linux/mm/kmemleak.c
<<
>>
Prefs
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/kmemleak.txt.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a red black tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
  56 * Locks and mutexes are acquired/nested in the following order:
  57 *
  58 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  59 *
  60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  61 * regions.
  62 *
  63 * The kmemleak_object structures have a use_count incremented or decremented
  64 * using the get_object()/put_object() functions. When the use_count becomes
  65 * 0, this count can no longer be incremented and put_object() schedules the
  66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  67 * function must be protected by rcu_read_lock() to avoid accessing a freed
  68 * structure.
  69 */
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/init.h>
  74#include <linux/kernel.h>
  75#include <linux/list.h>
  76#include <linux/sched.h>
  77#include <linux/jiffies.h>
  78#include <linux/delay.h>
  79#include <linux/export.h>
  80#include <linux/kthread.h>
  81#include <linux/rbtree.h>
  82#include <linux/fs.h>
  83#include <linux/debugfs.h>
  84#include <linux/seq_file.h>
  85#include <linux/cpumask.h>
  86#include <linux/spinlock.h>
  87#include <linux/mutex.h>
  88#include <linux/rcupdate.h>
  89#include <linux/stacktrace.h>
  90#include <linux/cache.h>
  91#include <linux/percpu.h>
  92#include <linux/hardirq.h>
  93#include <linux/mmzone.h>
  94#include <linux/slab.h>
  95#include <linux/thread_info.h>
  96#include <linux/err.h>
  97#include <linux/uaccess.h>
  98#include <linux/string.h>
  99#include <linux/nodemask.h>
 100#include <linux/mm.h>
 101#include <linux/workqueue.h>
 102#include <linux/crc32.h>
 103
 104#include <asm/sections.h>
 105#include <asm/processor.h>
 106#include <linux/atomic.h>
 107
 108#include <linux/kasan.h>
 109#include <linux/kmemcheck.h>
 110#include <linux/kmemleak.h>
 111#include <linux/memory_hotplug.h>
 112
 113/*
 114 * Kmemleak configuration and common defines.
 115 */
 116#define MAX_TRACE               16      /* stack trace length */
 117#define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
 118#define SECS_FIRST_SCAN         60      /* delay before the first scan */
 119#define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
 120#define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
 121
 122#define BYTES_PER_POINTER       sizeof(void *)
 123
 124/* GFP bitmask for kmemleak internal allocations */
 125#define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 126                                 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 127                                 __GFP_NOWARN)
 128
 129/* scanning area inside a memory block */
 130struct kmemleak_scan_area {
 131        struct hlist_node node;
 132        unsigned long start;
 133        size_t size;
 134};
 135
 136#define KMEMLEAK_GREY   0
 137#define KMEMLEAK_BLACK  -1
 138
 139/*
 140 * Structure holding the metadata for each allocated memory block.
 141 * Modifications to such objects should be made while holding the
 142 * object->lock. Insertions or deletions from object_list, gray_list or
 143 * rb_node are already protected by the corresponding locks or mutex (see
 144 * the notes on locking above). These objects are reference-counted
 145 * (use_count) and freed using the RCU mechanism.
 146 */
 147struct kmemleak_object {
 148        spinlock_t lock;
 149        unsigned long flags;            /* object status flags */
 150        struct list_head object_list;
 151        struct list_head gray_list;
 152        struct rb_node rb_node;
 153        struct rcu_head rcu;            /* object_list lockless traversal */
 154        /* object usage count; object freed when use_count == 0 */
 155        atomic_t use_count;
 156        unsigned long pointer;
 157        size_t size;
 158        /* minimum number of a pointers found before it is considered leak */
 159        int min_count;
 160        /* the total number of pointers found pointing to this object */
 161        int count;
 162        /* checksum for detecting modified objects */
 163        u32 checksum;
 164        /* memory ranges to be scanned inside an object (empty for all) */
 165        struct hlist_head area_list;
 166        unsigned long trace[MAX_TRACE];
 167        unsigned int trace_len;
 168        unsigned long jiffies;          /* creation timestamp */
 169        pid_t pid;                      /* pid of the current task */
 170        char comm[TASK_COMM_LEN];       /* executable name */
 171};
 172
 173/* flag representing the memory block allocation status */
 174#define OBJECT_ALLOCATED        (1 << 0)
 175/* flag set after the first reporting of an unreference object */
 176#define OBJECT_REPORTED         (1 << 1)
 177/* flag set to not scan the object */
 178#define OBJECT_NO_SCAN          (1 << 2)
 179
 180/* number of bytes to print per line; must be 16 or 32 */
 181#define HEX_ROW_SIZE            16
 182/* number of bytes to print at a time (1, 2, 4, 8) */
 183#define HEX_GROUP_SIZE          1
 184/* include ASCII after the hex output */
 185#define HEX_ASCII               1
 186/* max number of lines to be printed */
 187#define HEX_MAX_LINES           2
 188
 189/* the list of all allocated objects */
 190static LIST_HEAD(object_list);
 191/* the list of gray-colored objects (see color_gray comment below) */
 192static LIST_HEAD(gray_list);
 193/* search tree for object boundaries */
 194static struct rb_root object_tree_root = RB_ROOT;
 195/* rw_lock protecting the access to object_list and object_tree_root */
 196static DEFINE_RWLOCK(kmemleak_lock);
 197
 198/* allocation caches for kmemleak internal data */
 199static struct kmem_cache *object_cache;
 200static struct kmem_cache *scan_area_cache;
 201
 202/* set if tracing memory operations is enabled */
 203static int kmemleak_enabled;
 204/* same as above but only for the kmemleak_free() callback */
 205static int kmemleak_free_enabled;
 206/* set in the late_initcall if there were no errors */
 207static int kmemleak_initialized;
 208/* enables or disables early logging of the memory operations */
 209static int kmemleak_early_log = 1;
 210/* set if a kmemleak warning was issued */
 211static int kmemleak_warning;
 212/* set if a fatal kmemleak error has occurred */
 213static int kmemleak_error;
 214
 215/* minimum and maximum address that may be valid pointers */
 216static unsigned long min_addr = ULONG_MAX;
 217static unsigned long max_addr;
 218
 219static struct task_struct *scan_thread;
 220/* used to avoid reporting of recently allocated objects */
 221static unsigned long jiffies_min_age;
 222static unsigned long jiffies_last_scan;
 223/* delay between automatic memory scannings */
 224static signed long jiffies_scan_wait;
 225/* enables or disables the task stacks scanning */
 226static int kmemleak_stack_scan = 1;
 227/* protects the memory scanning, parameters and debug/kmemleak file access */
 228static DEFINE_MUTEX(scan_mutex);
 229/* setting kmemleak=on, will set this var, skipping the disable */
 230static int kmemleak_skip_disable;
 231/* If there are leaks that can be reported */
 232static bool kmemleak_found_leaks;
 233
 234/*
 235 * Early object allocation/freeing logging. Kmemleak is initialized after the
 236 * kernel allocator. However, both the kernel allocator and kmemleak may
 237 * allocate memory blocks which need to be tracked. Kmemleak defines an
 238 * arbitrary buffer to hold the allocation/freeing information before it is
 239 * fully initialized.
 240 */
 241
 242/* kmemleak operation type for early logging */
 243enum {
 244        KMEMLEAK_ALLOC,
 245        KMEMLEAK_ALLOC_PERCPU,
 246        KMEMLEAK_FREE,
 247        KMEMLEAK_FREE_PART,
 248        KMEMLEAK_FREE_PERCPU,
 249        KMEMLEAK_NOT_LEAK,
 250        KMEMLEAK_IGNORE,
 251        KMEMLEAK_SCAN_AREA,
 252        KMEMLEAK_NO_SCAN
 253};
 254
 255/*
 256 * Structure holding the information passed to kmemleak callbacks during the
 257 * early logging.
 258 */
 259struct early_log {
 260        int op_type;                    /* kmemleak operation type */
 261        const void *ptr;                /* allocated/freed memory block */
 262        size_t size;                    /* memory block size */
 263        int min_count;                  /* minimum reference count */
 264        unsigned long trace[MAX_TRACE]; /* stack trace */
 265        unsigned int trace_len;         /* stack trace length */
 266};
 267
 268/* early logging buffer and current position */
 269static struct early_log
 270        early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 271static int crt_early_log __initdata;
 272
 273static void kmemleak_disable(void);
 274
 275/*
 276 * Print a warning and dump the stack trace.
 277 */
 278#define kmemleak_warn(x...)     do {            \
 279        pr_warn(x);                             \
 280        dump_stack();                           \
 281        kmemleak_warning = 1;                   \
 282} while (0)
 283
 284/*
 285 * Macro invoked when a serious kmemleak condition occurred and cannot be
 286 * recovered from. Kmemleak will be disabled and further allocation/freeing
 287 * tracing no longer available.
 288 */
 289#define kmemleak_stop(x...)     do {    \
 290        kmemleak_warn(x);               \
 291        kmemleak_disable();             \
 292} while (0)
 293
 294/*
 295 * Printing of the objects hex dump to the seq file. The number of lines to be
 296 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 297 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 298 * with the object->lock held.
 299 */
 300static void hex_dump_object(struct seq_file *seq,
 301                            struct kmemleak_object *object)
 302{
 303        const u8 *ptr = (const u8 *)object->pointer;
 304        size_t len;
 305
 306        /* limit the number of lines to HEX_MAX_LINES */
 307        len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 308
 309        seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 310        seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 311                     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
 312}
 313
 314/*
 315 * Object colors, encoded with count and min_count:
 316 * - white - orphan object, not enough references to it (count < min_count)
 317 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 318 *              sufficient references to it (count >= min_count)
 319 * - black - ignore, it doesn't contain references (e.g. text section)
 320 *              (min_count == -1). No function defined for this color.
 321 * Newly created objects don't have any color assigned (object->count == -1)
 322 * before the next memory scan when they become white.
 323 */
 324static bool color_white(const struct kmemleak_object *object)
 325{
 326        return object->count != KMEMLEAK_BLACK &&
 327                object->count < object->min_count;
 328}
 329
 330static bool color_gray(const struct kmemleak_object *object)
 331{
 332        return object->min_count != KMEMLEAK_BLACK &&
 333                object->count >= object->min_count;
 334}
 335
 336/*
 337 * Objects are considered unreferenced only if their color is white, they have
 338 * not be deleted and have a minimum age to avoid false positives caused by
 339 * pointers temporarily stored in CPU registers.
 340 */
 341static bool unreferenced_object(struct kmemleak_object *object)
 342{
 343        return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 344                time_before_eq(object->jiffies + jiffies_min_age,
 345                               jiffies_last_scan);
 346}
 347
 348/*
 349 * Printing of the unreferenced objects information to the seq file. The
 350 * print_unreferenced function must be called with the object->lock held.
 351 */
 352static void print_unreferenced(struct seq_file *seq,
 353                               struct kmemleak_object *object)
 354{
 355        int i;
 356        unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 357
 358        seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 359                   object->pointer, object->size);
 360        seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 361                   object->comm, object->pid, object->jiffies,
 362                   msecs_age / 1000, msecs_age % 1000);
 363        hex_dump_object(seq, object);
 364        seq_printf(seq, "  backtrace:\n");
 365
 366        for (i = 0; i < object->trace_len; i++) {
 367                void *ptr = (void *)object->trace[i];
 368                seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 369        }
 370}
 371
 372/*
 373 * Print the kmemleak_object information. This function is used mainly for
 374 * debugging special cases when kmemleak operations. It must be called with
 375 * the object->lock held.
 376 */
 377static void dump_object_info(struct kmemleak_object *object)
 378{
 379        struct stack_trace trace;
 380
 381        trace.nr_entries = object->trace_len;
 382        trace.entries = object->trace;
 383
 384        pr_notice("Object 0x%08lx (size %zu):\n",
 385                  object->pointer, object->size);
 386        pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 387                  object->comm, object->pid, object->jiffies);
 388        pr_notice("  min_count = %d\n", object->min_count);
 389        pr_notice("  count = %d\n", object->count);
 390        pr_notice("  flags = 0x%lx\n", object->flags);
 391        pr_notice("  checksum = %u\n", object->checksum);
 392        pr_notice("  backtrace:\n");
 393        print_stack_trace(&trace, 4);
 394}
 395
 396/*
 397 * Look-up a memory block metadata (kmemleak_object) in the object search
 398 * tree based on a pointer value. If alias is 0, only values pointing to the
 399 * beginning of the memory block are allowed. The kmemleak_lock must be held
 400 * when calling this function.
 401 */
 402static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 403{
 404        struct rb_node *rb = object_tree_root.rb_node;
 405
 406        while (rb) {
 407                struct kmemleak_object *object =
 408                        rb_entry(rb, struct kmemleak_object, rb_node);
 409                if (ptr < object->pointer)
 410                        rb = object->rb_node.rb_left;
 411                else if (object->pointer + object->size <= ptr)
 412                        rb = object->rb_node.rb_right;
 413                else if (object->pointer == ptr || alias)
 414                        return object;
 415                else {
 416                        kmemleak_warn("Found object by alias at 0x%08lx\n",
 417                                      ptr);
 418                        dump_object_info(object);
 419                        break;
 420                }
 421        }
 422        return NULL;
 423}
 424
 425/*
 426 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 427 * that once an object's use_count reached 0, the RCU freeing was already
 428 * registered and the object should no longer be used. This function must be
 429 * called under the protection of rcu_read_lock().
 430 */
 431static int get_object(struct kmemleak_object *object)
 432{
 433        return atomic_inc_not_zero(&object->use_count);
 434}
 435
 436/*
 437 * RCU callback to free a kmemleak_object.
 438 */
 439static void free_object_rcu(struct rcu_head *rcu)
 440{
 441        struct hlist_node *tmp;
 442        struct kmemleak_scan_area *area;
 443        struct kmemleak_object *object =
 444                container_of(rcu, struct kmemleak_object, rcu);
 445
 446        /*
 447         * Once use_count is 0 (guaranteed by put_object), there is no other
 448         * code accessing this object, hence no need for locking.
 449         */
 450        hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 451                hlist_del(&area->node);
 452                kmem_cache_free(scan_area_cache, area);
 453        }
 454        kmem_cache_free(object_cache, object);
 455}
 456
 457/*
 458 * Decrement the object use_count. Once the count is 0, free the object using
 459 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 460 * delete_object() path, the delayed RCU freeing ensures that there is no
 461 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 462 * is also possible.
 463 */
 464static void put_object(struct kmemleak_object *object)
 465{
 466        if (!atomic_dec_and_test(&object->use_count))
 467                return;
 468
 469        /* should only get here after delete_object was called */
 470        WARN_ON(object->flags & OBJECT_ALLOCATED);
 471
 472        call_rcu(&object->rcu, free_object_rcu);
 473}
 474
 475/*
 476 * Look up an object in the object search tree and increase its use_count.
 477 */
 478static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 479{
 480        unsigned long flags;
 481        struct kmemleak_object *object;
 482
 483        rcu_read_lock();
 484        read_lock_irqsave(&kmemleak_lock, flags);
 485        object = lookup_object(ptr, alias);
 486        read_unlock_irqrestore(&kmemleak_lock, flags);
 487
 488        /* check whether the object is still available */
 489        if (object && !get_object(object))
 490                object = NULL;
 491        rcu_read_unlock();
 492
 493        return object;
 494}
 495
 496/*
 497 * Look up an object in the object search tree and remove it from both
 498 * object_tree_root and object_list. The returned object's use_count should be
 499 * at least 1, as initially set by create_object().
 500 */
 501static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
 502{
 503        unsigned long flags;
 504        struct kmemleak_object *object;
 505
 506        write_lock_irqsave(&kmemleak_lock, flags);
 507        object = lookup_object(ptr, alias);
 508        if (object) {
 509                rb_erase(&object->rb_node, &object_tree_root);
 510                list_del_rcu(&object->object_list);
 511        }
 512        write_unlock_irqrestore(&kmemleak_lock, flags);
 513
 514        return object;
 515}
 516
 517/*
 518 * Save stack trace to the given array of MAX_TRACE size.
 519 */
 520static int __save_stack_trace(unsigned long *trace)
 521{
 522        struct stack_trace stack_trace;
 523
 524        stack_trace.max_entries = MAX_TRACE;
 525        stack_trace.nr_entries = 0;
 526        stack_trace.entries = trace;
 527        stack_trace.skip = 2;
 528        save_stack_trace(&stack_trace);
 529
 530        return stack_trace.nr_entries;
 531}
 532
 533/*
 534 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 535 * memory block and add it to the object_list and object_tree_root.
 536 */
 537static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 538                                             int min_count, gfp_t gfp)
 539{
 540        unsigned long flags;
 541        struct kmemleak_object *object, *parent;
 542        struct rb_node **link, *rb_parent;
 543
 544        object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 545        if (!object) {
 546                pr_warn("Cannot allocate a kmemleak_object structure\n");
 547                kmemleak_disable();
 548                return NULL;
 549        }
 550
 551        INIT_LIST_HEAD(&object->object_list);
 552        INIT_LIST_HEAD(&object->gray_list);
 553        INIT_HLIST_HEAD(&object->area_list);
 554        spin_lock_init(&object->lock);
 555        atomic_set(&object->use_count, 1);
 556        object->flags = OBJECT_ALLOCATED;
 557        object->pointer = ptr;
 558        object->size = size;
 559        object->min_count = min_count;
 560        object->count = 0;                      /* white color initially */
 561        object->jiffies = jiffies;
 562        object->checksum = 0;
 563
 564        /* task information */
 565        if (in_irq()) {
 566                object->pid = 0;
 567                strncpy(object->comm, "hardirq", sizeof(object->comm));
 568        } else if (in_softirq()) {
 569                object->pid = 0;
 570                strncpy(object->comm, "softirq", sizeof(object->comm));
 571        } else {
 572                object->pid = current->pid;
 573                /*
 574                 * There is a small chance of a race with set_task_comm(),
 575                 * however using get_task_comm() here may cause locking
 576                 * dependency issues with current->alloc_lock. In the worst
 577                 * case, the command line is not correct.
 578                 */
 579                strncpy(object->comm, current->comm, sizeof(object->comm));
 580        }
 581
 582        /* kernel backtrace */
 583        object->trace_len = __save_stack_trace(object->trace);
 584
 585        write_lock_irqsave(&kmemleak_lock, flags);
 586
 587        min_addr = min(min_addr, ptr);
 588        max_addr = max(max_addr, ptr + size);
 589        link = &object_tree_root.rb_node;
 590        rb_parent = NULL;
 591        while (*link) {
 592                rb_parent = *link;
 593                parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 594                if (ptr + size <= parent->pointer)
 595                        link = &parent->rb_node.rb_left;
 596                else if (parent->pointer + parent->size <= ptr)
 597                        link = &parent->rb_node.rb_right;
 598                else {
 599                        kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 600                                      ptr);
 601                        /*
 602                         * No need for parent->lock here since "parent" cannot
 603                         * be freed while the kmemleak_lock is held.
 604                         */
 605                        dump_object_info(parent);
 606                        kmem_cache_free(object_cache, object);
 607                        object = NULL;
 608                        goto out;
 609                }
 610        }
 611        rb_link_node(&object->rb_node, rb_parent, link);
 612        rb_insert_color(&object->rb_node, &object_tree_root);
 613
 614        list_add_tail_rcu(&object->object_list, &object_list);
 615out:
 616        write_unlock_irqrestore(&kmemleak_lock, flags);
 617        return object;
 618}
 619
 620/*
 621 * Mark the object as not allocated and schedule RCU freeing via put_object().
 622 */
 623static void __delete_object(struct kmemleak_object *object)
 624{
 625        unsigned long flags;
 626
 627        WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 628        WARN_ON(atomic_read(&object->use_count) < 1);
 629
 630        /*
 631         * Locking here also ensures that the corresponding memory block
 632         * cannot be freed when it is being scanned.
 633         */
 634        spin_lock_irqsave(&object->lock, flags);
 635        object->flags &= ~OBJECT_ALLOCATED;
 636        spin_unlock_irqrestore(&object->lock, flags);
 637        put_object(object);
 638}
 639
 640/*
 641 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 642 * delete it.
 643 */
 644static void delete_object_full(unsigned long ptr)
 645{
 646        struct kmemleak_object *object;
 647
 648        object = find_and_remove_object(ptr, 0);
 649        if (!object) {
 650#ifdef DEBUG
 651                kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 652                              ptr);
 653#endif
 654                return;
 655        }
 656        __delete_object(object);
 657}
 658
 659/*
 660 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 661 * delete it. If the memory block is partially freed, the function may create
 662 * additional metadata for the remaining parts of the block.
 663 */
 664static void delete_object_part(unsigned long ptr, size_t size)
 665{
 666        struct kmemleak_object *object;
 667        unsigned long start, end;
 668
 669        object = find_and_remove_object(ptr, 1);
 670        if (!object) {
 671#ifdef DEBUG
 672                kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 673                              ptr, size);
 674#endif
 675                return;
 676        }
 677
 678        /*
 679         * Create one or two objects that may result from the memory block
 680         * split. Note that partial freeing is only done by free_bootmem() and
 681         * this happens before kmemleak_init() is called. The path below is
 682         * only executed during early log recording in kmemleak_init(), so
 683         * GFP_KERNEL is enough.
 684         */
 685        start = object->pointer;
 686        end = object->pointer + object->size;
 687        if (ptr > start)
 688                create_object(start, ptr - start, object->min_count,
 689                              GFP_KERNEL);
 690        if (ptr + size < end)
 691                create_object(ptr + size, end - ptr - size, object->min_count,
 692                              GFP_KERNEL);
 693
 694        __delete_object(object);
 695}
 696
 697static void __paint_it(struct kmemleak_object *object, int color)
 698{
 699        object->min_count = color;
 700        if (color == KMEMLEAK_BLACK)
 701                object->flags |= OBJECT_NO_SCAN;
 702}
 703
 704static void paint_it(struct kmemleak_object *object, int color)
 705{
 706        unsigned long flags;
 707
 708        spin_lock_irqsave(&object->lock, flags);
 709        __paint_it(object, color);
 710        spin_unlock_irqrestore(&object->lock, flags);
 711}
 712
 713static void paint_ptr(unsigned long ptr, int color)
 714{
 715        struct kmemleak_object *object;
 716
 717        object = find_and_get_object(ptr, 0);
 718        if (!object) {
 719                kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 720                              ptr,
 721                              (color == KMEMLEAK_GREY) ? "Grey" :
 722                              (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 723                return;
 724        }
 725        paint_it(object, color);
 726        put_object(object);
 727}
 728
 729/*
 730 * Mark an object permanently as gray-colored so that it can no longer be
 731 * reported as a leak. This is used in general to mark a false positive.
 732 */
 733static void make_gray_object(unsigned long ptr)
 734{
 735        paint_ptr(ptr, KMEMLEAK_GREY);
 736}
 737
 738/*
 739 * Mark the object as black-colored so that it is ignored from scans and
 740 * reporting.
 741 */
 742static void make_black_object(unsigned long ptr)
 743{
 744        paint_ptr(ptr, KMEMLEAK_BLACK);
 745}
 746
 747/*
 748 * Add a scanning area to the object. If at least one such area is added,
 749 * kmemleak will only scan these ranges rather than the whole memory block.
 750 */
 751static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 752{
 753        unsigned long flags;
 754        struct kmemleak_object *object;
 755        struct kmemleak_scan_area *area;
 756
 757        object = find_and_get_object(ptr, 1);
 758        if (!object) {
 759                kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 760                              ptr);
 761                return;
 762        }
 763
 764        area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 765        if (!area) {
 766                pr_warn("Cannot allocate a scan area\n");
 767                goto out;
 768        }
 769
 770        spin_lock_irqsave(&object->lock, flags);
 771        if (size == SIZE_MAX) {
 772                size = object->pointer + object->size - ptr;
 773        } else if (ptr + size > object->pointer + object->size) {
 774                kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 775                dump_object_info(object);
 776                kmem_cache_free(scan_area_cache, area);
 777                goto out_unlock;
 778        }
 779
 780        INIT_HLIST_NODE(&area->node);
 781        area->start = ptr;
 782        area->size = size;
 783
 784        hlist_add_head(&area->node, &object->area_list);
 785out_unlock:
 786        spin_unlock_irqrestore(&object->lock, flags);
 787out:
 788        put_object(object);
 789}
 790
 791/*
 792 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 793 * pointer. Such object will not be scanned by kmemleak but references to it
 794 * are searched.
 795 */
 796static void object_no_scan(unsigned long ptr)
 797{
 798        unsigned long flags;
 799        struct kmemleak_object *object;
 800
 801        object = find_and_get_object(ptr, 0);
 802        if (!object) {
 803                kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 804                return;
 805        }
 806
 807        spin_lock_irqsave(&object->lock, flags);
 808        object->flags |= OBJECT_NO_SCAN;
 809        spin_unlock_irqrestore(&object->lock, flags);
 810        put_object(object);
 811}
 812
 813/*
 814 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 815 * processed later once kmemleak is fully initialized.
 816 */
 817static void __init log_early(int op_type, const void *ptr, size_t size,
 818                             int min_count)
 819{
 820        unsigned long flags;
 821        struct early_log *log;
 822
 823        if (kmemleak_error) {
 824                /* kmemleak stopped recording, just count the requests */
 825                crt_early_log++;
 826                return;
 827        }
 828
 829        if (crt_early_log >= ARRAY_SIZE(early_log)) {
 830                crt_early_log++;
 831                kmemleak_disable();
 832                return;
 833        }
 834
 835        /*
 836         * There is no need for locking since the kernel is still in UP mode
 837         * at this stage. Disabling the IRQs is enough.
 838         */
 839        local_irq_save(flags);
 840        log = &early_log[crt_early_log];
 841        log->op_type = op_type;
 842        log->ptr = ptr;
 843        log->size = size;
 844        log->min_count = min_count;
 845        log->trace_len = __save_stack_trace(log->trace);
 846        crt_early_log++;
 847        local_irq_restore(flags);
 848}
 849
 850/*
 851 * Log an early allocated block and populate the stack trace.
 852 */
 853static void early_alloc(struct early_log *log)
 854{
 855        struct kmemleak_object *object;
 856        unsigned long flags;
 857        int i;
 858
 859        if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
 860                return;
 861
 862        /*
 863         * RCU locking needed to ensure object is not freed via put_object().
 864         */
 865        rcu_read_lock();
 866        object = create_object((unsigned long)log->ptr, log->size,
 867                               log->min_count, GFP_ATOMIC);
 868        if (!object)
 869                goto out;
 870        spin_lock_irqsave(&object->lock, flags);
 871        for (i = 0; i < log->trace_len; i++)
 872                object->trace[i] = log->trace[i];
 873        object->trace_len = log->trace_len;
 874        spin_unlock_irqrestore(&object->lock, flags);
 875out:
 876        rcu_read_unlock();
 877}
 878
 879/*
 880 * Log an early allocated block and populate the stack trace.
 881 */
 882static void early_alloc_percpu(struct early_log *log)
 883{
 884        unsigned int cpu;
 885        const void __percpu *ptr = log->ptr;
 886
 887        for_each_possible_cpu(cpu) {
 888                log->ptr = per_cpu_ptr(ptr, cpu);
 889                early_alloc(log);
 890        }
 891}
 892
 893/**
 894 * kmemleak_alloc - register a newly allocated object
 895 * @ptr:        pointer to beginning of the object
 896 * @size:       size of the object
 897 * @min_count:  minimum number of references to this object. If during memory
 898 *              scanning a number of references less than @min_count is found,
 899 *              the object is reported as a memory leak. If @min_count is 0,
 900 *              the object is never reported as a leak. If @min_count is -1,
 901 *              the object is ignored (not scanned and not reported as a leak)
 902 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
 903 *
 904 * This function is called from the kernel allocators when a new object
 905 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
 906 */
 907void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 908                          gfp_t gfp)
 909{
 910        pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 911
 912        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 913                create_object((unsigned long)ptr, size, min_count, gfp);
 914        else if (kmemleak_early_log)
 915                log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 916}
 917EXPORT_SYMBOL_GPL(kmemleak_alloc);
 918
 919/**
 920 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 921 * @ptr:        __percpu pointer to beginning of the object
 922 * @size:       size of the object
 923 * @gfp:        flags used for kmemleak internal memory allocations
 924 *
 925 * This function is called from the kernel percpu allocator when a new object
 926 * (memory block) is allocated (alloc_percpu).
 927 */
 928void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 929                                 gfp_t gfp)
 930{
 931        unsigned int cpu;
 932
 933        pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 934
 935        /*
 936         * Percpu allocations are only scanned and not reported as leaks
 937         * (min_count is set to 0).
 938         */
 939        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 940                for_each_possible_cpu(cpu)
 941                        create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 942                                      size, 0, gfp);
 943        else if (kmemleak_early_log)
 944                log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
 945}
 946EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 947
 948/**
 949 * kmemleak_free - unregister a previously registered object
 950 * @ptr:        pointer to beginning of the object
 951 *
 952 * This function is called from the kernel allocators when an object (memory
 953 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 954 */
 955void __ref kmemleak_free(const void *ptr)
 956{
 957        pr_debug("%s(0x%p)\n", __func__, ptr);
 958
 959        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 960                delete_object_full((unsigned long)ptr);
 961        else if (kmemleak_early_log)
 962                log_early(KMEMLEAK_FREE, ptr, 0, 0);
 963}
 964EXPORT_SYMBOL_GPL(kmemleak_free);
 965
 966/**
 967 * kmemleak_free_part - partially unregister a previously registered object
 968 * @ptr:        pointer to the beginning or inside the object. This also
 969 *              represents the start of the range to be freed
 970 * @size:       size to be unregistered
 971 *
 972 * This function is called when only a part of a memory block is freed
 973 * (usually from the bootmem allocator).
 974 */
 975void __ref kmemleak_free_part(const void *ptr, size_t size)
 976{
 977        pr_debug("%s(0x%p)\n", __func__, ptr);
 978
 979        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 980                delete_object_part((unsigned long)ptr, size);
 981        else if (kmemleak_early_log)
 982                log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
 983}
 984EXPORT_SYMBOL_GPL(kmemleak_free_part);
 985
 986/**
 987 * kmemleak_free_percpu - unregister a previously registered __percpu object
 988 * @ptr:        __percpu pointer to beginning of the object
 989 *
 990 * This function is called from the kernel percpu allocator when an object
 991 * (memory block) is freed (free_percpu).
 992 */
 993void __ref kmemleak_free_percpu(const void __percpu *ptr)
 994{
 995        unsigned int cpu;
 996
 997        pr_debug("%s(0x%p)\n", __func__, ptr);
 998
 999        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1000                for_each_possible_cpu(cpu)
1001                        delete_object_full((unsigned long)per_cpu_ptr(ptr,
1002                                                                      cpu));
1003        else if (kmemleak_early_log)
1004                log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1005}
1006EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007
1008/**
1009 * kmemleak_update_trace - update object allocation stack trace
1010 * @ptr:        pointer to beginning of the object
1011 *
1012 * Override the object allocation stack trace for cases where the actual
1013 * allocation place is not always useful.
1014 */
1015void __ref kmemleak_update_trace(const void *ptr)
1016{
1017        struct kmemleak_object *object;
1018        unsigned long flags;
1019
1020        pr_debug("%s(0x%p)\n", __func__, ptr);
1021
1022        if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023                return;
1024
1025        object = find_and_get_object((unsigned long)ptr, 1);
1026        if (!object) {
1027#ifdef DEBUG
1028                kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029                              ptr);
1030#endif
1031                return;
1032        }
1033
1034        spin_lock_irqsave(&object->lock, flags);
1035        object->trace_len = __save_stack_trace(object->trace);
1036        spin_unlock_irqrestore(&object->lock, flags);
1037
1038        put_object(object);
1039}
1040EXPORT_SYMBOL(kmemleak_update_trace);
1041
1042/**
1043 * kmemleak_not_leak - mark an allocated object as false positive
1044 * @ptr:        pointer to beginning of the object
1045 *
1046 * Calling this function on an object will cause the memory block to no longer
1047 * be reported as leak and always be scanned.
1048 */
1049void __ref kmemleak_not_leak(const void *ptr)
1050{
1051        pr_debug("%s(0x%p)\n", __func__, ptr);
1052
1053        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054                make_gray_object((unsigned long)ptr);
1055        else if (kmemleak_early_log)
1056                log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1057}
1058EXPORT_SYMBOL(kmemleak_not_leak);
1059
1060/**
1061 * kmemleak_ignore - ignore an allocated object
1062 * @ptr:        pointer to beginning of the object
1063 *
1064 * Calling this function on an object will cause the memory block to be
1065 * ignored (not scanned and not reported as a leak). This is usually done when
1066 * it is known that the corresponding block is not a leak and does not contain
1067 * any references to other allocated memory blocks.
1068 */
1069void __ref kmemleak_ignore(const void *ptr)
1070{
1071        pr_debug("%s(0x%p)\n", __func__, ptr);
1072
1073        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1074                make_black_object((unsigned long)ptr);
1075        else if (kmemleak_early_log)
1076                log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1077}
1078EXPORT_SYMBOL(kmemleak_ignore);
1079
1080/**
1081 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1082 * @ptr:        pointer to beginning or inside the object. This also
1083 *              represents the start of the scan area
1084 * @size:       size of the scan area
1085 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1086 *
1087 * This function is used when it is known that only certain parts of an object
1088 * contain references to other objects. Kmemleak will only scan these areas
1089 * reducing the number false negatives.
1090 */
1091void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1092{
1093        pr_debug("%s(0x%p)\n", __func__, ptr);
1094
1095        if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1096                add_scan_area((unsigned long)ptr, size, gfp);
1097        else if (kmemleak_early_log)
1098                log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1099}
1100EXPORT_SYMBOL(kmemleak_scan_area);
1101
1102/**
1103 * kmemleak_no_scan - do not scan an allocated object
1104 * @ptr:        pointer to beginning of the object
1105 *
1106 * This function notifies kmemleak not to scan the given memory block. Useful
1107 * in situations where it is known that the given object does not contain any
1108 * references to other objects. Kmemleak will not scan such objects reducing
1109 * the number of false negatives.
1110 */
1111void __ref kmemleak_no_scan(const void *ptr)
1112{
1113        pr_debug("%s(0x%p)\n", __func__, ptr);
1114
1115        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1116                object_no_scan((unsigned long)ptr);
1117        else if (kmemleak_early_log)
1118                log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1119}
1120EXPORT_SYMBOL(kmemleak_no_scan);
1121
1122/*
1123 * Update an object's checksum and return true if it was modified.
1124 */
1125static bool update_checksum(struct kmemleak_object *object)
1126{
1127        u32 old_csum = object->checksum;
1128
1129        if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1130                return false;
1131
1132        kasan_disable_current();
1133        object->checksum = crc32(0, (void *)object->pointer, object->size);
1134        kasan_enable_current();
1135
1136        return object->checksum != old_csum;
1137}
1138
1139/*
1140 * Memory scanning is a long process and it needs to be interruptable. This
1141 * function checks whether such interrupt condition occurred.
1142 */
1143static int scan_should_stop(void)
1144{
1145        if (!kmemleak_enabled)
1146                return 1;
1147
1148        /*
1149         * This function may be called from either process or kthread context,
1150         * hence the need to check for both stop conditions.
1151         */
1152        if (current->mm)
1153                return signal_pending(current);
1154        else
1155                return kthread_should_stop();
1156
1157        return 0;
1158}
1159
1160/*
1161 * Scan a memory block (exclusive range) for valid pointers and add those
1162 * found to the gray list.
1163 */
1164static void scan_block(void *_start, void *_end,
1165                       struct kmemleak_object *scanned)
1166{
1167        unsigned long *ptr;
1168        unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1169        unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1170        unsigned long flags;
1171
1172        read_lock_irqsave(&kmemleak_lock, flags);
1173        for (ptr = start; ptr < end; ptr++) {
1174                struct kmemleak_object *object;
1175                unsigned long pointer;
1176
1177                if (scan_should_stop())
1178                        break;
1179
1180                /* don't scan uninitialized memory */
1181                if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1182                                                  BYTES_PER_POINTER))
1183                        continue;
1184
1185                kasan_disable_current();
1186                pointer = *ptr;
1187                kasan_enable_current();
1188
1189                if (pointer < min_addr || pointer >= max_addr)
1190                        continue;
1191
1192                /*
1193                 * No need for get_object() here since we hold kmemleak_lock.
1194                 * object->use_count cannot be dropped to 0 while the object
1195                 * is still present in object_tree_root and object_list
1196                 * (with updates protected by kmemleak_lock).
1197                 */
1198                object = lookup_object(pointer, 1);
1199                if (!object)
1200                        continue;
1201                if (object == scanned)
1202                        /* self referenced, ignore */
1203                        continue;
1204
1205                /*
1206                 * Avoid the lockdep recursive warning on object->lock being
1207                 * previously acquired in scan_object(). These locks are
1208                 * enclosed by scan_mutex.
1209                 */
1210                spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1211                if (!color_white(object)) {
1212                        /* non-orphan, ignored or new */
1213                        spin_unlock(&object->lock);
1214                        continue;
1215                }
1216
1217                /*
1218                 * Increase the object's reference count (number of pointers
1219                 * to the memory block). If this count reaches the required
1220                 * minimum, the object's color will become gray and it will be
1221                 * added to the gray_list.
1222                 */
1223                object->count++;
1224                if (color_gray(object)) {
1225                        /* put_object() called when removing from gray_list */
1226                        WARN_ON(!get_object(object));
1227                        list_add_tail(&object->gray_list, &gray_list);
1228                }
1229                spin_unlock(&object->lock);
1230        }
1231        read_unlock_irqrestore(&kmemleak_lock, flags);
1232}
1233
1234/*
1235 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1236 */
1237static void scan_large_block(void *start, void *end)
1238{
1239        void *next;
1240
1241        while (start < end) {
1242                next = min(start + MAX_SCAN_SIZE, end);
1243                scan_block(start, next, NULL);
1244                start = next;
1245                cond_resched();
1246        }
1247}
1248
1249/*
1250 * Scan a memory block corresponding to a kmemleak_object. A condition is
1251 * that object->use_count >= 1.
1252 */
1253static void scan_object(struct kmemleak_object *object)
1254{
1255        struct kmemleak_scan_area *area;
1256        unsigned long flags;
1257
1258        /*
1259         * Once the object->lock is acquired, the corresponding memory block
1260         * cannot be freed (the same lock is acquired in delete_object).
1261         */
1262        spin_lock_irqsave(&object->lock, flags);
1263        if (object->flags & OBJECT_NO_SCAN)
1264                goto out;
1265        if (!(object->flags & OBJECT_ALLOCATED))
1266                /* already freed object */
1267                goto out;
1268        if (hlist_empty(&object->area_list)) {
1269                void *start = (void *)object->pointer;
1270                void *end = (void *)(object->pointer + object->size);
1271                void *next;
1272
1273                do {
1274                        next = min(start + MAX_SCAN_SIZE, end);
1275                        scan_block(start, next, object);
1276
1277                        start = next;
1278                        if (start >= end)
1279                                break;
1280
1281                        spin_unlock_irqrestore(&object->lock, flags);
1282                        cond_resched();
1283                        spin_lock_irqsave(&object->lock, flags);
1284                } while (object->flags & OBJECT_ALLOCATED);
1285        } else
1286                hlist_for_each_entry(area, &object->area_list, node)
1287                        scan_block((void *)area->start,
1288                                   (void *)(area->start + area->size),
1289                                   object);
1290out:
1291        spin_unlock_irqrestore(&object->lock, flags);
1292}
1293
1294/*
1295 * Scan the objects already referenced (gray objects). More objects will be
1296 * referenced and, if there are no memory leaks, all the objects are scanned.
1297 */
1298static void scan_gray_list(void)
1299{
1300        struct kmemleak_object *object, *tmp;
1301
1302        /*
1303         * The list traversal is safe for both tail additions and removals
1304         * from inside the loop. The kmemleak objects cannot be freed from
1305         * outside the loop because their use_count was incremented.
1306         */
1307        object = list_entry(gray_list.next, typeof(*object), gray_list);
1308        while (&object->gray_list != &gray_list) {
1309                cond_resched();
1310
1311                /* may add new objects to the list */
1312                if (!scan_should_stop())
1313                        scan_object(object);
1314
1315                tmp = list_entry(object->gray_list.next, typeof(*object),
1316                                 gray_list);
1317
1318                /* remove the object from the list and release it */
1319                list_del(&object->gray_list);
1320                put_object(object);
1321
1322                object = tmp;
1323        }
1324        WARN_ON(!list_empty(&gray_list));
1325}
1326
1327/*
1328 * Scan data sections and all the referenced memory blocks allocated via the
1329 * kernel's standard allocators. This function must be called with the
1330 * scan_mutex held.
1331 */
1332static void kmemleak_scan(void)
1333{
1334        unsigned long flags;
1335        struct kmemleak_object *object;
1336        int i;
1337        int new_leaks = 0;
1338
1339        jiffies_last_scan = jiffies;
1340
1341        /* prepare the kmemleak_object's */
1342        rcu_read_lock();
1343        list_for_each_entry_rcu(object, &object_list, object_list) {
1344                spin_lock_irqsave(&object->lock, flags);
1345#ifdef DEBUG
1346                /*
1347                 * With a few exceptions there should be a maximum of
1348                 * 1 reference to any object at this point.
1349                 */
1350                if (atomic_read(&object->use_count) > 1) {
1351                        pr_debug("object->use_count = %d\n",
1352                                 atomic_read(&object->use_count));
1353                        dump_object_info(object);
1354                }
1355#endif
1356                /* reset the reference count (whiten the object) */
1357                object->count = 0;
1358                if (color_gray(object) && get_object(object))
1359                        list_add_tail(&object->gray_list, &gray_list);
1360
1361                spin_unlock_irqrestore(&object->lock, flags);
1362        }
1363        rcu_read_unlock();
1364
1365        /* data/bss scanning */
1366        scan_large_block(_sdata, _edata);
1367        scan_large_block(__bss_start, __bss_stop);
1368
1369#ifdef CONFIG_SMP
1370        /* per-cpu sections scanning */
1371        for_each_possible_cpu(i)
1372                scan_large_block(__per_cpu_start + per_cpu_offset(i),
1373                                 __per_cpu_end + per_cpu_offset(i));
1374#endif
1375
1376        /*
1377         * Struct page scanning for each node.
1378         */
1379        get_online_mems();
1380        for_each_online_node(i) {
1381                unsigned long start_pfn = node_start_pfn(i);
1382                unsigned long end_pfn = node_end_pfn(i);
1383                unsigned long pfn;
1384
1385                for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1386                        struct page *page;
1387
1388                        if (!pfn_valid(pfn))
1389                                continue;
1390                        page = pfn_to_page(pfn);
1391                        /* only scan if page is in use */
1392                        if (page_count(page) == 0)
1393                                continue;
1394                        scan_block(page, page + 1, NULL);
1395                }
1396        }
1397        put_online_mems();
1398
1399        /*
1400         * Scanning the task stacks (may introduce false negatives).
1401         */
1402        if (kmemleak_stack_scan) {
1403                struct task_struct *p, *g;
1404
1405                read_lock(&tasklist_lock);
1406                do_each_thread(g, p) {
1407                        scan_block(task_stack_page(p), task_stack_page(p) +
1408                                   THREAD_SIZE, NULL);
1409                } while_each_thread(g, p);
1410                read_unlock(&tasklist_lock);
1411        }
1412
1413        /*
1414         * Scan the objects already referenced from the sections scanned
1415         * above.
1416         */
1417        scan_gray_list();
1418
1419        /*
1420         * Check for new or unreferenced objects modified since the previous
1421         * scan and color them gray until the next scan.
1422         */
1423        rcu_read_lock();
1424        list_for_each_entry_rcu(object, &object_list, object_list) {
1425                spin_lock_irqsave(&object->lock, flags);
1426                if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1427                    && update_checksum(object) && get_object(object)) {
1428                        /* color it gray temporarily */
1429                        object->count = object->min_count;
1430                        list_add_tail(&object->gray_list, &gray_list);
1431                }
1432                spin_unlock_irqrestore(&object->lock, flags);
1433        }
1434        rcu_read_unlock();
1435
1436        /*
1437         * Re-scan the gray list for modified unreferenced objects.
1438         */
1439        scan_gray_list();
1440
1441        /*
1442         * If scanning was stopped do not report any new unreferenced objects.
1443         */
1444        if (scan_should_stop())
1445                return;
1446
1447        /*
1448         * Scanning result reporting.
1449         */
1450        rcu_read_lock();
1451        list_for_each_entry_rcu(object, &object_list, object_list) {
1452                spin_lock_irqsave(&object->lock, flags);
1453                if (unreferenced_object(object) &&
1454                    !(object->flags & OBJECT_REPORTED)) {
1455                        object->flags |= OBJECT_REPORTED;
1456                        new_leaks++;
1457                }
1458                spin_unlock_irqrestore(&object->lock, flags);
1459        }
1460        rcu_read_unlock();
1461
1462        if (new_leaks) {
1463                kmemleak_found_leaks = true;
1464
1465                pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1466                        new_leaks);
1467        }
1468
1469}
1470
1471/*
1472 * Thread function performing automatic memory scanning. Unreferenced objects
1473 * at the end of a memory scan are reported but only the first time.
1474 */
1475static int kmemleak_scan_thread(void *arg)
1476{
1477        static int first_run = 1;
1478
1479        pr_info("Automatic memory scanning thread started\n");
1480        set_user_nice(current, 10);
1481
1482        /*
1483         * Wait before the first scan to allow the system to fully initialize.
1484         */
1485        if (first_run) {
1486                first_run = 0;
1487                ssleep(SECS_FIRST_SCAN);
1488        }
1489
1490        while (!kthread_should_stop()) {
1491                signed long timeout = jiffies_scan_wait;
1492
1493                mutex_lock(&scan_mutex);
1494                kmemleak_scan();
1495                mutex_unlock(&scan_mutex);
1496
1497                /* wait before the next scan */
1498                while (timeout && !kthread_should_stop())
1499                        timeout = schedule_timeout_interruptible(timeout);
1500        }
1501
1502        pr_info("Automatic memory scanning thread ended\n");
1503
1504        return 0;
1505}
1506
1507/*
1508 * Start the automatic memory scanning thread. This function must be called
1509 * with the scan_mutex held.
1510 */
1511static void start_scan_thread(void)
1512{
1513        if (scan_thread)
1514                return;
1515        scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1516        if (IS_ERR(scan_thread)) {
1517                pr_warn("Failed to create the scan thread\n");
1518                scan_thread = NULL;
1519        }
1520}
1521
1522/*
1523 * Stop the automatic memory scanning thread. This function must be called
1524 * with the scan_mutex held.
1525 */
1526static void stop_scan_thread(void)
1527{
1528        if (scan_thread) {
1529                kthread_stop(scan_thread);
1530                scan_thread = NULL;
1531        }
1532}
1533
1534/*
1535 * Iterate over the object_list and return the first valid object at or after
1536 * the required position with its use_count incremented. The function triggers
1537 * a memory scanning when the pos argument points to the first position.
1538 */
1539static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1540{
1541        struct kmemleak_object *object;
1542        loff_t n = *pos;
1543        int err;
1544
1545        err = mutex_lock_interruptible(&scan_mutex);
1546        if (err < 0)
1547                return ERR_PTR(err);
1548
1549        rcu_read_lock();
1550        list_for_each_entry_rcu(object, &object_list, object_list) {
1551                if (n-- > 0)
1552                        continue;
1553                if (get_object(object))
1554                        goto out;
1555        }
1556        object = NULL;
1557out:
1558        return object;
1559}
1560
1561/*
1562 * Return the next object in the object_list. The function decrements the
1563 * use_count of the previous object and increases that of the next one.
1564 */
1565static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1566{
1567        struct kmemleak_object *prev_obj = v;
1568        struct kmemleak_object *next_obj = NULL;
1569        struct kmemleak_object *obj = prev_obj;
1570
1571        ++(*pos);
1572
1573        list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1574                if (get_object(obj)) {
1575                        next_obj = obj;
1576                        break;
1577                }
1578        }
1579
1580        put_object(prev_obj);
1581        return next_obj;
1582}
1583
1584/*
1585 * Decrement the use_count of the last object required, if any.
1586 */
1587static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1588{
1589        if (!IS_ERR(v)) {
1590                /*
1591                 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1592                 * waiting was interrupted, so only release it if !IS_ERR.
1593                 */
1594                rcu_read_unlock();
1595                mutex_unlock(&scan_mutex);
1596                if (v)
1597                        put_object(v);
1598        }
1599}
1600
1601/*
1602 * Print the information for an unreferenced object to the seq file.
1603 */
1604static int kmemleak_seq_show(struct seq_file *seq, void *v)
1605{
1606        struct kmemleak_object *object = v;
1607        unsigned long flags;
1608
1609        spin_lock_irqsave(&object->lock, flags);
1610        if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1611                print_unreferenced(seq, object);
1612        spin_unlock_irqrestore(&object->lock, flags);
1613        return 0;
1614}
1615
1616static const struct seq_operations kmemleak_seq_ops = {
1617        .start = kmemleak_seq_start,
1618        .next  = kmemleak_seq_next,
1619        .stop  = kmemleak_seq_stop,
1620        .show  = kmemleak_seq_show,
1621};
1622
1623static int kmemleak_open(struct inode *inode, struct file *file)
1624{
1625        return seq_open(file, &kmemleak_seq_ops);
1626}
1627
1628static int dump_str_object_info(const char *str)
1629{
1630        unsigned long flags;
1631        struct kmemleak_object *object;
1632        unsigned long addr;
1633
1634        if (kstrtoul(str, 0, &addr))
1635                return -EINVAL;
1636        object = find_and_get_object(addr, 0);
1637        if (!object) {
1638                pr_info("Unknown object at 0x%08lx\n", addr);
1639                return -EINVAL;
1640        }
1641
1642        spin_lock_irqsave(&object->lock, flags);
1643        dump_object_info(object);
1644        spin_unlock_irqrestore(&object->lock, flags);
1645
1646        put_object(object);
1647        return 0;
1648}
1649
1650/*
1651 * We use grey instead of black to ensure we can do future scans on the same
1652 * objects. If we did not do future scans these black objects could
1653 * potentially contain references to newly allocated objects in the future and
1654 * we'd end up with false positives.
1655 */
1656static void kmemleak_clear(void)
1657{
1658        struct kmemleak_object *object;
1659        unsigned long flags;
1660
1661        rcu_read_lock();
1662        list_for_each_entry_rcu(object, &object_list, object_list) {
1663                spin_lock_irqsave(&object->lock, flags);
1664                if ((object->flags & OBJECT_REPORTED) &&
1665                    unreferenced_object(object))
1666                        __paint_it(object, KMEMLEAK_GREY);
1667                spin_unlock_irqrestore(&object->lock, flags);
1668        }
1669        rcu_read_unlock();
1670
1671        kmemleak_found_leaks = false;
1672}
1673
1674static void __kmemleak_do_cleanup(void);
1675
1676/*
1677 * File write operation to configure kmemleak at run-time. The following
1678 * commands can be written to the /sys/kernel/debug/kmemleak file:
1679 *   off        - disable kmemleak (irreversible)
1680 *   stack=on   - enable the task stacks scanning
1681 *   stack=off  - disable the tasks stacks scanning
1682 *   scan=on    - start the automatic memory scanning thread
1683 *   scan=off   - stop the automatic memory scanning thread
1684 *   scan=...   - set the automatic memory scanning period in seconds (0 to
1685 *                disable it)
1686 *   scan       - trigger a memory scan
1687 *   clear      - mark all current reported unreferenced kmemleak objects as
1688 *                grey to ignore printing them, or free all kmemleak objects
1689 *                if kmemleak has been disabled.
1690 *   dump=...   - dump information about the object found at the given address
1691 */
1692static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1693                              size_t size, loff_t *ppos)
1694{
1695        char buf[64];
1696        int buf_size;
1697        int ret;
1698
1699        buf_size = min(size, (sizeof(buf) - 1));
1700        if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1701                return -EFAULT;
1702        buf[buf_size] = 0;
1703
1704        ret = mutex_lock_interruptible(&scan_mutex);
1705        if (ret < 0)
1706                return ret;
1707
1708        if (strncmp(buf, "clear", 5) == 0) {
1709                if (kmemleak_enabled)
1710                        kmemleak_clear();
1711                else
1712                        __kmemleak_do_cleanup();
1713                goto out;
1714        }
1715
1716        if (!kmemleak_enabled) {
1717                ret = -EBUSY;
1718                goto out;
1719        }
1720
1721        if (strncmp(buf, "off", 3) == 0)
1722                kmemleak_disable();
1723        else if (strncmp(buf, "stack=on", 8) == 0)
1724                kmemleak_stack_scan = 1;
1725        else if (strncmp(buf, "stack=off", 9) == 0)
1726                kmemleak_stack_scan = 0;
1727        else if (strncmp(buf, "scan=on", 7) == 0)
1728                start_scan_thread();
1729        else if (strncmp(buf, "scan=off", 8) == 0)
1730                stop_scan_thread();
1731        else if (strncmp(buf, "scan=", 5) == 0) {
1732                unsigned long secs;
1733
1734                ret = kstrtoul(buf + 5, 0, &secs);
1735                if (ret < 0)
1736                        goto out;
1737                stop_scan_thread();
1738                if (secs) {
1739                        jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1740                        start_scan_thread();
1741                }
1742        } else if (strncmp(buf, "scan", 4) == 0)
1743                kmemleak_scan();
1744        else if (strncmp(buf, "dump=", 5) == 0)
1745                ret = dump_str_object_info(buf + 5);
1746        else
1747                ret = -EINVAL;
1748
1749out:
1750        mutex_unlock(&scan_mutex);
1751        if (ret < 0)
1752                return ret;
1753
1754        /* ignore the rest of the buffer, only one command at a time */
1755        *ppos += size;
1756        return size;
1757}
1758
1759static const struct file_operations kmemleak_fops = {
1760        .owner          = THIS_MODULE,
1761        .open           = kmemleak_open,
1762        .read           = seq_read,
1763        .write          = kmemleak_write,
1764        .llseek         = seq_lseek,
1765        .release        = seq_release,
1766};
1767
1768static void __kmemleak_do_cleanup(void)
1769{
1770        struct kmemleak_object *object;
1771
1772        rcu_read_lock();
1773        list_for_each_entry_rcu(object, &object_list, object_list)
1774                delete_object_full(object->pointer);
1775        rcu_read_unlock();
1776}
1777
1778/*
1779 * Stop the memory scanning thread and free the kmemleak internal objects if
1780 * no previous scan thread (otherwise, kmemleak may still have some useful
1781 * information on memory leaks).
1782 */
1783static void kmemleak_do_cleanup(struct work_struct *work)
1784{
1785        stop_scan_thread();
1786
1787        /*
1788         * Once the scan thread has stopped, it is safe to no longer track
1789         * object freeing. Ordering of the scan thread stopping and the memory
1790         * accesses below is guaranteed by the kthread_stop() function.
1791         */
1792        kmemleak_free_enabled = 0;
1793
1794        if (!kmemleak_found_leaks)
1795                __kmemleak_do_cleanup();
1796        else
1797                pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1798}
1799
1800static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1801
1802/*
1803 * Disable kmemleak. No memory allocation/freeing will be traced once this
1804 * function is called. Disabling kmemleak is an irreversible operation.
1805 */
1806static void kmemleak_disable(void)
1807{
1808        /* atomically check whether it was already invoked */
1809        if (cmpxchg(&kmemleak_error, 0, 1))
1810                return;
1811
1812        /* stop any memory operation tracing */
1813        kmemleak_enabled = 0;
1814
1815        /* check whether it is too early for a kernel thread */
1816        if (kmemleak_initialized)
1817                schedule_work(&cleanup_work);
1818        else
1819                kmemleak_free_enabled = 0;
1820
1821        pr_info("Kernel memory leak detector disabled\n");
1822}
1823
1824/*
1825 * Allow boot-time kmemleak disabling (enabled by default).
1826 */
1827static int kmemleak_boot_config(char *str)
1828{
1829        if (!str)
1830                return -EINVAL;
1831        if (strcmp(str, "off") == 0)
1832                kmemleak_disable();
1833        else if (strcmp(str, "on") == 0)
1834                kmemleak_skip_disable = 1;
1835        else
1836                return -EINVAL;
1837        return 0;
1838}
1839early_param("kmemleak", kmemleak_boot_config);
1840
1841static void __init print_log_trace(struct early_log *log)
1842{
1843        struct stack_trace trace;
1844
1845        trace.nr_entries = log->trace_len;
1846        trace.entries = log->trace;
1847
1848        pr_notice("Early log backtrace:\n");
1849        print_stack_trace(&trace, 2);
1850}
1851
1852/*
1853 * Kmemleak initialization.
1854 */
1855void __init kmemleak_init(void)
1856{
1857        int i;
1858        unsigned long flags;
1859
1860#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1861        if (!kmemleak_skip_disable) {
1862                kmemleak_early_log = 0;
1863                kmemleak_disable();
1864                return;
1865        }
1866#endif
1867
1868        jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1869        jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1870
1871        object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1872        scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1873
1874        if (crt_early_log > ARRAY_SIZE(early_log))
1875                pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1876                        crt_early_log);
1877
1878        /* the kernel is still in UP mode, so disabling the IRQs is enough */
1879        local_irq_save(flags);
1880        kmemleak_early_log = 0;
1881        if (kmemleak_error) {
1882                local_irq_restore(flags);
1883                return;
1884        } else {
1885                kmemleak_enabled = 1;
1886                kmemleak_free_enabled = 1;
1887        }
1888        local_irq_restore(flags);
1889
1890        /*
1891         * This is the point where tracking allocations is safe. Automatic
1892         * scanning is started during the late initcall. Add the early logged
1893         * callbacks to the kmemleak infrastructure.
1894         */
1895        for (i = 0; i < crt_early_log; i++) {
1896                struct early_log *log = &early_log[i];
1897
1898                switch (log->op_type) {
1899                case KMEMLEAK_ALLOC:
1900                        early_alloc(log);
1901                        break;
1902                case KMEMLEAK_ALLOC_PERCPU:
1903                        early_alloc_percpu(log);
1904                        break;
1905                case KMEMLEAK_FREE:
1906                        kmemleak_free(log->ptr);
1907                        break;
1908                case KMEMLEAK_FREE_PART:
1909                        kmemleak_free_part(log->ptr, log->size);
1910                        break;
1911                case KMEMLEAK_FREE_PERCPU:
1912                        kmemleak_free_percpu(log->ptr);
1913                        break;
1914                case KMEMLEAK_NOT_LEAK:
1915                        kmemleak_not_leak(log->ptr);
1916                        break;
1917                case KMEMLEAK_IGNORE:
1918                        kmemleak_ignore(log->ptr);
1919                        break;
1920                case KMEMLEAK_SCAN_AREA:
1921                        kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1922                        break;
1923                case KMEMLEAK_NO_SCAN:
1924                        kmemleak_no_scan(log->ptr);
1925                        break;
1926                default:
1927                        kmemleak_warn("Unknown early log operation: %d\n",
1928                                      log->op_type);
1929                }
1930
1931                if (kmemleak_warning) {
1932                        print_log_trace(log);
1933                        kmemleak_warning = 0;
1934                }
1935        }
1936}
1937
1938/*
1939 * Late initialization function.
1940 */
1941static int __init kmemleak_late_init(void)
1942{
1943        struct dentry *dentry;
1944
1945        kmemleak_initialized = 1;
1946
1947        if (kmemleak_error) {
1948                /*
1949                 * Some error occurred and kmemleak was disabled. There is a
1950                 * small chance that kmemleak_disable() was called immediately
1951                 * after setting kmemleak_initialized and we may end up with
1952                 * two clean-up threads but serialized by scan_mutex.
1953                 */
1954                schedule_work(&cleanup_work);
1955                return -ENOMEM;
1956        }
1957
1958        dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1959                                     &kmemleak_fops);
1960        if (!dentry)
1961                pr_warn("Failed to create the debugfs kmemleak file\n");
1962        mutex_lock(&scan_mutex);
1963        start_scan_thread();
1964        mutex_unlock(&scan_mutex);
1965
1966        pr_info("Kernel memory leak detector initialized\n");
1967
1968        return 0;
1969}
1970late_initcall(kmemleak_late_init);
1971