linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/hugetlb.h>
  39#include <linux/pagemap.h>
  40#include <linux/smp.h>
  41#include <linux/page-flags.h>
  42#include <linux/backing-dev.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/limits.h>
  46#include <linux/export.h>
  47#include <linux/mutex.h>
  48#include <linux/rbtree.h>
  49#include <linux/slab.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/spinlock.h>
  53#include <linux/eventfd.h>
  54#include <linux/poll.h>
  55#include <linux/sort.h>
  56#include <linux/fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/vmpressure.h>
  59#include <linux/mm_inline.h>
  60#include <linux/swap_cgroup.h>
  61#include <linux/cpu.h>
  62#include <linux/oom.h>
  63#include <linux/lockdep.h>
  64#include <linux/file.h>
  65#include <linux/tracehook.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70
  71#include <asm/uaccess.h>
  72
  73#include <trace/events/vmscan.h>
  74
  75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  76EXPORT_SYMBOL(memory_cgrp_subsys);
  77
  78struct mem_cgroup *root_mem_cgroup __read_mostly;
  79
  80#define MEM_CGROUP_RECLAIM_RETRIES      5
  81
  82/* Socket memory accounting disabled? */
  83static bool cgroup_memory_nosocket;
  84
  85/* Kernel memory accounting disabled? */
  86static bool cgroup_memory_nokmem;
  87
  88/* Whether the swap controller is active */
  89#ifdef CONFIG_MEMCG_SWAP
  90int do_swap_account __read_mostly;
  91#else
  92#define do_swap_account         0
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98        return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  99}
 100
 101static const char * const mem_cgroup_stat_names[] = {
 102        "cache",
 103        "rss",
 104        "rss_huge",
 105        "mapped_file",
 106        "dirty",
 107        "writeback",
 108        "swap",
 109};
 110
 111static const char * const mem_cgroup_events_names[] = {
 112        "pgpgin",
 113        "pgpgout",
 114        "pgfault",
 115        "pgmajfault",
 116};
 117
 118static const char * const mem_cgroup_lru_names[] = {
 119        "inactive_anon",
 120        "active_anon",
 121        "inactive_file",
 122        "active_file",
 123        "unevictable",
 124};
 125
 126#define THRESHOLDS_EVENTS_TARGET 128
 127#define SOFTLIMIT_EVENTS_TARGET 1024
 128#define NUMAINFO_EVENTS_TARGET  1024
 129
 130/*
 131 * Cgroups above their limits are maintained in a RB-Tree, independent of
 132 * their hierarchy representation
 133 */
 134
 135struct mem_cgroup_tree_per_zone {
 136        struct rb_root rb_root;
 137        spinlock_t lock;
 138};
 139
 140struct mem_cgroup_tree_per_node {
 141        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 142};
 143
 144struct mem_cgroup_tree {
 145        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 146};
 147
 148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 149
 150/* for OOM */
 151struct mem_cgroup_eventfd_list {
 152        struct list_head list;
 153        struct eventfd_ctx *eventfd;
 154};
 155
 156/*
 157 * cgroup_event represents events which userspace want to receive.
 158 */
 159struct mem_cgroup_event {
 160        /*
 161         * memcg which the event belongs to.
 162         */
 163        struct mem_cgroup *memcg;
 164        /*
 165         * eventfd to signal userspace about the event.
 166         */
 167        struct eventfd_ctx *eventfd;
 168        /*
 169         * Each of these stored in a list by the cgroup.
 170         */
 171        struct list_head list;
 172        /*
 173         * register_event() callback will be used to add new userspace
 174         * waiter for changes related to this event.  Use eventfd_signal()
 175         * on eventfd to send notification to userspace.
 176         */
 177        int (*register_event)(struct mem_cgroup *memcg,
 178                              struct eventfd_ctx *eventfd, const char *args);
 179        /*
 180         * unregister_event() callback will be called when userspace closes
 181         * the eventfd or on cgroup removing.  This callback must be set,
 182         * if you want provide notification functionality.
 183         */
 184        void (*unregister_event)(struct mem_cgroup *memcg,
 185                                 struct eventfd_ctx *eventfd);
 186        /*
 187         * All fields below needed to unregister event when
 188         * userspace closes eventfd.
 189         */
 190        poll_table pt;
 191        wait_queue_head_t *wqh;
 192        wait_queue_t wait;
 193        struct work_struct remove;
 194};
 195
 196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 198
 199/* Stuffs for move charges at task migration. */
 200/*
 201 * Types of charges to be moved.
 202 */
 203#define MOVE_ANON       0x1U
 204#define MOVE_FILE       0x2U
 205#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 206
 207/* "mc" and its members are protected by cgroup_mutex */
 208static struct move_charge_struct {
 209        spinlock_t        lock; /* for from, to */
 210        struct mm_struct  *mm;
 211        struct mem_cgroup *from;
 212        struct mem_cgroup *to;
 213        unsigned long flags;
 214        unsigned long precharge;
 215        unsigned long moved_charge;
 216        unsigned long moved_swap;
 217        struct task_struct *moving_task;        /* a task moving charges */
 218        wait_queue_head_t waitq;                /* a waitq for other context */
 219} mc = {
 220        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 221        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 222};
 223
 224/*
 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 226 * limit reclaim to prevent infinite loops, if they ever occur.
 227 */
 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 230
 231enum charge_type {
 232        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 233        MEM_CGROUP_CHARGE_TYPE_ANON,
 234        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 235        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 236        NR_CHARGE_TYPE,
 237};
 238
 239/* for encoding cft->private value on file */
 240enum res_type {
 241        _MEM,
 242        _MEMSWAP,
 243        _OOM_TYPE,
 244        _KMEM,
 245        _TCP,
 246};
 247
 248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 249#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 250#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 251/* Used for OOM nofiier */
 252#define OOM_CONTROL             (0)
 253
 254/* Some nice accessors for the vmpressure. */
 255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 256{
 257        if (!memcg)
 258                memcg = root_mem_cgroup;
 259        return &memcg->vmpressure;
 260}
 261
 262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 263{
 264        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 265}
 266
 267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 268{
 269        return (memcg == root_mem_cgroup);
 270}
 271
 272#ifndef CONFIG_SLOB
 273/*
 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 275 * The main reason for not using cgroup id for this:
 276 *  this works better in sparse environments, where we have a lot of memcgs,
 277 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 278 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 279 *  200 entry array for that.
 280 *
 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 282 * will double each time we have to increase it.
 283 */
 284static DEFINE_IDA(memcg_cache_ida);
 285int memcg_nr_cache_ids;
 286
 287/* Protects memcg_nr_cache_ids */
 288static DECLARE_RWSEM(memcg_cache_ids_sem);
 289
 290void memcg_get_cache_ids(void)
 291{
 292        down_read(&memcg_cache_ids_sem);
 293}
 294
 295void memcg_put_cache_ids(void)
 296{
 297        up_read(&memcg_cache_ids_sem);
 298}
 299
 300/*
 301 * MIN_SIZE is different than 1, because we would like to avoid going through
 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 303 * cgroups is a reasonable guess. In the future, it could be a parameter or
 304 * tunable, but that is strictly not necessary.
 305 *
 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 307 * this constant directly from cgroup, but it is understandable that this is
 308 * better kept as an internal representation in cgroup.c. In any case, the
 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 310 * increase ours as well if it increases.
 311 */
 312#define MEMCG_CACHES_MIN_SIZE 4
 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 314
 315/*
 316 * A lot of the calls to the cache allocation functions are expected to be
 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 318 * conditional to this static branch, we'll have to allow modules that does
 319 * kmem_cache_alloc and the such to see this symbol as well
 320 */
 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
 323
 324#endif /* !CONFIG_SLOB */
 325
 326static struct mem_cgroup_per_zone *
 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 328{
 329        int nid = zone_to_nid(zone);
 330        int zid = zone_idx(zone);
 331
 332        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 333}
 334
 335/**
 336 * mem_cgroup_css_from_page - css of the memcg associated with a page
 337 * @page: page of interest
 338 *
 339 * If memcg is bound to the default hierarchy, css of the memcg associated
 340 * with @page is returned.  The returned css remains associated with @page
 341 * until it is released.
 342 *
 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 344 * is returned.
 345 */
 346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 347{
 348        struct mem_cgroup *memcg;
 349
 350        memcg = page->mem_cgroup;
 351
 352        if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 353                memcg = root_mem_cgroup;
 354
 355        return &memcg->css;
 356}
 357
 358/**
 359 * page_cgroup_ino - return inode number of the memcg a page is charged to
 360 * @page: the page
 361 *
 362 * Look up the closest online ancestor of the memory cgroup @page is charged to
 363 * and return its inode number or 0 if @page is not charged to any cgroup. It
 364 * is safe to call this function without holding a reference to @page.
 365 *
 366 * Note, this function is inherently racy, because there is nothing to prevent
 367 * the cgroup inode from getting torn down and potentially reallocated a moment
 368 * after page_cgroup_ino() returns, so it only should be used by callers that
 369 * do not care (such as procfs interfaces).
 370 */
 371ino_t page_cgroup_ino(struct page *page)
 372{
 373        struct mem_cgroup *memcg;
 374        unsigned long ino = 0;
 375
 376        rcu_read_lock();
 377        memcg = READ_ONCE(page->mem_cgroup);
 378        while (memcg && !(memcg->css.flags & CSS_ONLINE))
 379                memcg = parent_mem_cgroup(memcg);
 380        if (memcg)
 381                ino = cgroup_ino(memcg->css.cgroup);
 382        rcu_read_unlock();
 383        return ino;
 384}
 385
 386static struct mem_cgroup_per_zone *
 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 388{
 389        int nid = page_to_nid(page);
 390        int zid = page_zonenum(page);
 391
 392        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 393}
 394
 395static struct mem_cgroup_tree_per_zone *
 396soft_limit_tree_node_zone(int nid, int zid)
 397{
 398        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 399}
 400
 401static struct mem_cgroup_tree_per_zone *
 402soft_limit_tree_from_page(struct page *page)
 403{
 404        int nid = page_to_nid(page);
 405        int zid = page_zonenum(page);
 406
 407        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 408}
 409
 410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 411                                         struct mem_cgroup_tree_per_zone *mctz,
 412                                         unsigned long new_usage_in_excess)
 413{
 414        struct rb_node **p = &mctz->rb_root.rb_node;
 415        struct rb_node *parent = NULL;
 416        struct mem_cgroup_per_zone *mz_node;
 417
 418        if (mz->on_tree)
 419                return;
 420
 421        mz->usage_in_excess = new_usage_in_excess;
 422        if (!mz->usage_in_excess)
 423                return;
 424        while (*p) {
 425                parent = *p;
 426                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 427                                        tree_node);
 428                if (mz->usage_in_excess < mz_node->usage_in_excess)
 429                        p = &(*p)->rb_left;
 430                /*
 431                 * We can't avoid mem cgroups that are over their soft
 432                 * limit by the same amount
 433                 */
 434                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 435                        p = &(*p)->rb_right;
 436        }
 437        rb_link_node(&mz->tree_node, parent, p);
 438        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 439        mz->on_tree = true;
 440}
 441
 442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 443                                         struct mem_cgroup_tree_per_zone *mctz)
 444{
 445        if (!mz->on_tree)
 446                return;
 447        rb_erase(&mz->tree_node, &mctz->rb_root);
 448        mz->on_tree = false;
 449}
 450
 451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 452                                       struct mem_cgroup_tree_per_zone *mctz)
 453{
 454        unsigned long flags;
 455
 456        spin_lock_irqsave(&mctz->lock, flags);
 457        __mem_cgroup_remove_exceeded(mz, mctz);
 458        spin_unlock_irqrestore(&mctz->lock, flags);
 459}
 460
 461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 462{
 463        unsigned long nr_pages = page_counter_read(&memcg->memory);
 464        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 465        unsigned long excess = 0;
 466
 467        if (nr_pages > soft_limit)
 468                excess = nr_pages - soft_limit;
 469
 470        return excess;
 471}
 472
 473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 474{
 475        unsigned long excess;
 476        struct mem_cgroup_per_zone *mz;
 477        struct mem_cgroup_tree_per_zone *mctz;
 478
 479        mctz = soft_limit_tree_from_page(page);
 480        /*
 481         * Necessary to update all ancestors when hierarchy is used.
 482         * because their event counter is not touched.
 483         */
 484        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 485                mz = mem_cgroup_page_zoneinfo(memcg, page);
 486                excess = soft_limit_excess(memcg);
 487                /*
 488                 * We have to update the tree if mz is on RB-tree or
 489                 * mem is over its softlimit.
 490                 */
 491                if (excess || mz->on_tree) {
 492                        unsigned long flags;
 493
 494                        spin_lock_irqsave(&mctz->lock, flags);
 495                        /* if on-tree, remove it */
 496                        if (mz->on_tree)
 497                                __mem_cgroup_remove_exceeded(mz, mctz);
 498                        /*
 499                         * Insert again. mz->usage_in_excess will be updated.
 500                         * If excess is 0, no tree ops.
 501                         */
 502                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 503                        spin_unlock_irqrestore(&mctz->lock, flags);
 504                }
 505        }
 506}
 507
 508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 509{
 510        struct mem_cgroup_tree_per_zone *mctz;
 511        struct mem_cgroup_per_zone *mz;
 512        int nid, zid;
 513
 514        for_each_node(nid) {
 515                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 516                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 517                        mctz = soft_limit_tree_node_zone(nid, zid);
 518                        mem_cgroup_remove_exceeded(mz, mctz);
 519                }
 520        }
 521}
 522
 523static struct mem_cgroup_per_zone *
 524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 525{
 526        struct rb_node *rightmost = NULL;
 527        struct mem_cgroup_per_zone *mz;
 528
 529retry:
 530        mz = NULL;
 531        rightmost = rb_last(&mctz->rb_root);
 532        if (!rightmost)
 533                goto done;              /* Nothing to reclaim from */
 534
 535        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 536        /*
 537         * Remove the node now but someone else can add it back,
 538         * we will to add it back at the end of reclaim to its correct
 539         * position in the tree.
 540         */
 541        __mem_cgroup_remove_exceeded(mz, mctz);
 542        if (!soft_limit_excess(mz->memcg) ||
 543            !css_tryget_online(&mz->memcg->css))
 544                goto retry;
 545done:
 546        return mz;
 547}
 548
 549static struct mem_cgroup_per_zone *
 550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 551{
 552        struct mem_cgroup_per_zone *mz;
 553
 554        spin_lock_irq(&mctz->lock);
 555        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 556        spin_unlock_irq(&mctz->lock);
 557        return mz;
 558}
 559
 560/*
 561 * Return page count for single (non recursive) @memcg.
 562 *
 563 * Implementation Note: reading percpu statistics for memcg.
 564 *
 565 * Both of vmstat[] and percpu_counter has threshold and do periodic
 566 * synchronization to implement "quick" read. There are trade-off between
 567 * reading cost and precision of value. Then, we may have a chance to implement
 568 * a periodic synchronization of counter in memcg's counter.
 569 *
 570 * But this _read() function is used for user interface now. The user accounts
 571 * memory usage by memory cgroup and he _always_ requires exact value because
 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 573 * have to visit all online cpus and make sum. So, for now, unnecessary
 574 * synchronization is not implemented. (just implemented for cpu hotplug)
 575 *
 576 * If there are kernel internal actions which can make use of some not-exact
 577 * value, and reading all cpu value can be performance bottleneck in some
 578 * common workload, threshold and synchronization as vmstat[] should be
 579 * implemented.
 580 */
 581static unsigned long
 582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
 583{
 584        long val = 0;
 585        int cpu;
 586
 587        /* Per-cpu values can be negative, use a signed accumulator */
 588        for_each_possible_cpu(cpu)
 589                val += per_cpu(memcg->stat->count[idx], cpu);
 590        /*
 591         * Summing races with updates, so val may be negative.  Avoid exposing
 592         * transient negative values.
 593         */
 594        if (val < 0)
 595                val = 0;
 596        return val;
 597}
 598
 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 600                                            enum mem_cgroup_events_index idx)
 601{
 602        unsigned long val = 0;
 603        int cpu;
 604
 605        for_each_possible_cpu(cpu)
 606                val += per_cpu(memcg->stat->events[idx], cpu);
 607        return val;
 608}
 609
 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 611                                         struct page *page,
 612                                         bool compound, int nr_pages)
 613{
 614        /*
 615         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 616         * counted as CACHE even if it's on ANON LRU.
 617         */
 618        if (PageAnon(page))
 619                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 620                                nr_pages);
 621        else
 622                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 623                                nr_pages);
 624
 625        if (compound) {
 626                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 627                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 628                                nr_pages);
 629        }
 630
 631        /* pagein of a big page is an event. So, ignore page size */
 632        if (nr_pages > 0)
 633                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 634        else {
 635                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 636                nr_pages = -nr_pages; /* for event */
 637        }
 638
 639        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 640}
 641
 642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 643                                           int nid, unsigned int lru_mask)
 644{
 645        unsigned long nr = 0;
 646        int zid;
 647
 648        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 649
 650        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 651                struct mem_cgroup_per_zone *mz;
 652                enum lru_list lru;
 653
 654                for_each_lru(lru) {
 655                        if (!(BIT(lru) & lru_mask))
 656                                continue;
 657                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 658                        nr += mz->lru_size[lru];
 659                }
 660        }
 661        return nr;
 662}
 663
 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 665                        unsigned int lru_mask)
 666{
 667        unsigned long nr = 0;
 668        int nid;
 669
 670        for_each_node_state(nid, N_MEMORY)
 671                nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 672        return nr;
 673}
 674
 675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 676                                       enum mem_cgroup_events_target target)
 677{
 678        unsigned long val, next;
 679
 680        val = __this_cpu_read(memcg->stat->nr_page_events);
 681        next = __this_cpu_read(memcg->stat->targets[target]);
 682        /* from time_after() in jiffies.h */
 683        if ((long)next - (long)val < 0) {
 684                switch (target) {
 685                case MEM_CGROUP_TARGET_THRESH:
 686                        next = val + THRESHOLDS_EVENTS_TARGET;
 687                        break;
 688                case MEM_CGROUP_TARGET_SOFTLIMIT:
 689                        next = val + SOFTLIMIT_EVENTS_TARGET;
 690                        break;
 691                case MEM_CGROUP_TARGET_NUMAINFO:
 692                        next = val + NUMAINFO_EVENTS_TARGET;
 693                        break;
 694                default:
 695                        break;
 696                }
 697                __this_cpu_write(memcg->stat->targets[target], next);
 698                return true;
 699        }
 700        return false;
 701}
 702
 703/*
 704 * Check events in order.
 705 *
 706 */
 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 708{
 709        /* threshold event is triggered in finer grain than soft limit */
 710        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 711                                                MEM_CGROUP_TARGET_THRESH))) {
 712                bool do_softlimit;
 713                bool do_numainfo __maybe_unused;
 714
 715                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 716                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 717#if MAX_NUMNODES > 1
 718                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 719                                                MEM_CGROUP_TARGET_NUMAINFO);
 720#endif
 721                mem_cgroup_threshold(memcg);
 722                if (unlikely(do_softlimit))
 723                        mem_cgroup_update_tree(memcg, page);
 724#if MAX_NUMNODES > 1
 725                if (unlikely(do_numainfo))
 726                        atomic_inc(&memcg->numainfo_events);
 727#endif
 728        }
 729}
 730
 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 732{
 733        /*
 734         * mm_update_next_owner() may clear mm->owner to NULL
 735         * if it races with swapoff, page migration, etc.
 736         * So this can be called with p == NULL.
 737         */
 738        if (unlikely(!p))
 739                return NULL;
 740
 741        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 742}
 743EXPORT_SYMBOL(mem_cgroup_from_task);
 744
 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 746{
 747        struct mem_cgroup *memcg = NULL;
 748
 749        rcu_read_lock();
 750        do {
 751                /*
 752                 * Page cache insertions can happen withou an
 753                 * actual mm context, e.g. during disk probing
 754                 * on boot, loopback IO, acct() writes etc.
 755                 */
 756                if (unlikely(!mm))
 757                        memcg = root_mem_cgroup;
 758                else {
 759                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 760                        if (unlikely(!memcg))
 761                                memcg = root_mem_cgroup;
 762                }
 763        } while (!css_tryget_online(&memcg->css));
 764        rcu_read_unlock();
 765        return memcg;
 766}
 767
 768/**
 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 770 * @root: hierarchy root
 771 * @prev: previously returned memcg, NULL on first invocation
 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 773 *
 774 * Returns references to children of the hierarchy below @root, or
 775 * @root itself, or %NULL after a full round-trip.
 776 *
 777 * Caller must pass the return value in @prev on subsequent
 778 * invocations for reference counting, or use mem_cgroup_iter_break()
 779 * to cancel a hierarchy walk before the round-trip is complete.
 780 *
 781 * Reclaimers can specify a zone and a priority level in @reclaim to
 782 * divide up the memcgs in the hierarchy among all concurrent
 783 * reclaimers operating on the same zone and priority.
 784 */
 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 786                                   struct mem_cgroup *prev,
 787                                   struct mem_cgroup_reclaim_cookie *reclaim)
 788{
 789        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 790        struct cgroup_subsys_state *css = NULL;
 791        struct mem_cgroup *memcg = NULL;
 792        struct mem_cgroup *pos = NULL;
 793
 794        if (mem_cgroup_disabled())
 795                return NULL;
 796
 797        if (!root)
 798                root = root_mem_cgroup;
 799
 800        if (prev && !reclaim)
 801                pos = prev;
 802
 803        if (!root->use_hierarchy && root != root_mem_cgroup) {
 804                if (prev)
 805                        goto out;
 806                return root;
 807        }
 808
 809        rcu_read_lock();
 810
 811        if (reclaim) {
 812                struct mem_cgroup_per_zone *mz;
 813
 814                mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
 815                iter = &mz->iter[reclaim->priority];
 816
 817                if (prev && reclaim->generation != iter->generation)
 818                        goto out_unlock;
 819
 820                while (1) {
 821                        pos = READ_ONCE(iter->position);
 822                        if (!pos || css_tryget(&pos->css))
 823                                break;
 824                        /*
 825                         * css reference reached zero, so iter->position will
 826                         * be cleared by ->css_released. However, we should not
 827                         * rely on this happening soon, because ->css_released
 828                         * is called from a work queue, and by busy-waiting we
 829                         * might block it. So we clear iter->position right
 830                         * away.
 831                         */
 832                        (void)cmpxchg(&iter->position, pos, NULL);
 833                }
 834        }
 835
 836        if (pos)
 837                css = &pos->css;
 838
 839        for (;;) {
 840                css = css_next_descendant_pre(css, &root->css);
 841                if (!css) {
 842                        /*
 843                         * Reclaimers share the hierarchy walk, and a
 844                         * new one might jump in right at the end of
 845                         * the hierarchy - make sure they see at least
 846                         * one group and restart from the beginning.
 847                         */
 848                        if (!prev)
 849                                continue;
 850                        break;
 851                }
 852
 853                /*
 854                 * Verify the css and acquire a reference.  The root
 855                 * is provided by the caller, so we know it's alive
 856                 * and kicking, and don't take an extra reference.
 857                 */
 858                memcg = mem_cgroup_from_css(css);
 859
 860                if (css == &root->css)
 861                        break;
 862
 863                if (css_tryget(css))
 864                        break;
 865
 866                memcg = NULL;
 867        }
 868
 869        if (reclaim) {
 870                /*
 871                 * The position could have already been updated by a competing
 872                 * thread, so check that the value hasn't changed since we read
 873                 * it to avoid reclaiming from the same cgroup twice.
 874                 */
 875                (void)cmpxchg(&iter->position, pos, memcg);
 876
 877                if (pos)
 878                        css_put(&pos->css);
 879
 880                if (!memcg)
 881                        iter->generation++;
 882                else if (!prev)
 883                        reclaim->generation = iter->generation;
 884        }
 885
 886out_unlock:
 887        rcu_read_unlock();
 888out:
 889        if (prev && prev != root)
 890                css_put(&prev->css);
 891
 892        return memcg;
 893}
 894
 895/**
 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 897 * @root: hierarchy root
 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 899 */
 900void mem_cgroup_iter_break(struct mem_cgroup *root,
 901                           struct mem_cgroup *prev)
 902{
 903        if (!root)
 904                root = root_mem_cgroup;
 905        if (prev && prev != root)
 906                css_put(&prev->css);
 907}
 908
 909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 910{
 911        struct mem_cgroup *memcg = dead_memcg;
 912        struct mem_cgroup_reclaim_iter *iter;
 913        struct mem_cgroup_per_zone *mz;
 914        int nid, zid;
 915        int i;
 916
 917        while ((memcg = parent_mem_cgroup(memcg))) {
 918                for_each_node(nid) {
 919                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 920                                mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 921                                for (i = 0; i <= DEF_PRIORITY; i++) {
 922                                        iter = &mz->iter[i];
 923                                        cmpxchg(&iter->position,
 924                                                dead_memcg, NULL);
 925                                }
 926                        }
 927                }
 928        }
 929}
 930
 931/*
 932 * Iteration constructs for visiting all cgroups (under a tree).  If
 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 934 * be used for reference counting.
 935 */
 936#define for_each_mem_cgroup_tree(iter, root)            \
 937        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 938             iter != NULL;                              \
 939             iter = mem_cgroup_iter(root, iter, NULL))
 940
 941#define for_each_mem_cgroup(iter)                       \
 942        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 943             iter != NULL;                              \
 944             iter = mem_cgroup_iter(NULL, iter, NULL))
 945
 946/**
 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 948 * @zone: zone of the wanted lruvec
 949 * @memcg: memcg of the wanted lruvec
 950 *
 951 * Returns the lru list vector holding pages for the given @zone and
 952 * @mem.  This can be the global zone lruvec, if the memory controller
 953 * is disabled.
 954 */
 955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 956                                      struct mem_cgroup *memcg)
 957{
 958        struct mem_cgroup_per_zone *mz;
 959        struct lruvec *lruvec;
 960
 961        if (mem_cgroup_disabled()) {
 962                lruvec = &zone->lruvec;
 963                goto out;
 964        }
 965
 966        mz = mem_cgroup_zone_zoneinfo(memcg, zone);
 967        lruvec = &mz->lruvec;
 968out:
 969        /*
 970         * Since a node can be onlined after the mem_cgroup was created,
 971         * we have to be prepared to initialize lruvec->zone here;
 972         * and if offlined then reonlined, we need to reinitialize it.
 973         */
 974        if (unlikely(lruvec->zone != zone))
 975                lruvec->zone = zone;
 976        return lruvec;
 977}
 978
 979/**
 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 981 * @page: the page
 982 * @zone: zone of the page
 983 *
 984 * This function is only safe when following the LRU page isolation
 985 * and putback protocol: the LRU lock must be held, and the page must
 986 * either be PageLRU() or the caller must have isolated/allocated it.
 987 */
 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 989{
 990        struct mem_cgroup_per_zone *mz;
 991        struct mem_cgroup *memcg;
 992        struct lruvec *lruvec;
 993
 994        if (mem_cgroup_disabled()) {
 995                lruvec = &zone->lruvec;
 996                goto out;
 997        }
 998
 999        memcg = page->mem_cgroup;
1000        /*
1001         * Swapcache readahead pages are added to the LRU - and
1002         * possibly migrated - before they are charged.
1003         */
1004        if (!memcg)
1005                memcg = root_mem_cgroup;
1006
1007        mz = mem_cgroup_page_zoneinfo(memcg, page);
1008        lruvec = &mz->lruvec;
1009out:
1010        /*
1011         * Since a node can be onlined after the mem_cgroup was created,
1012         * we have to be prepared to initialize lruvec->zone here;
1013         * and if offlined then reonlined, we need to reinitialize it.
1014         */
1015        if (unlikely(lruvec->zone != zone))
1016                lruvec->zone = zone;
1017        return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030                                int nr_pages)
1031{
1032        struct mem_cgroup_per_zone *mz;
1033        unsigned long *lru_size;
1034
1035        if (mem_cgroup_disabled())
1036                return;
1037
1038        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039        lru_size = mz->lru_size + lru;
1040        *lru_size += nr_pages;
1041        VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046        struct mem_cgroup *task_memcg;
1047        struct task_struct *p;
1048        bool ret;
1049
1050        p = find_lock_task_mm(task);
1051        if (p) {
1052                task_memcg = get_mem_cgroup_from_mm(p->mm);
1053                task_unlock(p);
1054        } else {
1055                /*
1056                 * All threads may have already detached their mm's, but the oom
1057                 * killer still needs to detect if they have already been oom
1058                 * killed to prevent needlessly killing additional tasks.
1059                 */
1060                rcu_read_lock();
1061                task_memcg = mem_cgroup_from_task(task);
1062                css_get(&task_memcg->css);
1063                rcu_read_unlock();
1064        }
1065        ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066        css_put(&task_memcg->css);
1067        return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079        unsigned long margin = 0;
1080        unsigned long count;
1081        unsigned long limit;
1082
1083        count = page_counter_read(&memcg->memory);
1084        limit = READ_ONCE(memcg->memory.limit);
1085        if (count < limit)
1086                margin = limit - count;
1087
1088        if (do_memsw_account()) {
1089                count = page_counter_read(&memcg->memsw);
1090                limit = READ_ONCE(memcg->memsw.limit);
1091                if (count <= limit)
1092                        margin = min(margin, limit - count);
1093        }
1094
1095        return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107        struct mem_cgroup *from;
1108        struct mem_cgroup *to;
1109        bool ret = false;
1110        /*
1111         * Unlike task_move routines, we access mc.to, mc.from not under
1112         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113         */
1114        spin_lock(&mc.lock);
1115        from = mc.from;
1116        to = mc.to;
1117        if (!from)
1118                goto unlock;
1119
1120        ret = mem_cgroup_is_descendant(from, memcg) ||
1121                mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123        spin_unlock(&mc.lock);
1124        return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129        if (mc.moving_task && current != mc.moving_task) {
1130                if (mem_cgroup_under_move(memcg)) {
1131                        DEFINE_WAIT(wait);
1132                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133                        /* moving charge context might have finished. */
1134                        if (mc.moving_task)
1135                                schedule();
1136                        finish_wait(&mc.waitq, &wait);
1137                        return true;
1138                }
1139        }
1140        return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154        struct mem_cgroup *iter;
1155        unsigned int i;
1156
1157        rcu_read_lock();
1158
1159        if (p) {
1160                pr_info("Task in ");
1161                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162                pr_cont(" killed as a result of limit of ");
1163        } else {
1164                pr_info("Memory limit reached of cgroup ");
1165        }
1166
1167        pr_cont_cgroup_path(memcg->css.cgroup);
1168        pr_cont("\n");
1169
1170        rcu_read_unlock();
1171
1172        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173                K((u64)page_counter_read(&memcg->memory)),
1174                K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176                K((u64)page_counter_read(&memcg->memsw)),
1177                K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178        pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179                K((u64)page_counter_read(&memcg->kmem)),
1180                K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182        for_each_mem_cgroup_tree(iter, memcg) {
1183                pr_info("Memory cgroup stats for ");
1184                pr_cont_cgroup_path(iter->css.cgroup);
1185                pr_cont(":");
1186
1187                for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188                        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189                                continue;
1190                        pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191                                K(mem_cgroup_read_stat(iter, i)));
1192                }
1193
1194                for (i = 0; i < NR_LRU_LISTS; i++)
1195                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198                pr_cont("\n");
1199        }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208        int num = 0;
1209        struct mem_cgroup *iter;
1210
1211        for_each_mem_cgroup_tree(iter, memcg)
1212                num++;
1213        return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221        unsigned long limit;
1222
1223        limit = memcg->memory.limit;
1224        if (mem_cgroup_swappiness(memcg)) {
1225                unsigned long memsw_limit;
1226                unsigned long swap_limit;
1227
1228                memsw_limit = memcg->memsw.limit;
1229                swap_limit = memcg->swap.limit;
1230                swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231                limit = min(limit + swap_limit, memsw_limit);
1232        }
1233        return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237                                     int order)
1238{
1239        struct oom_control oc = {
1240                .zonelist = NULL,
1241                .nodemask = NULL,
1242                .gfp_mask = gfp_mask,
1243                .order = order,
1244        };
1245        struct mem_cgroup *iter;
1246        unsigned long chosen_points = 0;
1247        unsigned long totalpages;
1248        unsigned int points = 0;
1249        struct task_struct *chosen = NULL;
1250
1251        mutex_lock(&oom_lock);
1252
1253        /*
1254         * If current has a pending SIGKILL or is exiting, then automatically
1255         * select it.  The goal is to allow it to allocate so that it may
1256         * quickly exit and free its memory.
1257         */
1258        if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259                mark_oom_victim(current);
1260                goto unlock;
1261        }
1262
1263        check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264        totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265        for_each_mem_cgroup_tree(iter, memcg) {
1266                struct css_task_iter it;
1267                struct task_struct *task;
1268
1269                css_task_iter_start(&iter->css, &it);
1270                while ((task = css_task_iter_next(&it))) {
1271                        switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272                        case OOM_SCAN_SELECT:
1273                                if (chosen)
1274                                        put_task_struct(chosen);
1275                                chosen = task;
1276                                chosen_points = ULONG_MAX;
1277                                get_task_struct(chosen);
1278                                /* fall through */
1279                        case OOM_SCAN_CONTINUE:
1280                                continue;
1281                        case OOM_SCAN_ABORT:
1282                                css_task_iter_end(&it);
1283                                mem_cgroup_iter_break(memcg, iter);
1284                                if (chosen)
1285                                        put_task_struct(chosen);
1286                                goto unlock;
1287                        case OOM_SCAN_OK:
1288                                break;
1289                        };
1290                        points = oom_badness(task, memcg, NULL, totalpages);
1291                        if (!points || points < chosen_points)
1292                                continue;
1293                        /* Prefer thread group leaders for display purposes */
1294                        if (points == chosen_points &&
1295                            thread_group_leader(chosen))
1296                                continue;
1297
1298                        if (chosen)
1299                                put_task_struct(chosen);
1300                        chosen = task;
1301                        chosen_points = points;
1302                        get_task_struct(chosen);
1303                }
1304                css_task_iter_end(&it);
1305        }
1306
1307        if (chosen) {
1308                points = chosen_points * 1000 / totalpages;
1309                oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310                                 "Memory cgroup out of memory");
1311        }
1312unlock:
1313        mutex_unlock(&oom_lock);
1314        return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330                int nid, bool noswap)
1331{
1332        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333                return true;
1334        if (noswap || !total_swap_pages)
1335                return false;
1336        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337                return true;
1338        return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350        int nid;
1351        /*
1352         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353         * pagein/pageout changes since the last update.
1354         */
1355        if (!atomic_read(&memcg->numainfo_events))
1356                return;
1357        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358                return;
1359
1360        /* make a nodemask where this memcg uses memory from */
1361        memcg->scan_nodes = node_states[N_MEMORY];
1362
1363        for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366                        node_clear(nid, memcg->scan_nodes);
1367        }
1368
1369        atomic_set(&memcg->numainfo_events, 0);
1370        atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387        int node;
1388
1389        mem_cgroup_may_update_nodemask(memcg);
1390        node = memcg->last_scanned_node;
1391
1392        node = next_node(node, memcg->scan_nodes);
1393        if (node == MAX_NUMNODES)
1394                node = first_node(memcg->scan_nodes);
1395        /*
1396         * We call this when we hit limit, not when pages are added to LRU.
1397         * No LRU may hold pages because all pages are UNEVICTABLE or
1398         * memcg is too small and all pages are not on LRU. In that case,
1399         * we use curret node.
1400         */
1401        if (unlikely(node == MAX_NUMNODES))
1402                node = numa_node_id();
1403
1404        memcg->last_scanned_node = node;
1405        return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410        return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415                                   struct zone *zone,
1416                                   gfp_t gfp_mask,
1417                                   unsigned long *total_scanned)
1418{
1419        struct mem_cgroup *victim = NULL;
1420        int total = 0;
1421        int loop = 0;
1422        unsigned long excess;
1423        unsigned long nr_scanned;
1424        struct mem_cgroup_reclaim_cookie reclaim = {
1425                .zone = zone,
1426                .priority = 0,
1427        };
1428
1429        excess = soft_limit_excess(root_memcg);
1430
1431        while (1) {
1432                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433                if (!victim) {
1434                        loop++;
1435                        if (loop >= 2) {
1436                                /*
1437                                 * If we have not been able to reclaim
1438                                 * anything, it might because there are
1439                                 * no reclaimable pages under this hierarchy
1440                                 */
1441                                if (!total)
1442                                        break;
1443                                /*
1444                                 * We want to do more targeted reclaim.
1445                                 * excess >> 2 is not to excessive so as to
1446                                 * reclaim too much, nor too less that we keep
1447                                 * coming back to reclaim from this cgroup
1448                                 */
1449                                if (total >= (excess >> 2) ||
1450                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451                                        break;
1452                        }
1453                        continue;
1454                }
1455                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456                                                     zone, &nr_scanned);
1457                *total_scanned += nr_scanned;
1458                if (!soft_limit_excess(root_memcg))
1459                        break;
1460        }
1461        mem_cgroup_iter_break(root_memcg, victim);
1462        return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467        .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479        struct mem_cgroup *iter, *failed = NULL;
1480
1481        spin_lock(&memcg_oom_lock);
1482
1483        for_each_mem_cgroup_tree(iter, memcg) {
1484                if (iter->oom_lock) {
1485                        /*
1486                         * this subtree of our hierarchy is already locked
1487                         * so we cannot give a lock.
1488                         */
1489                        failed = iter;
1490                        mem_cgroup_iter_break(memcg, iter);
1491                        break;
1492                } else
1493                        iter->oom_lock = true;
1494        }
1495
1496        if (failed) {
1497                /*
1498                 * OK, we failed to lock the whole subtree so we have
1499                 * to clean up what we set up to the failing subtree
1500                 */
1501                for_each_mem_cgroup_tree(iter, memcg) {
1502                        if (iter == failed) {
1503                                mem_cgroup_iter_break(memcg, iter);
1504                                break;
1505                        }
1506                        iter->oom_lock = false;
1507                }
1508        } else
1509                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511        spin_unlock(&memcg_oom_lock);
1512
1513        return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518        struct mem_cgroup *iter;
1519
1520        spin_lock(&memcg_oom_lock);
1521        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522        for_each_mem_cgroup_tree(iter, memcg)
1523                iter->oom_lock = false;
1524        spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529        struct mem_cgroup *iter;
1530
1531        spin_lock(&memcg_oom_lock);
1532        for_each_mem_cgroup_tree(iter, memcg)
1533                iter->under_oom++;
1534        spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539        struct mem_cgroup *iter;
1540
1541        /*
1542         * When a new child is created while the hierarchy is under oom,
1543         * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544         */
1545        spin_lock(&memcg_oom_lock);
1546        for_each_mem_cgroup_tree(iter, memcg)
1547                if (iter->under_oom > 0)
1548                        iter->under_oom--;
1549        spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555        struct mem_cgroup *memcg;
1556        wait_queue_t    wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560        unsigned mode, int sync, void *arg)
1561{
1562        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563        struct mem_cgroup *oom_wait_memcg;
1564        struct oom_wait_info *oom_wait_info;
1565
1566        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567        oom_wait_memcg = oom_wait_info->memcg;
1568
1569        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571                return 0;
1572        return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577        /*
1578         * For the following lockless ->under_oom test, the only required
1579         * guarantee is that it must see the state asserted by an OOM when
1580         * this function is called as a result of userland actions
1581         * triggered by the notification of the OOM.  This is trivially
1582         * achieved by invoking mem_cgroup_mark_under_oom() before
1583         * triggering notification.
1584         */
1585        if (memcg && memcg->under_oom)
1586                __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591        if (!current->memcg_may_oom)
1592                return;
1593        /*
1594         * We are in the middle of the charge context here, so we
1595         * don't want to block when potentially sitting on a callstack
1596         * that holds all kinds of filesystem and mm locks.
1597         *
1598         * Also, the caller may handle a failed allocation gracefully
1599         * (like optional page cache readahead) and so an OOM killer
1600         * invocation might not even be necessary.
1601         *
1602         * That's why we don't do anything here except remember the
1603         * OOM context and then deal with it at the end of the page
1604         * fault when the stack is unwound, the locks are released,
1605         * and when we know whether the fault was overall successful.
1606         */
1607        css_get(&memcg->css);
1608        current->memcg_in_oom = memcg;
1609        current->memcg_oom_gfp_mask = mask;
1610        current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation.  Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632        struct mem_cgroup *memcg = current->memcg_in_oom;
1633        struct oom_wait_info owait;
1634        bool locked;
1635
1636        /* OOM is global, do not handle */
1637        if (!memcg)
1638                return false;
1639
1640        if (!handle || oom_killer_disabled)
1641                goto cleanup;
1642
1643        owait.memcg = memcg;
1644        owait.wait.flags = 0;
1645        owait.wait.func = memcg_oom_wake_function;
1646        owait.wait.private = current;
1647        INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650        mem_cgroup_mark_under_oom(memcg);
1651
1652        locked = mem_cgroup_oom_trylock(memcg);
1653
1654        if (locked)
1655                mem_cgroup_oom_notify(memcg);
1656
1657        if (locked && !memcg->oom_kill_disable) {
1658                mem_cgroup_unmark_under_oom(memcg);
1659                finish_wait(&memcg_oom_waitq, &owait.wait);
1660                mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661                                         current->memcg_oom_order);
1662        } else {
1663                schedule();
1664                mem_cgroup_unmark_under_oom(memcg);
1665                finish_wait(&memcg_oom_waitq, &owait.wait);
1666        }
1667
1668        if (locked) {
1669                mem_cgroup_oom_unlock(memcg);
1670                /*
1671                 * There is no guarantee that an OOM-lock contender
1672                 * sees the wakeups triggered by the OOM kill
1673                 * uncharges.  Wake any sleepers explicitely.
1674                 */
1675                memcg_oom_recover(memcg);
1676        }
1677cleanup:
1678        current->memcg_in_oom = NULL;
1679        css_put(&memcg->css);
1680        return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692        struct mem_cgroup *memcg;
1693        unsigned long flags;
1694
1695        /*
1696         * The RCU lock is held throughout the transaction.  The fast
1697         * path can get away without acquiring the memcg->move_lock
1698         * because page moving starts with an RCU grace period.
1699         */
1700        rcu_read_lock();
1701
1702        if (mem_cgroup_disabled())
1703                return;
1704again:
1705        memcg = page->mem_cgroup;
1706        if (unlikely(!memcg))
1707                return;
1708
1709        if (atomic_read(&memcg->moving_account) <= 0)
1710                return;
1711
1712        spin_lock_irqsave(&memcg->move_lock, flags);
1713        if (memcg != page->mem_cgroup) {
1714                spin_unlock_irqrestore(&memcg->move_lock, flags);
1715                goto again;
1716        }
1717
1718        /*
1719         * When charge migration first begins, we can have locked and
1720         * unlocked page stat updates happening concurrently.  Track
1721         * the task who has the lock for unlock_page_memcg().
1722         */
1723        memcg->move_lock_task = current;
1724        memcg->move_lock_flags = flags;
1725
1726        return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736        struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738        if (memcg && memcg->move_lock_task == current) {
1739                unsigned long flags = memcg->move_lock_flags;
1740
1741                memcg->move_lock_task = NULL;
1742                memcg->move_lock_flags = 0;
1743
1744                spin_unlock_irqrestore(&memcg->move_lock, flags);
1745        }
1746
1747        rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH    32U
1756struct memcg_stock_pcp {
1757        struct mem_cgroup *cached; /* this never be root cgroup */
1758        unsigned int nr_pages;
1759        struct work_struct work;
1760        unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE  0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock.  Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779        struct memcg_stock_pcp *stock;
1780        bool ret = false;
1781
1782        if (nr_pages > CHARGE_BATCH)
1783                return ret;
1784
1785        stock = &get_cpu_var(memcg_stock);
1786        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787                stock->nr_pages -= nr_pages;
1788                ret = true;
1789        }
1790        put_cpu_var(memcg_stock);
1791        return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799        struct mem_cgroup *old = stock->cached;
1800
1801        if (stock->nr_pages) {
1802                page_counter_uncharge(&old->memory, stock->nr_pages);
1803                if (do_memsw_account())
1804                        page_counter_uncharge(&old->memsw, stock->nr_pages);
1805                css_put_many(&old->css, stock->nr_pages);
1806                stock->nr_pages = 0;
1807        }
1808        stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817        struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818        drain_stock(stock);
1819        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830        if (stock->cached != memcg) { /* reset if necessary */
1831                drain_stock(stock);
1832                stock->cached = memcg;
1833        }
1834        stock->nr_pages += nr_pages;
1835        put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844        int cpu, curcpu;
1845
1846        /* If someone's already draining, avoid adding running more workers. */
1847        if (!mutex_trylock(&percpu_charge_mutex))
1848                return;
1849        /* Notify other cpus that system-wide "drain" is running */
1850        get_online_cpus();
1851        curcpu = get_cpu();
1852        for_each_online_cpu(cpu) {
1853                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854                struct mem_cgroup *memcg;
1855
1856                memcg = stock->cached;
1857                if (!memcg || !stock->nr_pages)
1858                        continue;
1859                if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860                        continue;
1861                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862                        if (cpu == curcpu)
1863                                drain_local_stock(&stock->work);
1864                        else
1865                                schedule_work_on(cpu, &stock->work);
1866                }
1867        }
1868        put_cpu();
1869        put_online_cpus();
1870        mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874                                        unsigned long action,
1875                                        void *hcpu)
1876{
1877        int cpu = (unsigned long)hcpu;
1878        struct memcg_stock_pcp *stock;
1879
1880        if (action == CPU_ONLINE)
1881                return NOTIFY_OK;
1882
1883        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884                return NOTIFY_OK;
1885
1886        stock = &per_cpu(memcg_stock, cpu);
1887        drain_stock(stock);
1888        return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892                         unsigned int nr_pages,
1893                         gfp_t gfp_mask)
1894{
1895        do {
1896                if (page_counter_read(&memcg->memory) <= memcg->high)
1897                        continue;
1898                mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900        } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905        struct mem_cgroup *memcg;
1906
1907        memcg = container_of(work, struct mem_cgroup, high_work);
1908        reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917        unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918        struct mem_cgroup *memcg;
1919
1920        if (likely(!nr_pages))
1921                return;
1922
1923        memcg = get_mem_cgroup_from_mm(current->mm);
1924        reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925        css_put(&memcg->css);
1926        current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930                      unsigned int nr_pages)
1931{
1932        unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934        struct mem_cgroup *mem_over_limit;
1935        struct page_counter *counter;
1936        unsigned long nr_reclaimed;
1937        bool may_swap = true;
1938        bool drained = false;
1939
1940        if (mem_cgroup_is_root(memcg))
1941                return 0;
1942retry:
1943        if (consume_stock(memcg, nr_pages))
1944                return 0;
1945
1946        if (!do_memsw_account() ||
1947            page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948                if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949                        goto done_restock;
1950                if (do_memsw_account())
1951                        page_counter_uncharge(&memcg->memsw, batch);
1952                mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953        } else {
1954                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955                may_swap = false;
1956        }
1957
1958        if (batch > nr_pages) {
1959                batch = nr_pages;
1960                goto retry;
1961        }
1962
1963        /*
1964         * Unlike in global OOM situations, memcg is not in a physical
1965         * memory shortage.  Allow dying and OOM-killed tasks to
1966         * bypass the last charges so that they can exit quickly and
1967         * free their memory.
1968         */
1969        if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970                     fatal_signal_pending(current) ||
1971                     current->flags & PF_EXITING))
1972                goto force;
1973
1974        if (unlikely(task_in_memcg_oom(current)))
1975                goto nomem;
1976
1977        if (!gfpflags_allow_blocking(gfp_mask))
1978                goto nomem;
1979
1980        mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983                                                    gfp_mask, may_swap);
1984
1985        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986                goto retry;
1987
1988        if (!drained) {
1989                drain_all_stock(mem_over_limit);
1990                drained = true;
1991                goto retry;
1992        }
1993
1994        if (gfp_mask & __GFP_NORETRY)
1995                goto nomem;
1996        /*
1997         * Even though the limit is exceeded at this point, reclaim
1998         * may have been able to free some pages.  Retry the charge
1999         * before killing the task.
2000         *
2001         * Only for regular pages, though: huge pages are rather
2002         * unlikely to succeed so close to the limit, and we fall back
2003         * to regular pages anyway in case of failure.
2004         */
2005        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006                goto retry;
2007        /*
2008         * At task move, charge accounts can be doubly counted. So, it's
2009         * better to wait until the end of task_move if something is going on.
2010         */
2011        if (mem_cgroup_wait_acct_move(mem_over_limit))
2012                goto retry;
2013
2014        if (nr_retries--)
2015                goto retry;
2016
2017        if (gfp_mask & __GFP_NOFAIL)
2018                goto force;
2019
2020        if (fatal_signal_pending(current))
2021                goto force;
2022
2023        mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025        mem_cgroup_oom(mem_over_limit, gfp_mask,
2026                       get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028        if (!(gfp_mask & __GFP_NOFAIL))
2029                return -ENOMEM;
2030force:
2031        /*
2032         * The allocation either can't fail or will lead to more memory
2033         * being freed very soon.  Allow memory usage go over the limit
2034         * temporarily by force charging it.
2035         */
2036        page_counter_charge(&memcg->memory, nr_pages);
2037        if (do_memsw_account())
2038                page_counter_charge(&memcg->memsw, nr_pages);
2039        css_get_many(&memcg->css, nr_pages);
2040
2041        return 0;
2042
2043done_restock:
2044        css_get_many(&memcg->css, batch);
2045        if (batch > nr_pages)
2046                refill_stock(memcg, batch - nr_pages);
2047
2048        /*
2049         * If the hierarchy is above the normal consumption range, schedule
2050         * reclaim on returning to userland.  We can perform reclaim here
2051         * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052         * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2053         * not recorded as it most likely matches current's and won't
2054         * change in the meantime.  As high limit is checked again before
2055         * reclaim, the cost of mismatch is negligible.
2056         */
2057        do {
2058                if (page_counter_read(&memcg->memory) > memcg->high) {
2059                        /* Don't bother a random interrupted task */
2060                        if (in_interrupt()) {
2061                                schedule_work(&memcg->high_work);
2062                                break;
2063                        }
2064                        current->memcg_nr_pages_over_high += batch;
2065                        set_notify_resume(current);
2066                        break;
2067                }
2068        } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070        return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075        if (mem_cgroup_is_root(memcg))
2076                return;
2077
2078        page_counter_uncharge(&memcg->memory, nr_pages);
2079        if (do_memsw_account())
2080                page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082        css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087        struct zone *zone = page_zone(page);
2088
2089        spin_lock_irq(&zone->lru_lock);
2090        if (PageLRU(page)) {
2091                struct lruvec *lruvec;
2092
2093                lruvec = mem_cgroup_page_lruvec(page, zone);
2094                ClearPageLRU(page);
2095                del_page_from_lru_list(page, lruvec, page_lru(page));
2096                *isolated = 1;
2097        } else
2098                *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103        struct zone *zone = page_zone(page);
2104
2105        if (isolated) {
2106                struct lruvec *lruvec;
2107
2108                lruvec = mem_cgroup_page_lruvec(page, zone);
2109                VM_BUG_ON_PAGE(PageLRU(page), page);
2110                SetPageLRU(page);
2111                add_page_to_lru_list(page, lruvec, page_lru(page));
2112        }
2113        spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117                          bool lrucare)
2118{
2119        int isolated;
2120
2121        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123        /*
2124         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125         * may already be on some other mem_cgroup's LRU.  Take care of it.
2126         */
2127        if (lrucare)
2128                lock_page_lru(page, &isolated);
2129
2130        /*
2131         * Nobody should be changing or seriously looking at
2132         * page->mem_cgroup at this point:
2133         *
2134         * - the page is uncharged
2135         *
2136         * - the page is off-LRU
2137         *
2138         * - an anonymous fault has exclusive page access, except for
2139         *   a locked page table
2140         *
2141         * - a page cache insertion, a swapin fault, or a migration
2142         *   have the page locked
2143         */
2144        page->mem_cgroup = memcg;
2145
2146        if (lrucare)
2147                unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153        int id, size;
2154        int err;
2155
2156        id = ida_simple_get(&memcg_cache_ida,
2157                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158        if (id < 0)
2159                return id;
2160
2161        if (id < memcg_nr_cache_ids)
2162                return id;
2163
2164        /*
2165         * There's no space for the new id in memcg_caches arrays,
2166         * so we have to grow them.
2167         */
2168        down_write(&memcg_cache_ids_sem);
2169
2170        size = 2 * (id + 1);
2171        if (size < MEMCG_CACHES_MIN_SIZE)
2172                size = MEMCG_CACHES_MIN_SIZE;
2173        else if (size > MEMCG_CACHES_MAX_SIZE)
2174                size = MEMCG_CACHES_MAX_SIZE;
2175
2176        err = memcg_update_all_caches(size);
2177        if (!err)
2178                err = memcg_update_all_list_lrus(size);
2179        if (!err)
2180                memcg_nr_cache_ids = size;
2181
2182        up_write(&memcg_cache_ids_sem);
2183
2184        if (err) {
2185                ida_simple_remove(&memcg_cache_ida, id);
2186                return err;
2187        }
2188        return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193        ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197        struct mem_cgroup *memcg;
2198        struct kmem_cache *cachep;
2199        struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204        struct memcg_kmem_cache_create_work *cw =
2205                container_of(w, struct memcg_kmem_cache_create_work, work);
2206        struct mem_cgroup *memcg = cw->memcg;
2207        struct kmem_cache *cachep = cw->cachep;
2208
2209        memcg_create_kmem_cache(memcg, cachep);
2210
2211        css_put(&memcg->css);
2212        kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219                                               struct kmem_cache *cachep)
2220{
2221        struct memcg_kmem_cache_create_work *cw;
2222
2223        cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224        if (!cw)
2225                return;
2226
2227        css_get(&memcg->css);
2228
2229        cw->memcg = memcg;
2230        cw->cachep = cachep;
2231        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233        schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237                                             struct kmem_cache *cachep)
2238{
2239        /*
2240         * We need to stop accounting when we kmalloc, because if the
2241         * corresponding kmalloc cache is not yet created, the first allocation
2242         * in __memcg_schedule_kmem_cache_create will recurse.
2243         *
2244         * However, it is better to enclose the whole function. Depending on
2245         * the debugging options enabled, INIT_WORK(), for instance, can
2246         * trigger an allocation. This too, will make us recurse. Because at
2247         * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248         * the safest choice is to do it like this, wrapping the whole function.
2249         */
2250        current->memcg_kmem_skip_account = 1;
2251        __memcg_schedule_kmem_cache_create(memcg, cachep);
2252        current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270        struct mem_cgroup *memcg;
2271        struct kmem_cache *memcg_cachep;
2272        int kmemcg_id;
2273
2274        VM_BUG_ON(!is_root_cache(cachep));
2275
2276        if (cachep->flags & SLAB_ACCOUNT)
2277                gfp |= __GFP_ACCOUNT;
2278
2279        if (!(gfp & __GFP_ACCOUNT))
2280                return cachep;
2281
2282        if (current->memcg_kmem_skip_account)
2283                return cachep;
2284
2285        memcg = get_mem_cgroup_from_mm(current->mm);
2286        kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287        if (kmemcg_id < 0)
2288                goto out;
2289
2290        memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291        if (likely(memcg_cachep))
2292                return memcg_cachep;
2293
2294        /*
2295         * If we are in a safe context (can wait, and not in interrupt
2296         * context), we could be be predictable and return right away.
2297         * This would guarantee that the allocation being performed
2298         * already belongs in the new cache.
2299         *
2300         * However, there are some clashes that can arrive from locking.
2301         * For instance, because we acquire the slab_mutex while doing
2302         * memcg_create_kmem_cache, this means no further allocation
2303         * could happen with the slab_mutex held. So it's better to
2304         * defer everything.
2305         */
2306        memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308        css_put(&memcg->css);
2309        return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314        if (!is_root_cache(cachep))
2315                css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319                              struct mem_cgroup *memcg)
2320{
2321        unsigned int nr_pages = 1 << order;
2322        struct page_counter *counter;
2323        int ret;
2324
2325        ret = try_charge(memcg, gfp, nr_pages);
2326        if (ret)
2327                return ret;
2328
2329        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330            !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331                cancel_charge(memcg, nr_pages);
2332                return -ENOMEM;
2333        }
2334
2335        page->mem_cgroup = memcg;
2336
2337        return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342        struct mem_cgroup *memcg;
2343        int ret = 0;
2344
2345        memcg = get_mem_cgroup_from_mm(current->mm);
2346        if (!mem_cgroup_is_root(memcg))
2347                ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348        css_put(&memcg->css);
2349        return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354        struct mem_cgroup *memcg = page->mem_cgroup;
2355        unsigned int nr_pages = 1 << order;
2356
2357        if (!memcg)
2358                return;
2359
2360        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363                page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365        page_counter_uncharge(&memcg->memory, nr_pages);
2366        if (do_memsw_account())
2367                page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369        page->mem_cgroup = NULL;
2370        css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382        int i;
2383
2384        if (mem_cgroup_disabled())
2385                return;
2386
2387        for (i = 1; i < HPAGE_PMD_NR; i++)
2388                head[i].mem_cgroup = head->mem_cgroup;
2389
2390        __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391                       HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397                                         bool charge)
2398{
2399        int val = (charge) ? 1 : -1;
2400        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from:  mem_cgroup which the entry is moved from
2407 * @to:  mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418                                struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420        unsigned short old_id, new_id;
2421
2422        old_id = mem_cgroup_id(from);
2423        new_id = mem_cgroup_id(to);
2424
2425        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426                mem_cgroup_swap_statistics(from, false);
2427                mem_cgroup_swap_statistics(to, true);
2428                return 0;
2429        }
2430        return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434                                struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436        return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443                                   unsigned long limit)
2444{
2445        unsigned long curusage;
2446        unsigned long oldusage;
2447        bool enlarge = false;
2448        int retry_count;
2449        int ret;
2450
2451        /*
2452         * For keeping hierarchical_reclaim simple, how long we should retry
2453         * is depends on callers. We set our retry-count to be function
2454         * of # of children which we should visit in this loop.
2455         */
2456        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457                      mem_cgroup_count_children(memcg);
2458
2459        oldusage = page_counter_read(&memcg->memory);
2460
2461        do {
2462                if (signal_pending(current)) {
2463                        ret = -EINTR;
2464                        break;
2465                }
2466
2467                mutex_lock(&memcg_limit_mutex);
2468                if (limit > memcg->memsw.limit) {
2469                        mutex_unlock(&memcg_limit_mutex);
2470                        ret = -EINVAL;
2471                        break;
2472                }
2473                if (limit > memcg->memory.limit)
2474                        enlarge = true;
2475                ret = page_counter_limit(&memcg->memory, limit);
2476                mutex_unlock(&memcg_limit_mutex);
2477
2478                if (!ret)
2479                        break;
2480
2481                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483                curusage = page_counter_read(&memcg->memory);
2484                /* Usage is reduced ? */
2485                if (curusage >= oldusage)
2486                        retry_count--;
2487                else
2488                        oldusage = curusage;
2489        } while (retry_count);
2490
2491        if (!ret && enlarge)
2492                memcg_oom_recover(memcg);
2493
2494        return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498                                         unsigned long limit)
2499{
2500        unsigned long curusage;
2501        unsigned long oldusage;
2502        bool enlarge = false;
2503        int retry_count;
2504        int ret;
2505
2506        /* see mem_cgroup_resize_res_limit */
2507        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508                      mem_cgroup_count_children(memcg);
2509
2510        oldusage = page_counter_read(&memcg->memsw);
2511
2512        do {
2513                if (signal_pending(current)) {
2514                        ret = -EINTR;
2515                        break;
2516                }
2517
2518                mutex_lock(&memcg_limit_mutex);
2519                if (limit < memcg->memory.limit) {
2520                        mutex_unlock(&memcg_limit_mutex);
2521                        ret = -EINVAL;
2522                        break;
2523                }
2524                if (limit > memcg->memsw.limit)
2525                        enlarge = true;
2526                ret = page_counter_limit(&memcg->memsw, limit);
2527                mutex_unlock(&memcg_limit_mutex);
2528
2529                if (!ret)
2530                        break;
2531
2532                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534                curusage = page_counter_read(&memcg->memsw);
2535                /* Usage is reduced ? */
2536                if (curusage >= oldusage)
2537                        retry_count--;
2538                else
2539                        oldusage = curusage;
2540        } while (retry_count);
2541
2542        if (!ret && enlarge)
2543                memcg_oom_recover(memcg);
2544
2545        return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549                                            gfp_t gfp_mask,
2550                                            unsigned long *total_scanned)
2551{
2552        unsigned long nr_reclaimed = 0;
2553        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554        unsigned long reclaimed;
2555        int loop = 0;
2556        struct mem_cgroup_tree_per_zone *mctz;
2557        unsigned long excess;
2558        unsigned long nr_scanned;
2559
2560        if (order > 0)
2561                return 0;
2562
2563        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564        /*
2565         * This loop can run a while, specially if mem_cgroup's continuously
2566         * keep exceeding their soft limit and putting the system under
2567         * pressure
2568         */
2569        do {
2570                if (next_mz)
2571                        mz = next_mz;
2572                else
2573                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2574                if (!mz)
2575                        break;
2576
2577                nr_scanned = 0;
2578                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579                                                    gfp_mask, &nr_scanned);
2580                nr_reclaimed += reclaimed;
2581                *total_scanned += nr_scanned;
2582                spin_lock_irq(&mctz->lock);
2583                __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585                /*
2586                 * If we failed to reclaim anything from this memory cgroup
2587                 * it is time to move on to the next cgroup
2588                 */
2589                next_mz = NULL;
2590                if (!reclaimed)
2591                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593                excess = soft_limit_excess(mz->memcg);
2594                /*
2595                 * One school of thought says that we should not add
2596                 * back the node to the tree if reclaim returns 0.
2597                 * But our reclaim could return 0, simply because due
2598                 * to priority we are exposing a smaller subset of
2599                 * memory to reclaim from. Consider this as a longer
2600                 * term TODO.
2601                 */
2602                /* If excess == 0, no tree ops */
2603                __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604                spin_unlock_irq(&mctz->lock);
2605                css_put(&mz->memcg->css);
2606                loop++;
2607                /*
2608                 * Could not reclaim anything and there are no more
2609                 * mem cgroups to try or we seem to be looping without
2610                 * reclaiming anything.
2611                 */
2612                if (!nr_reclaimed &&
2613                        (next_mz == NULL ||
2614                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615                        break;
2616        } while (!nr_reclaimed);
2617        if (next_mz)
2618                css_put(&next_mz->memcg->css);
2619        return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive.  Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630        bool ret;
2631
2632        rcu_read_lock();
2633        ret = css_next_child(NULL, &memcg->css);
2634        rcu_read_unlock();
2635        return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648        /* we call try-to-free pages for make this cgroup empty */
2649        lru_add_drain_all();
2650        /* try to free all pages in this cgroup */
2651        while (nr_retries && page_counter_read(&memcg->memory)) {
2652                int progress;
2653
2654                if (signal_pending(current))
2655                        return -EINTR;
2656
2657                progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658                                                        GFP_KERNEL, true);
2659                if (!progress) {
2660                        nr_retries--;
2661                        /* maybe some writeback is necessary */
2662                        congestion_wait(BLK_RW_ASYNC, HZ/10);
2663                }
2664
2665        }
2666
2667        return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671                                            char *buf, size_t nbytes,
2672                                            loff_t off)
2673{
2674        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676        if (mem_cgroup_is_root(memcg))
2677                return -EINVAL;
2678        return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682                                     struct cftype *cft)
2683{
2684        return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688                                      struct cftype *cft, u64 val)
2689{
2690        int retval = 0;
2691        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694        if (memcg->use_hierarchy == val)
2695                return 0;
2696
2697        /*
2698         * If parent's use_hierarchy is set, we can't make any modifications
2699         * in the child subtrees. If it is unset, then the change can
2700         * occur, provided the current cgroup has no children.
2701         *
2702         * For the root cgroup, parent_mem is NULL, we allow value to be
2703         * set if there are no children.
2704         */
2705        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706                                (val == 1 || val == 0)) {
2707                if (!memcg_has_children(memcg))
2708                        memcg->use_hierarchy = val;
2709                else
2710                        retval = -EBUSY;
2711        } else
2712                retval = -EINVAL;
2713
2714        return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719        struct mem_cgroup *iter;
2720        int i;
2721
2722        memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724        for_each_mem_cgroup_tree(iter, memcg) {
2725                for (i = 0; i < MEMCG_NR_STAT; i++)
2726                        stat[i] += mem_cgroup_read_stat(iter, i);
2727        }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732        struct mem_cgroup *iter;
2733        int i;
2734
2735        memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737        for_each_mem_cgroup_tree(iter, memcg) {
2738                for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739                        events[i] += mem_cgroup_read_events(iter, i);
2740        }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745        unsigned long val = 0;
2746
2747        if (mem_cgroup_is_root(memcg)) {
2748                struct mem_cgroup *iter;
2749
2750                for_each_mem_cgroup_tree(iter, memcg) {
2751                        val += mem_cgroup_read_stat(iter,
2752                                        MEM_CGROUP_STAT_CACHE);
2753                        val += mem_cgroup_read_stat(iter,
2754                                        MEM_CGROUP_STAT_RSS);
2755                        if (swap)
2756                                val += mem_cgroup_read_stat(iter,
2757                                                MEM_CGROUP_STAT_SWAP);
2758                }
2759        } else {
2760                if (!swap)
2761                        val = page_counter_read(&memcg->memory);
2762                else
2763                        val = page_counter_read(&memcg->memsw);
2764        }
2765        return val;
2766}
2767
2768enum {
2769        RES_USAGE,
2770        RES_LIMIT,
2771        RES_MAX_USAGE,
2772        RES_FAILCNT,
2773        RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777                               struct cftype *cft)
2778{
2779        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780        struct page_counter *counter;
2781
2782        switch (MEMFILE_TYPE(cft->private)) {
2783        case _MEM:
2784                counter = &memcg->memory;
2785                break;
2786        case _MEMSWAP:
2787                counter = &memcg->memsw;
2788                break;
2789        case _KMEM:
2790                counter = &memcg->kmem;
2791                break;
2792        case _TCP:
2793                counter = &memcg->tcpmem;
2794                break;
2795        default:
2796                BUG();
2797        }
2798
2799        switch (MEMFILE_ATTR(cft->private)) {
2800        case RES_USAGE:
2801                if (counter == &memcg->memory)
2802                        return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803                if (counter == &memcg->memsw)
2804                        return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805                return (u64)page_counter_read(counter) * PAGE_SIZE;
2806        case RES_LIMIT:
2807                return (u64)counter->limit * PAGE_SIZE;
2808        case RES_MAX_USAGE:
2809                return (u64)counter->watermark * PAGE_SIZE;
2810        case RES_FAILCNT:
2811                return counter->failcnt;
2812        case RES_SOFT_LIMIT:
2813                return (u64)memcg->soft_limit * PAGE_SIZE;
2814        default:
2815                BUG();
2816        }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822        int memcg_id;
2823
2824        if (cgroup_memory_nokmem)
2825                return 0;
2826
2827        BUG_ON(memcg->kmemcg_id >= 0);
2828        BUG_ON(memcg->kmem_state);
2829
2830        memcg_id = memcg_alloc_cache_id();
2831        if (memcg_id < 0)
2832                return memcg_id;
2833
2834        static_branch_inc(&memcg_kmem_enabled_key);
2835        /*
2836         * A memory cgroup is considered kmem-online as soon as it gets
2837         * kmemcg_id. Setting the id after enabling static branching will
2838         * guarantee no one starts accounting before all call sites are
2839         * patched.
2840         */
2841        memcg->kmemcg_id = memcg_id;
2842        memcg->kmem_state = KMEM_ONLINE;
2843
2844        return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849        struct cgroup_subsys_state *css;
2850        struct mem_cgroup *parent, *child;
2851        int kmemcg_id;
2852
2853        if (memcg->kmem_state != KMEM_ONLINE)
2854                return;
2855        /*
2856         * Clear the online state before clearing memcg_caches array
2857         * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858         * guarantees that no cache will be created for this cgroup
2859         * after we are done (see memcg_create_kmem_cache()).
2860         */
2861        memcg->kmem_state = KMEM_ALLOCATED;
2862
2863        memcg_deactivate_kmem_caches(memcg);
2864
2865        kmemcg_id = memcg->kmemcg_id;
2866        BUG_ON(kmemcg_id < 0);
2867
2868        parent = parent_mem_cgroup(memcg);
2869        if (!parent)
2870                parent = root_mem_cgroup;
2871
2872        /*
2873         * Change kmemcg_id of this cgroup and all its descendants to the
2874         * parent's id, and then move all entries from this cgroup's list_lrus
2875         * to ones of the parent. After we have finished, all list_lrus
2876         * corresponding to this cgroup are guaranteed to remain empty. The
2877         * ordering is imposed by list_lru_node->lock taken by
2878         * memcg_drain_all_list_lrus().
2879         */
2880        css_for_each_descendant_pre(css, &memcg->css) {
2881                child = mem_cgroup_from_css(css);
2882                BUG_ON(child->kmemcg_id != kmemcg_id);
2883                child->kmemcg_id = parent->kmemcg_id;
2884                if (!memcg->use_hierarchy)
2885                        break;
2886        }
2887        memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889        memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894        /* css_alloc() failed, offlining didn't happen */
2895        if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896                memcg_offline_kmem(memcg);
2897
2898        if (memcg->kmem_state == KMEM_ALLOCATED) {
2899                memcg_destroy_kmem_caches(memcg);
2900                static_branch_dec(&memcg_kmem_enabled_key);
2901                WARN_ON(page_counter_read(&memcg->kmem));
2902        }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907        return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918                                   unsigned long limit)
2919{
2920        int ret;
2921
2922        mutex_lock(&memcg_limit_mutex);
2923        ret = page_counter_limit(&memcg->kmem, limit);
2924        mutex_unlock(&memcg_limit_mutex);
2925        return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930        int ret;
2931
2932        mutex_lock(&memcg_limit_mutex);
2933
2934        ret = page_counter_limit(&memcg->tcpmem, limit);
2935        if (ret)
2936                goto out;
2937
2938        if (!memcg->tcpmem_active) {
2939                /*
2940                 * The active flag needs to be written after the static_key
2941                 * update. This is what guarantees that the socket activation
2942                 * function is the last one to run. See sock_update_memcg() for
2943                 * details, and note that we don't mark any socket as belonging
2944                 * to this memcg until that flag is up.
2945                 *
2946                 * We need to do this, because static_keys will span multiple
2947                 * sites, but we can't control their order. If we mark a socket
2948                 * as accounted, but the accounting functions are not patched in
2949                 * yet, we'll lose accounting.
2950                 *
2951                 * We never race with the readers in sock_update_memcg(),
2952                 * because when this value change, the code to process it is not
2953                 * patched in yet.
2954                 */
2955                static_branch_inc(&memcg_sockets_enabled_key);
2956                memcg->tcpmem_active = true;
2957        }
2958out:
2959        mutex_unlock(&memcg_limit_mutex);
2960        return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968                                char *buf, size_t nbytes, loff_t off)
2969{
2970        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971        unsigned long nr_pages;
2972        int ret;
2973
2974        buf = strstrip(buf);
2975        ret = page_counter_memparse(buf, "-1", &nr_pages);
2976        if (ret)
2977                return ret;
2978
2979        switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980        case RES_LIMIT:
2981                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982                        ret = -EINVAL;
2983                        break;
2984                }
2985                switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986                case _MEM:
2987                        ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988                        break;
2989                case _MEMSWAP:
2990                        ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991                        break;
2992                case _KMEM:
2993                        ret = memcg_update_kmem_limit(memcg, nr_pages);
2994                        break;
2995                case _TCP:
2996                        ret = memcg_update_tcp_limit(memcg, nr_pages);
2997                        break;
2998                }
2999                break;
3000        case RES_SOFT_LIMIT:
3001                memcg->soft_limit = nr_pages;
3002                ret = 0;
3003                break;
3004        }
3005        return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009                                size_t nbytes, loff_t off)
3010{
3011        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012        struct page_counter *counter;
3013
3014        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015        case _MEM:
3016                counter = &memcg->memory;
3017                break;
3018        case _MEMSWAP:
3019                counter = &memcg->memsw;
3020                break;
3021        case _KMEM:
3022                counter = &memcg->kmem;
3023                break;
3024        case _TCP:
3025                counter = &memcg->tcpmem;
3026                break;
3027        default:
3028                BUG();
3029        }
3030
3031        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032        case RES_MAX_USAGE:
3033                page_counter_reset_watermark(counter);
3034                break;
3035        case RES_FAILCNT:
3036                counter->failcnt = 0;
3037                break;
3038        default:
3039                BUG();
3040        }
3041
3042        return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046                                        struct cftype *cft)
3047{
3048        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053                                        struct cftype *cft, u64 val)
3054{
3055        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057        if (val & ~MOVE_MASK)
3058                return -EINVAL;
3059
3060        /*
3061         * No kind of locking is needed in here, because ->can_attach() will
3062         * check this value once in the beginning of the process, and then carry
3063         * on with stale data. This means that changes to this value will only
3064         * affect task migrations starting after the change.
3065         */
3066        memcg->move_charge_at_immigrate = val;
3067        return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071                                        struct cftype *cft, u64 val)
3072{
3073        return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080        struct numa_stat {
3081                const char *name;
3082                unsigned int lru_mask;
3083        };
3084
3085        static const struct numa_stat stats[] = {
3086                { "total", LRU_ALL },
3087                { "file", LRU_ALL_FILE },
3088                { "anon", LRU_ALL_ANON },
3089                { "unevictable", BIT(LRU_UNEVICTABLE) },
3090        };
3091        const struct numa_stat *stat;
3092        int nid;
3093        unsigned long nr;
3094        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098                seq_printf(m, "%s=%lu", stat->name, nr);
3099                for_each_node_state(nid, N_MEMORY) {
3100                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101                                                          stat->lru_mask);
3102                        seq_printf(m, " N%d=%lu", nid, nr);
3103                }
3104                seq_putc(m, '\n');
3105        }
3106
3107        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108                struct mem_cgroup *iter;
3109
3110                nr = 0;
3111                for_each_mem_cgroup_tree(iter, memcg)
3112                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114                for_each_node_state(nid, N_MEMORY) {
3115                        nr = 0;
3116                        for_each_mem_cgroup_tree(iter, memcg)
3117                                nr += mem_cgroup_node_nr_lru_pages(
3118                                        iter, nid, stat->lru_mask);
3119                        seq_printf(m, " N%d=%lu", nid, nr);
3120                }
3121                seq_putc(m, '\n');
3122        }
3123
3124        return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131        unsigned long memory, memsw;
3132        struct mem_cgroup *mi;
3133        unsigned int i;
3134
3135        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136                     MEM_CGROUP_STAT_NSTATS);
3137        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138                     MEM_CGROUP_EVENTS_NSTATS);
3139        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142                if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143                        continue;
3144                seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145                           mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146        }
3147
3148        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149                seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150                           mem_cgroup_read_events(memcg, i));
3151
3152        for (i = 0; i < NR_LRU_LISTS; i++)
3153                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156        /* Hierarchical information */
3157        memory = memsw = PAGE_COUNTER_MAX;
3158        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159                memory = min(memory, mi->memory.limit);
3160                memsw = min(memsw, mi->memsw.limit);
3161        }
3162        seq_printf(m, "hierarchical_memory_limit %llu\n",
3163                   (u64)memory * PAGE_SIZE);
3164        if (do_memsw_account())
3165                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166                           (u64)memsw * PAGE_SIZE);
3167
3168        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169                unsigned long long val = 0;
3170
3171                if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172                        continue;
3173                for_each_mem_cgroup_tree(mi, memcg)
3174                        val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175                seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176        }
3177
3178        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179                unsigned long long val = 0;
3180
3181                for_each_mem_cgroup_tree(mi, memcg)
3182                        val += mem_cgroup_read_events(mi, i);
3183                seq_printf(m, "total_%s %llu\n",
3184                           mem_cgroup_events_names[i], val);
3185        }
3186
3187        for (i = 0; i < NR_LRU_LISTS; i++) {
3188                unsigned long long val = 0;
3189
3190                for_each_mem_cgroup_tree(mi, memcg)
3191                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193        }
3194
3195#ifdef CONFIG_DEBUG_VM
3196        {
3197                int nid, zid;
3198                struct mem_cgroup_per_zone *mz;
3199                struct zone_reclaim_stat *rstat;
3200                unsigned long recent_rotated[2] = {0, 0};
3201                unsigned long recent_scanned[2] = {0, 0};
3202
3203                for_each_online_node(nid)
3204                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205                                mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206                                rstat = &mz->lruvec.reclaim_stat;
3207
3208                                recent_rotated[0] += rstat->recent_rotated[0];
3209                                recent_rotated[1] += rstat->recent_rotated[1];
3210                                recent_scanned[0] += rstat->recent_scanned[0];
3211                                recent_scanned[1] += rstat->recent_scanned[1];
3212                        }
3213                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217        }
3218#endif
3219
3220        return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224                                      struct cftype *cft)
3225{
3226        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228        return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232                                       struct cftype *cft, u64 val)
3233{
3234        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236        if (val > 100)
3237                return -EINVAL;
3238
3239        if (css->parent)
3240                memcg->swappiness = val;
3241        else
3242                vm_swappiness = val;
3243
3244        return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249        struct mem_cgroup_threshold_ary *t;
3250        unsigned long usage;
3251        int i;
3252
3253        rcu_read_lock();
3254        if (!swap)
3255                t = rcu_dereference(memcg->thresholds.primary);
3256        else
3257                t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259        if (!t)
3260                goto unlock;
3261
3262        usage = mem_cgroup_usage(memcg, swap);
3263
3264        /*
3265         * current_threshold points to threshold just below or equal to usage.
3266         * If it's not true, a threshold was crossed after last
3267         * call of __mem_cgroup_threshold().
3268         */
3269        i = t->current_threshold;
3270
3271        /*
3272         * Iterate backward over array of thresholds starting from
3273         * current_threshold and check if a threshold is crossed.
3274         * If none of thresholds below usage is crossed, we read
3275         * only one element of the array here.
3276         */
3277        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278                eventfd_signal(t->entries[i].eventfd, 1);
3279
3280        /* i = current_threshold + 1 */
3281        i++;
3282
3283        /*
3284         * Iterate forward over array of thresholds starting from
3285         * current_threshold+1 and check if a threshold is crossed.
3286         * If none of thresholds above usage is crossed, we read
3287         * only one element of the array here.
3288         */
3289        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290                eventfd_signal(t->entries[i].eventfd, 1);
3291
3292        /* Update current_threshold */
3293        t->current_threshold = i - 1;
3294unlock:
3295        rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300        while (memcg) {
3301                __mem_cgroup_threshold(memcg, false);
3302                if (do_memsw_account())
3303                        __mem_cgroup_threshold(memcg, true);
3304
3305                memcg = parent_mem_cgroup(memcg);
3306        }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311        const struct mem_cgroup_threshold *_a = a;
3312        const struct mem_cgroup_threshold *_b = b;
3313
3314        if (_a->threshold > _b->threshold)
3315                return 1;
3316
3317        if (_a->threshold < _b->threshold)
3318                return -1;
3319
3320        return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325        struct mem_cgroup_eventfd_list *ev;
3326
3327        spin_lock(&memcg_oom_lock);
3328
3329        list_for_each_entry(ev, &memcg->oom_notify, list)
3330                eventfd_signal(ev->eventfd, 1);
3331
3332        spin_unlock(&memcg_oom_lock);
3333        return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338        struct mem_cgroup *iter;
3339
3340        for_each_mem_cgroup_tree(iter, memcg)
3341                mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347        struct mem_cgroup_thresholds *thresholds;
3348        struct mem_cgroup_threshold_ary *new;
3349        unsigned long threshold;
3350        unsigned long usage;
3351        int i, size, ret;
3352
3353        ret = page_counter_memparse(args, "-1", &threshold);
3354        if (ret)
3355                return ret;
3356
3357        mutex_lock(&memcg->thresholds_lock);
3358
3359        if (type == _MEM) {
3360                thresholds = &memcg->thresholds;
3361                usage = mem_cgroup_usage(memcg, false);
3362        } else if (type == _MEMSWAP) {
3363                thresholds = &memcg->memsw_thresholds;
3364                usage = mem_cgroup_usage(memcg, true);
3365        } else
3366                BUG();
3367
3368        /* Check if a threshold crossed before adding a new one */
3369        if (thresholds->primary)
3370                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374        /* Allocate memory for new array of thresholds */
3375        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376                        GFP_KERNEL);
3377        if (!new) {
3378                ret = -ENOMEM;
3379                goto unlock;
3380        }
3381        new->size = size;
3382
3383        /* Copy thresholds (if any) to new array */
3384        if (thresholds->primary) {
3385                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386                                sizeof(struct mem_cgroup_threshold));
3387        }
3388
3389        /* Add new threshold */
3390        new->entries[size - 1].eventfd = eventfd;
3391        new->entries[size - 1].threshold = threshold;
3392
3393        /* Sort thresholds. Registering of new threshold isn't time-critical */
3394        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395                        compare_thresholds, NULL);
3396
3397        /* Find current threshold */
3398        new->current_threshold = -1;
3399        for (i = 0; i < size; i++) {
3400                if (new->entries[i].threshold <= usage) {
3401                        /*
3402                         * new->current_threshold will not be used until
3403                         * rcu_assign_pointer(), so it's safe to increment
3404                         * it here.
3405                         */
3406                        ++new->current_threshold;
3407                } else
3408                        break;
3409        }
3410
3411        /* Free old spare buffer and save old primary buffer as spare */
3412        kfree(thresholds->spare);
3413        thresholds->spare = thresholds->primary;
3414
3415        rcu_assign_pointer(thresholds->primary, new);
3416
3417        /* To be sure that nobody uses thresholds */
3418        synchronize_rcu();
3419
3420unlock:
3421        mutex_unlock(&memcg->thresholds_lock);
3422
3423        return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427        struct eventfd_ctx *eventfd, const char *args)
3428{
3429        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433        struct eventfd_ctx *eventfd, const char *args)
3434{
3435        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439        struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441        struct mem_cgroup_thresholds *thresholds;
3442        struct mem_cgroup_threshold_ary *new;
3443        unsigned long usage;
3444        int i, j, size;
3445
3446        mutex_lock(&memcg->thresholds_lock);
3447
3448        if (type == _MEM) {
3449                thresholds = &memcg->thresholds;
3450                usage = mem_cgroup_usage(memcg, false);
3451        } else if (type == _MEMSWAP) {
3452                thresholds = &memcg->memsw_thresholds;
3453                usage = mem_cgroup_usage(memcg, true);
3454        } else
3455                BUG();
3456
3457        if (!thresholds->primary)
3458                goto unlock;
3459
3460        /* Check if a threshold crossed before removing */
3461        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463        /* Calculate new number of threshold */
3464        size = 0;
3465        for (i = 0; i < thresholds->primary->size; i++) {
3466                if (thresholds->primary->entries[i].eventfd != eventfd)
3467                        size++;
3468        }
3469
3470        new = thresholds->spare;
3471
3472        /* Set thresholds array to NULL if we don't have thresholds */
3473        if (!size) {
3474                kfree(new);
3475                new = NULL;
3476                goto swap_buffers;
3477        }
3478
3479        new->size = size;
3480
3481        /* Copy thresholds and find current threshold */
3482        new->current_threshold = -1;
3483        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484                if (thresholds->primary->entries[i].eventfd == eventfd)
3485                        continue;
3486
3487                new->entries[j] = thresholds->primary->entries[i];
3488                if (new->entries[j].threshold <= usage) {
3489                        /*
3490                         * new->current_threshold will not be used
3491                         * until rcu_assign_pointer(), so it's safe to increment
3492                         * it here.
3493                         */
3494                        ++new->current_threshold;
3495                }
3496                j++;
3497        }
3498
3499swap_buffers:
3500        /* Swap primary and spare array */
3501        thresholds->spare = thresholds->primary;
3502
3503        rcu_assign_pointer(thresholds->primary, new);
3504
3505        /* To be sure that nobody uses thresholds */
3506        synchronize_rcu();
3507
3508        /* If all events are unregistered, free the spare array */
3509        if (!new) {
3510                kfree(thresholds->spare);
3511                thresholds->spare = NULL;
3512        }
3513unlock:
3514        mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518        struct eventfd_ctx *eventfd)
3519{
3520        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524        struct eventfd_ctx *eventfd)
3525{
3526        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530        struct eventfd_ctx *eventfd, const char *args)
3531{
3532        struct mem_cgroup_eventfd_list *event;
3533
3534        event = kmalloc(sizeof(*event), GFP_KERNEL);
3535        if (!event)
3536                return -ENOMEM;
3537
3538        spin_lock(&memcg_oom_lock);
3539
3540        event->eventfd = eventfd;
3541        list_add(&event->list, &memcg->oom_notify);
3542
3543        /* already in OOM ? */
3544        if (memcg->under_oom)
3545                eventfd_signal(eventfd, 1);
3546        spin_unlock(&memcg_oom_lock);
3547
3548        return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552        struct eventfd_ctx *eventfd)
3553{
3554        struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556        spin_lock(&memcg_oom_lock);
3557
3558        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559                if (ev->eventfd == eventfd) {
3560                        list_del(&ev->list);
3561                        kfree(ev);
3562                }
3563        }
3564
3565        spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573        seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574        return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578        struct cftype *cft, u64 val)
3579{
3580        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582        /* cannot set to root cgroup and only 0 and 1 are allowed */
3583        if (!css->parent || !((val == 0) || (val == 1)))
3584                return -EINVAL;
3585
3586        memcg->oom_kill_disable = val;
3587        if (!val)
3588                memcg_oom_recover(memcg);
3589
3590        return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597        return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602        return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607        wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612        wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619        if (!memcg->css.parent)
3620                return NULL;
3621
3622        return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors.  Note that this doesn't consider the actual amount of
3640 * available memory in the system.  The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644                         unsigned long *pheadroom, unsigned long *pdirty,
3645                         unsigned long *pwriteback)
3646{
3647        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648        struct mem_cgroup *parent;
3649
3650        *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652        /* this should eventually include NR_UNSTABLE_NFS */
3653        *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654        *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655                                                     (1 << LRU_ACTIVE_FILE));
3656        *pheadroom = PAGE_COUNTER_MAX;
3657
3658        while ((parent = parent_mem_cgroup(memcg))) {
3659                unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660                unsigned long used = page_counter_read(&memcg->memory);
3661
3662                *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663                memcg = parent;
3664        }
3665}
3666
3667#else   /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671        return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif  /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered.  It tries to support fully configurable
3690 * events for each user.  Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704        struct mem_cgroup_event *event =
3705                container_of(work, struct mem_cgroup_event, remove);
3706        struct mem_cgroup *memcg = event->memcg;
3707
3708        remove_wait_queue(event->wqh, &event->wait);
3709
3710        event->unregister_event(memcg, event->eventfd);
3711
3712        /* Notify userspace the event is going away. */
3713        eventfd_signal(event->eventfd, 1);
3714
3715        eventfd_ctx_put(event->eventfd);
3716        kfree(event);
3717        css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726                            int sync, void *key)
3727{
3728        struct mem_cgroup_event *event =
3729                container_of(wait, struct mem_cgroup_event, wait);
3730        struct mem_cgroup *memcg = event->memcg;
3731        unsigned long flags = (unsigned long)key;
3732
3733        if (flags & POLLHUP) {
3734                /*
3735                 * If the event has been detached at cgroup removal, we
3736                 * can simply return knowing the other side will cleanup
3737                 * for us.
3738                 *
3739                 * We can't race against event freeing since the other
3740                 * side will require wqh->lock via remove_wait_queue(),
3741                 * which we hold.
3742                 */
3743                spin_lock(&memcg->event_list_lock);
3744                if (!list_empty(&event->list)) {
3745                        list_del_init(&event->list);
3746                        /*
3747                         * We are in atomic context, but cgroup_event_remove()
3748                         * may sleep, so we have to call it in workqueue.
3749                         */
3750                        schedule_work(&event->remove);
3751                }
3752                spin_unlock(&memcg->event_list_lock);
3753        }
3754
3755        return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759                wait_queue_head_t *wqh, poll_table *pt)
3760{
3761        struct mem_cgroup_event *event =
3762                container_of(pt, struct mem_cgroup_event, pt);
3763
3764        event->wqh = wqh;
3765        add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777                                         char *buf, size_t nbytes, loff_t off)
3778{
3779        struct cgroup_subsys_state *css = of_css(of);
3780        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781        struct mem_cgroup_event *event;
3782        struct cgroup_subsys_state *cfile_css;
3783        unsigned int efd, cfd;
3784        struct fd efile;
3785        struct fd cfile;
3786        const char *name;
3787        char *endp;
3788        int ret;
3789
3790        buf = strstrip(buf);
3791
3792        efd = simple_strtoul(buf, &endp, 10);
3793        if (*endp != ' ')
3794                return -EINVAL;
3795        buf = endp + 1;
3796
3797        cfd = simple_strtoul(buf, &endp, 10);
3798        if ((*endp != ' ') && (*endp != '\0'))
3799                return -EINVAL;
3800        buf = endp + 1;
3801
3802        event = kzalloc(sizeof(*event), GFP_KERNEL);
3803        if (!event)
3804                return -ENOMEM;
3805
3806        event->memcg = memcg;
3807        INIT_LIST_HEAD(&event->list);
3808        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810        INIT_WORK(&event->remove, memcg_event_remove);
3811
3812        efile = fdget(efd);
3813        if (!efile.file) {
3814                ret = -EBADF;
3815                goto out_kfree;
3816        }
3817
3818        event->eventfd = eventfd_ctx_fileget(efile.file);
3819        if (IS_ERR(event->eventfd)) {
3820                ret = PTR_ERR(event->eventfd);
3821                goto out_put_efile;
3822        }
3823
3824        cfile = fdget(cfd);
3825        if (!cfile.file) {
3826                ret = -EBADF;
3827                goto out_put_eventfd;
3828        }
3829
3830        /* the process need read permission on control file */
3831        /* AV: shouldn't we check that it's been opened for read instead? */
3832        ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833        if (ret < 0)
3834                goto out_put_cfile;
3835
3836        /*
3837         * Determine the event callbacks and set them in @event.  This used
3838         * to be done via struct cftype but cgroup core no longer knows
3839         * about these events.  The following is crude but the whole thing
3840         * is for compatibility anyway.
3841         *
3842         * DO NOT ADD NEW FILES.
3843         */
3844        name = cfile.file->f_path.dentry->d_name.name;
3845
3846        if (!strcmp(name, "memory.usage_in_bytes")) {
3847                event->register_event = mem_cgroup_usage_register_event;
3848                event->unregister_event = mem_cgroup_usage_unregister_event;
3849        } else if (!strcmp(name, "memory.oom_control")) {
3850                event->register_event = mem_cgroup_oom_register_event;
3851                event->unregister_event = mem_cgroup_oom_unregister_event;
3852        } else if (!strcmp(name, "memory.pressure_level")) {
3853                event->register_event = vmpressure_register_event;
3854                event->unregister_event = vmpressure_unregister_event;
3855        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856                event->register_event = memsw_cgroup_usage_register_event;
3857                event->unregister_event = memsw_cgroup_usage_unregister_event;
3858        } else {
3859                ret = -EINVAL;
3860                goto out_put_cfile;
3861        }
3862
3863        /*
3864         * Verify @cfile should belong to @css.  Also, remaining events are
3865         * automatically removed on cgroup destruction but the removal is
3866         * asynchronous, so take an extra ref on @css.
3867         */
3868        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869                                               &memory_cgrp_subsys);
3870        ret = -EINVAL;
3871        if (IS_ERR(cfile_css))
3872                goto out_put_cfile;
3873        if (cfile_css != css) {
3874                css_put(cfile_css);
3875                goto out_put_cfile;
3876        }
3877
3878        ret = event->register_event(memcg, event->eventfd, buf);
3879        if (ret)
3880                goto out_put_css;
3881
3882        efile.file->f_op->poll(efile.file, &event->pt);
3883
3884        spin_lock(&memcg->event_list_lock);
3885        list_add(&event->list, &memcg->event_list);
3886        spin_unlock(&memcg->event_list_lock);
3887
3888        fdput(cfile);
3889        fdput(efile);
3890
3891        return nbytes;
3892
3893out_put_css:
3894        css_put(css);
3895out_put_cfile:
3896        fdput(cfile);
3897out_put_eventfd:
3898        eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900        fdput(efile);
3901out_kfree:
3902        kfree(event);
3903
3904        return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908        {
3909                .name = "usage_in_bytes",
3910                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911                .read_u64 = mem_cgroup_read_u64,
3912        },
3913        {
3914                .name = "max_usage_in_bytes",
3915                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916                .write = mem_cgroup_reset,
3917                .read_u64 = mem_cgroup_read_u64,
3918        },
3919        {
3920                .name = "limit_in_bytes",
3921                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922                .write = mem_cgroup_write,
3923                .read_u64 = mem_cgroup_read_u64,
3924        },
3925        {
3926                .name = "soft_limit_in_bytes",
3927                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928                .write = mem_cgroup_write,
3929                .read_u64 = mem_cgroup_read_u64,
3930        },
3931        {
3932                .name = "failcnt",
3933                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934                .write = mem_cgroup_reset,
3935                .read_u64 = mem_cgroup_read_u64,
3936        },
3937        {
3938                .name = "stat",
3939                .seq_show = memcg_stat_show,
3940        },
3941        {
3942                .name = "force_empty",
3943                .write = mem_cgroup_force_empty_write,
3944        },
3945        {
3946                .name = "use_hierarchy",
3947                .write_u64 = mem_cgroup_hierarchy_write,
3948                .read_u64 = mem_cgroup_hierarchy_read,
3949        },
3950        {
3951                .name = "cgroup.event_control",         /* XXX: for compat */
3952                .write = memcg_write_event_control,
3953                .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954        },
3955        {
3956                .name = "swappiness",
3957                .read_u64 = mem_cgroup_swappiness_read,
3958                .write_u64 = mem_cgroup_swappiness_write,
3959        },
3960        {
3961                .name = "move_charge_at_immigrate",
3962                .read_u64 = mem_cgroup_move_charge_read,
3963                .write_u64 = mem_cgroup_move_charge_write,
3964        },
3965        {
3966                .name = "oom_control",
3967                .seq_show = mem_cgroup_oom_control_read,
3968                .write_u64 = mem_cgroup_oom_control_write,
3969                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970        },
3971        {
3972                .name = "pressure_level",
3973        },
3974#ifdef CONFIG_NUMA
3975        {
3976                .name = "numa_stat",
3977                .seq_show = memcg_numa_stat_show,
3978        },
3979#endif
3980        {
3981                .name = "kmem.limit_in_bytes",
3982                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983                .write = mem_cgroup_write,
3984                .read_u64 = mem_cgroup_read_u64,
3985        },
3986        {
3987                .name = "kmem.usage_in_bytes",
3988                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989                .read_u64 = mem_cgroup_read_u64,
3990        },
3991        {
3992                .name = "kmem.failcnt",
3993                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994                .write = mem_cgroup_reset,
3995                .read_u64 = mem_cgroup_read_u64,
3996        },
3997        {
3998                .name = "kmem.max_usage_in_bytes",
3999                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000                .write = mem_cgroup_reset,
4001                .read_u64 = mem_cgroup_read_u64,
4002        },
4003#ifdef CONFIG_SLABINFO
4004        {
4005                .name = "kmem.slabinfo",
4006                .seq_start = slab_start,
4007                .seq_next = slab_next,
4008                .seq_stop = slab_stop,
4009                .seq_show = memcg_slab_show,
4010        },
4011#endif
4012        {
4013                .name = "kmem.tcp.limit_in_bytes",
4014                .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015                .write = mem_cgroup_write,
4016                .read_u64 = mem_cgroup_read_u64,
4017        },
4018        {
4019                .name = "kmem.tcp.usage_in_bytes",
4020                .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021                .read_u64 = mem_cgroup_read_u64,
4022        },
4023        {
4024                .name = "kmem.tcp.failcnt",
4025                .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026                .write = mem_cgroup_reset,
4027                .read_u64 = mem_cgroup_read_u64,
4028        },
4029        {
4030                .name = "kmem.tcp.max_usage_in_bytes",
4031                .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032                .write = mem_cgroup_reset,
4033                .read_u64 = mem_cgroup_read_u64,
4034        },
4035        { },    /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040        struct mem_cgroup_per_node *pn;
4041        struct mem_cgroup_per_zone *mz;
4042        int zone, tmp = node;
4043        /*
4044         * This routine is called against possible nodes.
4045         * But it's BUG to call kmalloc() against offline node.
4046         *
4047         * TODO: this routine can waste much memory for nodes which will
4048         *       never be onlined. It's better to use memory hotplug callback
4049         *       function.
4050         */
4051        if (!node_state(node, N_NORMAL_MEMORY))
4052                tmp = -1;
4053        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054        if (!pn)
4055                return 1;
4056
4057        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058                mz = &pn->zoneinfo[zone];
4059                lruvec_init(&mz->lruvec);
4060                mz->usage_in_excess = 0;
4061                mz->on_tree = false;
4062                mz->memcg = memcg;
4063        }
4064        memcg->nodeinfo[node] = pn;
4065        return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070        kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075        int node;
4076
4077        memcg_wb_domain_exit(memcg);
4078        for_each_node(node)
4079                free_mem_cgroup_per_zone_info(memcg, node);
4080        free_percpu(memcg->stat);
4081        kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086        struct mem_cgroup *memcg;
4087        size_t size;
4088        int node;
4089
4090        size = sizeof(struct mem_cgroup);
4091        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093        memcg = kzalloc(size, GFP_KERNEL);
4094        if (!memcg)
4095                return NULL;
4096
4097        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098        if (!memcg->stat)
4099                goto fail;
4100
4101        for_each_node(node)
4102                if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103                        goto fail;
4104
4105        if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106                goto fail;
4107
4108        INIT_WORK(&memcg->high_work, high_work_func);
4109        memcg->last_scanned_node = MAX_NUMNODES;
4110        INIT_LIST_HEAD(&memcg->oom_notify);
4111        mutex_init(&memcg->thresholds_lock);
4112        spin_lock_init(&memcg->move_lock);
4113        vmpressure_init(&memcg->vmpressure);
4114        INIT_LIST_HEAD(&memcg->event_list);
4115        spin_lock_init(&memcg->event_list_lock);
4116        memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118        memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121        INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123        return memcg;
4124fail:
4125        mem_cgroup_free(memcg);
4126        return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132        struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133        struct mem_cgroup *memcg;
4134        long error = -ENOMEM;
4135
4136        memcg = mem_cgroup_alloc();
4137        if (!memcg)
4138                return ERR_PTR(error);
4139
4140        memcg->high = PAGE_COUNTER_MAX;
4141        memcg->soft_limit = PAGE_COUNTER_MAX;
4142        if (parent) {
4143                memcg->swappiness = mem_cgroup_swappiness(parent);
4144                memcg->oom_kill_disable = parent->oom_kill_disable;
4145        }
4146        if (parent && parent->use_hierarchy) {
4147                memcg->use_hierarchy = true;
4148                page_counter_init(&memcg->memory, &parent->memory);
4149                page_counter_init(&memcg->swap, &parent->swap);
4150                page_counter_init(&memcg->memsw, &parent->memsw);
4151                page_counter_init(&memcg->kmem, &parent->kmem);
4152                page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153        } else {
4154                page_counter_init(&memcg->memory, NULL);
4155                page_counter_init(&memcg->swap, NULL);
4156                page_counter_init(&memcg->memsw, NULL);
4157                page_counter_init(&memcg->kmem, NULL);
4158                page_counter_init(&memcg->tcpmem, NULL);
4159                /*
4160                 * Deeper hierachy with use_hierarchy == false doesn't make
4161                 * much sense so let cgroup subsystem know about this
4162                 * unfortunate state in our controller.
4163                 */
4164                if (parent != root_mem_cgroup)
4165                        memory_cgrp_subsys.broken_hierarchy = true;
4166        }
4167
4168        /* The following stuff does not apply to the root */
4169        if (!parent) {
4170                root_mem_cgroup = memcg;
4171                return &memcg->css;
4172        }
4173
4174        error = memcg_online_kmem(memcg);
4175        if (error)
4176                goto fail;
4177
4178        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179                static_branch_inc(&memcg_sockets_enabled_key);
4180
4181        return &memcg->css;
4182fail:
4183        mem_cgroup_free(memcg);
4184        return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190        if (css->id > MEM_CGROUP_ID_MAX)
4191                return -ENOSPC;
4192
4193        return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199        struct mem_cgroup_event *event, *tmp;
4200
4201        /*
4202         * Unregister events and notify userspace.
4203         * Notify userspace about cgroup removing only after rmdir of cgroup
4204         * directory to avoid race between userspace and kernelspace.
4205         */
4206        spin_lock(&memcg->event_list_lock);
4207        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208                list_del_init(&event->list);
4209                schedule_work(&event->remove);
4210        }
4211        spin_unlock(&memcg->event_list_lock);
4212
4213        memcg_offline_kmem(memcg);
4214        wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221        invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229                static_branch_dec(&memcg_sockets_enabled_key);
4230
4231        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232                static_branch_dec(&memcg_sockets_enabled_key);
4233
4234        vmpressure_cleanup(&memcg->vmpressure);
4235        cancel_work_sync(&memcg->high_work);
4236        mem_cgroup_remove_from_trees(memcg);
4237        memcg_free_kmem(memcg);
4238        mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css.  This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency.  The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258        page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259        page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260        page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261        page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262        page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263        memcg->low = 0;
4264        memcg->high = PAGE_COUNTER_MAX;
4265        memcg->soft_limit = PAGE_COUNTER_MAX;
4266        memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273        int ret;
4274
4275        /* Try a single bulk charge without reclaim first, kswapd may wake */
4276        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277        if (!ret) {
4278                mc.precharge += count;
4279                return ret;
4280        }
4281
4282        /* Try charges one by one with reclaim */
4283        while (count--) {
4284                ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285                if (ret)
4286                        return ret;
4287                mc.precharge++;
4288                cond_resched();
4289        }
4290        return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 *     move charge. if @target is not NULL, the page is stored in target->page
4304 *     with extra refcnt got(Callers should handle it).
4305 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 *     target for charge migration. if @target is not NULL, the entry is stored
4307 *     in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312        struct page     *page;
4313        swp_entry_t     ent;
4314};
4315
4316enum mc_target_type {
4317        MC_TARGET_NONE = 0,
4318        MC_TARGET_PAGE,
4319        MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323                                                unsigned long addr, pte_t ptent)
4324{
4325        struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327        if (!page || !page_mapped(page))
4328                return NULL;
4329        if (PageAnon(page)) {
4330                if (!(mc.flags & MOVE_ANON))
4331                        return NULL;
4332        } else {
4333                if (!(mc.flags & MOVE_FILE))
4334                        return NULL;
4335        }
4336        if (!get_page_unless_zero(page))
4337                return NULL;
4338
4339        return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346        struct page *page = NULL;
4347        swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350                return NULL;
4351        /*
4352         * Because lookup_swap_cache() updates some statistics counter,
4353         * we call find_get_page() with swapper_space directly.
4354         */
4355        page = find_get_page(swap_address_space(ent), ent.val);
4356        if (do_memsw_account())
4357                entry->val = ent.val;
4358
4359        return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365        return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372        struct page *page = NULL;
4373        struct address_space *mapping;
4374        pgoff_t pgoff;
4375
4376        if (!vma->vm_file) /* anonymous vma */
4377                return NULL;
4378        if (!(mc.flags & MOVE_FILE))
4379                return NULL;
4380
4381        mapping = vma->vm_file->f_mapping;
4382        pgoff = linear_page_index(vma, addr);
4383
4384        /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386        /* shmem/tmpfs may report page out on swap: account for that too. */
4387        if (shmem_mapping(mapping)) {
4388                page = find_get_entry(mapping, pgoff);
4389                if (radix_tree_exceptional_entry(page)) {
4390                        swp_entry_t swp = radix_to_swp_entry(page);
4391                        if (do_memsw_account())
4392                                *entry = swp;
4393                        page = find_get_page(swap_address_space(swp), swp.val);
4394                }
4395        } else
4396                page = find_get_page(mapping, pgoff);
4397#else
4398        page = find_get_page(mapping, pgoff);
4399#endif
4400        return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416                                   bool compound,
4417                                   struct mem_cgroup *from,
4418                                   struct mem_cgroup *to)
4419{
4420        unsigned long flags;
4421        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422        int ret;
4423        bool anon;
4424
4425        VM_BUG_ON(from == to);
4426        VM_BUG_ON_PAGE(PageLRU(page), page);
4427        VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429        /*
4430         * Prevent mem_cgroup_migrate() from looking at
4431         * page->mem_cgroup of its source page while we change it.
4432         */
4433        ret = -EBUSY;
4434        if (!trylock_page(page))
4435                goto out;
4436
4437        ret = -EINVAL;
4438        if (page->mem_cgroup != from)
4439                goto out_unlock;
4440
4441        anon = PageAnon(page);
4442
4443        spin_lock_irqsave(&from->move_lock, flags);
4444
4445        if (!anon && page_mapped(page)) {
4446                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447                               nr_pages);
4448                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449                               nr_pages);
4450        }
4451
4452        /*
4453         * move_lock grabbed above and caller set from->moving_account, so
4454         * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455         * So mapping should be stable for dirty pages.
4456         */
4457        if (!anon && PageDirty(page)) {
4458                struct address_space *mapping = page_mapping(page);
4459
4460                if (mapping_cap_account_dirty(mapping)) {
4461                        __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462                                       nr_pages);
4463                        __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464                                       nr_pages);
4465                }
4466        }
4467
4468        if (PageWriteback(page)) {
4469                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470                               nr_pages);
4471                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472                               nr_pages);
4473        }
4474
4475        /*
4476         * It is safe to change page->mem_cgroup here because the page
4477         * is referenced, charged, and isolated - we can't race with
4478         * uncharging, charging, migration, or LRU putback.
4479         */
4480
4481        /* caller should have done css_get */
4482        page->mem_cgroup = to;
4483        spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485        ret = 0;
4486
4487        local_irq_disable();
4488        mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489        memcg_check_events(to, page);
4490        mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491        memcg_check_events(from, page);
4492        local_irq_enable();
4493out_unlock:
4494        unlock_page(page);
4495out:
4496        return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500                unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502        struct page *page = NULL;
4503        enum mc_target_type ret = MC_TARGET_NONE;
4504        swp_entry_t ent = { .val = 0 };
4505
4506        if (pte_present(ptent))
4507                page = mc_handle_present_pte(vma, addr, ptent);
4508        else if (is_swap_pte(ptent))
4509                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510        else if (pte_none(ptent))
4511                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513        if (!page && !ent.val)
4514                return ret;
4515        if (page) {
4516                /*
4517                 * Do only loose check w/o serialization.
4518                 * mem_cgroup_move_account() checks the page is valid or
4519                 * not under LRU exclusion.
4520                 */
4521                if (page->mem_cgroup == mc.from) {
4522                        ret = MC_TARGET_PAGE;
4523                        if (target)
4524                                target->page = page;
4525                }
4526                if (!ret || !target)
4527                        put_page(page);
4528        }
4529        /* There is a swap entry and a page doesn't exist or isn't charged */
4530        if (ent.val && !ret &&
4531            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532                ret = MC_TARGET_SWAP;
4533                if (target)
4534                        target->ent = ent;
4535        }
4536        return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546                unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548        struct page *page = NULL;
4549        enum mc_target_type ret = MC_TARGET_NONE;
4550
4551        page = pmd_page(pmd);
4552        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553        if (!(mc.flags & MOVE_ANON))
4554                return ret;
4555        if (page->mem_cgroup == mc.from) {
4556                ret = MC_TARGET_PAGE;
4557                if (target) {
4558                        get_page(page);
4559                        target->page = page;
4560                }
4561        }
4562        return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566                unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568        return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573                                        unsigned long addr, unsigned long end,
4574                                        struct mm_walk *walk)
4575{
4576        struct vm_area_struct *vma = walk->vma;
4577        pte_t *pte;
4578        spinlock_t *ptl;
4579
4580        ptl = pmd_trans_huge_lock(pmd, vma);
4581        if (ptl) {
4582                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583                        mc.precharge += HPAGE_PMD_NR;
4584                spin_unlock(ptl);
4585                return 0;
4586        }
4587
4588        if (pmd_trans_unstable(pmd))
4589                return 0;
4590        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591        for (; addr != end; pte++, addr += PAGE_SIZE)
4592                if (get_mctgt_type(vma, addr, *pte, NULL))
4593                        mc.precharge++; /* increment precharge temporarily */
4594        pte_unmap_unlock(pte - 1, ptl);
4595        cond_resched();
4596
4597        return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602        unsigned long precharge;
4603
4604        struct mm_walk mem_cgroup_count_precharge_walk = {
4605                .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606                .mm = mm,
4607        };
4608        down_read(&mm->mmap_sem);
4609        walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610        up_read(&mm->mmap_sem);
4611
4612        precharge = mc.precharge;
4613        mc.precharge = 0;
4614
4615        return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620        unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622        VM_BUG_ON(mc.moving_task);
4623        mc.moving_task = current;
4624        return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630        struct mem_cgroup *from = mc.from;
4631        struct mem_cgroup *to = mc.to;
4632
4633        /* we must uncharge all the leftover precharges from mc.to */
4634        if (mc.precharge) {
4635                cancel_charge(mc.to, mc.precharge);
4636                mc.precharge = 0;
4637        }
4638        /*
4639         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640         * we must uncharge here.
4641         */
4642        if (mc.moved_charge) {
4643                cancel_charge(mc.from, mc.moved_charge);
4644                mc.moved_charge = 0;
4645        }
4646        /* we must fixup refcnts and charges */
4647        if (mc.moved_swap) {
4648                /* uncharge swap account from the old cgroup */
4649                if (!mem_cgroup_is_root(mc.from))
4650                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652                /*
4653                 * we charged both to->memory and to->memsw, so we
4654                 * should uncharge to->memory.
4655                 */
4656                if (!mem_cgroup_is_root(mc.to))
4657                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659                css_put_many(&mc.from->css, mc.moved_swap);
4660
4661                /* we've already done css_get(mc.to) */
4662                mc.moved_swap = 0;
4663        }
4664        memcg_oom_recover(from);
4665        memcg_oom_recover(to);
4666        wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671        struct mm_struct *mm = mc.mm;
4672
4673        /*
4674         * we must clear moving_task before waking up waiters at the end of
4675         * task migration.
4676         */
4677        mc.moving_task = NULL;
4678        __mem_cgroup_clear_mc();
4679        spin_lock(&mc.lock);
4680        mc.from = NULL;
4681        mc.to = NULL;
4682        mc.mm = NULL;
4683        spin_unlock(&mc.lock);
4684
4685        mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690        struct cgroup_subsys_state *css;
4691        struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692        struct mem_cgroup *from;
4693        struct task_struct *leader, *p;
4694        struct mm_struct *mm;
4695        unsigned long move_flags;
4696        int ret = 0;
4697
4698        /* charge immigration isn't supported on the default hierarchy */
4699        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700                return 0;
4701
4702        /*
4703         * Multi-process migrations only happen on the default hierarchy
4704         * where charge immigration is not used.  Perform charge
4705         * immigration if @tset contains a leader and whine if there are
4706         * multiple.
4707         */
4708        p = NULL;
4709        cgroup_taskset_for_each_leader(leader, css, tset) {
4710                WARN_ON_ONCE(p);
4711                p = leader;
4712                memcg = mem_cgroup_from_css(css);
4713        }
4714        if (!p)
4715                return 0;
4716
4717        /*
4718         * We are now commited to this value whatever it is. Changes in this
4719         * tunable will only affect upcoming migrations, not the current one.
4720         * So we need to save it, and keep it going.
4721         */
4722        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723        if (!move_flags)
4724                return 0;
4725
4726        from = mem_cgroup_from_task(p);
4727
4728        VM_BUG_ON(from == memcg);
4729
4730        mm = get_task_mm(p);
4731        if (!mm)
4732                return 0;
4733        /* We move charges only when we move a owner of the mm */
4734        if (mm->owner == p) {
4735                VM_BUG_ON(mc.from);
4736                VM_BUG_ON(mc.to);
4737                VM_BUG_ON(mc.precharge);
4738                VM_BUG_ON(mc.moved_charge);
4739                VM_BUG_ON(mc.moved_swap);
4740
4741                spin_lock(&mc.lock);
4742                mc.mm = mm;
4743                mc.from = from;
4744                mc.to = memcg;
4745                mc.flags = move_flags;
4746                spin_unlock(&mc.lock);
4747                /* We set mc.moving_task later */
4748
4749                ret = mem_cgroup_precharge_mc(mm);
4750                if (ret)
4751                        mem_cgroup_clear_mc();
4752        } else {
4753                mmput(mm);
4754        }
4755        return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760        if (mc.to)
4761                mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765                                unsigned long addr, unsigned long end,
4766                                struct mm_walk *walk)
4767{
4768        int ret = 0;
4769        struct vm_area_struct *vma = walk->vma;
4770        pte_t *pte;
4771        spinlock_t *ptl;
4772        enum mc_target_type target_type;
4773        union mc_target target;
4774        struct page *page;
4775
4776        ptl = pmd_trans_huge_lock(pmd, vma);
4777        if (ptl) {
4778                if (mc.precharge < HPAGE_PMD_NR) {
4779                        spin_unlock(ptl);
4780                        return 0;
4781                }
4782                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783                if (target_type == MC_TARGET_PAGE) {
4784                        page = target.page;
4785                        if (!isolate_lru_page(page)) {
4786                                if (!mem_cgroup_move_account(page, true,
4787                                                             mc.from, mc.to)) {
4788                                        mc.precharge -= HPAGE_PMD_NR;
4789                                        mc.moved_charge += HPAGE_PMD_NR;
4790                                }
4791                                putback_lru_page(page);
4792                        }
4793                        put_page(page);
4794                }
4795                spin_unlock(ptl);
4796                return 0;
4797        }
4798
4799        if (pmd_trans_unstable(pmd))
4800                return 0;
4801retry:
4802        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803        for (; addr != end; addr += PAGE_SIZE) {
4804                pte_t ptent = *(pte++);
4805                swp_entry_t ent;
4806
4807                if (!mc.precharge)
4808                        break;
4809
4810                switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811                case MC_TARGET_PAGE:
4812                        page = target.page;
4813                        /*
4814                         * We can have a part of the split pmd here. Moving it
4815                         * can be done but it would be too convoluted so simply
4816                         * ignore such a partial THP and keep it in original
4817                         * memcg. There should be somebody mapping the head.
4818                         */
4819                        if (PageTransCompound(page))
4820                                goto put;
4821                        if (isolate_lru_page(page))
4822                                goto put;
4823                        if (!mem_cgroup_move_account(page, false,
4824                                                mc.from, mc.to)) {
4825                                mc.precharge--;
4826                                /* we uncharge from mc.from later. */
4827                                mc.moved_charge++;
4828                        }
4829                        putback_lru_page(page);
4830put:                    /* get_mctgt_type() gets the page */
4831                        put_page(page);
4832                        break;
4833                case MC_TARGET_SWAP:
4834                        ent = target.ent;
4835                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836                                mc.precharge--;
4837                                /* we fixup refcnts and charges later. */
4838                                mc.moved_swap++;
4839                        }
4840                        break;
4841                default:
4842                        break;
4843                }
4844        }
4845        pte_unmap_unlock(pte - 1, ptl);
4846        cond_resched();
4847
4848        if (addr != end) {
4849                /*
4850                 * We have consumed all precharges we got in can_attach().
4851                 * We try charge one by one, but don't do any additional
4852                 * charges to mc.to if we have failed in charge once in attach()
4853                 * phase.
4854                 */
4855                ret = mem_cgroup_do_precharge(1);
4856                if (!ret)
4857                        goto retry;
4858        }
4859
4860        return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865        struct mm_walk mem_cgroup_move_charge_walk = {
4866                .pmd_entry = mem_cgroup_move_charge_pte_range,
4867                .mm = mc.mm,
4868        };
4869
4870        lru_add_drain_all();
4871        /*
4872         * Signal lock_page_memcg() to take the memcg's move_lock
4873         * while we're moving its pages to another memcg. Then wait
4874         * for already started RCU-only updates to finish.
4875         */
4876        atomic_inc(&mc.from->moving_account);
4877        synchronize_rcu();
4878retry:
4879        if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880                /*
4881                 * Someone who are holding the mmap_sem might be waiting in
4882                 * waitq. So we cancel all extra charges, wake up all waiters,
4883                 * and retry. Because we cancel precharges, we might not be able
4884                 * to move enough charges, but moving charge is a best-effort
4885                 * feature anyway, so it wouldn't be a big problem.
4886                 */
4887                __mem_cgroup_clear_mc();
4888                cond_resched();
4889                goto retry;
4890        }
4891        /*
4892         * When we have consumed all precharges and failed in doing
4893         * additional charge, the page walk just aborts.
4894         */
4895        walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896        up_read(&mc.mm->mmap_sem);
4897        atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902        if (mc.to) {
4903                mem_cgroup_move_charge();
4904                mem_cgroup_clear_mc();
4905        }
4906}
4907#else   /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910        return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927        /*
4928         * use_hierarchy is forced on the default hierarchy.  cgroup core
4929         * guarantees that @root doesn't have any children, so turning it
4930         * on for the root memcg is enough.
4931         */
4932        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933                root_mem_cgroup->use_hierarchy = true;
4934        else
4935                root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939                               struct cftype *cft)
4940{
4941        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943        return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949        unsigned long low = READ_ONCE(memcg->low);
4950
4951        if (low == PAGE_COUNTER_MAX)
4952                seq_puts(m, "max\n");
4953        else
4954                seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956        return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960                                char *buf, size_t nbytes, loff_t off)
4961{
4962        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963        unsigned long low;
4964        int err;
4965
4966        buf = strstrip(buf);
4967        err = page_counter_memparse(buf, "max", &low);
4968        if (err)
4969                return err;
4970
4971        memcg->low = low;
4972
4973        return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979        unsigned long high = READ_ONCE(memcg->high);
4980
4981        if (high == PAGE_COUNTER_MAX)
4982                seq_puts(m, "max\n");
4983        else
4984                seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986        return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990                                 char *buf, size_t nbytes, loff_t off)
4991{
4992        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993        unsigned long nr_pages;
4994        unsigned long high;
4995        int err;
4996
4997        buf = strstrip(buf);
4998        err = page_counter_memparse(buf, "max", &high);
4999        if (err)
5000                return err;
5001
5002        memcg->high = high;
5003
5004        nr_pages = page_counter_read(&memcg->memory);
5005        if (nr_pages > high)
5006                try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007                                             GFP_KERNEL, true);
5008
5009        memcg_wb_domain_size_changed(memcg);
5010        return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016        unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018        if (max == PAGE_COUNTER_MAX)
5019                seq_puts(m, "max\n");
5020        else
5021                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023        return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027                                char *buf, size_t nbytes, loff_t off)
5028{
5029        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030        unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031        bool drained = false;
5032        unsigned long max;
5033        int err;
5034
5035        buf = strstrip(buf);
5036        err = page_counter_memparse(buf, "max", &max);
5037        if (err)
5038                return err;
5039
5040        xchg(&memcg->memory.limit, max);
5041
5042        for (;;) {
5043                unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045                if (nr_pages <= max)
5046                        break;
5047
5048                if (signal_pending(current)) {
5049                        err = -EINTR;
5050                        break;
5051                }
5052
5053                if (!drained) {
5054                        drain_all_stock(memcg);
5055                        drained = true;
5056                        continue;
5057                }
5058
5059                if (nr_reclaims) {
5060                        if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061                                                          GFP_KERNEL, true))
5062                                nr_reclaims--;
5063                        continue;
5064                }
5065
5066                mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067                if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068                        break;
5069        }
5070
5071        memcg_wb_domain_size_changed(memcg);
5072        return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079        seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080        seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081        seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082        seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084        return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090        unsigned long stat[MEMCG_NR_STAT];
5091        unsigned long events[MEMCG_NR_EVENTS];
5092        int i;
5093
5094        /*
5095         * Provide statistics on the state of the memory subsystem as
5096         * well as cumulative event counters that show past behavior.
5097         *
5098         * This list is ordered following a combination of these gradients:
5099         * 1) generic big picture -> specifics and details
5100         * 2) reflecting userspace activity -> reflecting kernel heuristics
5101         *
5102         * Current memory state:
5103         */
5104
5105        tree_stat(memcg, stat);
5106        tree_events(memcg, events);
5107
5108        seq_printf(m, "anon %llu\n",
5109                   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110        seq_printf(m, "file %llu\n",
5111                   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112        seq_printf(m, "kernel_stack %llu\n",
5113                   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114        seq_printf(m, "slab %llu\n",
5115                   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116                         stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117        seq_printf(m, "sock %llu\n",
5118                   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120        seq_printf(m, "file_mapped %llu\n",
5121                   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122        seq_printf(m, "file_dirty %llu\n",
5123                   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124        seq_printf(m, "file_writeback %llu\n",
5125                   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127        for (i = 0; i < NR_LRU_LISTS; i++) {
5128                struct mem_cgroup *mi;
5129                unsigned long val = 0;
5130
5131                for_each_mem_cgroup_tree(mi, memcg)
5132                        val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133                seq_printf(m, "%s %llu\n",
5134                           mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135        }
5136
5137        seq_printf(m, "slab_reclaimable %llu\n",
5138                   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139        seq_printf(m, "slab_unreclaimable %llu\n",
5140                   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142        /* Accumulated memory events */
5143
5144        seq_printf(m, "pgfault %lu\n",
5145                   events[MEM_CGROUP_EVENTS_PGFAULT]);
5146        seq_printf(m, "pgmajfault %lu\n",
5147                   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149        return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153        {
5154                .name = "current",
5155                .flags = CFTYPE_NOT_ON_ROOT,
5156                .read_u64 = memory_current_read,
5157        },
5158        {
5159                .name = "low",
5160                .flags = CFTYPE_NOT_ON_ROOT,
5161                .seq_show = memory_low_show,
5162                .write = memory_low_write,
5163        },
5164        {
5165                .name = "high",
5166                .flags = CFTYPE_NOT_ON_ROOT,
5167                .seq_show = memory_high_show,
5168                .write = memory_high_write,
5169        },
5170        {
5171                .name = "max",
5172                .flags = CFTYPE_NOT_ON_ROOT,
5173                .seq_show = memory_max_show,
5174                .write = memory_max_write,
5175        },
5176        {
5177                .name = "events",
5178                .flags = CFTYPE_NOT_ON_ROOT,
5179                .file_offset = offsetof(struct mem_cgroup, events_file),
5180                .seq_show = memory_events_show,
5181        },
5182        {
5183                .name = "stat",
5184                .flags = CFTYPE_NOT_ON_ROOT,
5185                .seq_show = memory_stat_show,
5186        },
5187        { }     /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191        .css_alloc = mem_cgroup_css_alloc,
5192        .css_online = mem_cgroup_css_online,
5193        .css_offline = mem_cgroup_css_offline,
5194        .css_released = mem_cgroup_css_released,
5195        .css_free = mem_cgroup_css_free,
5196        .css_reset = mem_cgroup_css_reset,
5197        .can_attach = mem_cgroup_can_attach,
5198        .cancel_attach = mem_cgroup_cancel_attach,
5199        .post_attach = mem_cgroup_move_task,
5200        .bind = mem_cgroup_bind,
5201        .dfl_cftypes = memory_files,
5202        .legacy_cftypes = mem_cgroup_legacy_files,
5203        .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216        if (mem_cgroup_disabled())
5217                return false;
5218
5219        /*
5220         * The toplevel group doesn't have a configurable range, so
5221         * it's never low when looked at directly, and it is not
5222         * considered an ancestor when assessing the hierarchy.
5223         */
5224
5225        if (memcg == root_mem_cgroup)
5226                return false;
5227
5228        if (page_counter_read(&memcg->memory) >= memcg->low)
5229                return false;
5230
5231        while (memcg != root) {
5232                memcg = parent_mem_cgroup(memcg);
5233
5234                if (memcg == root_mem_cgroup)
5235                        break;
5236
5237                if (page_counter_read(&memcg->memory) >= memcg->low)
5238                        return false;
5239        }
5240        return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262                          bool compound)
5263{
5264        struct mem_cgroup *memcg = NULL;
5265        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266        int ret = 0;
5267
5268        if (mem_cgroup_disabled())
5269                goto out;
5270
5271        if (PageSwapCache(page)) {
5272                /*
5273                 * Every swap fault against a single page tries to charge the
5274                 * page, bail as early as possible.  shmem_unuse() encounters
5275                 * already charged pages, too.  The USED bit is protected by
5276                 * the page lock, which serializes swap cache removal, which
5277                 * in turn serializes uncharging.
5278                 */
5279                VM_BUG_ON_PAGE(!PageLocked(page), page);
5280                if (page->mem_cgroup)
5281                        goto out;
5282
5283                if (do_swap_account) {
5284                        swp_entry_t ent = { .val = page_private(page), };
5285                        unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287                        rcu_read_lock();
5288                        memcg = mem_cgroup_from_id(id);
5289                        if (memcg && !css_tryget_online(&memcg->css))
5290                                memcg = NULL;
5291                        rcu_read_unlock();
5292                }
5293        }
5294
5295        if (!memcg)
5296                memcg = get_mem_cgroup_from_mm(mm);
5297
5298        ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300        css_put(&memcg->css);
5301out:
5302        *memcgp = memcg;
5303        return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up.  This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration.  If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323                              bool lrucare, bool compound)
5324{
5325        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327        VM_BUG_ON_PAGE(!page->mapping, page);
5328        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330        if (mem_cgroup_disabled())
5331                return;
5332        /*
5333         * Swap faults will attempt to charge the same page multiple
5334         * times.  But reuse_swap_page() might have removed the page
5335         * from swapcache already, so we can't check PageSwapCache().
5336         */
5337        if (!memcg)
5338                return;
5339
5340        commit_charge(page, memcg, lrucare);
5341
5342        local_irq_disable();
5343        mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344        memcg_check_events(memcg, page);
5345        local_irq_enable();
5346
5347        if (do_memsw_account() && PageSwapCache(page)) {
5348                swp_entry_t entry = { .val = page_private(page) };
5349                /*
5350                 * The swap entry might not get freed for a long time,
5351                 * let's not wait for it.  The page already received a
5352                 * memory+swap charge, drop the swap entry duplicate.
5353                 */
5354                mem_cgroup_uncharge_swap(entry);
5355        }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366                bool compound)
5367{
5368        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370        if (mem_cgroup_disabled())
5371                return;
5372        /*
5373         * Swap faults will attempt to charge the same page multiple
5374         * times.  But reuse_swap_page() might have removed the page
5375         * from swapcache already, so we can't check PageSwapCache().
5376         */
5377        if (!memcg)
5378                return;
5379
5380        cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384                           unsigned long nr_anon, unsigned long nr_file,
5385                           unsigned long nr_huge, struct page *dummy_page)
5386{
5387        unsigned long nr_pages = nr_anon + nr_file;
5388        unsigned long flags;
5389
5390        if (!mem_cgroup_is_root(memcg)) {
5391                page_counter_uncharge(&memcg->memory, nr_pages);
5392                if (do_memsw_account())
5393                        page_counter_uncharge(&memcg->memsw, nr_pages);
5394                memcg_oom_recover(memcg);
5395        }
5396
5397        local_irq_save(flags);
5398        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401        __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403        memcg_check_events(memcg, dummy_page);
5404        local_irq_restore(flags);
5405
5406        if (!mem_cgroup_is_root(memcg))
5407                css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412        struct mem_cgroup *memcg = NULL;
5413        unsigned long nr_anon = 0;
5414        unsigned long nr_file = 0;
5415        unsigned long nr_huge = 0;
5416        unsigned long pgpgout = 0;
5417        struct list_head *next;
5418        struct page *page;
5419
5420        /*
5421         * Note that the list can be a single page->lru; hence the
5422         * do-while loop instead of a simple list_for_each_entry().
5423         */
5424        next = page_list->next;
5425        do {
5426                unsigned int nr_pages = 1;
5427
5428                page = list_entry(next, struct page, lru);
5429                next = page->lru.next;
5430
5431                VM_BUG_ON_PAGE(PageLRU(page), page);
5432                VM_BUG_ON_PAGE(page_count(page), page);
5433
5434                if (!page->mem_cgroup)
5435                        continue;
5436
5437                /*
5438                 * Nobody should be changing or seriously looking at
5439                 * page->mem_cgroup at this point, we have fully
5440                 * exclusive access to the page.
5441                 */
5442
5443                if (memcg != page->mem_cgroup) {
5444                        if (memcg) {
5445                                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446                                               nr_huge, page);
5447                                pgpgout = nr_anon = nr_file = nr_huge = 0;
5448                        }
5449                        memcg = page->mem_cgroup;
5450                }
5451
5452                if (PageTransHuge(page)) {
5453                        nr_pages <<= compound_order(page);
5454                        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455                        nr_huge += nr_pages;
5456                }
5457
5458                if (PageAnon(page))
5459                        nr_anon += nr_pages;
5460                else
5461                        nr_file += nr_pages;
5462
5463                page->mem_cgroup = NULL;
5464
5465                pgpgout++;
5466        } while (next != page_list);
5467
5468        if (memcg)
5469                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470                               nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482        if (mem_cgroup_disabled())
5483                return;
5484
5485        /* Don't touch page->lru of any random page, pre-check: */
5486        if (!page->mem_cgroup)
5487                return;
5488
5489        INIT_LIST_HEAD(&page->lru);
5490        uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502        if (mem_cgroup_disabled())
5503                return;
5504
5505        if (!list_empty(page_list))
5506                uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521        struct mem_cgroup *memcg;
5522        unsigned int nr_pages;
5523        bool compound;
5524
5525        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529                       newpage);
5530
5531        if (mem_cgroup_disabled())
5532                return;
5533
5534        /* Page cache replacement: new page already charged? */
5535        if (newpage->mem_cgroup)
5536                return;
5537
5538        /* Swapcache readahead pages can get replaced before being charged */
5539        memcg = oldpage->mem_cgroup;
5540        if (!memcg)
5541                return;
5542
5543        /* Force-charge the new page. The old one will be freed soon */
5544        compound = PageTransHuge(newpage);
5545        nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547        page_counter_charge(&memcg->memory, nr_pages);
5548        if (do_memsw_account())
5549                page_counter_charge(&memcg->memsw, nr_pages);
5550        css_get_many(&memcg->css, nr_pages);
5551
5552        commit_charge(newpage, memcg, false);
5553
5554        local_irq_disable();
5555        mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556        memcg_check_events(memcg, newpage);
5557        local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565        struct mem_cgroup *memcg;
5566
5567        /* Socket cloning can throw us here with sk_cgrp already
5568         * filled. It won't however, necessarily happen from
5569         * process context. So the test for root memcg given
5570         * the current task's memcg won't help us in this case.
5571         *
5572         * Respecting the original socket's memcg is a better
5573         * decision in this case.
5574         */
5575        if (sk->sk_memcg) {
5576                BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577                css_get(&sk->sk_memcg->css);
5578                return;
5579        }
5580
5581        rcu_read_lock();
5582        memcg = mem_cgroup_from_task(current);
5583        if (memcg == root_mem_cgroup)
5584                goto out;
5585        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586                goto out;
5587        if (css_tryget_online(&memcg->css))
5588                sk->sk_memcg = memcg;
5589out:
5590        rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596        WARN_ON(!sk->sk_memcg);
5597        css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610        gfp_t gfp_mask = GFP_KERNEL;
5611
5612        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613                struct page_counter *fail;
5614
5615                if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616                        memcg->tcpmem_pressure = 0;
5617                        return true;
5618                }
5619                page_counter_charge(&memcg->tcpmem, nr_pages);
5620                memcg->tcpmem_pressure = 1;
5621                return false;
5622        }
5623
5624        /* Don't block in the packet receive path */
5625        if (in_softirq())
5626                gfp_mask = GFP_NOWAIT;
5627
5628        this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630        if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631                return true;
5632
5633        try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634        return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645                page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646                return;
5647        }
5648
5649        this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651        page_counter_uncharge(&memcg->memory, nr_pages);
5652        css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657        char *token;
5658
5659        while ((token = strsep(&s, ",")) != NULL) {
5660                if (!*token)
5661                        continue;
5662                if (!strcmp(token, "nosocket"))
5663                        cgroup_memory_nosocket = true;
5664                if (!strcmp(token, "nokmem"))
5665                        cgroup_memory_nokmem = true;
5666        }
5667        return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681        int cpu, node;
5682
5683        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685        for_each_possible_cpu(cpu)
5686                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687                          drain_local_stock);
5688
5689        for_each_node(node) {
5690                struct mem_cgroup_tree_per_node *rtpn;
5691                int zone;
5692
5693                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694                                    node_online(node) ? node : NUMA_NO_NODE);
5695
5696                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697                        struct mem_cgroup_tree_per_zone *rtpz;
5698
5699                        rtpz = &rtpn->rb_tree_per_zone[zone];
5700                        rtpz->rb_root = RB_ROOT;
5701                        spin_lock_init(&rtpz->lock);
5702                }
5703                soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704        }
5705
5706        return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720        struct mem_cgroup *memcg;
5721        unsigned short oldid;
5722
5723        VM_BUG_ON_PAGE(PageLRU(page), page);
5724        VM_BUG_ON_PAGE(page_count(page), page);
5725
5726        if (!do_memsw_account())
5727                return;
5728
5729        memcg = page->mem_cgroup;
5730
5731        /* Readahead page, never charged */
5732        if (!memcg)
5733                return;
5734
5735        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736        VM_BUG_ON_PAGE(oldid, page);
5737        mem_cgroup_swap_statistics(memcg, true);
5738
5739        page->mem_cgroup = NULL;
5740
5741        if (!mem_cgroup_is_root(memcg))
5742                page_counter_uncharge(&memcg->memory, 1);
5743
5744        /*
5745         * Interrupts should be disabled here because the caller holds the
5746         * mapping->tree_lock lock which is taken with interrupts-off. It is
5747         * important here to have the interrupts disabled because it is the
5748         * only synchronisation we have for udpating the per-CPU variables.
5749         */
5750        VM_BUG_ON(!irqs_disabled());
5751        mem_cgroup_charge_statistics(memcg, page, false, -1);
5752        memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766        struct mem_cgroup *memcg;
5767        struct page_counter *counter;
5768        unsigned short oldid;
5769
5770        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771                return 0;
5772
5773        memcg = page->mem_cgroup;
5774
5775        /* Readahead page, never charged */
5776        if (!memcg)
5777                return 0;
5778
5779        if (!mem_cgroup_is_root(memcg) &&
5780            !page_counter_try_charge(&memcg->swap, 1, &counter))
5781                return -ENOMEM;
5782
5783        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784        VM_BUG_ON_PAGE(oldid, page);
5785        mem_cgroup_swap_statistics(memcg, true);
5786
5787        css_get(&memcg->css);
5788        return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799        struct mem_cgroup *memcg;
5800        unsigned short id;
5801
5802        if (!do_swap_account)
5803                return;
5804
5805        id = swap_cgroup_record(entry, 0);
5806        rcu_read_lock();
5807        memcg = mem_cgroup_from_id(id);
5808        if (memcg) {
5809                if (!mem_cgroup_is_root(memcg)) {
5810                        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811                                page_counter_uncharge(&memcg->swap, 1);
5812                        else
5813                                page_counter_uncharge(&memcg->memsw, 1);
5814                }
5815                mem_cgroup_swap_statistics(memcg, false);
5816                css_put(&memcg->css);
5817        }
5818        rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823        long nr_swap_pages = get_nr_swap_pages();
5824
5825        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826                return nr_swap_pages;
5827        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828                nr_swap_pages = min_t(long, nr_swap_pages,
5829                                      READ_ONCE(memcg->swap.limit) -
5830                                      page_counter_read(&memcg->swap));
5831        return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836        struct mem_cgroup *memcg;
5837
5838        VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840        if (vm_swap_full())
5841                return true;
5842        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843                return false;
5844
5845        memcg = page->mem_cgroup;
5846        if (!memcg)
5847                return false;
5848
5849        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850                if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851                        return true;
5852
5853        return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865        if (!strcmp(s, "1"))
5866                really_do_swap_account = 1;
5867        else if (!strcmp(s, "0"))
5868                really_do_swap_account = 0;
5869        return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874                             struct cftype *cft)
5875{
5876        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878        return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884        unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886        if (max == PAGE_COUNTER_MAX)
5887                seq_puts(m, "max\n");
5888        else
5889                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891        return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895                              char *buf, size_t nbytes, loff_t off)
5896{
5897        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898        unsigned long max;
5899        int err;
5900
5901        buf = strstrip(buf);
5902        err = page_counter_memparse(buf, "max", &max);
5903        if (err)
5904                return err;
5905
5906        mutex_lock(&memcg_limit_mutex);
5907        err = page_counter_limit(&memcg->swap, max);
5908        mutex_unlock(&memcg_limit_mutex);
5909        if (err)
5910                return err;
5911
5912        return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916        {
5917                .name = "swap.current",
5918                .flags = CFTYPE_NOT_ON_ROOT,
5919                .read_u64 = swap_current_read,
5920        },
5921        {
5922                .name = "swap.max",
5923                .flags = CFTYPE_NOT_ON_ROOT,
5924                .seq_show = swap_max_show,
5925                .write = swap_max_write,
5926        },
5927        { }     /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931        {
5932                .name = "memsw.usage_in_bytes",
5933                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934                .read_u64 = mem_cgroup_read_u64,
5935        },
5936        {
5937                .name = "memsw.max_usage_in_bytes",
5938                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939                .write = mem_cgroup_reset,
5940                .read_u64 = mem_cgroup_read_u64,
5941        },
5942        {
5943                .name = "memsw.limit_in_bytes",
5944                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945                .write = mem_cgroup_write,
5946                .read_u64 = mem_cgroup_read_u64,
5947        },
5948        {
5949                .name = "memsw.failcnt",
5950                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951                .write = mem_cgroup_reset,
5952                .read_u64 = mem_cgroup_read_u64,
5953        },
5954        { },    /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959        if (!mem_cgroup_disabled() && really_do_swap_account) {
5960                do_swap_account = 1;
5961                WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962                                               swap_files));
5963                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964                                                  memsw_cgroup_files));
5965        }
5966        return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
5971