstate_is_gigantic(h))
1740                return;
1741
1742        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744        /*
1745         * We want to release as many surplus pages as possible, spread
1746         * evenly across all nodes with memory. Iterate across these nodes
1747         * until we can no longer free unreserved surplus pages. This occurs
1748         * when the nodes with surplus pages have no free pages.
1749         * free_pool_huge_page() will balance the the freed pages across the
1750         * on-line nodes with memory and will handle the hstate accounting.
1751         */
1752        while (nr_pages--) {
1753                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754                        break;
1755                cond_resched_lock(&hugetlb_lock);
1756        }
1757}
1758
1759
1760/*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation.  If a reservation is
1766 * needed, the value 1 is returned.  The caller is then responsible for
1767 * managing the global reservation and subpool usage counts.  After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map.  If the page allocation fails,
1770 * the reservation must be ended instead of committed.  vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call.  The only time this
1775 * is not the case is if a reserve map was changed between calls.  It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1778 */
1779enum vma_resv_mode {
1780        VMA_NEEDS_RESV,
1781        VMA_COMMIT_RESV,
1782        VMA_END_RESV,
1783};
1784static long __vma_reservation_common(struct hstate *h,
1785                                struct vm_area_struct *vma, unsigned long addr,
1786                                enum vma_resv_mode mode)
1787{
1788        struct resv_map *resv;
1789        pgoff_t idx;
1790        long ret;
1791
1792        resv = vma_resv_map(vma);
1793        if (!resv)
1794                return 1;
1795
1796        idx = vma_hugecache_offset(h, vma, addr);
1797        switch (mode) {
1798        case VMA_NEEDS_RESV:
1799                ret = region_chg(resv, idx, idx + 1);
1800                break;
1801        case VMA_COMMIT_RESV:
1802                ret = region_add(resv, idx, idx + 1);
1803                break;
1804        case VMA_END_RESV:
1805                region_abort(resv, idx, idx + 1);
1806                ret = 0;
1807                break;
1808        default:
1809                BUG();
1810        }
1811
1812        if (vma->vm_flags & VM_MAYSHARE)
1813                return ret;
1814        else
1815                return ret < 0 ? ret : 0;
1816}
1817
1818static long vma_needs_reservation(struct hstate *h,
1819                        struct vm_area_struct *vma, unsigned long addr)
1820{
1821        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822}
1823
1824static long vma_commit_reservation(struct hstate *h,
1825                        struct vm_area_struct *vma, unsigned long addr)
1826{
1827        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828}
1829
1830static void vma_end_reservation(struct hstate *h,
1831                        struct vm_area_struct *vma, unsigned long addr)
1832{
1833        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834}
1835
1836struct page *alloc_huge_page(struct vm_area_struct *vma,
1837                                    unsigned long addr, int avoid_reserve)
1838{
1839        struct hugepage_subpool *spool = subpool_vma(vma);
1840        struct hstate *h = hstate_vma(vma);
1841        struct page *page;
1842        long map_chg, map_commit;
1843        long gbl_chg;
1844        int ret, idx;
1845        struct hugetlb_cgroup *h_cg;
1846
1847        idx = hstate_index(h);
1848        /*
1849         * Examine the region/reserve map to determine if the process
1850         * has a reservation for the page to be allocated.  A return
1851         * code of zero indicates a reservation exists (no change).
1852         */
1853        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854        if (map_chg < 0)
1855                return ERR_PTR(-ENOMEM);
1856
1857        /*
1858         * Processes that did not create the mapping will have no
1859         * reserves as indicated by the region/reserve map. Check
1860         * that the allocation will not exceed the subpool limit.
1861         * Allocations for MAP_NORESERVE mappings also need to be
1862         * checked against any subpool limit.
1863         */
1864        if (map_chg || avoid_reserve) {
1865                gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866                if (gbl_chg < 0) {
1867                        vma_end_reservation(h, vma, addr);
1868                        return ERR_PTR(-ENOSPC);
1869                }
1870
1871                /*
1872                 * Even though there was no reservation in the region/reserve
1873                 * map, there could be reservations associated with the
1874                 * subpool that can be used.  This would be indicated if the
1875                 * return value of hugepage_subpool_get_pages() is zero.
1876                 * However, if avoid_reserve is specified we still avoid even
1877                 * the subpool reservations.
1878                 */
1879                if (avoid_reserve)
1880                        gbl_chg = 1;
1881        }
1882
1883        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884        if (ret)
1885                goto out_subpool_put;
1886
1887        spin_lock(&hugetlb_lock);
1888        /*
1889         * glb_chg is passed to indicate whether or not a page must be taken
1890         * from the global free pool (global change).  gbl_chg == 0 indicates
1891         * a reservation exists for the allocation.
1892         */
1893        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894        if (!page) {
1895                spin_unlock(&hugetlb_lock);
1896                page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897                if (!page)
1898                        goto out_uncharge_cgroup;
1899                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900                        SetPagePrivate(page);
1901                        h->resv_huge_pages--;
1902                }
1903                spin_lock(&hugetlb_lock);
1904                list_move(&page->lru, &h->hugepage_activelist);
1905                /* Fall through */
1906        }
1907        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908        spin_unlock(&hugetlb_lock);
1909
1910        set_page_private(page, (unsigned long)spool);
1911
1912        map_commit = vma_commit_reservation(h, vma, addr);
1913        if (unlikely(map_chg > map_commit)) {
1914                /*
1915                 * The page was added to the reservation map between
1916                 * vma_needs_reservation and vma_commit_reservation.
1917                 * This indicates a race with hugetlb_reserve_pages.
1918                 * Adjust for the subpool count incremented above AND
1919                 * in hugetlb_reserve_pages for the same page.  Also,
1920                 * the reservation count added in hugetlb_reserve_pages
1921                 * no longer applies.
1922                 */
1923                long rsv_adjust;
1924
1925                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926                hugetlb_acct_memory(h, -rsv_adjust);
1927        }
1928        return page;
1929
1930out_uncharge_cgroup:
1931        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932out_subpool_put:
1933        if (map_chg || avoid_reserve)
1934                hugepage_subpool_put_pages(spool, 1);
1935        vma_end_reservation(h, vma, addr);
1936        return ERR_PTR(-ENOSPC);
1937}
1938
1939/*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945                                unsigned long addr, int avoid_reserve)
1946{
1947        struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948        if (IS_ERR(page))
1949                page = NULL;
1950        return page;
1951}
1952
1953int __weak alloc_bootmem_huge_page(struct hstate *h)
1954{
1955        struct huge_bootmem_page *m;
1956        int nr_nodes, node;
1957
1958        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959                void *addr;
1960
1961                addr = memblock_virt_alloc_try_nid_nopanic(
1962                                huge_page_size(h), huge_page_size(h),
1963                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964                if (addr) {
1965                        /*
1966                         * Use the beginning of the huge page to store the
1967                         * huge_bootmem_page struct (until gather_bootmem
1968                         * puts them into the mem_map).
1969                         */
1970                        m = addr;
1971                        goto found;
1972                }
1973        }
1974        return 0;
1975
1976found:
1977        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978        /* Put them into a private list first because mem_map is not up yet */
1979        list_add(&m->list, &huge_boot_pages);
1980        m->hstate = h;
1981        return 1;
1982}
1983
1984static void __init prep_compound_huge_page(struct page *page,
1985                unsigned int order)
1986{
1987        if (unlikely(order > (MAX_ORDER - 1)))
1988                prep_compound_gigantic_page(page, order);
1989        else
1990                prep_compound_page(page, order);
1991}
1992
1993/* Put bootmem huge pages into the standard lists after mem_map is up */
1994static void __init gather_bootmem_prealloc(void)
1995{
1996        struct huge_bootmem_page *m;
1997
1998        list_for_each_entry(m, &huge_boot_pages, list) {
1999                struct hstate *h = m->hstate;
2000                struct page *page;
2001
2002#ifdef CONFIG_HIGHMEM
2003                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004                memblock_free_late(__pa(m),
2005                                   sizeof(struct huge_bootmem_page));
2006#else
2007                page = virt_to_page(m);
2008#endif
2009                WARN_ON(page_count(page) != 1);
2010                prep_compound_huge_page(page, h->order);
2011                WARN_ON(PageReserved(page));
2012                prep_new_huge_page(h, page, page_to_nid(page));
2013                /*
2014                 * If we had gigantic hugepages allocated at boot time, we need
2015                 * to restore the 'stolen' pages to totalram_pages in order to
2016                 * fix confusing memory reports from free(1) and another
2017                 * side-effects, like CommitLimit going negative.
2018                 */
2019                if (hstate_is_gigantic(h))
2020                        adjust_managed_page_count(page, 1 << h->order);
2021        }
2022}
2023
2024static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025{
2026        unsigned long i;
2027
2028        for (i = 0; i < h->max_huge_pages; ++i) {
2029                if (hstate_is_gigantic(h)) {
2030                        if (!alloc_bootmem_huge_page(h))
2031                                break;
2032                } else if (!alloc_fresh_huge_page(h,
2033                                         &node_states[N_MEMORY]))
2034                        break;
2035        }
2036        h->max_huge_pages = i;
2037}
2038
2039static void __init hugetlb_init_hstates(void)
2040{
2041        struct hstate *h;
2042
2043        for_each_hstate(h) {
2044                if (minimum_order > huge_page_order(h))
2045                        minimum_order = huge_page_order(h);
2046
2047                /* oversize hugepages were init'ed in early boot */
2048                if (!hstate_is_gigantic(h))
2049                        hugetlb_hstate_alloc_pages(h);
2050        }
2051        VM_BUG_ON(minimum_order == UINT_MAX);
2052}
2053
2054static char * __init memfmt(char *buf, unsigned long n)
2055{
2056        if (n >= (1UL << 30))
2057                sprintf(buf, "%lu GB", n >> 30);
2058        else if (n >= (1UL << 20))
2059                sprintf(buf, "%lu MB", n >> 20);
2060        else
2061                sprintf(buf, "%lu KB", n >> 10);
2062        return buf;
2063}
2064
2065static void __init report_hugepages(void)
2066{
2067        struct hstate *h;
2068
2069        for_each_hstate(h) {
2070                char buf[32];
2071                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072                        memfmt(buf, huge_page_size(h)),
2073                        h->free_huge_pages);
2074        }
2075}
2076
2077#ifdef CONFIG_HIGHMEM
2078static void try_to_free_low(struct hstate *h, unsigned long count,
2079                                                nodemask_t *nodes_allowed)
2080{
2081        int i;
2082
2083        if (hstate_is_gigantic(h))
2084                return;
2085
2086        for_each_node_mask(i, *nodes_allowed) {
2087                struct page *page, *next;
2088                struct list_head *freel = &h->hugepage_freelists[i];
2089                list_for_each_entry_safe(page, next, freel, lru) {
2090                        if (count >= h->nr_huge_pages)
2091                                return;
2092                        if (PageHighMem(page))
2093                                continue;
2094                        list_del(&page->lru);
2095                        update_and_free_page(h, page);
2096                        h->free_huge_pages--;
2097                        h->free_huge_pages_node[page_to_nid(page)]--;
2098                }
2099        }
2100}
2101#else
2102static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103                                                nodemask_t *nodes_allowed)
2104{
2105}
2106#endif
2107
2108/*
2109 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114                                int delta)
2115{
2116        int nr_nodes, node;
2117
2118        VM_BUG_ON(delta != -1 && delta != 1);
2119
2120        if (delta < 0) {
2121                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122                        if (h->surplus_huge_pages_node[node])
2123                                goto found;
2124                }
2125        } else {
2126                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127                        if (h->surplus_huge_pages_node[node] <
2128                                        h->nr_huge_pages_node[node])
2129                                goto found;
2130                }
2131        }
2132        return 0;
2133
2134found:
2135        h->surplus_huge_pages += delta;
2136        h->surplus_huge_pages_node[node] += delta;
2137        return 1;
2138}
2139
2140#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142                                                nodemask_t *nodes_allowed)
2143{
2144        unsigned long min_count, ret;
2145
2146        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147                return h->max_huge_pages;
2148
2149        /*
2150         * Increase the pool size
2151         * First take pages out of surplus state.  Then make up the
2152         * remaining difference by allocating fresh huge pages.
2153         *
2154         * We might race with __alloc_buddy_huge_page() here and be unable
2155         * to convert a surplus huge page to a normal huge page. That is
2156         * not critical, though, it just means the overall size of the
2157         * pool might be one hugepage larger than it needs to be, but
2158         * within all the constraints specified by the sysctls.
2159         */
2160        spin_lock(&hugetlb_lock);
2161        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163                        break;
2164        }
2165
2166        while (count > persistent_huge_pages(h)) {
2167                /*
2168                 * If this allocation races such that we no longer need the
2169                 * page, free_huge_page will handle it by freeing the page
2170                 * and reducing the surplus.
2171                 */
2172                spin_unlock(&hugetlb_lock);
2173                if (hstate_is_gigantic(h))
2174                        ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175                else
2176                        ret = alloc_fresh_huge_page(h, nodes_allowed);
2177                spin_lock(&hugetlb_lock);
2178                if (!ret)
2179                        goto out;
2180
2181                /* Bail for signals. Probably ctrl-c from user */
2182                if (signal_pending(current))
2183                        goto out;
2184        }
2185
2186        /*
2187         * Decrease the pool size
2188         * First return free pages to the buddy allocator (being careful
2189         * to keep enough around to satisfy reservations).  Then place
2190         * pages into surplus state as needed so the pool will shrink
2191         * to the desired size as pages become free.
2192         *
2193         * By placing pages into the surplus state independent of the
2194         * overcommit value, we are allowing the surplus pool size to
2195         * exceed overcommit. There are few sane options here. Since
2196         * __alloc_buddy_huge_page() is checking the global counter,
2197         * though, we'll note that we're not allowed to exceed surplus
2198         * and won't grow the pool anywhere else. Not until one of the
2199         * sysctls are changed, or the surplus pages go out of use.
2200         */
2201        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202        min_count = max(count, min_count);
2203        try_to_free_low(h, min_count, nodes_allowed);
2204        while (min_count < persistent_huge_pages(h)) {
2205                if (!free_pool_huge_page(h, nodes_allowed, 0))
2206                        break;
2207                cond_resched_lock(&hugetlb_lock);
2208        }
2209        while (count < persistent_huge_pages(h)) {
2210                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211                        break;
2212        }
2213out:
2214        ret = persistent_huge_pages(h);
2215        spin_unlock(&hugetlb_lock);
2216        return ret;
2217}
2218
2219#define HSTATE_ATTR_RO(_name) \
2220        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222#define HSTATE_ATTR(_name) \
2223        static struct kobj_attribute _name##_attr = \
2224                __ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226static struct kobject *hugepages_kobj;
2227static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232{
2233        int i;
2234
2235        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236                if (hstate_kobjs[i] == kobj) {
2237                        if (nidp)
2238                                *nidp = NUMA_NO_NODE;
2239                        return &hstates[i];
2240                }
2241
2242        return kobj_to_node_hstate(kobj, nidp);
2243}
2244
2245static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246                                        struct kobj_attribute *attr, char *buf)
2247{
2248        struct hstate *h;
2249        unsigned long nr_huge_pages;
2250        int nid;
2251
2252        h = kobj_to_hstate(kobj, &nid);
2253        if (nid == NUMA_NO_NODE)
2254                nr_huge_pages = h->nr_huge_pages;
2255        else
2256                nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258        return sprintf(buf, "%lu\n", nr_huge_pages);
2259}
2260
2261static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262                                           struct hstate *h, int nid,
2263                                           unsigned long count, size_t len)
2264{
2265        int err;
2266        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269                err = -EINVAL;
2270                goto out;
2271        }
2272
2273        if (nid == NUMA_NO_NODE) {
2274                /*
2275                 * global hstate attribute
2276                 */
2277                if (!(obey_mempolicy &&
2278                                init_nodemask_of_mempolicy(nodes_allowed))) {
2279                        NODEMASK_FREE(nodes_allowed);
2280                        nodes_allowed = &node_states[N_MEMORY];
2281                }
2282        } else if (nodes_allowed) {
2283                /*
2284                 * per node hstate attribute: adjust count to global,
2285                 * but restrict alloc/free to the specified node.
2286                 */
2287                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288                init_nodemask_of_node(nodes_allowed, nid);
2289        } else
2290                nodes_allowed = &node_states[N_MEMORY];
2291
2292        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294        if (nodes_allowed != &node_states[N_MEMORY])
2295                NODEMASK_FREE(nodes_allowed);
2296
2297        return len;
2298out:
2299        NODEMASK_FREE(nodes_allowed);
2300        return err;
2301}
2302
2303static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304                                         struct kobject *kobj, const char *buf,
2305                                         size_t len)
2306{
2307        struct hstate *h;
2308        unsigned long count;
2309        int nid;
2310        int err;
2311
2312        err = kstrtoul(buf, 10, &count);
2313        if (err)
2314                return err;
2315
2316        h = kobj_to_hstate(kobj, &nid);
2317        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318}
2319
2320static ssize_t nr_hugepages_show(struct kobject *kobj,
2321                                       struct kobj_attribute *attr, char *buf)
2322{
2323        return nr_hugepages_show_common(kobj, attr, buf);
2324}
2325
2326static ssize_t nr_hugepages_store(struct kobject *kobj,
2327               struct kobj_attribute *attr, const char *buf, size_t len)
2328{
2329        return nr_hugepages_store_common(false, kobj, buf, len);
2330}
2331HSTATE_ATTR(nr_hugepages);
2332
2333#ifdef CONFIG_NUMA
2334
2335/*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340                                       struct kobj_attribute *attr, char *buf)
2341{
2342        return nr_hugepages_show_common(kobj, attr, buf);
2343}
2344
2345static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346               struct kobj_attribute *attr, const char *buf, size_t len)
2347{
2348        return nr_hugepages_store_common(true, kobj, buf, len);
2349}
2350HSTATE_ATTR(nr_hugepages_mempolicy);
2351#endif
2352
2353
2354static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355                                        struct kobj_attribute *attr, char *buf)
2356{
2357        struct hstate *h = kobj_to_hstate(kobj, NULL);
2358        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359}
2360
2361static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362                struct kobj_attribute *attr, const char *buf, size_t count)
2363{
2364        int err;
2365        unsigned long input;
2366        struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368        if (hstate_is_gigantic(h))
2369                return -EINVAL;
2370
2371        err = kstrtoul(buf, 10, &input);
2372        if (err)
2373                return err;
2374
2375        spin_lock(&hugetlb_lock);
2376        h->nr_overcommit_huge_pages = input;
2377        spin_unlock(&hugetlb_lock);
2378
2379        return count;
2380}
2381HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383static ssize_t free_hugepages_show(struct kobject *kobj,
2384                                        struct kobj_attribute *attr, char *buf)
2385{
2386        struct hstate *h;
2387        unsigned long free_huge_pages;
2388        int nid;
2389
2390        h = kobj_to_hstate(kobj, &nid);
2391        if (nid == NUMA_NO_NODE)
2392                free_huge_pages = h->free_huge_pages;
2393        else
2394                free_huge_pages = h->free_huge_pages_node[nid];
2395
2396        return sprintf(buf, "%lu\n", free_huge_pages);
2397}
2398HSTATE_ATTR_RO(free_hugepages);
2399
2400static ssize_t resv_hugepages_show(struct kobject *kobj,
2401                                        struct kobj_attribute *attr, char *buf)
2402{
2403        struct hstate *h = kobj_to_hstate(kobj, NULL);
2404        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405}
2406HSTATE_ATTR_RO(resv_hugepages);
2407
2408static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409                                        struct kobj_attribute *attr, char *buf)
2410{
2411        struct hstate *h;
2412        unsigned long surplus_huge_pages;
2413        int nid;
2414
2415        h = kobj_to_hstate(kobj, &nid);
2416        if (nid == NUMA_NO_NODE)
2417                surplus_huge_pages = h->surplus_huge_pages;
2418        else
2419                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421        return sprintf(buf, "%lu\n", surplus_huge_pages);
2422}
2423HSTATE_ATTR_RO(surplus_hugepages);
2424
2425static struct attribute *hstate_attrs[] = {
2426        &nr_hugepages_attr.attr,
2427        &nr_overcommit_hugepages_attr.attr,
2428        &free_hugepages_attr.attr,
2429        &resv_hugepages_attr.attr,
2430        &surplus_hugepages_attr.attr,
2431#ifdef CONFIG_NUMA
2432        &nr_hugepages_mempolicy_attr.attr,
2433#endif
2434        NULL,
2435};
2436
2437static struct attribute_group hstate_attr_group = {
2438        .attrs = hstate_attrs,
2439};
2440
2441static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442                                    struct kobject **hstate_kobjs,
2443                                    struct attribute_group *hstate_attr_group)
2444{
2445        int retval;
2446        int hi = hstate_index(h);
2447
2448        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449        if (!hstate_kobjs[hi])
2450                return -ENOMEM;
2451
2452        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453        if (retval)
2454                kobject_put(hstate_kobjs[hi]);
2455
2456        return retval;
2457}
2458
2459static void __init hugetlb_sysfs_init(void)
2460{
2461        struct hstate *h;
2462        int err;
2463
2464        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465        if (!hugepages_kobj)
2466                return;
2467
2468        for_each_hstate(h) {
2469                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470                                         hstate_kobjs, &hstate_attr_group);
2471                if (err)
2472                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473        }
2474}
2475
2476#ifdef CONFIG_NUMA
2477
2478/*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array.  The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2484 */
2485struct node_hstate {
2486        struct kobject          *hugepages_kobj;
2487        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2488};
2489static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491/*
2492 * A subset of global hstate attributes for node devices
2493 */
2494static struct attribute *per_node_hstate_attrs[] = {
2495        &nr_hugepages_attr.attr,
2496        &free_hugepages_attr.attr,
2497        &surplus_hugepages_attr.attr,
2498        NULL,
2499};
2500
2501static struct attribute_group per_node_hstate_attr_group = {
2502        .attrs = per_node_hstate_attrs,
2503};
2504
2505/*
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2508 */
2509static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510{
2511        int nid;
2512
2513        for (nid = 0; nid < nr_node_ids; nid++) {
2514                struct node_hstate *nhs = &node_hstates[nid];
2515                int i;
2516                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517                        if (nhs->hstate_kobjs[i] == kobj) {
2518                                if (nidp)
2519                                        *nidp = nid;
2520                                return &hstates[i];
2521                        }
2522        }
2523
2524        BUG();
2525        return NULL;
2526}
2527
2528/*
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2531 */
2532static void hugetlb_unregister_node(struct node *node)
2533{
2534        struct hstate *h;
2535        struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537        if (!nhs->hugepages_kobj)
2538                return;         /* no hstate attributes */
2539
2540        for_each_hstate(h) {
2541                int idx = hstate_index(h);
2542                if (nhs->hstate_kobjs[idx]) {
2543                        kobject_put(nhs->hstate_kobjs[idx]);
2544                        nhs->hstate_kobjs[idx] = NULL;
2545                }
2546        }
2547
2548        kobject_put(nhs->hugepages_kobj);
2549        nhs->hugepages_kobj = NULL;
2550}
2551
2552
2553/*
2554 * Register hstate attributes for a single node device.
2555 * No-op if attributes already registered.
2556 */
2557static void hugetlb_register_node(struct node *node)
2558{
2559        struct hstate *h;
2560        struct node_hstate *nhs = &node_hstates[node->dev.id];
2561        int err;
2562
2563        if (nhs->hugepages_kobj)
2564                return;         /* already allocated */
2565
2566        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567                                                        &node->dev.kobj);
2568        if (!nhs->hugepages_kobj)
2569                return;
2570
2571        for_each_hstate(h) {
2572                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573                                                nhs->hstate_kobjs,
2574                                                &per_node_hstate_attr_group);
2575                if (err) {
2576                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577                                h->name, node->dev.id);
2578                        hugetlb_unregister_node(node);
2579                        break;
2580                }
2581        }
2582}
2583
2584/*
2585 * hugetlb init time:  register hstate attributes for all registered node
2586 * devices of nodes that have memory.  All on-line nodes should have
2587 * registered their associated device by this time.
2588 */
2589static void __init hugetlb_register_all_nodes(void)
2590{
2591        int nid;
2592
2593        for_each_node_state(nid, N_MEMORY) {
2594                struct node *node = node_devices[nid];
2595                if (node->dev.id == nid)
2596                        hugetlb_register_node(node);
2597        }
2598
2599        /*
2600         * Let the node device driver know we're here so it can
2601         * [un]register hstate attributes on node hotplug.
2602         */
2603        register_hugetlbfs_with_node(hugetlb_register_node,
2604                                     hugetlb_unregister_node);
2605}
2606#else   /* !CONFIG_NUMA */
2607
2608static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609{
2610        BUG();
2611        if (nidp)
2612                *nidp = -1;
2613        return NULL;
2614}
2615
2616static void hugetlb_register_all_nodes(void) { }
2617
2618#endif
2619
2620static int __init hugetlb_init(void)
2621{
2622        int i;
2623
2624        if (!hugepages_supported())
2625                return 0;
2626
2627        if (!size_to_hstate(default_hstate_size)) {
2628                default_hstate_size = HPAGE_SIZE;
2629                if (!size_to_hstate(default_hstate_size))
2630                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631        }
2632        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633        if (default_hstate_max_huge_pages) {
2634                if (!default_hstate.max_huge_pages)
2635                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636        }
2637
2638        hugetlb_init_hstates();
2639        gather_bootmem_prealloc();
2640        report_hugepages();
2641
2642        hugetlb_sysfs_init();
2643        hugetlb_register_all_nodes();
2644        hugetlb_cgroup_file_init();
2645
2646#ifdef CONFIG_SMP
2647        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648#else
2649        num_fault_mutexes = 1;
2650#endif
2651        hugetlb_fault_mutex_table =
2652                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653        BUG_ON(!hugetlb_fault_mutex_table);
2654
2655        for (i = 0; i < num_fault_mutexes; i++)
2656                mutex_init(&hugetlb_fault_mutex_table[i]);
2657        return 0;
2658}
2659subsys_initcall(hugetlb_init);
2660
2661/* Should be called on processing a hugepagesz=... option */
2662void __init hugetlb_add_hstate(unsigned int order)
2663{
2664        struct hstate *h;
2665        unsigned long i;
2666
2667        if (size_to_hstate(PAGE_SIZE << order)) {
2668                pr_warn("hugepagesz= specified twice, ignoring\n");
2669                return;
2670        }
2671        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672        BUG_ON(order == 0);
2673        h = &hstates[hugetlb_max_hstate++];
2674        h->order = order;
2675        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676        h->nr_huge_pages = 0;
2677        h->free_huge_pages = 0;
2678        for (i = 0; i < MAX_NUMNODES; ++i)
2679                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680        INIT_LIST_HEAD(&h->hugepage_activelist);
2681        h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682        h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684                                        huge_page_size(h)/1024);
2685
2686        parsed_hstate = h;
2687}
2688
2689static int __init hugetlb_nrpages_setup(char *s)
2690{
2691        unsigned long *mhp;
2692        static unsigned long *last_mhp;
2693
2694        /*
2695         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696         * so this hugepages= parameter goes to the "default hstate".
2697         */
2698        if (!hugetlb_max_hstate)
2699                mhp = &default_hstate_max_huge_pages;
2700        else
2701                mhp = &parsed_hstate->max_huge_pages;
2702
2703        if (mhp == last_mhp) {
2704                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2705                return 1;
2706        }
2707
2708        if (sscanf(s, "%lu", mhp) <= 0)
2709                *mhp = 0;
2710
2711        /*
2712         * Global state is always initialized later in hugetlb_init.
2713         * But we need to allocate >= MAX_ORDER hstates here early to still
2714         * use the bootmem allocator.
2715         */
2716        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717                hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719        last_mhp = mhp;
2720
2721        return 1;
2722}
2723__setup("hugepages=", hugetlb_nrpages_setup);
2724
2725static int __init hugetlb_default_setup(char *s)
2726{
2727        default_hstate_size = memparse(s, &s);
2728        return 1;
2729}
2730__setup("default_hugepagesz=", hugetlb_default_setup);
2731
2732static unsigned int cpuset_mems_nr(unsigned int *array)
2733{
2734        int node;
2735        unsigned int nr = 0;
2736
2737        for_each_node_mask(node, cpuset_current_mems_allowed)
2738                nr += array[node];
2739
2740        return nr;
2741}
2742
2743#ifdef CONFIG_SYSCTL
2744static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745                         struct ctl_table *table, int write,
2746                         void __user *buffer, size_t *length, loff_t *ppos)
2747{
2748        struct hstate *h = &default_hstate;
2749        unsigned long tmp = h->max_huge_pages;
2750        int ret;
2751
2752        if (!hugepages_supported())
2753                return -EOPNOTSUPP;
2754
2755        table->data = &tmp;
2756        table->maxlen = sizeof(unsigned long);
2757        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758        if (ret)
2759                goto out;
2760
2761        if (write)
2762                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763                                                  NUMA_NO_NODE, tmp, *length);
2764out:
2765        return ret;
2766}
2767
2768int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769                          void __user *buffer, size_t *length, loff_t *ppos)
2770{
2771
2772        return hugetlb_sysctl_handler_common(false, table, write,
2773                                                        buffer, length, ppos);
2774}
2775
2776#ifdef CONFIG_NUMA
2777int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778                          void __user *buffer, size_t *length, loff_t *ppos)
2779{
2780        return hugetlb_sysctl_handler_common(true, table, write,
2781                                                        buffer, length, ppos);
2782}
2783#endif /* CONFIG_NUMA */
2784
2785int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786                        void __user *buffer,
2787                        size_t *length, loff_t *ppos)
2788{
2789        struct hstate *h = &default_hstate;
2790        unsigned long tmp;
2791        int ret;
2792
2793        if (!hugepages_supported())
2794                return -EOPNOTSUPP;
2795
2796        tmp = h->nr_overcommit_huge_pages;
2797
2798        if (write && hstate_is_gigantic(h))
2799                return -EINVAL;
2800
2801        table->data = &tmp;
2802        table->maxlen = sizeof(unsigned long);
2803        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804        if (ret)
2805                goto out;
2806
2807        if (write) {
2808                spin_lock(&hugetlb_lock);
2809                h->nr_overcommit_huge_pages = tmp;
2810                spin_unlock(&hugetlb_lock);
2811        }
2812out:
2813        return ret;
2814}
2815
2816#endif /* CONFIG_SYSCTL */
2817
2818void hugetlb_report_meminfo(struct seq_file *m)
2819{
2820        struct hstate *h = &default_hstate;
2821        if (!hugepages_supported())
2822                return;
2823        seq_printf(m,
2824                        "HugePages_Total:   %5lu\n"
2825                        "HugePages_Free:    %5lu\n"
2826                        "HugePages_Rsvd:    %5lu\n"
2827                        "HugePages_Surp:    %5lu\n"
2828                        "Hugepagesize:   %8lu kB\n",
2829                        h->nr_huge_pages,
2830                        h->free_huge_pages,
2831                        h->resv_huge_pages,
2832                        h->surplus_huge_pages,
2833                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2834}
2835
2836int hugetlb_report_node_meminfo(int nid, char *buf)
2837{
2838        struct hstate *h = &default_hstate;
2839        if (!hugepages_supported())
2840                return 0;
2841        return sprintf(buf,
2842                "Node %d HugePages_Total: %5u\n"
2843                "Node %d HugePages_Free:  %5u\n"
2844                "Node %d HugePages_Surp:  %5u\n",
2845                nid, h->nr_huge_pages_node[nid],
2846                nid, h->free_huge_pages_node[nid],
2847                nid, h->surplus_huge_pages_node[nid]);
2848}
2849
2850void hugetlb_show_meminfo(void)
2851{
2852        struct hstate *h;
2853        int nid;
2854
2855        if (!hugepages_supported())
2856                return;
2857
2858        for_each_node_state(nid, N_MEMORY)
2859                for_each_hstate(h)
2860                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861                                nid,
2862                                h->nr_huge_pages_node[nid],
2863                                h->free_huge_pages_node[nid],
2864                                h->surplus_huge_pages_node[nid],
2865                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866}
2867
2868void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869{
2870        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872}
2873
2874/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875unsigned long hugetlb_total_pages(void)
2876{
2877        struct hstate *h;
2878        unsigned long nr_total_pages = 0;
2879
2880        for_each_hstate(h)
2881                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882        return nr_total_pages;
2883}
2884
2885static int hugetlb_acct_memory(struct hstate *h, long delta)
2886{
2887        int ret = -ENOMEM;
2888
2889        spin_lock(&hugetlb_lock);
2890        /*
2891         * When cpuset is configured, it breaks the strict hugetlb page
2892         * reservation as the accounting is done on a global variable. Such
2893         * reservation is completely rubbish in the presence of cpuset because
2894         * the reservation is not checked against page availability for the
2895         * current cpuset. Application can still potentially OOM'ed by kernel
2896         * with lack of free htlb page in cpuset that the task is in.
2897         * Attempt to enforce strict accounting with cpuset is almost
2898         * impossible (or too ugly) because cpuset is too fluid that
2899         * task or memory node can be dynamically moved between cpusets.
2900         *
2901         * The change of semantics for shared hugetlb mapping with cpuset is
2902         * undesirable. However, in order to preserve some of the semantics,
2903         * we fall back to check against current free page availability as
2904         * a best attempt and hopefully to minimize the impact of changing
2905         * semantics that cpuset has.
2906         */
2907        if (delta > 0) {
2908                if (gather_surplus_pages(h, delta) < 0)
2909                        goto out;
2910
2911                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912                        return_unused_surplus_pages(h, delta);
2913                        goto out;
2914                }
2915        }
2916
2917        ret = 0;
2918        if (delta < 0)
2919                return_unused_surplus_pages(h, (unsigned long) -delta);
2920
2921out:
2922        spin_unlock(&hugetlb_lock);
2923        return ret;
2924}
2925
2926static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927{
2928        struct resv_map *resv = vma_resv_map(vma);
2929
2930        /*
2931         * This new VMA should share its siblings reservation map if present.
2932         * The VMA will only ever have a valid reservation map pointer where
2933         * it is being copied for another still existing VMA.  As that VMA
2934         * has a reference to the reservation map it cannot disappear until
2935         * after this open call completes.  It is therefore safe to take a
2936         * new reference here without additional locking.
2937         */
2938        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939                kref_get(&resv->refs);
2940}
2941
2942static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943{
2944        struct hstate *h = hstate_vma(vma);
2945        struct resv_map *resv = vma_resv_map(vma);
2946        struct hugepage_subpool *spool = subpool_vma(vma);
2947        unsigned long reserve, start, end;
2948        long gbl_reserve;
2949
2950        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951                return;
2952
2953        start = vma_hugecache_offset(h, vma, vma->vm_start);
2954        end = vma_hugecache_offset(h, vma, vma->vm_end);
2955
2956        reserve = (end - start) - region_count(resv, start, end);
2957
2958        kref_put(&resv->refs, resv_map_release);
2959
2960        if (reserve) {
2961                /*
2962                 * Decrement reserve counts.  The global reserve count may be
2963                 * adjusted if the subpool has a minimum size.
2964                 */
2965                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966                hugetlb_acct_memory(h, -gbl_reserve);
2967        }
2968}
2969
2970/*
2971 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972 * handle_mm_fault() to try to instantiate regular-sized pages in the
2973 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974 * this far.
2975 */
2976static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977{
2978        BUG();
2979        return 0;
2980}
2981
2982const struct vm_operations_struct hugetlb_vm_ops = {
2983        .fault = hugetlb_vm_op_fault,
2984        .open = hugetlb_vm_op_open,
2985        .close = hugetlb_vm_op_close,
2986};
2987
2988static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989                                int writable)
2990{
2991        pte_t entry;
2992
2993        if (writable) {
2994                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995                                         vma->vm_page_prot)));
2996        } else {
2997                entry = huge_pte_wrprotect(mk_huge_pte(page,
2998                                           vma->vm_page_prot));
2999        }
3000        entry = pte_mkyoung(entry);
3001        entry = pte_mkhuge(entry);
3002        entry = arch_make_huge_pte(entry, vma, page, writable);
3003
3004        return entry;
3005}
3006
3007static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008                                   unsigned long address, pte_t *ptep)
3009{
3010        pte_t entry;
3011
3012        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014                update_mmu_cache(vma, address, ptep);
3015}
3016
3017static int is_hugetlb_entry_migration(pte_t pte)
3018{
3019        swp_entry_t swp;
3020
3021        if (huge_pte_none(pte) || pte_present(pte))
3022                return 0;
3023        swp = pte_to_swp_entry(pte);
3024        if (non_swap_entry(swp) && is_migration_entry(swp))
3025                return 1;
3026        else
3027                return 0;
3028}
3029
3030static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031{
3032        swp_entry_t swp;
3033
3034        if (huge_pte_none(pte) || pte_present(pte))
3035                return 0;
3036        swp = pte_to_swp_entry(pte);
3037        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038                return 1;
3039        else
3040                return 0;
3041}
3042
3043int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044                            struct vm_area_struct *vma)
3045{
3046        pte_t *src_pte, *dst_pte, entry;
3047        struct page *ptepage;
3048        unsigned long addr;
3049        int cow;
3050        struct hstate *h = hstate_vma(vma);
3051        unsigned long sz = huge_page_size(h);
3052        unsigned long mmun_start;       /* For mmu_notifiers */
3053        unsigned long mmun_end;         /* For mmu_notifiers */
3054        int ret = 0;
3055
3056        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057
3058        mmun_start = vma->vm_start;
3059        mmun_end = vma->vm_end;
3060        if (cow)
3061                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
3063        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064                spinlock_t *src_ptl, *dst_ptl;
3065                src_pte = huge_pte_offset(src, addr);
3066                if (!src_pte)
3067                        continue;
3068                dst_pte = huge_pte_alloc(dst, addr, sz);
3069                if (!dst_pte) {
3070                        ret = -ENOMEM;
3071                        break;
3072                }
3073
3074                /* If the pagetables are shared don't copy or take references */
3075                if (dst_pte == src_pte)
3076                        continue;
3077
3078                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079                src_ptl = huge_pte_lockptr(h, src, src_pte);
3080                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081                entry = huge_ptep_get(src_pte);
3082                if (huge_pte_none(entry)) { /* skip none entry */
3083                        ;
3084                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085                                    is_hugetlb_entry_hwpoisoned(entry))) {
3086                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088                        if (is_write_migration_entry(swp_entry) && cow) {
3089                                /*
3090                                 * COW mappings require pages in both
3091                                 * parent and child to be set to read.
3092                                 */
3093                                make_migration_entry_read(&swp_entry);
3094                                entry = swp_entry_to_pte(swp_entry);
3095                                set_huge_pte_at(src, addr, src_pte, entry);
3096                        }
3097                        set_huge_pte_at(dst, addr, dst_pte, entry);
3098                } else {
3099                        if (cow) {
3100                                huge_ptep_set_wrprotect(src, addr, src_pte);
3101                                mmu_notifier_invalidate_range(src, mmun_start,
3102                                                                   mmun_end);
3103                        }
3104                        entry = huge_ptep_get(src_pte);
3105                        ptepage = pte_page(entry);
3106                        get_page(ptepage);
3107                        page_dup_rmap(ptepage, true);
3108                        set_huge_pte_at(dst, addr, dst_pte, entry);
3109                        hugetlb_count_add(pages_per_huge_page(h), dst);
3110                }
3111                spin_unlock(src_ptl);
3112                spin_unlock(dst_ptl);
3113        }
3114
3115        if (cow)
3116                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117
3118        return ret;
3119}
3120
3121void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122                            unsigned long start, unsigned long end,
3123                            struct page *ref_page)
3124{
3125        int force_flush = 0;
3126        struct mm_struct *mm = vma->vm_mm;
3127        unsigned long address;
3128        pte_t *ptep;
3129        pte_t pte;
3130        spinlock_t *ptl;
3131        struct page *page;
3132        struct hstate *h = hstate_vma(vma);
3133        unsigned long sz = huge_page_size(h);
3134        const unsigned long mmun_start = start; /* For mmu_notifiers */
3135        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3136
3137        WARN_ON(!is_vm_hugetlb_page(vma));
3138        BUG_ON(start & ~huge_page_mask(h));
3139        BUG_ON(end & ~huge_page_mask(h));
3140
3141        tlb_start_vma(tlb, vma);
3142        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143        address = start;
3144again:
3145        for (; address < end; address += sz) {
3146                ptep = huge_pte_offset(mm, address);
3147                if (!ptep)
3148                        continue;
3149
3150                ptl = huge_pte_lock(h, mm, ptep);
3151                if (huge_pmd_unshare(mm, &address, ptep))
3152                        goto unlock;
3153
3154                pte = huge_ptep_get(ptep);
3155                if (huge_pte_none(pte))
3156                        goto unlock;
3157
3158                /*
3159                 * Migrating hugepage or HWPoisoned hugepage is already
3160                 * unmapped and its refcount is dropped, so just clear pte here.
3161                 */
3162                if (unlikely(!pte_present(pte))) {
3163                        huge_pte_clear(mm, address, ptep);
3164                        goto unlock;
3165                }
3166
3167                page = pte_page(pte);
3168                /*
3169                 * If a reference page is supplied, it is because a specific
3170                 * page is being unmapped, not a range. Ensure the page we
3171                 * are about to unmap is the actual page of interest.
3172                 */
3173                if (ref_page) {
3174                        if (page != ref_page)
3175                                goto unlock;
3176
3177                        /*
3178                         * Mark the VMA as having unmapped its page so that
3179                         * future faults in this VMA will fail rather than
3180                         * looking like data was lost
3181                         */
3182                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183                }
3184
3185                pte = huge_ptep_get_and_clear(mm, address, ptep);
3186                tlb_remove_tlb_entry(tlb, ptep, address);
3187                if (huge_pte_dirty(pte))
3188                        set_page_dirty(page);
3189
3190                hugetlb_count_sub(pages_per_huge_page(h), mm);
3191                page_remove_rmap(page, true);
3192                force_flush = !__tlb_remove_page(tlb, page);
3193                if (force_flush) {
3194                        address += sz;
3195                        spin_unlock(ptl);
3196                        break;
3197                }
3198                /* Bail out after unmapping reference page if supplied */
3199                if (ref_page) {
3200                        spin_unlock(ptl);
3201                        break;
3202                }
3203unlock:
3204                spin_unlock(ptl);
3205        }
3206        /*
3207         * mmu_gather ran out of room to batch pages, we break out of
3208         * the PTE lock to avoid doing the potential expensive TLB invalidate
3209         * and page-free while holding it.
3210         */
3211        if (force_flush) {
3212                force_flush = 0;
3213                tlb_flush_mmu(tlb);
3214                if (address < end && !ref_page)
3215                        goto again;
3216        }
3217        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218        tlb_end_vma(tlb, vma);
3219}
3220
3221void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222                          struct vm_area_struct *vma, unsigned long start,
3223                          unsigned long end, struct page *ref_page)
3224{
3225        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227        /*
3228         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229         * test will fail on a vma being torn down, and not grab a page table
3230         * on its way out.  We're lucky that the flag has such an appropriate
3231         * name, and can in fact be safely cleared here. We could clear it
3232         * before the __unmap_hugepage_range above, but all that's necessary
3233         * is to clear it before releasing the i_mmap_rwsem. This works
3234         * because in the context this is called, the VMA is about to be
3235         * destroyed and the i_mmap_rwsem is held.
3236         */
3237        vma->vm_flags &= ~VM_MAYSHARE;
3238}
3239
3240void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241                          unsigned long end, struct page *ref_page)
3242{
3243        struct mm_struct *mm;
3244        struct mmu_gather tlb;
3245
3246        mm = vma->vm_mm;
3247
3248        tlb_gather_mmu(&tlb, mm, start, end);
3249        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250        tlb_finish_mmu(&tlb, start, end);
3251}
3252
3253/*
3254 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255 * mappping it owns the reserve page for. The intention is to unmap the page
3256 * from other VMAs and let the children be SIGKILLed if they are faulting the
3257 * same region.
3258 */
3259static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260                              struct page *page, unsigned long address)
3261{
3262        struct hstate *h = hstate_vma(vma);
3263        struct vm_area_struct *iter_vma;
3264        struct address_space *mapping;
3265        pgoff_t pgoff;
3266
3267        /*
3268         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269         * from page cache lookup which is in HPAGE_SIZE units.
3270         */
3271        address = address & huge_page_mask(h);
3272        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273                        vma->vm_pgoff;
3274        mapping = file_inode(vma->vm_file)->i_mapping;
3275
3276        /*
3277         * Take the mapping lock for the duration of the table walk. As
3278         * this mapping should be shared between all the VMAs,
3279         * __unmap_hugepage_range() is called as the lock is already held
3280         */
3281        i_mmap_lock_write(mapping);
3282        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283                /* Do not unmap the current VMA */
3284                if (iter_vma == vma)
3285                        continue;
3286
3287                /*
3288                 * Shared VMAs have their own reserves and do not affect
3289                 * MAP_PRIVATE accounting but it is possible that a shared
3290                 * VMA is using the same page so check and skip such VMAs.
3291                 */
3292                if (iter_vma->vm_flags & VM_MAYSHARE)
3293                        continue;
3294
3295                /*
3296                 * Unmap the page from other VMAs without their own reserves.
3297                 * They get marked to be SIGKILLed if they fault in these
3298                 * areas. This is because a future no-page fault on this VMA
3299                 * could insert a zeroed page instead of the data existing
3300                 * from the time of fork. This would look like data corruption
3301                 */
3302                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303                        unmap_hugepage_range(iter_vma, address,
3304                                             address + huge_page_size(h), page);
3305        }
3306        i_mmap_unlock_write(mapping);
3307}
3308
3309/*
3310 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312 * cannot race with other handlers or page migration.
3313 * Keep the pte_same checks anyway to make transition from the mutex easier.
3314 */
3315static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316                        unsigned long address, pte_t *ptep, pte_t pte,
3317                        struct page *pagecache_page, spinlock_t *ptl)
3318{
3319        struct hstate *h = hstate_vma(vma);
3320        struct page *old_page, *new_page;
3321        int ret = 0, outside_reserve = 0;
3322        unsigned long mmun_start;       /* For mmu_notifiers */
3323        unsigned long mmun_end;         /* For mmu_notifiers */
3324
3325        old_page = pte_page(pte);
3326
3327retry_avoidcopy:
3328        /* If no-one else is actually using this page, avoid the copy
3329         * and just make the page writable */
3330        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331                page_move_anon_rmap(old_page, vma, address);
3332                set_huge_ptep_writable(vma, address, ptep);
3333                return 0;
3334        }
3335
3336        /*
3337         * If the process that created a MAP_PRIVATE mapping is about to
3338         * perform a COW due to a shared page count, attempt to satisfy
3339         * the allocation without using the existing reserves. The pagecache
3340         * page is used to determine if the reserve at this address was
3341         * consumed or not. If reserves were used, a partial faulted mapping
3342         * at the time of fork() could consume its reserves on COW instead
3343         * of the full address range.
3344         */
3345        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3346                        old_page != pagecache_page)
3347                outside_reserve = 1;
3348
3349        get_page(old_page);
3350
3351        /*
3352         * Drop page table lock as buddy allocator may be called. It will
3353         * be acquired again before returning to the caller, as expected.
3354         */
3355        spin_unlock(ptl);
3356        new_page = alloc_huge_page(vma, address, outside_reserve);
3357
3358        if (IS_ERR(new_page)) {
3359                /*
3360                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361                 * it is due to references held by a child and an insufficient
3362                 * huge page pool. To guarantee the original mappers
3363                 * reliability, unmap the page from child processes. The child
3364                 * may get SIGKILLed if it later faults.
3365                 */
3366                if (outside_reserve) {
3367                        put_page(old_page);
3368                        BUG_ON(huge_pte_none(pte));
3369                        unmap_ref_private(mm, vma, old_page, address);
3370                        BUG_ON(huge_pte_none(pte));
3371                        spin_lock(ptl);
3372                        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373                        if (likely(ptep &&
3374                                   pte_same(huge_ptep_get(ptep), pte)))
3375                                goto retry_avoidcopy;
3376                        /*
3377                         * race occurs while re-acquiring page table
3378                         * lock, and our job is done.
3379                         */
3380                        return 0;
3381                }
3382
3383                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385                goto out_release_old;
3386        }
3387
3388        /*
3389         * When the original hugepage is shared one, it does not have
3390         * anon_vma prepared.
3391         */
3392        if (unlikely(anon_vma_prepare(vma))) {
3393                ret = VM_FAULT_OOM;
3394                goto out_release_all;
3395        }
3396
3397        copy_user_huge_page(new_page, old_page, address, vma,
3398                            pages_per_huge_page(h));
3399        __SetPageUptodate(new_page);
3400        set_page_huge_active(new_page);
3401
3402        mmun_start = address & huge_page_mask(h);
3403        mmun_end = mmun_start + huge_page_size(h);
3404        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405
3406        /*
3407         * Retake the page table lock to check for racing updates
3408         * before the page tables are altered
3409         */
3410        spin_lock(ptl);
3411        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413                ClearPagePrivate(new_page);
3414
3415                /* Break COW */
3416                huge_ptep_clear_flush(vma, address, ptep);
3417                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418                set_huge_pte_at(mm, address, ptep,
3419                                make_huge_pte(vma, new_page, 1));
3420                page_remove_rmap(old_page, true);
3421                hugepage_add_new_anon_rmap(new_page, vma, address);
3422                /* Make the old page be freed below */
3423                new_page = old_page;
3424        }
3425        spin_unlock(ptl);
3426        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427out_release_all:
3428        put_page(new_page);
3429out_release_old:
3430        put_page(old_page);
3431
3432        spin_lock(ptl); /* Caller expects lock to be held */
3433        return ret;
3434}
3435
3436/* Return the pagecache page at a given address within a VMA */
3437static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438                        struct vm_area_struct *vma, unsigned long address)
3439{
3440        struct address_space *mapping;
3441        pgoff_t idx;
3442
3443        mapping = vma->vm_file->f_mapping;
3444        idx = vma_hugecache_offset(h, vma, address);
3445
3446        return find_lock_page(mapping, idx);
3447}
3448
3449/*
3450 * Return whether there is a pagecache page to back given address within VMA.
3451 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452 */
3453static bool hugetlbfs_pagecache_present(struct hstate *h,
3454                        struct vm_area_struct *vma, unsigned long address)
3455{
3456        struct address_space *mapping;
3457        pgoff_t idx;
3458        struct page *page;
3459
3460        mapping = vma->vm_file->f_mapping;
3461        idx = vma_hugecache_offset(h, vma, address);
3462
3463        page = find_get_page(mapping, idx);
3464        if (page)
3465                put_page(page);
3466        return page != NULL;
3467}
3468
3469int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470                           pgoff_t idx)
3471{
3472        struct inode *inode = mapping->host;
3473        struct hstate *h = hstate_inode(inode);
3474        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476        if (err)
3477                return err;
3478        ClearPagePrivate(page);
3479
3480        spin_lock(&inode->i_lock);
3481        inode->i_blocks += blocks_per_huge_page(h);
3482        spin_unlock(&inode->i_lock);
3483        return 0;
3484}
3485
3486static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487                           struct address_space *mapping, pgoff_t idx,
3488                           unsigned long address, pte_t *ptep, unsigned int flags)
3489{
3490        struct hstate *h = hstate_vma(vma);
3491        int ret = VM_FAULT_SIGBUS;
3492        int anon_rmap = 0;
3493        unsigned long size;
3494        struct page *page;
3495        pte_t new_pte;
3496        spinlock_t *ptl;
3497
3498        /*
3499         * Currently, we are forced to kill the process in the event the
3500         * original mapper has unmapped pages from the child due to a failed
3501         * COW. Warn that such a situation has occurred as it may not be obvious
3502         */
3503        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505                           current->pid);
3506                return ret;
3507        }
3508
3509        /*
3510         * Use page lock to guard against racing truncation
3511         * before we get page_table_lock.
3512         */
3513retry:
3514        page = find_lock_page(mapping, idx);
3515        if (!page) {
3516                size = i_size_read(mapping->host) >> huge_page_shift(h);
3517                if (idx >= size)
3518                        goto out;
3519                page = alloc_huge_page(vma, address, 0);
3520                if (IS_ERR(page)) {
3521                        ret = PTR_ERR(page);
3522                        if (ret == -ENOMEM)
3523                                ret = VM_FAULT_OOM;
3524                        else
3525                                ret = VM_FAULT_SIGBUS;
3526                        goto out;
3527                }
3528                clear_huge_page(page, address, pages_per_huge_page(h));
3529                __SetPageUptodate(page);
3530                set_page_huge_active(page);
3531
3532                if (vma->vm_flags & VM_MAYSHARE) {
3533                        int err = huge_add_to_page_cache(page, mapping, idx);
3534                        if (err) {
3535                                put_page(page);
3536                                if (err == -EEXIST)
3537                                        goto retry;
3538                                goto out;
3539                        }
3540                } else {
3541                        lock_page(page);
3542                        if (unlikely(anon_vma_prepare(vma))) {
3543                                ret = VM_FAULT_OOM;
3544                                goto backout_unlocked;
3545                        }
3546                        anon_rmap = 1;
3547                }
3548        } else {
3549                /*
3550                 * If memory error occurs between mmap() and fault, some process
3551                 * don't have hwpoisoned swap entry for errored virtual address.
3552                 * So we need to block hugepage fault by PG_hwpoison bit check.
3553                 */
3554                if (unlikely(PageHWPoison(page))) {
3555                        ret = VM_FAULT_HWPOISON |
3556                                VM_FAULT_SET_HINDEX(hstate_index(h));
3557                        goto backout_unlocked;
3558                }
3559        }
3560
3561        /*
3562         * If we are going to COW a private mapping later, we examine the
3563         * pending reservations for this page now. This will ensure that
3564         * any allocations necessary to record that reservation occur outside
3565         * the spinlock.
3566         */
3567        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568                if (vma_needs_reservation(h, vma, address) < 0) {
3569                        ret = VM_FAULT_OOM;
3570                        goto backout_unlocked;
3571                }
3572                /* Just decrements count, does not deallocate */
3573                vma_end_reservation(h, vma, address);
3574        }
3575
3576        ptl = huge_pte_lockptr(h, mm, ptep);
3577        spin_lock(ptl);
3578        size = i_size_read(mapping->host) >> huge_page_shift(h);
3579        if (idx >= size)
3580                goto backout;
3581
3582        ret = 0;
3583        if (!huge_pte_none(huge_ptep_get(ptep)))
3584                goto backout;
3585
3586        if (anon_rmap) {
3587                ClearPagePrivate(page);
3588                hugepage_add_new_anon_rmap(page, vma, address);
3589        } else
3590                page_dup_rmap(page, true);
3591        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592                                && (vma->vm_flags & VM_SHARED)));
3593        set_huge_pte_at(mm, address, ptep, new_pte);
3594
3595        hugetlb_count_add(pages_per_huge_page(h), mm);
3596        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597                /* Optimization, do the COW without a second fault */
3598                ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599        }
3600
3601        spin_unlock(ptl);
3602        unlock_page(page);
3603out:
3604        return ret;
3605
3606backout:
3607        spin_unlock(ptl);
3608backout_unlocked:
3609        unlock_page(page);
3610        put_page(page);
3611        goto out;
3612}
3613
3614#ifdef CONFIG_SMP
3615u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616                            struct vm_area_struct *vma,
3617                            struct address_space *mapping,
3618                            pgoff_t idx, unsigned long address)
3619{
3620        unsigned long key[2];
3621        u32 hash;
3622
3623        if (vma->vm_flags & VM_SHARED) {
3624                key[0] = (unsigned long) mapping;
3625                key[1] = idx;
3626        } else {
3627                key[0] = (unsigned long) mm;
3628                key[1] = address >> huge_page_shift(h);
3629        }
3630
3631        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633        return hash & (num_fault_mutexes - 1);
3634}
3635#else
3636/*
3637 * For uniprocesor systems we always use a single mutex, so just
3638 * return 0 and avoid the hashing overhead.
3639 */
3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641                            struct vm_area_struct *vma,
3642                            struct address_space *mapping,
3643                            pgoff_t idx, unsigned long address)
3644{
3645        return 0;
3646}
3647#endif
3648
3649int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650                        unsigned long address, unsigned int flags)
3651{
3652        pte_t *ptep, entry;
3653        spinlock_t *ptl;
3654        int ret;
3655        u32 hash;
3656        pgoff_t idx;
3657        struct page *page = NULL;
3658        struct page *pagecache_page = NULL;
3659        struct hstate *h = hstate_vma(vma);
3660        struct address_space *mapping;
3661        int need_wait_lock = 0;
3662
3663        address &= huge_page_mask(h);
3664
3665        ptep = huge_pte_offset(mm, address);
3666        if (ptep) {
3667                entry = huge_ptep_get(ptep);
3668                if (unlikely(is_hugetlb_entry_migration(entry))) {
3669                        migration_entry_wait_huge(vma, mm, ptep);
3670                        return 0;
3671                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672                        return VM_FAULT_HWPOISON_LARGE |
3673                                VM_FAULT_SET_HINDEX(hstate_index(h));
3674        } else {
3675                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676                if (!ptep)
3677                        return VM_FAULT_OOM;
3678        }
3679
3680        mapping = vma->vm_file->f_mapping;
3681        idx = vma_hugecache_offset(h, vma, address);
3682
3683        /*
3684         * Serialize hugepage allocation and instantiation, so that we don't
3685         * get spurious allocation failures if two CPUs race to instantiate
3686         * the same page in the page cache.
3687         */
3688        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690
3691        entry = huge_ptep_get(ptep);
3692        if (huge_pte_none(entry)) {
3693                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694                goto out_mutex;
3695        }
3696
3697        ret = 0;
3698
3699        /*
3700         * entry could be a migration/hwpoison entry at this point, so this
3701         * check prevents the kernel from going below assuming that we have
3702         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704         * handle it.
3705         */
3706        if (!pte_present(entry))
3707                goto out_mutex;
3708
3709        /*
3710         * If we are going to COW the mapping later, we examine the pending
3711         * reservations for this page now. This will ensure that any
3712         * allocations necessary to record that reservation occur outside the
3713         * spinlock. For private mappings, we also lookup the pagecache
3714         * page now as it is used to determine if a reservation has been
3715         * consumed.
3716         */
3717        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718                if (vma_needs_reservation(h, vma, address) < 0) {
3719                        ret = VM_FAULT_OOM;
3720                        goto out_mutex;
3721                }
3722                /* Just decrements count, does not deallocate */
3723                vma_end_reservation(h, vma, address);
3724
3725                if (!(vma->vm_flags & VM_MAYSHARE))
3726                        pagecache_page = hugetlbfs_pagecache_page(h,
3727                                                                vma, address);
3728        }
3729
3730        ptl = huge_pte_lock(h, mm, ptep);
3731
3732        /* Check for a racing update before calling hugetlb_cow */
3733        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734                goto out_ptl;
3735
3736        /*
3737         * hugetlb_cow() requires page locks of pte_page(entry) and
3738         * pagecache_page, so here we need take the former one
3739         * when page != pagecache_page or !pagecache_page.
3740         */
3741        page = pte_page(entry);
3742        if (page != pagecache_page)
3743                if (!trylock_page(page)) {
3744                        need_wait_lock = 1;
3745                        goto out_ptl;
3746                }
3747
3748        get_page(page);
3749
3750        if (flags & FAULT_FLAG_WRITE) {
3751                if (!huge_pte_write(entry)) {
3752                        ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753                                        pagecache_page, ptl);
3754                        goto out_put_page;
3755                }
3756                entry = huge_pte_mkdirty(entry);
3757        }
3758        entry = pte_mkyoung(entry);
3759        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760                                                flags & FAULT_FLAG_WRITE))
3761                update_mmu_cache(vma, address, ptep);
3762out_put_page:
3763        if (page != pagecache_page)
3764                unlock_page(page);
3765        put_page(page);
3766out_ptl:
3767        spin_unlock(ptl);
3768
3769        if (pagecache_page) {
3770                unlock_page(pagecache_page);
3771                put_page(pagecache_page);
3772        }
3773out_mutex:
3774        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775        /*
3776         * Generally it's safe to hold refcount during waiting page lock. But
3777         * here we just wait to defer the next page fault to avoid busy loop and
3778         * the page is not used after unlocked before returning from the current
3779         * page fault. So we are safe from accessing freed page, even if we wait
3780         * here without taking refcount.
3781         */
3782        if (need_wait_lock)
3783                wait_on_page_locked(page);
3784        return ret;
3785}
3786
3787long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788                         struct page **pages, struct vm_area_struct **vmas,
3789                         unsigned long *position, unsigned long *nr_pages,
3790                         long i, unsigned int flags)
3791{
3792        unsigned long pfn_offset;
3793        unsigned long vaddr = *position;
3794        unsigned long remainder = *nr_pages;
3795        struct hstate *h = hstate_vma(vma);
3796
3797        while (vaddr < vma->vm_end && remainder) {
3798                pte_t *pte;
3799                spinlock_t *ptl = NULL;
3800                int absent;
3801                struct page *page;
3802
3803                /*
3804                 * If we have a pending SIGKILL, don't keep faulting pages and
3805                 * potentially allocating memory.
3806                 */
3807                if (unlikely(fatal_signal_pending(current))) {
3808                        remainder = 0;
3809                        break;
3810                }
3811
3812                /*
3813                 * Some archs (sparc64, sh*) have multiple pte_ts to
3814                 * each hugepage.  We have to make sure we get the
3815                 * first, for the page indexing below to work.
3816                 *
3817                 * Note that page table lock is not held when pte is null.
3818                 */
3819                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3820                if (pte)
3821                        ptl = huge_pte_lock(h, mm, pte);
3822                absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824                /*
3825                 * When coredumping, it suits get_dump_page if we just return
3826                 * an error where there's an empty slot with no huge pagecache
3827                 * to back it.  This way, we avoid allocating a hugepage, and
3828                 * the sparse dumpfile avoids allocating disk blocks, but its
3829                 * huge holes still show up with zeroes where they need to be.
3830                 */
3831                if (absent && (flags & FOLL_DUMP) &&
3832                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833                        if (pte)
3834                                spin_unlock(ptl);
3835                        remainder = 0;
3836                        break;
3837                }
3838
3839                /*
3840                 * We need call hugetlb_fault for both hugepages under migration
3841                 * (in which case hugetlb_fault waits for the migration,) and
3842                 * hwpoisoned hugepages (in which case we need to prevent the
3843                 * caller from accessing to them.) In order to do this, we use
3844                 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846                 * both cases, and because we can't follow correct pages
3847                 * directly from any kind of swap entries.
3848                 */
3849                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850                    ((flags & FOLL_WRITE) &&
3851                      !huge_pte_write(huge_ptep_get(pte)))) {
3852                        int ret;
3853
3854                        if (pte)
3855                                spin_unlock(ptl);
3856                        ret = hugetlb_fault(mm, vma, vaddr,
3857                                (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3858                        if (!(ret & VM_FAULT_ERROR))
3859                                continue;
3860
3861                        remainder = 0;
3862                        break;
3863                }
3864
3865                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866                page = pte_page(huge_ptep_get(pte));
3867same_page:
3868                if (pages) {
3869                        pages[i] = mem_map_offset(page, pfn_offset);
3870                        get_page(pages[i]);
3871                }
3872
3873                if (vmas)
3874                        vmas[i] = vma;
3875
3876                vaddr += PAGE_SIZE;
3877                ++pfn_offset;
3878                --remainder;
3879                ++i;
3880                if (vaddr < vma->vm_end && remainder &&
3881                                pfn_offset < pages_per_huge_page(h)) {
3882                        /*
3883                         * We use pfn_offset to avoid touching the pageframes
3884                         * of this compound page.
3885                         */
3886                        goto same_page;
3887                }
3888                spin_unlock(ptl);
3889        }
3890        *nr_pages = remainder;
3891        *position = vaddr;
3892
3893        return i ? i : -EFAULT;
3894}
3895
3896unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897                unsigned long address, unsigned long end, pgprot_t newprot)
3898{
3899        struct mm_struct *mm = vma->vm_mm;
3900        unsigned long start = address;
3901        pte_t *ptep;
3902        pte_t pte;
3903        struct hstate *h = hstate_vma(vma);
3904        unsigned long pages = 0;
3905
3906        BUG_ON(address >= end);
3907        flush_cache_range(vma, address, end);
3908
3909        mmu_notifier_invalidate_range_start(mm, start, end);
3910        i_mmap_lock_write(vma->vm_file->f_mapping);
3911        for (; address < end; address += huge_page_size(h)) {
3912                spinlock_t *ptl;
3913                ptep = huge_pte_offset(mm, address);
3914                if (!ptep)
3915                        continue;
3916                ptl = huge_pte_lock(h, mm, ptep);
3917                if (huge_pmd_unshare(mm, &address, ptep)) {
3918                        pages++;
3919                        spin_unlock(ptl);
3920                        continue;
3921                }
3922                pte = huge_ptep_get(ptep);
3923                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924                        spin_unlock(ptl);
3925                        continue;
3926                }
3927                if (unlikely(is_hugetlb_entry_migration(pte))) {
3928                        swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930                        if (is_write_migration_entry(entry)) {
3931                                pte_t newpte;
3932
3933                                make_migration_entry_read(&entry);
3934                                newpte = swp_entry_to_pte(entry);
3935                                set_huge_pte_at(mm, address, ptep, newpte);
3936                                pages++;
3937                        }
3938                        spin_unlock(ptl);
3939                        continue;
3940                }
3941                if (!huge_pte_none(pte)) {
3942                        pte = huge_ptep_get_and_clear(mm, address, ptep);
3943                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945                        set_huge_pte_at(mm, address, ptep, pte);
3946                        pages++;
3947                }
3948                spin_unlock(ptl);
3949        }
3950        /*
3951         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952         * may have cleared our pud entry and done put_page on the page table:
3953         * once we release i_mmap_rwsem, another task can do the final put_page
3954         * and that page table be reused and filled with junk.
3955         */
3956        flush_tlb_range(vma, start, end);
3957        mmu_notifier_invalidate_range(mm, start, end);
3958        i_mmap_unlock_write(vma->vm_file->f_mapping);
3959        mmu_notifier_invalidate_range_end(mm, start, end);
3960
3961        return pages << h->order;
3962}
3963
3964int hugetlb_reserve_pages(struct inode *inode,
3965                                        long from, long to,
3966                                        struct vm_area_struct *vma,
3967                                        vm_flags_t vm_flags)
3968{
3969        long ret, chg;
3970        struct hstate *h = hstate_inode(inode);
3971        struct hugepage_subpool *spool = subpool_inode(inode);
3972        struct resv_map *resv_map;
3973        long gbl_reserve;
3974
3975        /*
3976         * Only apply hugepage reservation if asked. At fault time, an
3977         * attempt will be made for VM_NORESERVE to allocate a page
3978         * without using reserves
3979         */
3980        if (vm_flags & VM_NORESERVE)
3981                return 0;
3982
3983        /*
3984         * Shared mappings base their reservation on the number of pages that
3985         * are already allocated on behalf of the file. Private mappings need
3986         * to reserve the full area even if read-only as mprotect() may be
3987         * called to make the mapping read-write. Assume !vma is a shm mapping
3988         */
3989        if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990                resv_map = inode_resv_map(inode);
3991
3992                chg = region_chg(resv_map, from, to);
3993
3994        } else {
3995                resv_map = resv_map_alloc();
3996                if (!resv_map)
3997                        return -ENOMEM;
3998
3999                chg = to - from;
4000
4001                set_vma_resv_map(vma, resv_map);
4002                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003        }
4004
4005        if (chg < 0) {
4006                ret = chg;
4007                goto out_err;
4008        }
4009
4010        /*
4011         * There must be enough pages in the subpool for the mapping. If
4012         * the subpool has a minimum size, there may be some global
4013         * reservations already in place (gbl_reserve).
4014         */
4015        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016        if (gbl_reserve < 0) {
4017                ret = -ENOSPC;
4018                goto out_err;
4019        }
4020
4021        /*
4022         * Check enough hugepages are available for the reservation.
4023         * Hand the pages back to the subpool if there are not
4024         */
4025        ret = hugetlb_acct_memory(h, gbl_reserve);
4026        if (ret < 0) {
4027                /* put back original number of pages, chg */
4028                (void)hugepage_subpool_put_pages(spool, chg);
4029                goto out_err;
4030        }
4031
4032        /*
4033         * Account for the reservations made. Shared mappings record regions
4034         * that have reservations as they are shared by multiple VMAs.
4035         * When the last VMA disappears, the region map says how much
4036         * the reservation was and the page cache tells how much of
4037         * the reservation was consumed. Private mappings are per-VMA and
4038         * only the consumed reservations are tracked. When the VMA
4039         * disappears, the original reservation is the VMA size and the
4040         * consumed reservations are stored in the map. Hence, nothing
4041         * else has to be done for private mappings here
4042         */
4043        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044                long add = region_add(resv_map, from, to);
4045
4046                if (unlikely(chg > add)) {
4047                        /*
4048                         * pages in this range were added to the reserve
4049                         * map between region_chg and region_add.  This
4050                         * indicates a race with alloc_huge_page.  Adjust
4051                         * the subpool and reserve counts modified above
4052                         * based on the difference.
4053                         */
4054                        long rsv_adjust;
4055
4056                        rsv_adjust = hugepage_subpool_put_pages(spool,
4057                                                                chg - add);
4058                        hugetlb_acct_memory(h, -rsv_adjust);
4059                }
4060        }
4061        return 0;
4062out_err:
4063        if (!vma || vma->vm_flags & VM_MAYSHARE)
4064                region_abort(resv_map, from, to);
4065        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066                kref_put(&resv_map->refs, resv_map_release);
4067        return ret;
4068}
4069
4070long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071                                                                long freed)
4072{
4073        struct hstate *h = hstate_inode(inode);
4074        struct resv_map *resv_map = inode_resv_map(inode);
4075        long chg = 0;
4076        struct hugepage_subpool *spool = subpool_inode(inode);
4077        long gbl_reserve;
4078
4079        if (resv_map) {
4080                chg = region_del(resv_map, start, end);
4081                /*
4082                 * region_del() can fail in the rare case where a region
4083                 * must be split and another region descriptor can not be
4084                 * allocated.  If end == LONG_MAX, it will not fail.
4085                 */
4086                if (chg < 0)
4087                        return chg;
4088        }
4089
4090        spin_lock(&inode->i_lock);
4091        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092        spin_unlock(&inode->i_lock);
4093
4094        /*
4095         * If the subpool has a minimum size, the number of global
4096         * reservations to be released may be adjusted.
4097         */
4098        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099        hugetlb_acct_memory(h, -gbl_reserve);
4100
4101        return 0;
4102}
4103
4104#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106                                struct vm_area_struct *vma,
4107                                unsigned long addr, pgoff_t idx)
4108{
4109        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110                                svma->vm_start;
4111        unsigned long sbase = saddr & PUD_MASK;
4112        unsigned long s_end = sbase + PUD_SIZE;
4113
4114        /* Allow segments to share if only one is marked locked */
4115        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117
4118        /*
4119         * match the virtual addresses, permission and the alignment of the
4120         * page table page.
4121         */
4122        if (pmd_index(addr) != pmd_index(saddr) ||
4123            vm_flags != svm_flags ||
4124            sbase < svma->vm_start || svma->vm_end < s_end)
4125                return 0;
4126
4127        return saddr;
4128}
4129
4130static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131{
4132        unsigned long base = addr & PUD_MASK;
4133        unsigned long end = base + PUD_SIZE;
4134
4135        /*
4136         * check on proper vm_flags and page table alignment
4137         */
4138        if (vma->vm_flags & VM_MAYSHARE &&
4139            vma->vm_start <= base && end <= vma->vm_end)
4140                return true;
4141        return false;
4142}
4143
4144/*
4145 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146 * and returns the corresponding pte. While this is not necessary for the
4147 * !shared pmd case because we can allocate the pmd later as well, it makes the
4148 * code much cleaner. pmd allocation is essential for the shared case because
4149 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151 * bad pmd for sharing.
4152 */
4153pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154{
4155        struct vm_area_struct *vma = find_vma(mm, addr);
4156        struct address_space *mapping = vma->vm_file->f_mapping;
4157        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158                        vma->vm_pgoff;
4159        struct vm_area_struct *svma;
4160        unsigned long saddr;
4161        pte_t *spte = NULL;
4162        pte_t *pte;
4163        spinlock_t *ptl;
4164
4165        if (!vma_shareable(vma, addr))
4166                return (pte_t *)pmd_alloc(mm, pud, addr);
4167
4168        i_mmap_lock_write(mapping);
4169        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170                if (svma == vma)
4171                        continue;
4172
4173                saddr = page_table_shareable(svma, vma, addr, idx);
4174                if (saddr) {
4175                        spte = huge_pte_offset(svma->vm_mm, saddr);
4176                        if (spte) {
4177                                mm_inc_nr_pmds(mm);
4178                                get_page(virt_to_page(spte));
4179                                break;
4180                        }
4181                }
4182        }
4183
4184        if (!spte)
4185                goto out;
4186
4187        ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188        spin_lock(ptl);
4189        if (pud_none(*pud)) {
4190                pud_populate(mm, pud,
4191                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4192        } else {
4193                put_page(virt_to_page(spte));
4194                mm_inc_nr_pmds(mm);
4195        }
4196        spin_unlock(ptl);
4197out:
4198        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199        i_mmap_unlock_write(mapping);
4200        return pte;
4201}
4202
4203/*
4204 * unmap huge page backed by shared pte.
4205 *
4206 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207 * indicated by page_count > 1, unmap is achieved by clearing pud and
4208 * decrementing the ref count. If count == 1, the pte page is not shared.
4209 *
4210 * called with page table lock held.
4211 *
4212 * returns: 1 successfully unmapped a shared pte page
4213 *          0 the underlying pte page is not shared, or it is the last user
4214 */
4215int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216{
4217        pgd_t *pgd = pgd_offset(mm, *addr);
4218        pud_t *pud = pud_offset(pgd, *addr);
4219
4220        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221        if (page_count(virt_to_page(ptep)) == 1)
4222                return 0;
4223
4224        pud_clear(pud);
4225        put_page(virt_to_page(ptep));
4226        mm_dec_nr_pmds(mm);
4227        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228        return 1;
4229}
4230#define want_pmd_share()        (1)
4231#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233{
4234        return NULL;
4235}
4236
4237int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238{
4239        return 0;
4240}
4241#define want_pmd_share()        (0)
4242#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
4244#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245pte_t *huge_pte_alloc(struct mm_struct *mm,
4246                        unsigned long addr, unsigned long sz)
4247{
4248        pgd_t *pgd;
4249        pud_t *pud;
4250        pte_t *pte = NULL;
4251
4252        pgd = pgd_offset(mm, addr);
4253        pud = pud_alloc(mm, pgd, addr);
4254        if (pud) {
4255                if (sz == PUD_SIZE) {
4256                        pte = (pte_t *)pud;
4257                } else {
4258                        BUG_ON(sz != PMD_SIZE);
4259                        if (want_pmd_share() && pud_none(*pud))
4260                                pte = huge_pmd_share(mm, addr, pud);
4261                        else
4262                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263                }
4264        }
4265        BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267        return pte;
4268}
4269
4270pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271{
4272        pgd_t *pgd;
4273        pud_t *pud;
4274        pmd_t *pmd = NULL;
4275
4276        pgd = pgd_offset(mm, addr);
4277        if (pgd_present(*pgd)) {
4278                pud = pud_offset(pgd, addr);
4279                if (pud_present(*pud)) {
4280                        if (pud_huge(*pud))
4281                                return (pte_t *)pud;
4282                        pmd = pmd_offset(pud, addr);
4283                }
4284        }
4285        return (pte_t *) pmd;
4286}
4287
4288#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290/*
4291 * These functions are overwritable if your architecture needs its own
4292 * behavior.
4293 */
4294struct page * __weak
4295follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296                              int write)
4297{
4298        return ERR_PTR(-EINVAL);
4299}
4300
4301struct page * __weak
4302follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303                pmd_t *pmd, int flags)
4304{
4305        struct page *page = NULL;
4306        spinlock_t *ptl;
4307retry:
4308        ptl = pmd_lockptr(mm, pmd);
4309        spin_lock(ptl);
4310        /*
4311         * make sure that the address range covered by this pmd is not
4312         * unmapped from other threads.
4313         */
4314        if (!pmd_huge(*pmd))
4315                goto out;
4316        if (pmd_present(*pmd)) {
4317                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318                if (flags & FOLL_GET)
4319                        get_page(page);
4320        } else {
4321                if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322                        spin_unlock(ptl);
4323                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324                        goto retry;
4325                }
4326                /*
4327                 * hwpoisoned entry is treated as no_page_table in
4328                 * follow_page_mask().
4329                 */
4330        }
4331out:
4332        spin_unlock(ptl);
4333        return page;
4334}
4335
4336struct page * __weak
4337follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338                pud_t *pud, int flags)
4339{
4340        if (flags & FOLL_GET)
4341                return NULL;
4342
4343        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344}
4345
4346#ifdef CONFIG_MEMORY_FAILURE
4347
4348/*
4349 * This function is called from memory failure code.
4350 * Assume the caller holds page lock of the head page.
4351 */
4352int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353{
4354        struct hstate *h = page_hstate(hpage);
4355        int nid = page_to_nid(hpage);
4356        int ret = -EBUSY;
4357
4358        spin_lock(&hugetlb_lock);
4359        /*
4360         * Just checking !page_huge_active is not enough, because that could be
4361         * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362         */
4363        if (!page_huge_active(hpage) && !page_count(hpage)) {
4364                /*
4365                 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366                 * but dangling hpage->lru can trigger list-debug warnings
4367                 * (this happens when we call unpoison_memory() on it),
4368                 * so let it point to itself with list_del_init().
4369                 */
4370                list_del_init(&hpage->lru);
4371                set_page_refcounted(hpage);
4372                h->free_huge_pages--;
4373                h->free_huge_pages_node[nid]--;
4374                ret = 0;
4375        }
4376        spin_unlock(&hugetlb_lock);
4377        return ret;
4378}
4379#endif
4380
4381bool isolate_huge_page(struct page *page, struct list_head *list)
4382{
4383        bool ret = true;
4384
4385        VM_BUG_ON_PAGE(!PageHead(page), page);
4386        spin_lock(&hugetlb_lock);
4387        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388                ret = false;
4389                goto unlock;
4390        }
4391        clear_page_huge_active(page);
4392        list_move_tail(&page->lru, list);
4393unlock:
4394        spin_unlock(&hugetlb_lock);
4395        return ret;
4396}
4397
4398void putback_active_hugepage(struct page *page)
4399{
4400        VM_BUG_ON_PAGE(!PageHead(page), page);
4401        spin_lock(&hugetlb_lock);
4402        set_page_huge_active(page);
4403        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404        spin_unlock(&hugetlb_lock);
4405        put_page(page);
4406}
4407