linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hashtable.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
  39#include <linux/numa.h>
  40
  41#include <asm/tlbflush.h>
  42#include "internal.h"
  43
  44#ifdef CONFIG_NUMA
  45#define NUMA(x)         (x)
  46#define DO_NUMA(x)      do { (x); } while (0)
  47#else
  48#define NUMA(x)         (0)
  49#define DO_NUMA(x)      do { } while (0)
  50#endif
  51
  52/*
  53 * A few notes about the KSM scanning process,
  54 * to make it easier to understand the data structures below:
  55 *
  56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  57 * contents into a data structure that holds pointers to the pages' locations.
  58 *
  59 * Since the contents of the pages may change at any moment, KSM cannot just
  60 * insert the pages into a normal sorted tree and expect it to find anything.
  61 * Therefore KSM uses two data structures - the stable and the unstable tree.
  62 *
  63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  64 * by their contents.  Because each such page is write-protected, searching on
  65 * this tree is fully assured to be working (except when pages are unmapped),
  66 * and therefore this tree is called the stable tree.
  67 *
  68 * In addition to the stable tree, KSM uses a second data structure called the
  69 * unstable tree: this tree holds pointers to pages which have been found to
  70 * be "unchanged for a period of time".  The unstable tree sorts these pages
  71 * by their contents, but since they are not write-protected, KSM cannot rely
  72 * upon the unstable tree to work correctly - the unstable tree is liable to
  73 * be corrupted as its contents are modified, and so it is called unstable.
  74 *
  75 * KSM solves this problem by several techniques:
  76 *
  77 * 1) The unstable tree is flushed every time KSM completes scanning all
  78 *    memory areas, and then the tree is rebuilt again from the beginning.
  79 * 2) KSM will only insert into the unstable tree, pages whose hash value
  80 *    has not changed since the previous scan of all memory areas.
  81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  82 *    colors of the nodes and not on their contents, assuring that even when
  83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  84 *    remains the same (also, searching and inserting nodes in an rbtree uses
  85 *    the same algorithm, so we have no overhead when we flush and rebuild).
  86 * 4) KSM never flushes the stable tree, which means that even if it were to
  87 *    take 10 attempts to find a page in the unstable tree, once it is found,
  88 *    it is secured in the stable tree.  (When we scan a new page, we first
  89 *    compare it against the stable tree, and then against the unstable tree.)
  90 *
  91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  92 * stable trees and multiple unstable trees: one of each for each NUMA node.
  93 */
  94
  95/**
  96 * struct mm_slot - ksm information per mm that is being scanned
  97 * @link: link to the mm_slots hash list
  98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 100 * @mm: the mm that this information is valid for
 101 */
 102struct mm_slot {
 103        struct hlist_node link;
 104        struct list_head mm_list;
 105        struct rmap_item *rmap_list;
 106        struct mm_struct *mm;
 107};
 108
 109/**
 110 * struct ksm_scan - cursor for scanning
 111 * @mm_slot: the current mm_slot we are scanning
 112 * @address: the next address inside that to be scanned
 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 114 * @seqnr: count of completed full scans (needed when removing unstable node)
 115 *
 116 * There is only the one ksm_scan instance of this cursor structure.
 117 */
 118struct ksm_scan {
 119        struct mm_slot *mm_slot;
 120        unsigned long address;
 121        struct rmap_item **rmap_list;
 122        unsigned long seqnr;
 123};
 124
 125/**
 126 * struct stable_node - node of the stable rbtree
 127 * @node: rb node of this ksm page in the stable tree
 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 129 * @list: linked into migrate_nodes, pending placement in the proper node tree
 130 * @hlist: hlist head of rmap_items using this ksm page
 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 133 */
 134struct stable_node {
 135        union {
 136                struct rb_node node;    /* when node of stable tree */
 137                struct {                /* when listed for migration */
 138                        struct list_head *head;
 139                        struct list_head list;
 140                };
 141        };
 142        struct hlist_head hlist;
 143        unsigned long kpfn;
 144#ifdef CONFIG_NUMA
 145        int nid;
 146#endif
 147};
 148
 149/**
 150 * struct rmap_item - reverse mapping item for virtual addresses
 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 154 * @mm: the memory structure this rmap_item is pointing into
 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 156 * @oldchecksum: previous checksum of the page at that virtual address
 157 * @node: rb node of this rmap_item in the unstable tree
 158 * @head: pointer to stable_node heading this list in the stable tree
 159 * @hlist: link into hlist of rmap_items hanging off that stable_node
 160 */
 161struct rmap_item {
 162        struct rmap_item *rmap_list;
 163        union {
 164                struct anon_vma *anon_vma;      /* when stable */
 165#ifdef CONFIG_NUMA
 166                int nid;                /* when node of unstable tree */
 167#endif
 168        };
 169        struct mm_struct *mm;
 170        unsigned long address;          /* + low bits used for flags below */
 171        unsigned int oldchecksum;       /* when unstable */
 172        union {
 173                struct rb_node node;    /* when node of unstable tree */
 174                struct {                /* when listed from stable tree */
 175                        struct stable_node *head;
 176                        struct hlist_node hlist;
 177                };
 178        };
 179};
 180
 181#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 182#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 183#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 184
 185/* The stable and unstable tree heads */
 186static struct rb_root one_stable_tree[1] = { RB_ROOT };
 187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 188static struct rb_root *root_stable_tree = one_stable_tree;
 189static struct rb_root *root_unstable_tree = one_unstable_tree;
 190
 191/* Recently migrated nodes of stable tree, pending proper placement */
 192static LIST_HEAD(migrate_nodes);
 193
 194#define MM_SLOTS_HASH_BITS 10
 195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 196
 197static struct mm_slot ksm_mm_head = {
 198        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 199};
 200static struct ksm_scan ksm_scan = {
 201        .mm_slot = &ksm_mm_head,
 202};
 203
 204static struct kmem_cache *rmap_item_cache;
 205static struct kmem_cache *stable_node_cache;
 206static struct kmem_cache *mm_slot_cache;
 207
 208/* The number of nodes in the stable tree */
 209static unsigned long ksm_pages_shared;
 210
 211/* The number of page slots additionally sharing those nodes */
 212static unsigned long ksm_pages_sharing;
 213
 214/* The number of nodes in the unstable tree */
 215static unsigned long ksm_pages_unshared;
 216
 217/* The number of rmap_items in use: to calculate pages_volatile */
 218static unsigned long ksm_rmap_items;
 219
 220/* Number of pages ksmd should scan in one batch */
 221static unsigned int ksm_thread_pages_to_scan = 100;
 222
 223/* Milliseconds ksmd should sleep between batches */
 224static unsigned int ksm_thread_sleep_millisecs = 20;
 225
 226#ifdef CONFIG_NUMA
 227/* Zeroed when merging across nodes is not allowed */
 228static unsigned int ksm_merge_across_nodes = 1;
 229static int ksm_nr_node_ids = 1;
 230#else
 231#define ksm_merge_across_nodes  1U
 232#define ksm_nr_node_ids         1
 233#endif
 234
 235#define KSM_RUN_STOP    0
 236#define KSM_RUN_MERGE   1
 237#define KSM_RUN_UNMERGE 2
 238#define KSM_RUN_OFFLINE 4
 239static unsigned long ksm_run = KSM_RUN_STOP;
 240static void wait_while_offlining(void);
 241
 242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 243static DEFINE_MUTEX(ksm_thread_mutex);
 244static DEFINE_SPINLOCK(ksm_mmlist_lock);
 245
 246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 247                sizeof(struct __struct), __alignof__(struct __struct),\
 248                (__flags), NULL)
 249
 250static int __init ksm_slab_init(void)
 251{
 252        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 253        if (!rmap_item_cache)
 254                goto out;
 255
 256        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 257        if (!stable_node_cache)
 258                goto out_free1;
 259
 260        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 261        if (!mm_slot_cache)
 262                goto out_free2;
 263
 264        return 0;
 265
 266out_free2:
 267        kmem_cache_destroy(stable_node_cache);
 268out_free1:
 269        kmem_cache_destroy(rmap_item_cache);
 270out:
 271        return -ENOMEM;
 272}
 273
 274static void __init ksm_slab_free(void)
 275{
 276        kmem_cache_destroy(mm_slot_cache);
 277        kmem_cache_destroy(stable_node_cache);
 278        kmem_cache_destroy(rmap_item_cache);
 279        mm_slot_cache = NULL;
 280}
 281
 282static inline struct rmap_item *alloc_rmap_item(void)
 283{
 284        struct rmap_item *rmap_item;
 285
 286        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 287        if (rmap_item)
 288                ksm_rmap_items++;
 289        return rmap_item;
 290}
 291
 292static inline void free_rmap_item(struct rmap_item *rmap_item)
 293{
 294        ksm_rmap_items--;
 295        rmap_item->mm = NULL;   /* debug safety */
 296        kmem_cache_free(rmap_item_cache, rmap_item);
 297}
 298
 299static inline struct stable_node *alloc_stable_node(void)
 300{
 301        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
 302}
 303
 304static inline void free_stable_node(struct stable_node *stable_node)
 305{
 306        kmem_cache_free(stable_node_cache, stable_node);
 307}
 308
 309static inline struct mm_slot *alloc_mm_slot(void)
 310{
 311        if (!mm_slot_cache)     /* initialization failed */
 312                return NULL;
 313        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 314}
 315
 316static inline void free_mm_slot(struct mm_slot *mm_slot)
 317{
 318        kmem_cache_free(mm_slot_cache, mm_slot);
 319}
 320
 321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 322{
 323        struct mm_slot *slot;
 324
 325        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 326                if (slot->mm == mm)
 327                        return slot;
 328
 329        return NULL;
 330}
 331
 332static void insert_to_mm_slots_hash(struct mm_struct *mm,
 333                                    struct mm_slot *mm_slot)
 334{
 335        mm_slot->mm = mm;
 336        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 337}
 338
 339/*
 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 341 * page tables after it has passed through ksm_exit() - which, if necessary,
 342 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 343 * a special flag: they can just back out as soon as mm_users goes to zero.
 344 * ksm_test_exit() is used throughout to make this test for exit: in some
 345 * places for correctness, in some places just to avoid unnecessary work.
 346 */
 347static inline bool ksm_test_exit(struct mm_struct *mm)
 348{
 349        return atomic_read(&mm->mm_users) == 0;
 350}
 351
 352/*
 353 * We use break_ksm to break COW on a ksm page: it's a stripped down
 354 *
 355 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 356 *              put_page(page);
 357 *
 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 359 * in case the application has unmapped and remapped mm,addr meanwhile.
 360 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 362 *
 363 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 364 * of the process that owns 'vma'.  We also do not want to enforce
 365 * protection keys here anyway.
 366 */
 367static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 368{
 369        struct page *page;
 370        int ret = 0;
 371
 372        do {
 373                cond_resched();
 374                page = follow_page(vma, addr,
 375                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 376                if (IS_ERR_OR_NULL(page))
 377                        break;
 378                if (PageKsm(page))
 379                        ret = handle_mm_fault(vma->vm_mm, vma, addr,
 380                                                        FAULT_FLAG_WRITE |
 381                                                        FAULT_FLAG_REMOTE);
 382                else
 383                        ret = VM_FAULT_WRITE;
 384                put_page(page);
 385        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 386        /*
 387         * We must loop because handle_mm_fault() may back out if there's
 388         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 389         *
 390         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 391         * COW has been broken, even if the vma does not permit VM_WRITE;
 392         * but note that a concurrent fault might break PageKsm for us.
 393         *
 394         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 395         * backing file, which also invalidates anonymous pages: that's
 396         * okay, that truncation will have unmapped the PageKsm for us.
 397         *
 398         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 399         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 400         * current task has TIF_MEMDIE set, and will be OOM killed on return
 401         * to user; and ksmd, having no mm, would never be chosen for that.
 402         *
 403         * But if the mm is in a limited mem_cgroup, then the fault may fail
 404         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 405         * even ksmd can fail in this way - though it's usually breaking ksm
 406         * just to undo a merge it made a moment before, so unlikely to oom.
 407         *
 408         * That's a pity: we might therefore have more kernel pages allocated
 409         * than we're counting as nodes in the stable tree; but ksm_do_scan
 410         * will retry to break_cow on each pass, so should recover the page
 411         * in due course.  The important thing is to not let VM_MERGEABLE
 412         * be cleared while any such pages might remain in the area.
 413         */
 414        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 415}
 416
 417static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 418                unsigned long addr)
 419{
 420        struct vm_area_struct *vma;
 421        if (ksm_test_exit(mm))
 422                return NULL;
 423        vma = find_vma(mm, addr);
 424        if (!vma || vma->vm_start > addr)
 425                return NULL;
 426        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 427                return NULL;
 428        return vma;
 429}
 430
 431static void break_cow(struct rmap_item *rmap_item)
 432{
 433        struct mm_struct *mm = rmap_item->mm;
 434        unsigned long addr = rmap_item->address;
 435        struct vm_area_struct *vma;
 436
 437        /*
 438         * It is not an accident that whenever we want to break COW
 439         * to undo, we also need to drop a reference to the anon_vma.
 440         */
 441        put_anon_vma(rmap_item->anon_vma);
 442
 443        down_read(&mm->mmap_sem);
 444        vma = find_mergeable_vma(mm, addr);
 445        if (vma)
 446                break_ksm(vma, addr);
 447        up_read(&mm->mmap_sem);
 448}
 449
 450static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 451{
 452        struct mm_struct *mm = rmap_item->mm;
 453        unsigned long addr = rmap_item->address;
 454        struct vm_area_struct *vma;
 455        struct page *page;
 456
 457        down_read(&mm->mmap_sem);
 458        vma = find_mergeable_vma(mm, addr);
 459        if (!vma)
 460                goto out;
 461
 462        page = follow_page(vma, addr, FOLL_GET);
 463        if (IS_ERR_OR_NULL(page))
 464                goto out;
 465        if (PageAnon(page)) {
 466                flush_anon_page(vma, page, addr);
 467                flush_dcache_page(page);
 468        } else {
 469                put_page(page);
 470out:
 471                page = NULL;
 472        }
 473        up_read(&mm->mmap_sem);
 474        return page;
 475}
 476
 477/*
 478 * This helper is used for getting right index into array of tree roots.
 479 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 480 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 481 * every node has its own stable and unstable tree.
 482 */
 483static inline int get_kpfn_nid(unsigned long kpfn)
 484{
 485        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 486}
 487
 488static void remove_node_from_stable_tree(struct stable_node *stable_node)
 489{
 490        struct rmap_item *rmap_item;
 491
 492        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 493                if (rmap_item->hlist.next)
 494                        ksm_pages_sharing--;
 495                else
 496                        ksm_pages_shared--;
 497                put_anon_vma(rmap_item->anon_vma);
 498                rmap_item->address &= PAGE_MASK;
 499                cond_resched();
 500        }
 501
 502        if (stable_node->head == &migrate_nodes)
 503                list_del(&stable_node->list);
 504        else
 505                rb_erase(&stable_node->node,
 506                         root_stable_tree + NUMA(stable_node->nid));
 507        free_stable_node(stable_node);
 508}
 509
 510/*
 511 * get_ksm_page: checks if the page indicated by the stable node
 512 * is still its ksm page, despite having held no reference to it.
 513 * In which case we can trust the content of the page, and it
 514 * returns the gotten page; but if the page has now been zapped,
 515 * remove the stale node from the stable tree and return NULL.
 516 * But beware, the stable node's page might be being migrated.
 517 *
 518 * You would expect the stable_node to hold a reference to the ksm page.
 519 * But if it increments the page's count, swapping out has to wait for
 520 * ksmd to come around again before it can free the page, which may take
 521 * seconds or even minutes: much too unresponsive.  So instead we use a
 522 * "keyhole reference": access to the ksm page from the stable node peeps
 523 * out through its keyhole to see if that page still holds the right key,
 524 * pointing back to this stable node.  This relies on freeing a PageAnon
 525 * page to reset its page->mapping to NULL, and relies on no other use of
 526 * a page to put something that might look like our key in page->mapping.
 527 * is on its way to being freed; but it is an anomaly to bear in mind.
 528 */
 529static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 530{
 531        struct page *page;
 532        void *expected_mapping;
 533        unsigned long kpfn;
 534
 535        expected_mapping = (void *)stable_node +
 536                                (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 537again:
 538        kpfn = READ_ONCE(stable_node->kpfn);
 539        page = pfn_to_page(kpfn);
 540
 541        /*
 542         * page is computed from kpfn, so on most architectures reading
 543         * page->mapping is naturally ordered after reading node->kpfn,
 544         * but on Alpha we need to be more careful.
 545         */
 546        smp_read_barrier_depends();
 547        if (READ_ONCE(page->mapping) != expected_mapping)
 548                goto stale;
 549
 550        /*
 551         * We cannot do anything with the page while its refcount is 0.
 552         * Usually 0 means free, or tail of a higher-order page: in which
 553         * case this node is no longer referenced, and should be freed;
 554         * however, it might mean that the page is under page_freeze_refs().
 555         * The __remove_mapping() case is easy, again the node is now stale;
 556         * but if page is swapcache in migrate_page_move_mapping(), it might
 557         * still be our page, in which case it's essential to keep the node.
 558         */
 559        while (!get_page_unless_zero(page)) {
 560                /*
 561                 * Another check for page->mapping != expected_mapping would
 562                 * work here too.  We have chosen the !PageSwapCache test to
 563                 * optimize the common case, when the page is or is about to
 564                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 565                 * in the freeze_refs section of __remove_mapping(); but Anon
 566                 * page->mapping reset to NULL later, in free_pages_prepare().
 567                 */
 568                if (!PageSwapCache(page))
 569                        goto stale;
 570                cpu_relax();
 571        }
 572
 573        if (READ_ONCE(page->mapping) != expected_mapping) {
 574                put_page(page);
 575                goto stale;
 576        }
 577
 578        if (lock_it) {
 579                lock_page(page);
 580                if (READ_ONCE(page->mapping) != expected_mapping) {
 581                        unlock_page(page);
 582                        put_page(page);
 583                        goto stale;
 584                }
 585        }
 586        return page;
 587
 588stale:
 589        /*
 590         * We come here from above when page->mapping or !PageSwapCache
 591         * suggests that the node is stale; but it might be under migration.
 592         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 593         * before checking whether node->kpfn has been changed.
 594         */
 595        smp_rmb();
 596        if (READ_ONCE(stable_node->kpfn) != kpfn)
 597                goto again;
 598        remove_node_from_stable_tree(stable_node);
 599        return NULL;
 600}
 601
 602/*
 603 * Removing rmap_item from stable or unstable tree.
 604 * This function will clean the information from the stable/unstable tree.
 605 */
 606static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 607{
 608        if (rmap_item->address & STABLE_FLAG) {
 609                struct stable_node *stable_node;
 610                struct page *page;
 611
 612                stable_node = rmap_item->head;
 613                page = get_ksm_page(stable_node, true);
 614                if (!page)
 615                        goto out;
 616
 617                hlist_del(&rmap_item->hlist);
 618                unlock_page(page);
 619                put_page(page);
 620
 621                if (!hlist_empty(&stable_node->hlist))
 622                        ksm_pages_sharing--;
 623                else
 624                        ksm_pages_shared--;
 625
 626                put_anon_vma(rmap_item->anon_vma);
 627                rmap_item->address &= PAGE_MASK;
 628
 629        } else if (rmap_item->address & UNSTABLE_FLAG) {
 630                unsigned char age;
 631                /*
 632                 * Usually ksmd can and must skip the rb_erase, because
 633                 * root_unstable_tree was already reset to RB_ROOT.
 634                 * But be careful when an mm is exiting: do the rb_erase
 635                 * if this rmap_item was inserted by this scan, rather
 636                 * than left over from before.
 637                 */
 638                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 639                BUG_ON(age > 1);
 640                if (!age)
 641                        rb_erase(&rmap_item->node,
 642                                 root_unstable_tree + NUMA(rmap_item->nid));
 643                ksm_pages_unshared--;
 644                rmap_item->address &= PAGE_MASK;
 645        }
 646out:
 647        cond_resched();         /* we're called from many long loops */
 648}
 649
 650static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 651                                       struct rmap_item **rmap_list)
 652{
 653        while (*rmap_list) {
 654                struct rmap_item *rmap_item = *rmap_list;
 655                *rmap_list = rmap_item->rmap_list;
 656                remove_rmap_item_from_tree(rmap_item);
 657                free_rmap_item(rmap_item);
 658        }
 659}
 660
 661/*
 662 * Though it's very tempting to unmerge rmap_items from stable tree rather
 663 * than check every pte of a given vma, the locking doesn't quite work for
 664 * that - an rmap_item is assigned to the stable tree after inserting ksm
 665 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 666 * rmap_items from parent to child at fork time (so as not to waste time
 667 * if exit comes before the next scan reaches it).
 668 *
 669 * Similarly, although we'd like to remove rmap_items (so updating counts
 670 * and freeing memory) when unmerging an area, it's easier to leave that
 671 * to the next pass of ksmd - consider, for example, how ksmd might be
 672 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 673 */
 674static int unmerge_ksm_pages(struct vm_area_struct *vma,
 675                             unsigned long start, unsigned long end)
 676{
 677        unsigned long addr;
 678        int err = 0;
 679
 680        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 681                if (ksm_test_exit(vma->vm_mm))
 682                        break;
 683                if (signal_pending(current))
 684                        err = -ERESTARTSYS;
 685                else
 686                        err = break_ksm(vma, addr);
 687        }
 688        return err;
 689}
 690
 691#ifdef CONFIG_SYSFS
 692/*
 693 * Only called through the sysfs control interface:
 694 */
 695static int remove_stable_node(struct stable_node *stable_node)
 696{
 697        struct page *page;
 698        int err;
 699
 700        page = get_ksm_page(stable_node, true);
 701        if (!page) {
 702                /*
 703                 * get_ksm_page did remove_node_from_stable_tree itself.
 704                 */
 705                return 0;
 706        }
 707
 708        if (WARN_ON_ONCE(page_mapped(page))) {
 709                /*
 710                 * This should not happen: but if it does, just refuse to let
 711                 * merge_across_nodes be switched - there is no need to panic.
 712                 */
 713                err = -EBUSY;
 714        } else {
 715                /*
 716                 * The stable node did not yet appear stale to get_ksm_page(),
 717                 * since that allows for an unmapped ksm page to be recognized
 718                 * right up until it is freed; but the node is safe to remove.
 719                 * This page might be in a pagevec waiting to be freed,
 720                 * or it might be PageSwapCache (perhaps under writeback),
 721                 * or it might have been removed from swapcache a moment ago.
 722                 */
 723                set_page_stable_node(page, NULL);
 724                remove_node_from_stable_tree(stable_node);
 725                err = 0;
 726        }
 727
 728        unlock_page(page);
 729        put_page(page);
 730        return err;
 731}
 732
 733static int remove_all_stable_nodes(void)
 734{
 735        struct stable_node *stable_node, *next;
 736        int nid;
 737        int err = 0;
 738
 739        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 740                while (root_stable_tree[nid].rb_node) {
 741                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 742                                                struct stable_node, node);
 743                        if (remove_stable_node(stable_node)) {
 744                                err = -EBUSY;
 745                                break;  /* proceed to next nid */
 746                        }
 747                        cond_resched();
 748                }
 749        }
 750        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 751                if (remove_stable_node(stable_node))
 752                        err = -EBUSY;
 753                cond_resched();
 754        }
 755        return err;
 756}
 757
 758static int unmerge_and_remove_all_rmap_items(void)
 759{
 760        struct mm_slot *mm_slot;
 761        struct mm_struct *mm;
 762        struct vm_area_struct *vma;
 763        int err = 0;
 764
 765        spin_lock(&ksm_mmlist_lock);
 766        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 767                                                struct mm_slot, mm_list);
 768        spin_unlock(&ksm_mmlist_lock);
 769
 770        for (mm_slot = ksm_scan.mm_slot;
 771                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 772                mm = mm_slot->mm;
 773                down_read(&mm->mmap_sem);
 774                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 775                        if (ksm_test_exit(mm))
 776                                break;
 777                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 778                                continue;
 779                        err = unmerge_ksm_pages(vma,
 780                                                vma->vm_start, vma->vm_end);
 781                        if (err)
 782                                goto error;
 783                }
 784
 785                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 786                up_read(&mm->mmap_sem);
 787
 788                spin_lock(&ksm_mmlist_lock);
 789                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 790                                                struct mm_slot, mm_list);
 791                if (ksm_test_exit(mm)) {
 792                        hash_del(&mm_slot->link);
 793                        list_del(&mm_slot->mm_list);
 794                        spin_unlock(&ksm_mmlist_lock);
 795
 796                        free_mm_slot(mm_slot);
 797                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 798                        mmdrop(mm);
 799                } else
 800                        spin_unlock(&ksm_mmlist_lock);
 801        }
 802
 803        /* Clean up stable nodes, but don't worry if some are still busy */
 804        remove_all_stable_nodes();
 805        ksm_scan.seqnr = 0;
 806        return 0;
 807
 808error:
 809        up_read(&mm->mmap_sem);
 810        spin_lock(&ksm_mmlist_lock);
 811        ksm_scan.mm_slot = &ksm_mm_head;
 812        spin_unlock(&ksm_mmlist_lock);
 813        return err;
 814}
 815#endif /* CONFIG_SYSFS */
 816
 817static u32 calc_checksum(struct page *page)
 818{
 819        u32 checksum;
 820        void *addr = kmap_atomic(page);
 821        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 822        kunmap_atomic(addr);
 823        return checksum;
 824}
 825
 826static int memcmp_pages(struct page *page1, struct page *page2)
 827{
 828        char *addr1, *addr2;
 829        int ret;
 830
 831        addr1 = kmap_atomic(page1);
 832        addr2 = kmap_atomic(page2);
 833        ret = memcmp(addr1, addr2, PAGE_SIZE);
 834        kunmap_atomic(addr2);
 835        kunmap_atomic(addr1);
 836        return ret;
 837}
 838
 839static inline int pages_identical(struct page *page1, struct page *page2)
 840{
 841        return !memcmp_pages(page1, page2);
 842}
 843
 844static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 845                              pte_t *orig_pte)
 846{
 847        struct mm_struct *mm = vma->vm_mm;
 848        unsigned long addr;
 849        pte_t *ptep;
 850        spinlock_t *ptl;
 851        int swapped;
 852        int err = -EFAULT;
 853        unsigned long mmun_start;       /* For mmu_notifiers */
 854        unsigned long mmun_end;         /* For mmu_notifiers */
 855
 856        addr = page_address_in_vma(page, vma);
 857        if (addr == -EFAULT)
 858                goto out;
 859
 860        BUG_ON(PageTransCompound(page));
 861
 862        mmun_start = addr;
 863        mmun_end   = addr + PAGE_SIZE;
 864        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 865
 866        ptep = page_check_address(page, mm, addr, &ptl, 0);
 867        if (!ptep)
 868                goto out_mn;
 869
 870        if (pte_write(*ptep) || pte_dirty(*ptep)) {
 871                pte_t entry;
 872
 873                swapped = PageSwapCache(page);
 874                flush_cache_page(vma, addr, page_to_pfn(page));
 875                /*
 876                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 877                 * take any lock, therefore the check that we are going to make
 878                 * with the pagecount against the mapcount is racey and
 879                 * O_DIRECT can happen right after the check.
 880                 * So we clear the pte and flush the tlb before the check
 881                 * this assure us that no O_DIRECT can happen after the check
 882                 * or in the middle of the check.
 883                 */
 884                entry = ptep_clear_flush_notify(vma, addr, ptep);
 885                /*
 886                 * Check that no O_DIRECT or similar I/O is in progress on the
 887                 * page
 888                 */
 889                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 890                        set_pte_at(mm, addr, ptep, entry);
 891                        goto out_unlock;
 892                }
 893                if (pte_dirty(entry))
 894                        set_page_dirty(page);
 895                entry = pte_mkclean(pte_wrprotect(entry));
 896                set_pte_at_notify(mm, addr, ptep, entry);
 897        }
 898        *orig_pte = *ptep;
 899        err = 0;
 900
 901out_unlock:
 902        pte_unmap_unlock(ptep, ptl);
 903out_mn:
 904        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 905out:
 906        return err;
 907}
 908
 909/**
 910 * replace_page - replace page in vma by new ksm page
 911 * @vma:      vma that holds the pte pointing to page
 912 * @page:     the page we are replacing by kpage
 913 * @kpage:    the ksm page we replace page by
 914 * @orig_pte: the original value of the pte
 915 *
 916 * Returns 0 on success, -EFAULT on failure.
 917 */
 918static int replace_page(struct vm_area_struct *vma, struct page *page,
 919                        struct page *kpage, pte_t orig_pte)
 920{
 921        struct mm_struct *mm = vma->vm_mm;
 922        pmd_t *pmd;
 923        pte_t *ptep;
 924        spinlock_t *ptl;
 925        unsigned long addr;
 926        int err = -EFAULT;
 927        unsigned long mmun_start;       /* For mmu_notifiers */
 928        unsigned long mmun_end;         /* For mmu_notifiers */
 929
 930        addr = page_address_in_vma(page, vma);
 931        if (addr == -EFAULT)
 932                goto out;
 933
 934        pmd = mm_find_pmd(mm, addr);
 935        if (!pmd)
 936                goto out;
 937
 938        mmun_start = addr;
 939        mmun_end   = addr + PAGE_SIZE;
 940        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 941
 942        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 943        if (!pte_same(*ptep, orig_pte)) {
 944                pte_unmap_unlock(ptep, ptl);
 945                goto out_mn;
 946        }
 947
 948        get_page(kpage);
 949        page_add_anon_rmap(kpage, vma, addr, false);
 950
 951        flush_cache_page(vma, addr, pte_pfn(*ptep));
 952        ptep_clear_flush_notify(vma, addr, ptep);
 953        set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 954
 955        page_remove_rmap(page, false);
 956        if (!page_mapped(page))
 957                try_to_free_swap(page);
 958        put_page(page);
 959
 960        pte_unmap_unlock(ptep, ptl);
 961        err = 0;
 962out_mn:
 963        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 964out:
 965        return err;
 966}
 967
 968/*
 969 * try_to_merge_one_page - take two pages and merge them into one
 970 * @vma: the vma that holds the pte pointing to page
 971 * @page: the PageAnon page that we want to replace with kpage
 972 * @kpage: the PageKsm page that we want to map instead of page,
 973 *         or NULL the first time when we want to use page as kpage.
 974 *
 975 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 976 */
 977static int try_to_merge_one_page(struct vm_area_struct *vma,
 978                                 struct page *page, struct page *kpage)
 979{
 980        pte_t orig_pte = __pte(0);
 981        int err = -EFAULT;
 982
 983        if (page == kpage)                      /* ksm page forked */
 984                return 0;
 985
 986        if (!PageAnon(page))
 987                goto out;
 988
 989        /*
 990         * We need the page lock to read a stable PageSwapCache in
 991         * write_protect_page().  We use trylock_page() instead of
 992         * lock_page() because we don't want to wait here - we
 993         * prefer to continue scanning and merging different pages,
 994         * then come back to this page when it is unlocked.
 995         */
 996        if (!trylock_page(page))
 997                goto out;
 998
 999        if (PageTransCompound(page)) {
1000                err = split_huge_page(page);
1001                if (err)
1002                        goto out_unlock;
1003        }
1004
1005        /*
1006         * If this anonymous page is mapped only here, its pte may need
1007         * to be write-protected.  If it's mapped elsewhere, all of its
1008         * ptes are necessarily already write-protected.  But in either
1009         * case, we need to lock and check page_count is not raised.
1010         */
1011        if (write_protect_page(vma, page, &orig_pte) == 0) {
1012                if (!kpage) {
1013                        /*
1014                         * While we hold page lock, upgrade page from
1015                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1016                         * stable_tree_insert() will update stable_node.
1017                         */
1018                        set_page_stable_node(page, NULL);
1019                        mark_page_accessed(page);
1020                        /*
1021                         * Page reclaim just frees a clean page with no dirty
1022                         * ptes: make sure that the ksm page would be swapped.
1023                         */
1024                        if (!PageDirty(page))
1025                                SetPageDirty(page);
1026                        err = 0;
1027                } else if (pages_identical(page, kpage))
1028                        err = replace_page(vma, page, kpage, orig_pte);
1029        }
1030
1031        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1032                munlock_vma_page(page);
1033                if (!PageMlocked(kpage)) {
1034                        unlock_page(page);
1035                        lock_page(kpage);
1036                        mlock_vma_page(kpage);
1037                        page = kpage;           /* for final unlock */
1038                }
1039        }
1040
1041out_unlock:
1042        unlock_page(page);
1043out:
1044        return err;
1045}
1046
1047/*
1048 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1049 * but no new kernel page is allocated: kpage must already be a ksm page.
1050 *
1051 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1052 */
1053static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1054                                      struct page *page, struct page *kpage)
1055{
1056        struct mm_struct *mm = rmap_item->mm;
1057        struct vm_area_struct *vma;
1058        int err = -EFAULT;
1059
1060        down_read(&mm->mmap_sem);
1061        vma = find_mergeable_vma(mm, rmap_item->address);
1062        if (!vma)
1063                goto out;
1064
1065        err = try_to_merge_one_page(vma, page, kpage);
1066        if (err)
1067                goto out;
1068
1069        /* Unstable nid is in union with stable anon_vma: remove first */
1070        remove_rmap_item_from_tree(rmap_item);
1071
1072        /* Must get reference to anon_vma while still holding mmap_sem */
1073        rmap_item->anon_vma = vma->anon_vma;
1074        get_anon_vma(vma->anon_vma);
1075out:
1076        up_read(&mm->mmap_sem);
1077        return err;
1078}
1079
1080/*
1081 * try_to_merge_two_pages - take two identical pages and prepare them
1082 * to be merged into one page.
1083 *
1084 * This function returns the kpage if we successfully merged two identical
1085 * pages into one ksm page, NULL otherwise.
1086 *
1087 * Note that this function upgrades page to ksm page: if one of the pages
1088 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1089 */
1090static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1091                                           struct page *page,
1092                                           struct rmap_item *tree_rmap_item,
1093                                           struct page *tree_page)
1094{
1095        int err;
1096
1097        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1098        if (!err) {
1099                err = try_to_merge_with_ksm_page(tree_rmap_item,
1100                                                        tree_page, page);
1101                /*
1102                 * If that fails, we have a ksm page with only one pte
1103                 * pointing to it: so break it.
1104                 */
1105                if (err)
1106                        break_cow(rmap_item);
1107        }
1108        return err ? NULL : page;
1109}
1110
1111/*
1112 * stable_tree_search - search for page inside the stable tree
1113 *
1114 * This function checks if there is a page inside the stable tree
1115 * with identical content to the page that we are scanning right now.
1116 *
1117 * This function returns the stable tree node of identical content if found,
1118 * NULL otherwise.
1119 */
1120static struct page *stable_tree_search(struct page *page)
1121{
1122        int nid;
1123        struct rb_root *root;
1124        struct rb_node **new;
1125        struct rb_node *parent;
1126        struct stable_node *stable_node;
1127        struct stable_node *page_node;
1128
1129        page_node = page_stable_node(page);
1130        if (page_node && page_node->head != &migrate_nodes) {
1131                /* ksm page forked */
1132                get_page(page);
1133                return page;
1134        }
1135
1136        nid = get_kpfn_nid(page_to_pfn(page));
1137        root = root_stable_tree + nid;
1138again:
1139        new = &root->rb_node;
1140        parent = NULL;
1141
1142        while (*new) {
1143                struct page *tree_page;
1144                int ret;
1145
1146                cond_resched();
1147                stable_node = rb_entry(*new, struct stable_node, node);
1148                tree_page = get_ksm_page(stable_node, false);
1149                if (!tree_page) {
1150                        /*
1151                         * If we walked over a stale stable_node,
1152                         * get_ksm_page() will call rb_erase() and it
1153                         * may rebalance the tree from under us. So
1154                         * restart the search from scratch. Returning
1155                         * NULL would be safe too, but we'd generate
1156                         * false negative insertions just because some
1157                         * stable_node was stale.
1158                         */
1159                        goto again;
1160                }
1161
1162                ret = memcmp_pages(page, tree_page);
1163                put_page(tree_page);
1164
1165                parent = *new;
1166                if (ret < 0)
1167                        new = &parent->rb_left;
1168                else if (ret > 0)
1169                        new = &parent->rb_right;
1170                else {
1171                        /*
1172                         * Lock and unlock the stable_node's page (which
1173                         * might already have been migrated) so that page
1174                         * migration is sure to notice its raised count.
1175                         * It would be more elegant to return stable_node
1176                         * than kpage, but that involves more changes.
1177                         */
1178                        tree_page = get_ksm_page(stable_node, true);
1179                        if (tree_page) {
1180                                unlock_page(tree_page);
1181                                if (get_kpfn_nid(stable_node->kpfn) !=
1182                                                NUMA(stable_node->nid)) {
1183                                        put_page(tree_page);
1184                                        goto replace;
1185                                }
1186                                return tree_page;
1187                        }
1188                        /*
1189                         * There is now a place for page_node, but the tree may
1190                         * have been rebalanced, so re-evaluate parent and new.
1191                         */
1192                        if (page_node)
1193                                goto again;
1194                        return NULL;
1195                }
1196        }
1197
1198        if (!page_node)
1199                return NULL;
1200
1201        list_del(&page_node->list);
1202        DO_NUMA(page_node->nid = nid);
1203        rb_link_node(&page_node->node, parent, new);
1204        rb_insert_color(&page_node->node, root);
1205        get_page(page);
1206        return page;
1207
1208replace:
1209        if (page_node) {
1210                list_del(&page_node->list);
1211                DO_NUMA(page_node->nid = nid);
1212                rb_replace_node(&stable_node->node, &page_node->node, root);
1213                get_page(page);
1214        } else {
1215                rb_erase(&stable_node->node, root);
1216                page = NULL;
1217        }
1218        stable_node->head = &migrate_nodes;
1219        list_add(&stable_node->list, stable_node->head);
1220        return page;
1221}
1222
1223/*
1224 * stable_tree_insert - insert stable tree node pointing to new ksm page
1225 * into the stable tree.
1226 *
1227 * This function returns the stable tree node just allocated on success,
1228 * NULL otherwise.
1229 */
1230static struct stable_node *stable_tree_insert(struct page *kpage)
1231{
1232        int nid;
1233        unsigned long kpfn;
1234        struct rb_root *root;
1235        struct rb_node **new;
1236        struct rb_node *parent;
1237        struct stable_node *stable_node;
1238
1239        kpfn = page_to_pfn(kpage);
1240        nid = get_kpfn_nid(kpfn);
1241        root = root_stable_tree + nid;
1242again:
1243        parent = NULL;
1244        new = &root->rb_node;
1245
1246        while (*new) {
1247                struct page *tree_page;
1248                int ret;
1249
1250                cond_resched();
1251                stable_node = rb_entry(*new, struct stable_node, node);
1252                tree_page = get_ksm_page(stable_node, false);
1253                if (!tree_page) {
1254                        /*
1255                         * If we walked over a stale stable_node,
1256                         * get_ksm_page() will call rb_erase() and it
1257                         * may rebalance the tree from under us. So
1258                         * restart the search from scratch. Returning
1259                         * NULL would be safe too, but we'd generate
1260                         * false negative insertions just because some
1261                         * stable_node was stale.
1262                         */
1263                        goto again;
1264                }
1265
1266                ret = memcmp_pages(kpage, tree_page);
1267                put_page(tree_page);
1268
1269                parent = *new;
1270                if (ret < 0)
1271                        new = &parent->rb_left;
1272                else if (ret > 0)
1273                        new = &parent->rb_right;
1274                else {
1275                        /*
1276                         * It is not a bug that stable_tree_search() didn't
1277                         * find this node: because at that time our page was
1278                         * not yet write-protected, so may have changed since.
1279                         */
1280                        return NULL;
1281                }
1282        }
1283
1284        stable_node = alloc_stable_node();
1285        if (!stable_node)
1286                return NULL;
1287
1288        INIT_HLIST_HEAD(&stable_node->hlist);
1289        stable_node->kpfn = kpfn;
1290        set_page_stable_node(kpage, stable_node);
1291        DO_NUMA(stable_node->nid = nid);
1292        rb_link_node(&stable_node->node, parent, new);
1293        rb_insert_color(&stable_node->node, root);
1294
1295        return stable_node;
1296}
1297
1298/*
1299 * unstable_tree_search_insert - search for identical page,
1300 * else insert rmap_item into the unstable tree.
1301 *
1302 * This function searches for a page in the unstable tree identical to the
1303 * page currently being scanned; and if no identical page is found in the
1304 * tree, we insert rmap_item as a new object into the unstable tree.
1305 *
1306 * This function returns pointer to rmap_item found to be identical
1307 * to the currently scanned page, NULL otherwise.
1308 *
1309 * This function does both searching and inserting, because they share
1310 * the same walking algorithm in an rbtree.
1311 */
1312static
1313struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1314                                              struct page *page,
1315                                              struct page **tree_pagep)
1316{
1317        struct rb_node **new;
1318        struct rb_root *root;
1319        struct rb_node *parent = NULL;
1320        int nid;
1321
1322        nid = get_kpfn_nid(page_to_pfn(page));
1323        root = root_unstable_tree + nid;
1324        new = &root->rb_node;
1325
1326        while (*new) {
1327                struct rmap_item *tree_rmap_item;
1328                struct page *tree_page;
1329                int ret;
1330
1331                cond_resched();
1332                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1333                tree_page = get_mergeable_page(tree_rmap_item);
1334                if (!tree_page)
1335                        return NULL;
1336
1337                /*
1338                 * Don't substitute a ksm page for a forked page.
1339                 */
1340                if (page == tree_page) {
1341                        put_page(tree_page);
1342                        return NULL;
1343                }
1344
1345                ret = memcmp_pages(page, tree_page);
1346
1347                parent = *new;
1348                if (ret < 0) {
1349                        put_page(tree_page);
1350                        new = &parent->rb_left;
1351                } else if (ret > 0) {
1352                        put_page(tree_page);
1353                        new = &parent->rb_right;
1354                } else if (!ksm_merge_across_nodes &&
1355                           page_to_nid(tree_page) != nid) {
1356                        /*
1357                         * If tree_page has been migrated to another NUMA node,
1358                         * it will be flushed out and put in the right unstable
1359                         * tree next time: only merge with it when across_nodes.
1360                         */
1361                        put_page(tree_page);
1362                        return NULL;
1363                } else {
1364                        *tree_pagep = tree_page;
1365                        return tree_rmap_item;
1366                }
1367        }
1368
1369        rmap_item->address |= UNSTABLE_FLAG;
1370        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1371        DO_NUMA(rmap_item->nid = nid);
1372        rb_link_node(&rmap_item->node, parent, new);
1373        rb_insert_color(&rmap_item->node, root);
1374
1375        ksm_pages_unshared++;
1376        return NULL;
1377}
1378
1379/*
1380 * stable_tree_append - add another rmap_item to the linked list of
1381 * rmap_items hanging off a given node of the stable tree, all sharing
1382 * the same ksm page.
1383 */
1384static void stable_tree_append(struct rmap_item *rmap_item,
1385                               struct stable_node *stable_node)
1386{
1387        rmap_item->head = stable_node;
1388        rmap_item->address |= STABLE_FLAG;
1389        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1390
1391        if (rmap_item->hlist.next)
1392                ksm_pages_sharing++;
1393        else
1394                ksm_pages_shared++;
1395}
1396
1397/*
1398 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1399 * if not, compare checksum to previous and if it's the same, see if page can
1400 * be inserted into the unstable tree, or merged with a page already there and
1401 * both transferred to the stable tree.
1402 *
1403 * @page: the page that we are searching identical page to.
1404 * @rmap_item: the reverse mapping into the virtual address of this page
1405 */
1406static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1407{
1408        struct rmap_item *tree_rmap_item;
1409        struct page *tree_page = NULL;
1410        struct stable_node *stable_node;
1411        struct page *kpage;
1412        unsigned int checksum;
1413        int err;
1414
1415        stable_node = page_stable_node(page);
1416        if (stable_node) {
1417                if (stable_node->head != &migrate_nodes &&
1418                    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1419                        rb_erase(&stable_node->node,
1420                                 root_stable_tree + NUMA(stable_node->nid));
1421                        stable_node->head = &migrate_nodes;
1422                        list_add(&stable_node->list, stable_node->head);
1423                }
1424                if (stable_node->head != &migrate_nodes &&
1425                    rmap_item->head == stable_node)
1426                        return;
1427        }
1428
1429        /* We first start with searching the page inside the stable tree */
1430        kpage = stable_tree_search(page);
1431        if (kpage == page && rmap_item->head == stable_node) {
1432                put_page(kpage);
1433                return;
1434        }
1435
1436        remove_rmap_item_from_tree(rmap_item);
1437
1438        if (kpage) {
1439                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1440                if (!err) {
1441                        /*
1442                         * The page was successfully merged:
1443                         * add its rmap_item to the stable tree.
1444                         */
1445                        lock_page(kpage);
1446                        stable_tree_append(rmap_item, page_stable_node(kpage));
1447                        unlock_page(kpage);
1448                }
1449                put_page(kpage);
1450                return;
1451        }
1452
1453        /*
1454         * If the hash value of the page has changed from the last time
1455         * we calculated it, this page is changing frequently: therefore we
1456         * don't want to insert it in the unstable tree, and we don't want
1457         * to waste our time searching for something identical to it there.
1458         */
1459        checksum = calc_checksum(page);
1460        if (rmap_item->oldchecksum != checksum) {
1461                rmap_item->oldchecksum = checksum;
1462                return;
1463        }
1464
1465        tree_rmap_item =
1466                unstable_tree_search_insert(rmap_item, page, &tree_page);
1467        if (tree_rmap_item) {
1468                kpage = try_to_merge_two_pages(rmap_item, page,
1469                                                tree_rmap_item, tree_page);
1470                put_page(tree_page);
1471                if (kpage) {
1472                        /*
1473                         * The pages were successfully merged: insert new
1474                         * node in the stable tree and add both rmap_items.
1475                         */
1476                        lock_page(kpage);
1477                        stable_node = stable_tree_insert(kpage);
1478                        if (stable_node) {
1479                                stable_tree_append(tree_rmap_item, stable_node);
1480                                stable_tree_append(rmap_item, stable_node);
1481                        }
1482                        unlock_page(kpage);
1483
1484                        /*
1485                         * If we fail to insert the page into the stable tree,
1486                         * we will have 2 virtual addresses that are pointing
1487                         * to a ksm page left outside the stable tree,
1488                         * in which case we need to break_cow on both.
1489                         */
1490                        if (!stable_node) {
1491                                break_cow(tree_rmap_item);
1492                                break_cow(rmap_item);
1493                        }
1494                }
1495        }
1496}
1497
1498static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1499                                            struct rmap_item **rmap_list,
1500                                            unsigned long addr)
1501{
1502        struct rmap_item *rmap_item;
1503
1504        while (*rmap_list) {
1505                rmap_item = *rmap_list;
1506                if ((rmap_item->address & PAGE_MASK) == addr)
1507                        return rmap_item;
1508                if (rmap_item->address > addr)
1509                        break;
1510                *rmap_list = rmap_item->rmap_list;
1511                remove_rmap_item_from_tree(rmap_item);
1512                free_rmap_item(rmap_item);
1513        }
1514
1515        rmap_item = alloc_rmap_item();
1516        if (rmap_item) {
1517                /* It has already been zeroed */
1518                rmap_item->mm = mm_slot->mm;
1519                rmap_item->address = addr;
1520                rmap_item->rmap_list = *rmap_list;
1521                *rmap_list = rmap_item;
1522        }
1523        return rmap_item;
1524}
1525
1526static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1527{
1528        struct mm_struct *mm;
1529        struct mm_slot *slot;
1530        struct vm_area_struct *vma;
1531        struct rmap_item *rmap_item;
1532        int nid;
1533
1534        if (list_empty(&ksm_mm_head.mm_list))
1535                return NULL;
1536
1537        slot = ksm_scan.mm_slot;
1538        if (slot == &ksm_mm_head) {
1539                /*
1540                 * A number of pages can hang around indefinitely on per-cpu
1541                 * pagevecs, raised page count preventing write_protect_page
1542                 * from merging them.  Though it doesn't really matter much,
1543                 * it is puzzling to see some stuck in pages_volatile until
1544                 * other activity jostles them out, and they also prevented
1545                 * LTP's KSM test from succeeding deterministically; so drain
1546                 * them here (here rather than on entry to ksm_do_scan(),
1547                 * so we don't IPI too often when pages_to_scan is set low).
1548                 */
1549                lru_add_drain_all();
1550
1551                /*
1552                 * Whereas stale stable_nodes on the stable_tree itself
1553                 * get pruned in the regular course of stable_tree_search(),
1554                 * those moved out to the migrate_nodes list can accumulate:
1555                 * so prune them once before each full scan.
1556                 */
1557                if (!ksm_merge_across_nodes) {
1558                        struct stable_node *stable_node, *next;
1559                        struct page *page;
1560
1561                        list_for_each_entry_safe(stable_node, next,
1562                                                 &migrate_nodes, list) {
1563                                page = get_ksm_page(stable_node, false);
1564                                if (page)
1565                                        put_page(page);
1566                                cond_resched();
1567                        }
1568                }
1569
1570                for (nid = 0; nid < ksm_nr_node_ids; nid++)
1571                        root_unstable_tree[nid] = RB_ROOT;
1572
1573                spin_lock(&ksm_mmlist_lock);
1574                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1575                ksm_scan.mm_slot = slot;
1576                spin_unlock(&ksm_mmlist_lock);
1577                /*
1578                 * Although we tested list_empty() above, a racing __ksm_exit
1579                 * of the last mm on the list may have removed it since then.
1580                 */
1581                if (slot == &ksm_mm_head)
1582                        return NULL;
1583next_mm:
1584                ksm_scan.address = 0;
1585                ksm_scan.rmap_list = &slot->rmap_list;
1586        }
1587
1588        mm = slot->mm;
1589        down_read(&mm->mmap_sem);
1590        if (ksm_test_exit(mm))
1591                vma = NULL;
1592        else
1593                vma = find_vma(mm, ksm_scan.address);
1594
1595        for (; vma; vma = vma->vm_next) {
1596                if (!(vma->vm_flags & VM_MERGEABLE))
1597                        continue;
1598                if (ksm_scan.address < vma->vm_start)
1599                        ksm_scan.address = vma->vm_start;
1600                if (!vma->anon_vma)
1601                        ksm_scan.address = vma->vm_end;
1602
1603                while (ksm_scan.address < vma->vm_end) {
1604                        if (ksm_test_exit(mm))
1605                                break;
1606                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1607                        if (IS_ERR_OR_NULL(*page)) {
1608                                ksm_scan.address += PAGE_SIZE;
1609                                cond_resched();
1610                                continue;
1611                        }
1612                        if (PageAnon(*page)) {
1613                                flush_anon_page(vma, *page, ksm_scan.address);
1614                                flush_dcache_page(*page);
1615                                rmap_item = get_next_rmap_item(slot,
1616                                        ksm_scan.rmap_list, ksm_scan.address);
1617                                if (rmap_item) {
1618                                        ksm_scan.rmap_list =
1619                                                        &rmap_item->rmap_list;
1620                                        ksm_scan.address += PAGE_SIZE;
1621                                } else
1622                                        put_page(*page);
1623                                up_read(&mm->mmap_sem);
1624                                return rmap_item;
1625                        }
1626                        put_page(*page);
1627                        ksm_scan.address += PAGE_SIZE;
1628                        cond_resched();
1629                }
1630        }
1631
1632        if (ksm_test_exit(mm)) {
1633                ksm_scan.address = 0;
1634                ksm_scan.rmap_list = &slot->rmap_list;
1635        }
1636        /*
1637         * Nuke all the rmap_items that are above this current rmap:
1638         * because there were no VM_MERGEABLE vmas with such addresses.
1639         */
1640        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1641
1642        spin_lock(&ksm_mmlist_lock);
1643        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1644                                                struct mm_slot, mm_list);
1645        if (ksm_scan.address == 0) {
1646                /*
1647                 * We've completed a full scan of all vmas, holding mmap_sem
1648                 * throughout, and found no VM_MERGEABLE: so do the same as
1649                 * __ksm_exit does to remove this mm from all our lists now.
1650                 * This applies either when cleaning up after __ksm_exit
1651                 * (but beware: we can reach here even before __ksm_exit),
1652                 * or when all VM_MERGEABLE areas have been unmapped (and
1653                 * mmap_sem then protects against race with MADV_MERGEABLE).
1654                 */
1655                hash_del(&slot->link);
1656                list_del(&slot->mm_list);
1657                spin_unlock(&ksm_mmlist_lock);
1658
1659                free_mm_slot(slot);
1660                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1661                up_read(&mm->mmap_sem);
1662                mmdrop(mm);
1663        } else {
1664                up_read(&mm->mmap_sem);
1665                /*
1666                 * up_read(&mm->mmap_sem) first because after
1667                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1668                 * already have been freed under us by __ksm_exit()
1669                 * because the "mm_slot" is still hashed and
1670                 * ksm_scan.mm_slot doesn't point to it anymore.
1671                 */
1672                spin_unlock(&ksm_mmlist_lock);
1673        }
1674
1675        /* Repeat until we've completed scanning the whole list */
1676        slot = ksm_scan.mm_slot;
1677        if (slot != &ksm_mm_head)
1678                goto next_mm;
1679
1680        ksm_scan.seqnr++;
1681        return NULL;
1682}
1683
1684/**
1685 * ksm_do_scan  - the ksm scanner main worker function.
1686 * @scan_npages - number of pages we want to scan before we return.
1687 */
1688static void ksm_do_scan(unsigned int scan_npages)
1689{
1690        struct rmap_item *rmap_item;
1691        struct page *uninitialized_var(page);
1692
1693        while (scan_npages-- && likely(!freezing(current))) {
1694                cond_resched();
1695                rmap_item = scan_get_next_rmap_item(&page);
1696                if (!rmap_item)
1697                        return;
1698                cmp_and_merge_page(page, rmap_item);
1699                put_page(page);
1700        }
1701}
1702
1703static int ksmd_should_run(void)
1704{
1705        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1706}
1707
1708static int ksm_scan_thread(void *nothing)
1709{
1710        set_freezable();
1711        set_user_nice(current, 5);
1712
1713        while (!kthread_should_stop()) {
1714                mutex_lock(&ksm_thread_mutex);
1715                wait_while_offlining();
1716                if (ksmd_should_run())
1717                        ksm_do_scan(ksm_thread_pages_to_scan);
1718                mutex_unlock(&ksm_thread_mutex);
1719
1720                try_to_freeze();
1721
1722                if (ksmd_should_run()) {
1723                        schedule_timeout_interruptible(
1724                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
1725                } else {
1726                        wait_event_freezable(ksm_thread_wait,
1727                                ksmd_should_run() || kthread_should_stop());
1728                }
1729        }
1730        return 0;
1731}
1732
1733int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1734                unsigned long end, int advice, unsigned long *vm_flags)
1735{
1736        struct mm_struct *mm = vma->vm_mm;
1737        int err;
1738
1739        switch (advice) {
1740        case MADV_MERGEABLE:
1741                /*
1742                 * Be somewhat over-protective for now!
1743                 */
1744                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1745                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1746                                 VM_HUGETLB | VM_MIXEDMAP))
1747                        return 0;               /* just ignore the advice */
1748
1749#ifdef VM_SAO
1750                if (*vm_flags & VM_SAO)
1751                        return 0;
1752#endif
1753
1754                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1755                        err = __ksm_enter(mm);
1756                        if (err)
1757                                return err;
1758                }
1759
1760                *vm_flags |= VM_MERGEABLE;
1761                break;
1762
1763        case MADV_UNMERGEABLE:
1764                if (!(*vm_flags & VM_MERGEABLE))
1765                        return 0;               /* just ignore the advice */
1766
1767                if (vma->anon_vma) {
1768                        err = unmerge_ksm_pages(vma, start, end);
1769                        if (err)
1770                                return err;
1771                }
1772
1773                *vm_flags &= ~VM_MERGEABLE;
1774                break;
1775        }
1776
1777        return 0;
1778}
1779
1780int __ksm_enter(struct mm_struct *mm)
1781{
1782        struct mm_slot *mm_slot;
1783        int needs_wakeup;
1784
1785        mm_slot = alloc_mm_slot();
1786        if (!mm_slot)
1787                return -ENOMEM;
1788
1789        /* Check ksm_run too?  Would need tighter locking */
1790        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1791
1792        spin_lock(&ksm_mmlist_lock);
1793        insert_to_mm_slots_hash(mm, mm_slot);
1794        /*
1795         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1796         * insert just behind the scanning cursor, to let the area settle
1797         * down a little; when fork is followed by immediate exec, we don't
1798         * want ksmd to waste time setting up and tearing down an rmap_list.
1799         *
1800         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1801         * scanning cursor, otherwise KSM pages in newly forked mms will be
1802         * missed: then we might as well insert at the end of the list.
1803         */
1804        if (ksm_run & KSM_RUN_UNMERGE)
1805                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1806        else
1807                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1808        spin_unlock(&ksm_mmlist_lock);
1809
1810        set_bit(MMF_VM_MERGEABLE, &mm->flags);
1811        atomic_inc(&mm->mm_count);
1812
1813        if (needs_wakeup)
1814                wake_up_interruptible(&ksm_thread_wait);
1815
1816        return 0;
1817}
1818
1819void __ksm_exit(struct mm_struct *mm)
1820{
1821        struct mm_slot *mm_slot;
1822        int easy_to_free = 0;
1823
1824        /*
1825         * This process is exiting: if it's straightforward (as is the
1826         * case when ksmd was never running), free mm_slot immediately.
1827         * But if it's at the cursor or has rmap_items linked to it, use
1828         * mmap_sem to synchronize with any break_cows before pagetables
1829         * are freed, and leave the mm_slot on the list for ksmd to free.
1830         * Beware: ksm may already have noticed it exiting and freed the slot.
1831         */
1832
1833        spin_lock(&ksm_mmlist_lock);
1834        mm_slot = get_mm_slot(mm);
1835        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1836                if (!mm_slot->rmap_list) {
1837                        hash_del(&mm_slot->link);
1838                        list_del(&mm_slot->mm_list);
1839                        easy_to_free = 1;
1840                } else {
1841                        list_move(&mm_slot->mm_list,
1842                                  &ksm_scan.mm_slot->mm_list);
1843                }
1844        }
1845        spin_unlock(&ksm_mmlist_lock);
1846
1847        if (easy_to_free) {
1848                free_mm_slot(mm_slot);
1849                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1850                mmdrop(mm);
1851        } else if (mm_slot) {
1852                down_write(&mm->mmap_sem);
1853                up_write(&mm->mmap_sem);
1854        }
1855}
1856
1857struct page *ksm_might_need_to_copy(struct page *page,
1858                        struct vm_area_struct *vma, unsigned long address)
1859{
1860        struct anon_vma *anon_vma = page_anon_vma(page);
1861        struct page *new_page;
1862
1863        if (PageKsm(page)) {
1864                if (page_stable_node(page) &&
1865                    !(ksm_run & KSM_RUN_UNMERGE))
1866                        return page;    /* no need to copy it */
1867        } else if (!anon_vma) {
1868                return page;            /* no need to copy it */
1869        } else if (anon_vma->root == vma->anon_vma->root &&
1870                 page->index == linear_page_index(vma, address)) {
1871                return page;            /* still no need to copy it */
1872        }
1873        if (!PageUptodate(page))
1874                return page;            /* let do_swap_page report the error */
1875
1876        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1877        if (new_page) {
1878                copy_user_highpage(new_page, page, address, vma);
1879
1880                SetPageDirty(new_page);
1881                __SetPageUptodate(new_page);
1882                __SetPageLocked(new_page);
1883        }
1884
1885        return new_page;
1886}
1887
1888int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1889{
1890        struct stable_node *stable_node;
1891        struct rmap_item *rmap_item;
1892        int ret = SWAP_AGAIN;
1893        int search_new_forks = 0;
1894
1895        VM_BUG_ON_PAGE(!PageKsm(page), page);
1896
1897        /*
1898         * Rely on the page lock to protect against concurrent modifications
1899         * to that page's node of the stable tree.
1900         */
1901        VM_BUG_ON_PAGE(!PageLocked(page), page);
1902
1903        stable_node = page_stable_node(page);
1904        if (!stable_node)
1905                return ret;
1906again:
1907        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1908                struct anon_vma *anon_vma = rmap_item->anon_vma;
1909                struct anon_vma_chain *vmac;
1910                struct vm_area_struct *vma;
1911
1912                cond_resched();
1913                anon_vma_lock_read(anon_vma);
1914                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1915                                               0, ULONG_MAX) {
1916                        cond_resched();
1917                        vma = vmac->vma;
1918                        if (rmap_item->address < vma->vm_start ||
1919                            rmap_item->address >= vma->vm_end)
1920                                continue;
1921                        /*
1922                         * Initially we examine only the vma which covers this
1923                         * rmap_item; but later, if there is still work to do,
1924                         * we examine covering vmas in other mms: in case they
1925                         * were forked from the original since ksmd passed.
1926                         */
1927                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1928                                continue;
1929
1930                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1931                                continue;
1932
1933                        ret = rwc->rmap_one(page, vma,
1934                                        rmap_item->address, rwc->arg);
1935                        if (ret != SWAP_AGAIN) {
1936                                anon_vma_unlock_read(anon_vma);
1937                                goto out;
1938                        }
1939                        if (rwc->done && rwc->done(page)) {
1940                                anon_vma_unlock_read(anon_vma);
1941                                goto out;
1942                        }
1943                }
1944                anon_vma_unlock_read(anon_vma);
1945        }
1946        if (!search_new_forks++)
1947                goto again;
1948out:
1949        return ret;
1950}
1951
1952#ifdef CONFIG_MIGRATION
1953void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1954{
1955        struct stable_node *stable_node;
1956
1957        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1958        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1959        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1960
1961        stable_node = page_stable_node(newpage);
1962        if (stable_node) {
1963                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1964                stable_node->kpfn = page_to_pfn(newpage);
1965                /*
1966                 * newpage->mapping was set in advance; now we need smp_wmb()
1967                 * to make sure that the new stable_node->kpfn is visible
1968                 * to get_ksm_page() before it can see that oldpage->mapping
1969                 * has gone stale (or that PageSwapCache has been cleared).
1970                 */
1971                smp_wmb();
1972                set_page_stable_node(oldpage, NULL);
1973        }
1974}
1975#endif /* CONFIG_MIGRATION */
1976
1977#ifdef CONFIG_MEMORY_HOTREMOVE
1978static void wait_while_offlining(void)
1979{
1980        while (ksm_run & KSM_RUN_OFFLINE) {
1981                mutex_unlock(&ksm_thread_mutex);
1982                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1983                            TASK_UNINTERRUPTIBLE);
1984                mutex_lock(&ksm_thread_mutex);
1985        }
1986}
1987
1988static void ksm_check_stable_tree(unsigned long start_pfn,
1989                                  unsigned long end_pfn)
1990{
1991        struct stable_node *stable_node, *next;
1992        struct rb_node *node;
1993        int nid;
1994
1995        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1996                node = rb_first(root_stable_tree + nid);
1997                while (node) {
1998                        stable_node = rb_entry(node, struct stable_node, node);
1999                        if (stable_node->kpfn >= start_pfn &&
2000                            stable_node->kpfn < end_pfn) {
2001                                /*
2002                                 * Don't get_ksm_page, page has already gone:
2003                                 * which is why we keep kpfn instead of page*
2004                                 */
2005                                remove_node_from_stable_tree(stable_node);
2006                                node = rb_first(root_stable_tree + nid);
2007                        } else
2008                                node = rb_next(node);
2009                        cond_resched();
2010                }
2011        }
2012        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2013                if (stable_node->kpfn >= start_pfn &&
2014                    stable_node->kpfn < end_pfn)
2015                        remove_node_from_stable_tree(stable_node);
2016                cond_resched();
2017        }
2018}
2019
2020static int ksm_memory_callback(struct notifier_block *self,
2021                               unsigned long action, void *arg)
2022{
2023        struct memory_notify *mn = arg;
2024
2025        switch (action) {
2026        case MEM_GOING_OFFLINE:
2027                /*
2028                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2029                 * and remove_all_stable_nodes() while memory is going offline:
2030                 * it is unsafe for them to touch the stable tree at this time.
2031                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2032                 * which do not need the ksm_thread_mutex are all safe.
2033                 */
2034                mutex_lock(&ksm_thread_mutex);
2035                ksm_run |= KSM_RUN_OFFLINE;
2036                mutex_unlock(&ksm_thread_mutex);
2037                break;
2038
2039        case MEM_OFFLINE:
2040                /*
2041                 * Most of the work is done by page migration; but there might
2042                 * be a few stable_nodes left over, still pointing to struct
2043                 * pages which have been offlined: prune those from the tree,
2044                 * otherwise get_ksm_page() might later try to access a
2045                 * non-existent struct page.
2046                 */
2047                ksm_check_stable_tree(mn->start_pfn,
2048                                      mn->start_pfn + mn->nr_pages);
2049                /* fallthrough */
2050
2051        case MEM_CANCEL_OFFLINE:
2052                mutex_lock(&ksm_thread_mutex);
2053                ksm_run &= ~KSM_RUN_OFFLINE;
2054                mutex_unlock(&ksm_thread_mutex);
2055
2056                smp_mb();       /* wake_up_bit advises this */
2057                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2058                break;
2059        }
2060        return NOTIFY_OK;
2061}
2062#else
2063static void wait_while_offlining(void)
2064{
2065}
2066#endif /* CONFIG_MEMORY_HOTREMOVE */
2067
2068#ifdef CONFIG_SYSFS
2069/*
2070 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2071 */
2072
2073#define KSM_ATTR_RO(_name) \
2074        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2075#define KSM_ATTR(_name) \
2076        static struct kobj_attribute _name##_attr = \
2077                __ATTR(_name, 0644, _name##_show, _name##_store)
2078
2079static ssize_t sleep_millisecs_show(struct kobject *kobj,
2080                                    struct kobj_attribute *attr, char *buf)
2081{
2082        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2083}
2084
2085static ssize_t sleep_millisecs_store(struct kobject *kobj,
2086                                     struct kobj_attribute *attr,
2087                                     const char *buf, size_t count)
2088{
2089        unsigned long msecs;
2090        int err;
2091
2092        err = kstrtoul(buf, 10, &msecs);
2093        if (err || msecs > UINT_MAX)
2094                return -EINVAL;
2095
2096        ksm_thread_sleep_millisecs = msecs;
2097
2098        return count;
2099}
2100KSM_ATTR(sleep_millisecs);
2101
2102static ssize_t pages_to_scan_show(struct kobject *kobj,
2103                                  struct kobj_attribute *attr, char *buf)
2104{
2105        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2106}
2107
2108static ssize_t pages_to_scan_store(struct kobject *kobj,
2109                                   struct kobj_attribute *attr,
2110                                   const char *buf, size_t count)
2111{
2112        int err;
2113        unsigned long nr_pages;
2114
2115        err = kstrtoul(buf, 10, &nr_pages);
2116        if (err || nr_pages > UINT_MAX)
2117                return -EINVAL;
2118
2119        ksm_thread_pages_to_scan = nr_pages;
2120
2121        return count;
2122}
2123KSM_ATTR(pages_to_scan);
2124
2125static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2126                        char *buf)
2127{
2128        return sprintf(buf, "%lu\n", ksm_run);
2129}
2130
2131static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2132                         const char *buf, size_t count)
2133{
2134        int err;
2135        unsigned long flags;
2136
2137        err = kstrtoul(buf, 10, &flags);
2138        if (err || flags > UINT_MAX)
2139                return -EINVAL;
2140        if (flags > KSM_RUN_UNMERGE)
2141                return -EINVAL;
2142
2143        /*
2144         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2145         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2146         * breaking COW to free the pages_shared (but leaves mm_slots
2147         * on the list for when ksmd may be set running again).
2148         */
2149
2150        mutex_lock(&ksm_thread_mutex);
2151        wait_while_offlining();
2152        if (ksm_run != flags) {
2153                ksm_run = flags;
2154                if (flags & KSM_RUN_UNMERGE) {
2155                        set_current_oom_origin();
2156                        err = unmerge_and_remove_all_rmap_items();
2157                        clear_current_oom_origin();
2158                        if (err) {
2159                                ksm_run = KSM_RUN_STOP;
2160                                count = err;
2161                        }
2162                }
2163        }
2164        mutex_unlock(&ksm_thread_mutex);
2165
2166        if (flags & KSM_RUN_MERGE)
2167                wake_up_interruptible(&ksm_thread_wait);
2168
2169        return count;
2170}
2171KSM_ATTR(run);
2172
2173#ifdef CONFIG_NUMA
2174static ssize_t merge_across_nodes_show(struct kobject *kobj,
2175                                struct kobj_attribute *attr, char *buf)
2176{
2177        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2178}
2179
2180static ssize_t merge_across_nodes_store(struct kobject *kobj,
2181                                   struct kobj_attribute *attr,
2182                                   const char *buf, size_t count)
2183{
2184        int err;
2185        unsigned long knob;
2186
2187        err = kstrtoul(buf, 10, &knob);
2188        if (err)
2189                return err;
2190        if (knob > 1)
2191                return -EINVAL;
2192
2193        mutex_lock(&ksm_thread_mutex);
2194        wait_while_offlining();
2195        if (ksm_merge_across_nodes != knob) {
2196                if (ksm_pages_shared || remove_all_stable_nodes())
2197                        err = -EBUSY;
2198                else if (root_stable_tree == one_stable_tree) {
2199                        struct rb_root *buf;
2200                        /*
2201                         * This is the first time that we switch away from the
2202                         * default of merging across nodes: must now allocate
2203                         * a buffer to hold as many roots as may be needed.
2204                         * Allocate stable and unstable together:
2205                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2206                         */
2207                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2208                                      GFP_KERNEL);
2209                        /* Let us assume that RB_ROOT is NULL is zero */
2210                        if (!buf)
2211                                err = -ENOMEM;
2212                        else {
2213                                root_stable_tree = buf;
2214                                root_unstable_tree = buf + nr_node_ids;
2215                                /* Stable tree is empty but not the unstable */
2216                                root_unstable_tree[0] = one_unstable_tree[0];
2217                        }
2218                }
2219                if (!err) {
2220                        ksm_merge_across_nodes = knob;
2221                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2222                }
2223        }
2224        mutex_unlock(&ksm_thread_mutex);
2225
2226        return err ? err : count;
2227}
2228KSM_ATTR(merge_across_nodes);
2229#endif
2230
2231static ssize_t pages_shared_show(struct kobject *kobj,
2232                                 struct kobj_attribute *attr, char *buf)
2233{
2234        return sprintf(buf, "%lu\n", ksm_pages_shared);
2235}
2236KSM_ATTR_RO(pages_shared);
2237
2238static ssize_t pages_sharing_show(struct kobject *kobj,
2239                                  struct kobj_attribute *attr, char *buf)
2240{
2241        return sprintf(buf, "%lu\n", ksm_pages_sharing);
2242}
2243KSM_ATTR_RO(pages_sharing);
2244
2245static ssize_t pages_unshared_show(struct kobject *kobj,
2246                                   struct kobj_attribute *attr, char *buf)
2247{
2248        return sprintf(buf, "%lu\n", ksm_pages_unshared);
2249}
2250KSM_ATTR_RO(pages_unshared);
2251
2252static ssize_t pages_volatile_show(struct kobject *kobj,
2253                                   struct kobj_attribute *attr, char *buf)
2254{
2255        long ksm_pages_volatile;
2256
2257        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2258                                - ksm_pages_sharing - ksm_pages_unshared;
2259        /*
2260         * It was not worth any locking to calculate that statistic,
2261         * but it might therefore sometimes be negative: conceal that.
2262         */
2263        if (ksm_pages_volatile < 0)
2264                ksm_pages_volatile = 0;
2265        return sprintf(buf, "%ld\n", ksm_pages_volatile);
2266}
2267KSM_ATTR_RO(pages_volatile);
2268
2269static ssize_t full_scans_show(struct kobject *kobj,
2270                               struct kobj_attribute *attr, char *buf)
2271{
2272        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2273}
2274KSM_ATTR_RO(full_scans);
2275
2276static struct attribute *ksm_attrs[] = {
2277        &sleep_millisecs_attr.attr,
2278        &pages_to_scan_attr.attr,
2279        &run_attr.attr,
2280        &pages_shared_attr.attr,
2281        &pages_sharing_attr.attr,
2282        &pages_unshared_attr.attr,
2283        &pages_volatile_attr.attr,
2284        &full_scans_attr.attr,
2285#ifdef CONFIG_NUMA
2286        &merge_across_nodes_attr.attr,
2287#endif
2288        NULL,
2289};
2290
2291static struct attribute_group ksm_attr_group = {
2292        .attrs = ksm_attrs,
2293        .name = "ksm",
2294};
2295#endif /* CONFIG_SYSFS */
2296
2297static int __init ksm_init(void)
2298{
2299        struct task_struct *ksm_thread;
2300        int err;
2301
2302        err = ksm_slab_init();
2303        if (err)
2304                goto out;
2305
2306        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2307        if (IS_ERR(ksm_thread)) {
2308                pr_err("ksm: creating kthread failed\n");
2309                err = PTR_ERR(ksm_thread);
2310                goto out_free;
2311        }
2312
2313#ifdef CONFIG_SYSFS
2314        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2315        if (err) {
2316                pr_err("ksm: register sysfs failed\n");
2317                kthread_stop(ksm_thread);
2318                goto out_free;
2319        }
2320#else
2321        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2322
2323#endif /* CONFIG_SYSFS */
2324
2325#ifdef CONFIG_MEMORY_HOTREMOVE
2326        /* There is no significance to this priority 100 */
2327        hotplug_memory_notifier(ksm_memory_callback, 100);
2328#endif
2329        return 0;
2330
2331out_free:
2332        ksm_slab_free();
2333out:
2334        return err;
2335}
2336subsys_initcall(ksm_init);
2337