linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66
  67#include <asm/io.h>
  68#include <asm/mmu_context.h>
  69#include <asm/pgalloc.h>
  70#include <asm/uaccess.h>
  71#include <asm/tlb.h>
  72#include <asm/tlbflush.h>
  73#include <asm/pgtable.h>
  74
  75#include "internal.h"
  76
  77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  79#endif
  80
  81#ifndef CONFIG_NEED_MULTIPLE_NODES
  82/* use the per-pgdat data instead for discontigmem - mbligh */
  83unsigned long max_mapnr;
  84struct page *mem_map;
  85
  86EXPORT_SYMBOL(max_mapnr);
  87EXPORT_SYMBOL(mem_map);
  88#endif
  89
  90/*
  91 * A number of key systems in x86 including ioremap() rely on the assumption
  92 * that high_memory defines the upper bound on direct map memory, then end
  93 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  95 * and ZONE_HIGHMEM.
  96 */
  97void * high_memory;
  98
  99EXPORT_SYMBOL(high_memory);
 100
 101/*
 102 * Randomize the address space (stacks, mmaps, brk, etc.).
 103 *
 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 105 *   as ancient (libc5 based) binaries can segfault. )
 106 */
 107int randomize_va_space __read_mostly =
 108#ifdef CONFIG_COMPAT_BRK
 109                                        1;
 110#else
 111                                        2;
 112#endif
 113
 114static int __init disable_randmaps(char *s)
 115{
 116        randomize_va_space = 0;
 117        return 1;
 118}
 119__setup("norandmaps", disable_randmaps);
 120
 121unsigned long zero_pfn __read_mostly;
 122unsigned long highest_memmap_pfn __read_mostly;
 123
 124EXPORT_SYMBOL(zero_pfn);
 125
 126/*
 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 128 */
 129static int __init init_zero_pfn(void)
 130{
 131        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 132        return 0;
 133}
 134core_initcall(init_zero_pfn);
 135
 136
 137#if defined(SPLIT_RSS_COUNTING)
 138
 139void sync_mm_rss(struct mm_struct *mm)
 140{
 141        int i;
 142
 143        for (i = 0; i < NR_MM_COUNTERS; i++) {
 144                if (current->rss_stat.count[i]) {
 145                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 146                        current->rss_stat.count[i] = 0;
 147                }
 148        }
 149        current->rss_stat.events = 0;
 150}
 151
 152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 153{
 154        struct task_struct *task = current;
 155
 156        if (likely(task->mm == mm))
 157                task->rss_stat.count[member] += val;
 158        else
 159                add_mm_counter(mm, member, val);
 160}
 161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 163
 164/* sync counter once per 64 page faults */
 165#define TASK_RSS_EVENTS_THRESH  (64)
 166static void check_sync_rss_stat(struct task_struct *task)
 167{
 168        if (unlikely(task != current))
 169                return;
 170        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 171                sync_mm_rss(task->mm);
 172}
 173#else /* SPLIT_RSS_COUNTING */
 174
 175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 177
 178static void check_sync_rss_stat(struct task_struct *task)
 179{
 180}
 181
 182#endif /* SPLIT_RSS_COUNTING */
 183
 184#ifdef HAVE_GENERIC_MMU_GATHER
 185
 186static bool tlb_next_batch(struct mmu_gather *tlb)
 187{
 188        struct mmu_gather_batch *batch;
 189
 190        batch = tlb->active;
 191        if (batch->next) {
 192                tlb->active = batch->next;
 193                return true;
 194        }
 195
 196        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 197                return false;
 198
 199        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 200        if (!batch)
 201                return false;
 202
 203        tlb->batch_count++;
 204        batch->next = NULL;
 205        batch->nr   = 0;
 206        batch->max  = MAX_GATHER_BATCH;
 207
 208        tlb->active->next = batch;
 209        tlb->active = batch;
 210
 211        return true;
 212}
 213
 214/* tlb_gather_mmu
 215 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 216 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 217 *      users and we're going to destroy the full address space (exit/execve).
 218 */
 219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 220{
 221        tlb->mm = mm;
 222
 223        /* Is it from 0 to ~0? */
 224        tlb->fullmm     = !(start | (end+1));
 225        tlb->need_flush_all = 0;
 226        tlb->local.next = NULL;
 227        tlb->local.nr   = 0;
 228        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 229        tlb->active     = &tlb->local;
 230        tlb->batch_count = 0;
 231
 232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 233        tlb->batch = NULL;
 234#endif
 235
 236        __tlb_reset_range(tlb);
 237}
 238
 239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 240{
 241        if (!tlb->end)
 242                return;
 243
 244        tlb_flush(tlb);
 245        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 247        tlb_table_flush(tlb);
 248#endif
 249        __tlb_reset_range(tlb);
 250}
 251
 252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 253{
 254        struct mmu_gather_batch *batch;
 255
 256        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 257                free_pages_and_swap_cache(batch->pages, batch->nr);
 258                batch->nr = 0;
 259        }
 260        tlb->active = &tlb->local;
 261}
 262
 263void tlb_flush_mmu(struct mmu_gather *tlb)
 264{
 265        tlb_flush_mmu_tlbonly(tlb);
 266        tlb_flush_mmu_free(tlb);
 267}
 268
 269/* tlb_finish_mmu
 270 *      Called at the end of the shootdown operation to free up any resources
 271 *      that were required.
 272 */
 273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 274{
 275        struct mmu_gather_batch *batch, *next;
 276
 277        tlb_flush_mmu(tlb);
 278
 279        /* keep the page table cache within bounds */
 280        check_pgt_cache();
 281
 282        for (batch = tlb->local.next; batch; batch = next) {
 283                next = batch->next;
 284                free_pages((unsigned long)batch, 0);
 285        }
 286        tlb->local.next = NULL;
 287}
 288
 289/* __tlb_remove_page
 290 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 291 *      handling the additional races in SMP caused by other CPUs caching valid
 292 *      mappings in their TLBs. Returns the number of free page slots left.
 293 *      When out of page slots we must call tlb_flush_mmu().
 294 */
 295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 296{
 297        struct mmu_gather_batch *batch;
 298
 299        VM_BUG_ON(!tlb->end);
 300
 301        batch = tlb->active;
 302        batch->pages[batch->nr++] = page;
 303        if (batch->nr == batch->max) {
 304                if (!tlb_next_batch(tlb))
 305                        return 0;
 306                batch = tlb->active;
 307        }
 308        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 309
 310        return batch->max - batch->nr;
 311}
 312
 313#endif /* HAVE_GENERIC_MMU_GATHER */
 314
 315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 316
 317/*
 318 * See the comment near struct mmu_table_batch.
 319 */
 320
 321static void tlb_remove_table_smp_sync(void *arg)
 322{
 323        /* Simply deliver the interrupt */
 324}
 325
 326static void tlb_remove_table_one(void *table)
 327{
 328        /*
 329         * This isn't an RCU grace period and hence the page-tables cannot be
 330         * assumed to be actually RCU-freed.
 331         *
 332         * It is however sufficient for software page-table walkers that rely on
 333         * IRQ disabling. See the comment near struct mmu_table_batch.
 334         */
 335        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 336        __tlb_remove_table(table);
 337}
 338
 339static void tlb_remove_table_rcu(struct rcu_head *head)
 340{
 341        struct mmu_table_batch *batch;
 342        int i;
 343
 344        batch = container_of(head, struct mmu_table_batch, rcu);
 345
 346        for (i = 0; i < batch->nr; i++)
 347                __tlb_remove_table(batch->tables[i]);
 348
 349        free_page((unsigned long)batch);
 350}
 351
 352void tlb_table_flush(struct mmu_gather *tlb)
 353{
 354        struct mmu_table_batch **batch = &tlb->batch;
 355
 356        if (*batch) {
 357                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 358                *batch = NULL;
 359        }
 360}
 361
 362void tlb_remove_table(struct mmu_gather *tlb, void *table)
 363{
 364        struct mmu_table_batch **batch = &tlb->batch;
 365
 366        /*
 367         * When there's less then two users of this mm there cannot be a
 368         * concurrent page-table walk.
 369         */
 370        if (atomic_read(&tlb->mm->mm_users) < 2) {
 371                __tlb_remove_table(table);
 372                return;
 373        }
 374
 375        if (*batch == NULL) {
 376                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 377                if (*batch == NULL) {
 378                        tlb_remove_table_one(table);
 379                        return;
 380                }
 381                (*batch)->nr = 0;
 382        }
 383        (*batch)->tables[(*batch)->nr++] = table;
 384        if ((*batch)->nr == MAX_TABLE_BATCH)
 385                tlb_table_flush(tlb);
 386}
 387
 388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 389
 390/*
 391 * Note: this doesn't free the actual pages themselves. That
 392 * has been handled earlier when unmapping all the memory regions.
 393 */
 394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 395                           unsigned long addr)
 396{
 397        pgtable_t token = pmd_pgtable(*pmd);
 398        pmd_clear(pmd);
 399        pte_free_tlb(tlb, token, addr);
 400        atomic_long_dec(&tlb->mm->nr_ptes);
 401}
 402
 403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 404                                unsigned long addr, unsigned long end,
 405                                unsigned long floor, unsigned long ceiling)
 406{
 407        pmd_t *pmd;
 408        unsigned long next;
 409        unsigned long start;
 410
 411        start = addr;
 412        pmd = pmd_offset(pud, addr);
 413        do {
 414                next = pmd_addr_end(addr, end);
 415                if (pmd_none_or_clear_bad(pmd))
 416                        continue;
 417                free_pte_range(tlb, pmd, addr);
 418        } while (pmd++, addr = next, addr != end);
 419
 420        start &= PUD_MASK;
 421        if (start < floor)
 422                return;
 423        if (ceiling) {
 424                ceiling &= PUD_MASK;
 425                if (!ceiling)
 426                        return;
 427        }
 428        if (end - 1 > ceiling - 1)
 429                return;
 430
 431        pmd = pmd_offset(pud, start);
 432        pud_clear(pud);
 433        pmd_free_tlb(tlb, pmd, start);
 434        mm_dec_nr_pmds(tlb->mm);
 435}
 436
 437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 438                                unsigned long addr, unsigned long end,
 439                                unsigned long floor, unsigned long ceiling)
 440{
 441        pud_t *pud;
 442        unsigned long next;
 443        unsigned long start;
 444
 445        start = addr;
 446        pud = pud_offset(pgd, addr);
 447        do {
 448                next = pud_addr_end(addr, end);
 449                if (pud_none_or_clear_bad(pud))
 450                        continue;
 451                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 452        } while (pud++, addr = next, addr != end);
 453
 454        start &= PGDIR_MASK;
 455        if (start < floor)
 456                return;
 457        if (ceiling) {
 458                ceiling &= PGDIR_MASK;
 459                if (!ceiling)
 460                        return;
 461        }
 462        if (end - 1 > ceiling - 1)
 463                return;
 464
 465        pud = pud_offset(pgd, start);
 466        pgd_clear(pgd);
 467        pud_free_tlb(tlb, pud, start);
 468}
 469
 470/*
 471 * This function frees user-level page tables of a process.
 472 */
 473void free_pgd_range(struct mmu_gather *tlb,
 474                        unsigned long addr, unsigned long end,
 475                        unsigned long floor, unsigned long ceiling)
 476{
 477        pgd_t *pgd;
 478        unsigned long next;
 479
 480        /*
 481         * The next few lines have given us lots of grief...
 482         *
 483         * Why are we testing PMD* at this top level?  Because often
 484         * there will be no work to do at all, and we'd prefer not to
 485         * go all the way down to the bottom just to discover that.
 486         *
 487         * Why all these "- 1"s?  Because 0 represents both the bottom
 488         * of the address space and the top of it (using -1 for the
 489         * top wouldn't help much: the masks would do the wrong thing).
 490         * The rule is that addr 0 and floor 0 refer to the bottom of
 491         * the address space, but end 0 and ceiling 0 refer to the top
 492         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 493         * that end 0 case should be mythical).
 494         *
 495         * Wherever addr is brought up or ceiling brought down, we must
 496         * be careful to reject "the opposite 0" before it confuses the
 497         * subsequent tests.  But what about where end is brought down
 498         * by PMD_SIZE below? no, end can't go down to 0 there.
 499         *
 500         * Whereas we round start (addr) and ceiling down, by different
 501         * masks at different levels, in order to test whether a table
 502         * now has no other vmas using it, so can be freed, we don't
 503         * bother to round floor or end up - the tests don't need that.
 504         */
 505
 506        addr &= PMD_MASK;
 507        if (addr < floor) {
 508                addr += PMD_SIZE;
 509                if (!addr)
 510                        return;
 511        }
 512        if (ceiling) {
 513                ceiling &= PMD_MASK;
 514                if (!ceiling)
 515                        return;
 516        }
 517        if (end - 1 > ceiling - 1)
 518                end -= PMD_SIZE;
 519        if (addr > end - 1)
 520                return;
 521
 522        pgd = pgd_offset(tlb->mm, addr);
 523        do {
 524                next = pgd_addr_end(addr, end);
 525                if (pgd_none_or_clear_bad(pgd))
 526                        continue;
 527                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 528        } while (pgd++, addr = next, addr != end);
 529}
 530
 531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 532                unsigned long floor, unsigned long ceiling)
 533{
 534        while (vma) {
 535                struct vm_area_struct *next = vma->vm_next;
 536                unsigned long addr = vma->vm_start;
 537
 538                /*
 539                 * Hide vma from rmap and truncate_pagecache before freeing
 540                 * pgtables
 541                 */
 542                unlink_anon_vmas(vma);
 543                unlink_file_vma(vma);
 544
 545                if (is_vm_hugetlb_page(vma)) {
 546                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 547                                floor, next? next->vm_start: ceiling);
 548                } else {
 549                        /*
 550                         * Optimization: gather nearby vmas into one call down
 551                         */
 552                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 553                               && !is_vm_hugetlb_page(next)) {
 554                                vma = next;
 555                                next = vma->vm_next;
 556                                unlink_anon_vmas(vma);
 557                                unlink_file_vma(vma);
 558                        }
 559                        free_pgd_range(tlb, addr, vma->vm_end,
 560                                floor, next? next->vm_start: ceiling);
 561                }
 562                vma = next;
 563        }
 564}
 565
 566int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 567{
 568        spinlock_t *ptl;
 569        pgtable_t new = pte_alloc_one(mm, address);
 570        if (!new)
 571                return -ENOMEM;
 572
 573        /*
 574         * Ensure all pte setup (eg. pte page lock and page clearing) are
 575         * visible before the pte is made visible to other CPUs by being
 576         * put into page tables.
 577         *
 578         * The other side of the story is the pointer chasing in the page
 579         * table walking code (when walking the page table without locking;
 580         * ie. most of the time). Fortunately, these data accesses consist
 581         * of a chain of data-dependent loads, meaning most CPUs (alpha
 582         * being the notable exception) will already guarantee loads are
 583         * seen in-order. See the alpha page table accessors for the
 584         * smp_read_barrier_depends() barriers in page table walking code.
 585         */
 586        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 587
 588        ptl = pmd_lock(mm, pmd);
 589        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 590                atomic_long_inc(&mm->nr_ptes);
 591                pmd_populate(mm, pmd, new);
 592                new = NULL;
 593        }
 594        spin_unlock(ptl);
 595        if (new)
 596                pte_free(mm, new);
 597        return 0;
 598}
 599
 600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 601{
 602        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 603        if (!new)
 604                return -ENOMEM;
 605
 606        smp_wmb(); /* See comment in __pte_alloc */
 607
 608        spin_lock(&init_mm.page_table_lock);
 609        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 610                pmd_populate_kernel(&init_mm, pmd, new);
 611                new = NULL;
 612        }
 613        spin_unlock(&init_mm.page_table_lock);
 614        if (new)
 615                pte_free_kernel(&init_mm, new);
 616        return 0;
 617}
 618
 619static inline void init_rss_vec(int *rss)
 620{
 621        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 622}
 623
 624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 625{
 626        int i;
 627
 628        if (current->mm == mm)
 629                sync_mm_rss(mm);
 630        for (i = 0; i < NR_MM_COUNTERS; i++)
 631                if (rss[i])
 632                        add_mm_counter(mm, i, rss[i]);
 633}
 634
 635/*
 636 * This function is called to print an error when a bad pte
 637 * is found. For example, we might have a PFN-mapped pte in
 638 * a region that doesn't allow it.
 639 *
 640 * The calling function must still handle the error.
 641 */
 642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 643                          pte_t pte, struct page *page)
 644{
 645        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 646        pud_t *pud = pud_offset(pgd, addr);
 647        pmd_t *pmd = pmd_offset(pud, addr);
 648        struct address_space *mapping;
 649        pgoff_t index;
 650        static unsigned long resume;
 651        static unsigned long nr_shown;
 652        static unsigned long nr_unshown;
 653
 654        /*
 655         * Allow a burst of 60 reports, then keep quiet for that minute;
 656         * or allow a steady drip of one report per second.
 657         */
 658        if (nr_shown == 60) {
 659                if (time_before(jiffies, resume)) {
 660                        nr_unshown++;
 661                        return;
 662                }
 663                if (nr_unshown) {
 664                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 665                                 nr_unshown);
 666                        nr_unshown = 0;
 667                }
 668                nr_shown = 0;
 669        }
 670        if (nr_shown++ == 0)
 671                resume = jiffies + 60 * HZ;
 672
 673        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 674        index = linear_page_index(vma, addr);
 675
 676        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 677                 current->comm,
 678                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 679        if (page)
 680                dump_page(page, "bad pte");
 681        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 682                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 683        /*
 684         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 685         */
 686        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 687                 vma->vm_file,
 688                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 689                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 690                 mapping ? mapping->a_ops->readpage : NULL);
 691        dump_stack();
 692        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 693}
 694
 695/*
 696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 697 *
 698 * "Special" mappings do not wish to be associated with a "struct page" (either
 699 * it doesn't exist, or it exists but they don't want to touch it). In this
 700 * case, NULL is returned here. "Normal" mappings do have a struct page.
 701 *
 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 703 * pte bit, in which case this function is trivial. Secondly, an architecture
 704 * may not have a spare pte bit, which requires a more complicated scheme,
 705 * described below.
 706 *
 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 708 * special mapping (even if there are underlying and valid "struct pages").
 709 * COWed pages of a VM_PFNMAP are always normal.
 710 *
 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 714 * mapping will always honor the rule
 715 *
 716 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 717 *
 718 * And for normal mappings this is false.
 719 *
 720 * This restricts such mappings to be a linear translation from virtual address
 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 722 * as the vma is not a COW mapping; in that case, we know that all ptes are
 723 * special (because none can have been COWed).
 724 *
 725 *
 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 727 *
 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 729 * page" backing, however the difference is that _all_ pages with a struct
 730 * page (that is, those where pfn_valid is true) are refcounted and considered
 731 * normal pages by the VM. The disadvantage is that pages are refcounted
 732 * (which can be slower and simply not an option for some PFNMAP users). The
 733 * advantage is that we don't have to follow the strict linearity rule of
 734 * PFNMAP mappings in order to support COWable mappings.
 735 *
 736 */
 737#ifdef __HAVE_ARCH_PTE_SPECIAL
 738# define HAVE_PTE_SPECIAL 1
 739#else
 740# define HAVE_PTE_SPECIAL 0
 741#endif
 742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 743                                pte_t pte)
 744{
 745        unsigned long pfn = pte_pfn(pte);
 746
 747        if (HAVE_PTE_SPECIAL) {
 748                if (likely(!pte_special(pte)))
 749                        goto check_pfn;
 750                if (vma->vm_ops && vma->vm_ops->find_special_page)
 751                        return vma->vm_ops->find_special_page(vma, addr);
 752                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 753                        return NULL;
 754                if (!is_zero_pfn(pfn))
 755                        print_bad_pte(vma, addr, pte, NULL);
 756                return NULL;
 757        }
 758
 759        /* !HAVE_PTE_SPECIAL case follows: */
 760
 761        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 762                if (vma->vm_flags & VM_MIXEDMAP) {
 763                        if (!pfn_valid(pfn))
 764                                return NULL;
 765                        goto out;
 766                } else {
 767                        unsigned long off;
 768                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 769                        if (pfn == vma->vm_pgoff + off)
 770                                return NULL;
 771                        if (!is_cow_mapping(vma->vm_flags))
 772                                return NULL;
 773                }
 774        }
 775
 776        if (is_zero_pfn(pfn))
 777                return NULL;
 778check_pfn:
 779        if (unlikely(pfn > highest_memmap_pfn)) {
 780                print_bad_pte(vma, addr, pte, NULL);
 781                return NULL;
 782        }
 783
 784        /*
 785         * NOTE! We still have PageReserved() pages in the page tables.
 786         * eg. VDSO mappings can cause them to exist.
 787         */
 788out:
 789        return pfn_to_page(pfn);
 790}
 791
 792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 794                                pmd_t pmd)
 795{
 796        unsigned long pfn = pmd_pfn(pmd);
 797
 798        /*
 799         * There is no pmd_special() but there may be special pmds, e.g.
 800         * in a direct-access (dax) mapping, so let's just replicate the
 801         * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 802         */
 803        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 804                if (vma->vm_flags & VM_MIXEDMAP) {
 805                        if (!pfn_valid(pfn))
 806                                return NULL;
 807                        goto out;
 808                } else {
 809                        unsigned long off;
 810                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 811                        if (pfn == vma->vm_pgoff + off)
 812                                return NULL;
 813                        if (!is_cow_mapping(vma->vm_flags))
 814                                return NULL;
 815                }
 816        }
 817
 818        if (is_zero_pfn(pfn))
 819                return NULL;
 820        if (unlikely(pfn > highest_memmap_pfn))
 821                return NULL;
 822
 823        /*
 824         * NOTE! We still have PageReserved() pages in the page tables.
 825         * eg. VDSO mappings can cause them to exist.
 826         */
 827out:
 828        return pfn_to_page(pfn);
 829}
 830#endif
 831
 832/*
 833 * copy one vm_area from one task to the other. Assumes the page tables
 834 * already present in the new task to be cleared in the whole range
 835 * covered by this vma.
 836 */
 837
 838static inline unsigned long
 839copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 840                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 841                unsigned long addr, int *rss)
 842{
 843        unsigned long vm_flags = vma->vm_flags;
 844        pte_t pte = *src_pte;
 845        struct page *page;
 846
 847        /* pte contains position in swap or file, so copy. */
 848        if (unlikely(!pte_present(pte))) {
 849                swp_entry_t entry = pte_to_swp_entry(pte);
 850
 851                if (likely(!non_swap_entry(entry))) {
 852                        if (swap_duplicate(entry) < 0)
 853                                return entry.val;
 854
 855                        /* make sure dst_mm is on swapoff's mmlist. */
 856                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 857                                spin_lock(&mmlist_lock);
 858                                if (list_empty(&dst_mm->mmlist))
 859                                        list_add(&dst_mm->mmlist,
 860                                                        &src_mm->mmlist);
 861                                spin_unlock(&mmlist_lock);
 862                        }
 863                        rss[MM_SWAPENTS]++;
 864                } else if (is_migration_entry(entry)) {
 865                        page = migration_entry_to_page(entry);
 866
 867                        rss[mm_counter(page)]++;
 868
 869                        if (is_write_migration_entry(entry) &&
 870                                        is_cow_mapping(vm_flags)) {
 871                                /*
 872                                 * COW mappings require pages in both
 873                                 * parent and child to be set to read.
 874                                 */
 875                                make_migration_entry_read(&entry);
 876                                pte = swp_entry_to_pte(entry);
 877                                if (pte_swp_soft_dirty(*src_pte))
 878                                        pte = pte_swp_mksoft_dirty(pte);
 879                                set_pte_at(src_mm, addr, src_pte, pte);
 880                        }
 881                }
 882                goto out_set_pte;
 883        }
 884
 885        /*
 886         * If it's a COW mapping, write protect it both
 887         * in the parent and the child
 888         */
 889        if (is_cow_mapping(vm_flags)) {
 890                ptep_set_wrprotect(src_mm, addr, src_pte);
 891                pte = pte_wrprotect(pte);
 892        }
 893
 894        /*
 895         * If it's a shared mapping, mark it clean in
 896         * the child
 897         */
 898        if (vm_flags & VM_SHARED)
 899                pte = pte_mkclean(pte);
 900        pte = pte_mkold(pte);
 901
 902        page = vm_normal_page(vma, addr, pte);
 903        if (page) {
 904                get_page(page);
 905                page_dup_rmap(page, false);
 906                rss[mm_counter(page)]++;
 907        }
 908
 909out_set_pte:
 910        set_pte_at(dst_mm, addr, dst_pte, pte);
 911        return 0;
 912}
 913
 914static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 915                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 916                   unsigned long addr, unsigned long end)
 917{
 918        pte_t *orig_src_pte, *orig_dst_pte;
 919        pte_t *src_pte, *dst_pte;
 920        spinlock_t *src_ptl, *dst_ptl;
 921        int progress = 0;
 922        int rss[NR_MM_COUNTERS];
 923        swp_entry_t entry = (swp_entry_t){0};
 924
 925again:
 926        init_rss_vec(rss);
 927
 928        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 929        if (!dst_pte)
 930                return -ENOMEM;
 931        src_pte = pte_offset_map(src_pmd, addr);
 932        src_ptl = pte_lockptr(src_mm, src_pmd);
 933        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 934        orig_src_pte = src_pte;
 935        orig_dst_pte = dst_pte;
 936        arch_enter_lazy_mmu_mode();
 937
 938        do {
 939                /*
 940                 * We are holding two locks at this point - either of them
 941                 * could generate latencies in another task on another CPU.
 942                 */
 943                if (progress >= 32) {
 944                        progress = 0;
 945                        if (need_resched() ||
 946                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 947                                break;
 948                }
 949                if (pte_none(*src_pte)) {
 950                        progress++;
 951                        continue;
 952                }
 953                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 954                                                        vma, addr, rss);
 955                if (entry.val)
 956                        break;
 957                progress += 8;
 958        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 959
 960        arch_leave_lazy_mmu_mode();
 961        spin_unlock(src_ptl);
 962        pte_unmap(orig_src_pte);
 963        add_mm_rss_vec(dst_mm, rss);
 964        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 965        cond_resched();
 966
 967        if (entry.val) {
 968                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 969                        return -ENOMEM;
 970                progress = 0;
 971        }
 972        if (addr != end)
 973                goto again;
 974        return 0;
 975}
 976
 977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 978                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 979                unsigned long addr, unsigned long end)
 980{
 981        pmd_t *src_pmd, *dst_pmd;
 982        unsigned long next;
 983
 984        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 985        if (!dst_pmd)
 986                return -ENOMEM;
 987        src_pmd = pmd_offset(src_pud, addr);
 988        do {
 989                next = pmd_addr_end(addr, end);
 990                if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
 991                        int err;
 992                        VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 993                        err = copy_huge_pmd(dst_mm, src_mm,
 994                                            dst_pmd, src_pmd, addr, vma);
 995                        if (err == -ENOMEM)
 996                                return -ENOMEM;
 997                        if (!err)
 998                                continue;
 999                        /* fall through */
1000                }
1001                if (pmd_none_or_clear_bad(src_pmd))
1002                        continue;
1003                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004                                                vma, addr, next))
1005                        return -ENOMEM;
1006        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007        return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012                unsigned long addr, unsigned long end)
1013{
1014        pud_t *src_pud, *dst_pud;
1015        unsigned long next;
1016
1017        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018        if (!dst_pud)
1019                return -ENOMEM;
1020        src_pud = pud_offset(src_pgd, addr);
1021        do {
1022                next = pud_addr_end(addr, end);
1023                if (pud_none_or_clear_bad(src_pud))
1024                        continue;
1025                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026                                                vma, addr, next))
1027                        return -ENOMEM;
1028        } while (dst_pud++, src_pud++, addr = next, addr != end);
1029        return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033                struct vm_area_struct *vma)
1034{
1035        pgd_t *src_pgd, *dst_pgd;
1036        unsigned long next;
1037        unsigned long addr = vma->vm_start;
1038        unsigned long end = vma->vm_end;
1039        unsigned long mmun_start;       /* For mmu_notifiers */
1040        unsigned long mmun_end;         /* For mmu_notifiers */
1041        bool is_cow;
1042        int ret;
1043
1044        /*
1045         * Don't copy ptes where a page fault will fill them correctly.
1046         * Fork becomes much lighter when there are big shared or private
1047         * readonly mappings. The tradeoff is that copy_page_range is more
1048         * efficient than faulting.
1049         */
1050        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051                        !vma->anon_vma)
1052                return 0;
1053
1054        if (is_vm_hugetlb_page(vma))
1055                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058                /*
1059                 * We do not free on error cases below as remove_vma
1060                 * gets called on error from higher level routine
1061                 */
1062                ret = track_pfn_copy(vma);
1063                if (ret)
1064                        return ret;
1065        }
1066
1067        /*
1068         * We need to invalidate the secondary MMU mappings only when
1069         * there could be a permission downgrade on the ptes of the
1070         * parent mm. And a permission downgrade will only happen if
1071         * is_cow_mapping() returns true.
1072         */
1073        is_cow = is_cow_mapping(vma->vm_flags);
1074        mmun_start = addr;
1075        mmun_end   = end;
1076        if (is_cow)
1077                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078                                                    mmun_end);
1079
1080        ret = 0;
1081        dst_pgd = pgd_offset(dst_mm, addr);
1082        src_pgd = pgd_offset(src_mm, addr);
1083        do {
1084                next = pgd_addr_end(addr, end);
1085                if (pgd_none_or_clear_bad(src_pgd))
1086                        continue;
1087                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088                                            vma, addr, next))) {
1089                        ret = -ENOMEM;
1090                        break;
1091                }
1092        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094        if (is_cow)
1095                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096        return ret;
1097}
1098
1099static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100                                struct vm_area_struct *vma, pmd_t *pmd,
1101                                unsigned long addr, unsigned long end,
1102                                struct zap_details *details)
1103{
1104        struct mm_struct *mm = tlb->mm;
1105        int force_flush = 0;
1106        int rss[NR_MM_COUNTERS];
1107        spinlock_t *ptl;
1108        pte_t *start_pte;
1109        pte_t *pte;
1110        swp_entry_t entry;
1111
1112again:
1113        init_rss_vec(rss);
1114        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115        pte = start_pte;
1116        arch_enter_lazy_mmu_mode();
1117        do {
1118                pte_t ptent = *pte;
1119                if (pte_none(ptent)) {
1120                        continue;
1121                }
1122
1123                if (pte_present(ptent)) {
1124                        struct page *page;
1125
1126                        page = vm_normal_page(vma, addr, ptent);
1127                        if (unlikely(details) && page) {
1128                                /*
1129                                 * unmap_shared_mapping_pages() wants to
1130                                 * invalidate cache without truncating:
1131                                 * unmap shared but keep private pages.
1132                                 */
1133                                if (details->check_mapping &&
1134                                    details->check_mapping != page->mapping)
1135                                        continue;
1136                        }
1137                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1138                                                        tlb->fullmm);
1139                        tlb_remove_tlb_entry(tlb, pte, addr);
1140                        if (unlikely(!page))
1141                                continue;
1142
1143                        if (!PageAnon(page)) {
1144                                if (pte_dirty(ptent)) {
1145                                        /*
1146                                         * oom_reaper cannot tear down dirty
1147                                         * pages
1148                                         */
1149                                        if (unlikely(details && details->ignore_dirty))
1150                                                continue;
1151                                        force_flush = 1;
1152                                        set_page_dirty(page);
1153                                }
1154                                if (pte_young(ptent) &&
1155                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156                                        mark_page_accessed(page);
1157                        }
1158                        rss[mm_counter(page)]--;
1159                        page_remove_rmap(page, false);
1160                        if (unlikely(page_mapcount(page) < 0))
1161                                print_bad_pte(vma, addr, ptent, page);
1162                        if (unlikely(!__tlb_remove_page(tlb, page))) {
1163                                force_flush = 1;
1164                                addr += PAGE_SIZE;
1165                                break;
1166                        }
1167                        continue;
1168                }
1169                /* only check swap_entries if explicitly asked for in details */
1170                if (unlikely(details && !details->check_swap_entries))
1171                        continue;
1172
1173                entry = pte_to_swp_entry(ptent);
1174                if (!non_swap_entry(entry))
1175                        rss[MM_SWAPENTS]--;
1176                else if (is_migration_entry(entry)) {
1177                        struct page *page;
1178
1179                        page = migration_entry_to_page(entry);
1180                        rss[mm_counter(page)]--;
1181                }
1182                if (unlikely(!free_swap_and_cache(entry)))
1183                        print_bad_pte(vma, addr, ptent, NULL);
1184                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185        } while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187        add_mm_rss_vec(mm, rss);
1188        arch_leave_lazy_mmu_mode();
1189
1190        /* Do the actual TLB flush before dropping ptl */
1191        if (force_flush)
1192                tlb_flush_mmu_tlbonly(tlb);
1193        pte_unmap_unlock(start_pte, ptl);
1194
1195        /*
1196         * If we forced a TLB flush (either due to running out of
1197         * batch buffers or because we needed to flush dirty TLB
1198         * entries before releasing the ptl), free the batched
1199         * memory too. Restart if we didn't do everything.
1200         */
1201        if (force_flush) {
1202                force_flush = 0;
1203                tlb_flush_mmu_free(tlb);
1204
1205                if (addr != end)
1206                        goto again;
1207        }
1208
1209        return addr;
1210}
1211
1212static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213                                struct vm_area_struct *vma, pud_t *pud,
1214                                unsigned long addr, unsigned long end,
1215                                struct zap_details *details)
1216{
1217        pmd_t *pmd;
1218        unsigned long next;
1219
1220        pmd = pmd_offset(pud, addr);
1221        do {
1222                next = pmd_addr_end(addr, end);
1223                if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224                        if (next - addr != HPAGE_PMD_SIZE) {
1225                                VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226                                    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227                                split_huge_pmd(vma, pmd, addr);
1228                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229                                goto next;
1230                        /* fall through */
1231                }
1232                /*
1233                 * Here there can be other concurrent MADV_DONTNEED or
1234                 * trans huge page faults running, and if the pmd is
1235                 * none or trans huge it can change under us. This is
1236                 * because MADV_DONTNEED holds the mmap_sem in read
1237                 * mode.
1238                 */
1239                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240                        goto next;
1241                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242next:
1243                cond_resched();
1244        } while (pmd++, addr = next, addr != end);
1245
1246        return addr;
1247}
1248
1249static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250                                struct vm_area_struct *vma, pgd_t *pgd,
1251                                unsigned long addr, unsigned long end,
1252                                struct zap_details *details)
1253{
1254        pud_t *pud;
1255        unsigned long next;
1256
1257        pud = pud_offset(pgd, addr);
1258        do {
1259                next = pud_addr_end(addr, end);
1260                if (pud_none_or_clear_bad(pud))
1261                        continue;
1262                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263        } while (pud++, addr = next, addr != end);
1264
1265        return addr;
1266}
1267
1268void unmap_page_range(struct mmu_gather *tlb,
1269                             struct vm_area_struct *vma,
1270                             unsigned long addr, unsigned long end,
1271                             struct zap_details *details)
1272{
1273        pgd_t *pgd;
1274        unsigned long next;
1275
1276        BUG_ON(addr >= end);
1277        tlb_start_vma(tlb, vma);
1278        pgd = pgd_offset(vma->vm_mm, addr);
1279        do {
1280                next = pgd_addr_end(addr, end);
1281                if (pgd_none_or_clear_bad(pgd))
1282                        continue;
1283                next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284        } while (pgd++, addr = next, addr != end);
1285        tlb_end_vma(tlb, vma);
1286}
1287
1288
1289static void unmap_single_vma(struct mmu_gather *tlb,
1290                struct vm_area_struct *vma, unsigned long start_addr,
1291                unsigned long end_addr,
1292                struct zap_details *details)
1293{
1294        unsigned long start = max(vma->vm_start, start_addr);
1295        unsigned long end;
1296
1297        if (start >= vma->vm_end)
1298                return;
1299        end = min(vma->vm_end, end_addr);
1300        if (end <= vma->vm_start)
1301                return;
1302
1303        if (vma->vm_file)
1304                uprobe_munmap(vma, start, end);
1305
1306        if (unlikely(vma->vm_flags & VM_PFNMAP))
1307                untrack_pfn(vma, 0, 0);
1308
1309        if (start != end) {
1310                if (unlikely(is_vm_hugetlb_page(vma))) {
1311                        /*
1312                         * It is undesirable to test vma->vm_file as it
1313                         * should be non-null for valid hugetlb area.
1314                         * However, vm_file will be NULL in the error
1315                         * cleanup path of mmap_region. When
1316                         * hugetlbfs ->mmap method fails,
1317                         * mmap_region() nullifies vma->vm_file
1318                         * before calling this function to clean up.
1319                         * Since no pte has actually been setup, it is
1320                         * safe to do nothing in this case.
1321                         */
1322                        if (vma->vm_file) {
1323                                i_mmap_lock_write(vma->vm_file->f_mapping);
1324                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1326                        }
1327                } else
1328                        unmap_page_range(tlb, vma, start, end, details);
1329        }
1330}
1331
1332/**
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1338 *
1339 * Unmap all pages in the vma list.
1340 *
1341 * Only addresses between `start' and `end' will be unmapped.
1342 *
1343 * The VMA list must be sorted in ascending virtual address order.
1344 *
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns.  So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1349 */
1350void unmap_vmas(struct mmu_gather *tlb,
1351                struct vm_area_struct *vma, unsigned long start_addr,
1352                unsigned long end_addr)
1353{
1354        struct mm_struct *mm = vma->vm_mm;
1355
1356        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1360}
1361
1362/**
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * Caller must protect the VMA list
1370 */
1371void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372                unsigned long size, struct zap_details *details)
1373{
1374        struct mm_struct *mm = vma->vm_mm;
1375        struct mmu_gather tlb;
1376        unsigned long end = start + size;
1377
1378        lru_add_drain();
1379        tlb_gather_mmu(&tlb, mm, start, end);
1380        update_hiwater_rss(mm);
1381        mmu_notifier_invalidate_range_start(mm, start, end);
1382        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383                unmap_single_vma(&tlb, vma, start, end, details);
1384        mmu_notifier_invalidate_range_end(mm, start, end);
1385        tlb_finish_mmu(&tlb, start, end);
1386}
1387
1388/**
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1394 *
1395 * The range must fit into one VMA.
1396 */
1397static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398                unsigned long size, struct zap_details *details)
1399{
1400        struct mm_struct *mm = vma->vm_mm;
1401        struct mmu_gather tlb;
1402        unsigned long end = address + size;
1403
1404        lru_add_drain();
1405        tlb_gather_mmu(&tlb, mm, address, end);
1406        update_hiwater_rss(mm);
1407        mmu_notifier_invalidate_range_start(mm, address, end);
1408        unmap_single_vma(&tlb, vma, address, end, details);
1409        mmu_notifier_invalidate_range_end(mm, address, end);
1410        tlb_finish_mmu(&tlb, address, end);
1411}
1412
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
1423 * Returns 0 if successful.
1424 */
1425int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426                unsigned long size)
1427{
1428        if (address < vma->vm_start || address + size > vma->vm_end ||
1429                        !(vma->vm_flags & VM_PFNMAP))
1430                return -1;
1431        zap_page_range_single(vma, address, size, NULL);
1432        return 0;
1433}
1434EXPORT_SYMBOL_GPL(zap_vma_ptes);
1435
1436pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437                        spinlock_t **ptl)
1438{
1439        pgd_t * pgd = pgd_offset(mm, addr);
1440        pud_t * pud = pud_alloc(mm, pgd, addr);
1441        if (pud) {
1442                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443                if (pmd) {
1444                        VM_BUG_ON(pmd_trans_huge(*pmd));
1445                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446                }
1447        }
1448        return NULL;
1449}
1450
1451/*
1452 * This is the old fallback for page remapping.
1453 *
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1457 */
1458static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459                        struct page *page, pgprot_t prot)
1460{
1461        struct mm_struct *mm = vma->vm_mm;
1462        int retval;
1463        pte_t *pte;
1464        spinlock_t *ptl;
1465
1466        retval = -EINVAL;
1467        if (PageAnon(page))
1468                goto out;
1469        retval = -ENOMEM;
1470        flush_dcache_page(page);
1471        pte = get_locked_pte(mm, addr, &ptl);
1472        if (!pte)
1473                goto out;
1474        retval = -EBUSY;
1475        if (!pte_none(*pte))
1476                goto out_unlock;
1477
1478        /* Ok, finally just insert the thing.. */
1479        get_page(page);
1480        inc_mm_counter_fast(mm, mm_counter_file(page));
1481        page_add_file_rmap(page);
1482        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484        retval = 0;
1485        pte_unmap_unlock(pte, ptl);
1486        return retval;
1487out_unlock:
1488        pte_unmap_unlock(pte, ptl);
1489out:
1490        return retval;
1491}
1492
1493/**
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1498 *
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1501 *
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1506 *
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1512 *
1513 * The page does not need to be reserved.
1514 *
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1519 */
1520int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521                        struct page *page)
1522{
1523        if (addr < vma->vm_start || addr >= vma->vm_end)
1524                return -EFAULT;
1525        if (!page_count(page))
1526                return -EINVAL;
1527        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529                BUG_ON(vma->vm_flags & VM_PFNMAP);
1530                vma->vm_flags |= VM_MIXEDMAP;
1531        }
1532        return insert_page(vma, addr, page, vma->vm_page_prot);
1533}
1534EXPORT_SYMBOL(vm_insert_page);
1535
1536static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537                        pfn_t pfn, pgprot_t prot)
1538{
1539        struct mm_struct *mm = vma->vm_mm;
1540        int retval;
1541        pte_t *pte, entry;
1542        spinlock_t *ptl;
1543
1544        retval = -ENOMEM;
1545        pte = get_locked_pte(mm, addr, &ptl);
1546        if (!pte)
1547                goto out;
1548        retval = -EBUSY;
1549        if (!pte_none(*pte))
1550                goto out_unlock;
1551
1552        /* Ok, finally just insert the thing.. */
1553        if (pfn_t_devmap(pfn))
1554                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555        else
1556                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557        set_pte_at(mm, addr, pte, entry);
1558        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1559
1560        retval = 0;
1561out_unlock:
1562        pte_unmap_unlock(pte, ptl);
1563out:
1564        return retval;
1565}
1566
1567/**
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1572 *
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1575 *
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1578 *
1579 * vma cannot be a COW mapping.
1580 *
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1583 */
1584int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585                        unsigned long pfn)
1586{
1587        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591/**
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1597 *
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1600 *
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings.  In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1605 */
1606int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607                        unsigned long pfn, pgprot_t pgprot)
1608{
1609        int ret;
1610        /*
1611         * Technically, architectures with pte_special can avoid all these
1612         * restrictions (same for remap_pfn_range).  However we would like
1613         * consistency in testing and feature parity among all, so we should
1614         * try to keep these invariants in place for everybody.
1615         */
1616        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618                                                (VM_PFNMAP|VM_MIXEDMAP));
1619        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622        if (addr < vma->vm_start || addr >= vma->vm_end)
1623                return -EFAULT;
1624        if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625                return -EINVAL;
1626
1627        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1628
1629        return ret;
1630}
1631EXPORT_SYMBOL(vm_insert_pfn_prot);
1632
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634                        pfn_t pfn)
1635{
1636        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638        if (addr < vma->vm_start || addr >= vma->vm_end)
1639                return -EFAULT;
1640
1641        /*
1642         * If we don't have pte special, then we have to use the pfn_valid()
1643         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644         * refcount the page if pfn_valid is true (hence insert_page rather
1645         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646         * without pte special, it would there be refcounted as a normal page.
1647         */
1648        if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649                struct page *page;
1650
1651                /*
1652                 * At this point we are committed to insert_page()
1653                 * regardless of whether the caller specified flags that
1654                 * result in pfn_t_has_page() == false.
1655                 */
1656                page = pfn_to_page(pfn_t_to_pfn(pfn));
1657                return insert_page(vma, addr, page, vma->vm_page_prot);
1658        }
1659        return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669                        unsigned long addr, unsigned long end,
1670                        unsigned long pfn, pgprot_t prot)
1671{
1672        pte_t *pte;
1673        spinlock_t *ptl;
1674
1675        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676        if (!pte)
1677                return -ENOMEM;
1678        arch_enter_lazy_mmu_mode();
1679        do {
1680                BUG_ON(!pte_none(*pte));
1681                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682                pfn++;
1683        } while (pte++, addr += PAGE_SIZE, addr != end);
1684        arch_leave_lazy_mmu_mode();
1685        pte_unmap_unlock(pte - 1, ptl);
1686        return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690                        unsigned long addr, unsigned long end,
1691                        unsigned long pfn, pgprot_t prot)
1692{
1693        pmd_t *pmd;
1694        unsigned long next;
1695
1696        pfn -= addr >> PAGE_SHIFT;
1697        pmd = pmd_alloc(mm, pud, addr);
1698        if (!pmd)
1699                return -ENOMEM;
1700        VM_BUG_ON(pmd_trans_huge(*pmd));
1701        do {
1702                next = pmd_addr_end(addr, end);
1703                if (remap_pte_range(mm, pmd, addr, next,
1704                                pfn + (addr >> PAGE_SHIFT), prot))
1705                        return -ENOMEM;
1706        } while (pmd++, addr = next, addr != end);
1707        return 0;
1708}
1709
1710static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711                        unsigned long addr, unsigned long end,
1712                        unsigned long pfn, pgprot_t prot)
1713{
1714        pud_t *pud;
1715        unsigned long next;
1716
1717        pfn -= addr >> PAGE_SHIFT;
1718        pud = pud_alloc(mm, pgd, addr);
1719        if (!pud)
1720                return -ENOMEM;
1721        do {
1722                next = pud_addr_end(addr, end);
1723                if (remap_pmd_range(mm, pud, addr, next,
1724                                pfn + (addr >> PAGE_SHIFT), prot))
1725                        return -ENOMEM;
1726        } while (pud++, addr = next, addr != end);
1727        return 0;
1728}
1729
1730/**
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1737 *
1738 *  Note: this is only safe if the mm semaphore is held when called.
1739 */
1740int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741                    unsigned long pfn, unsigned long size, pgprot_t prot)
1742{
1743        pgd_t *pgd;
1744        unsigned long next;
1745        unsigned long end = addr + PAGE_ALIGN(size);
1746        struct mm_struct *mm = vma->vm_mm;
1747        int err;
1748
1749        /*
1750         * Physically remapped pages are special. Tell the
1751         * rest of the world about it:
1752         *   VM_IO tells people not to look at these pages
1753         *      (accesses can have side effects).
1754         *   VM_PFNMAP tells the core MM that the base pages are just
1755         *      raw PFN mappings, and do not have a "struct page" associated
1756         *      with them.
1757         *   VM_DONTEXPAND
1758         *      Disable vma merging and expanding with mremap().
1759         *   VM_DONTDUMP
1760         *      Omit vma from core dump, even when VM_IO turned off.
1761         *
1762         * There's a horrible special case to handle copy-on-write
1763         * behaviour that some programs depend on. We mark the "original"
1764         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765         * See vm_normal_page() for details.
1766         */
1767        if (is_cow_mapping(vma->vm_flags)) {
1768                if (addr != vma->vm_start || end != vma->vm_end)
1769                        return -EINVAL;
1770                vma->vm_pgoff = pfn;
1771        }
1772
1773        err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774        if (err)
1775                return -EINVAL;
1776
1777        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1778
1779        BUG_ON(addr >= end);
1780        pfn -= addr >> PAGE_SHIFT;
1781        pgd = pgd_offset(mm, addr);
1782        flush_cache_range(vma, addr, end);
1783        do {
1784                next = pgd_addr_end(addr, end);
1785                err = remap_pud_range(mm, pgd, addr, next,
1786                                pfn + (addr >> PAGE_SHIFT), prot);
1787                if (err)
1788                        break;
1789        } while (pgd++, addr = next, addr != end);
1790
1791        if (err)
1792                untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1793
1794        return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
1798/**
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1803 *
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1807 *
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1810 */
1811int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1812{
1813        unsigned long vm_len, pfn, pages;
1814
1815        /* Check that the physical memory area passed in looks valid */
1816        if (start + len < start)
1817                return -EINVAL;
1818        /*
1819         * You *really* shouldn't map things that aren't page-aligned,
1820         * but we've historically allowed it because IO memory might
1821         * just have smaller alignment.
1822         */
1823        len += start & ~PAGE_MASK;
1824        pfn = start >> PAGE_SHIFT;
1825        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826        if (pfn + pages < pfn)
1827                return -EINVAL;
1828
1829        /* We start the mapping 'vm_pgoff' pages into the area */
1830        if (vma->vm_pgoff > pages)
1831                return -EINVAL;
1832        pfn += vma->vm_pgoff;
1833        pages -= vma->vm_pgoff;
1834
1835        /* Can we fit all of the mapping? */
1836        vm_len = vma->vm_end - vma->vm_start;
1837        if (vm_len >> PAGE_SHIFT > pages)
1838                return -EINVAL;
1839
1840        /* Ok, let it rip */
1841        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1842}
1843EXPORT_SYMBOL(vm_iomap_memory);
1844
1845static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846                                     unsigned long addr, unsigned long end,
1847                                     pte_fn_t fn, void *data)
1848{
1849        pte_t *pte;
1850        int err;
1851        pgtable_t token;
1852        spinlock_t *uninitialized_var(ptl);
1853
1854        pte = (mm == &init_mm) ?
1855                pte_alloc_kernel(pmd, addr) :
1856                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857        if (!pte)
1858                return -ENOMEM;
1859
1860        BUG_ON(pmd_huge(*pmd));
1861
1862        arch_enter_lazy_mmu_mode();
1863
1864        token = pmd_pgtable(*pmd);
1865
1866        do {
1867                err = fn(pte++, token, addr, data);
1868                if (err)
1869                        break;
1870        } while (addr += PAGE_SIZE, addr != end);
1871
1872        arch_leave_lazy_mmu_mode();
1873
1874        if (mm != &init_mm)
1875                pte_unmap_unlock(pte-1, ptl);
1876        return err;
1877}
1878
1879static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880                                     unsigned long addr, unsigned long end,
1881                                     pte_fn_t fn, void *data)
1882{
1883        pmd_t *pmd;
1884        unsigned long next;
1885        int err;
1886
1887        BUG_ON(pud_huge(*pud));
1888
1889        pmd = pmd_alloc(mm, pud, addr);
1890        if (!pmd)
1891                return -ENOMEM;
1892        do {
1893                next = pmd_addr_end(addr, end);
1894                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895                if (err)
1896                        break;
1897        } while (pmd++, addr = next, addr != end);
1898        return err;
1899}
1900
1901static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902                                     unsigned long addr, unsigned long end,
1903                                     pte_fn_t fn, void *data)
1904{
1905        pud_t *pud;
1906        unsigned long next;
1907        int err;
1908
1909        pud = pud_alloc(mm, pgd, addr);
1910        if (!pud)
1911                return -ENOMEM;
1912        do {
1913                next = pud_addr_end(addr, end);
1914                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915                if (err)
1916                        break;
1917        } while (pud++, addr = next, addr != end);
1918        return err;
1919}
1920
1921/*
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1924 */
1925int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926                        unsigned long size, pte_fn_t fn, void *data)
1927{
1928        pgd_t *pgd;
1929        unsigned long next;
1930        unsigned long end = addr + size;
1931        int err;
1932
1933        if (WARN_ON(addr >= end))
1934                return -EINVAL;
1935
1936        pgd = pgd_offset(mm, addr);
1937        do {
1938                next = pgd_addr_end(addr, end);
1939                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940                if (err)
1941                        break;
1942        } while (pgd++, addr = next, addr != end);
1943
1944        return err;
1945}
1946EXPORT_SYMBOL_GPL(apply_to_page_range);
1947
1948/*
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically.  Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
1954 * and do_anonymous_page can safely check later on).
1955 */
1956static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957                                pte_t *page_table, pte_t orig_pte)
1958{
1959        int same = 1;
1960#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961        if (sizeof(pte_t) > sizeof(unsigned long)) {
1962                spinlock_t *ptl = pte_lockptr(mm, pmd);
1963                spin_lock(ptl);
1964                same = pte_same(*page_table, orig_pte);
1965                spin_unlock(ptl);
1966        }
1967#endif
1968        pte_unmap(page_table);
1969        return same;
1970}
1971
1972static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1973{
1974        debug_dma_assert_idle(src);
1975
1976        /*
1977         * If the source page was a PFN mapping, we don't have
1978         * a "struct page" for it. We do a best-effort copy by
1979         * just copying from the original user address. If that
1980         * fails, we just zero-fill it. Live with it.
1981         */
1982        if (unlikely(!src)) {
1983                void *kaddr = kmap_atomic(dst);
1984                void __user *uaddr = (void __user *)(va & PAGE_MASK);
1985
1986                /*
1987                 * This really shouldn't fail, because the page is there
1988                 * in the page tables. But it might just be unreadable,
1989                 * in which case we just give up and fill the result with
1990                 * zeroes.
1991                 */
1992                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993                        clear_page(kaddr);
1994                kunmap_atomic(kaddr);
1995                flush_dcache_page(dst);
1996        } else
1997                copy_user_highpage(dst, src, va, vma);
1998}
1999
2000static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2001{
2002        struct file *vm_file = vma->vm_file;
2003
2004        if (vm_file)
2005                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2006
2007        /*
2008         * Special mappings (e.g. VDSO) do not have any file so fake
2009         * a default GFP_KERNEL for them.
2010         */
2011        return GFP_KERNEL;
2012}
2013
2014/*
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
2017 *
2018 * We do this without the lock held, so that it can sleep if it needs to.
2019 */
2020static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021               unsigned long address)
2022{
2023        struct vm_fault vmf;
2024        int ret;
2025
2026        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027        vmf.pgoff = page->index;
2028        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029        vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030        vmf.page = page;
2031        vmf.cow_page = NULL;
2032
2033        ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2034        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035                return ret;
2036        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037                lock_page(page);
2038                if (!page->mapping) {
2039                        unlock_page(page);
2040                        return 0; /* retry */
2041                }
2042                ret |= VM_FAULT_LOCKED;
2043        } else
2044                VM_BUG_ON_PAGE(!PageLocked(page), page);
2045        return ret;
2046}
2047
2048/*
2049 * Handle write page faults for pages that can be reused in the current vma
2050 *
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2055 */
2056static inline int wp_page_reuse(struct mm_struct *mm,
2057                        struct vm_area_struct *vma, unsigned long address,
2058                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059                        struct page *page, int page_mkwrite,
2060                        int dirty_shared)
2061        __releases(ptl)
2062{
2063        pte_t entry;
2064        /*
2065         * Clear the pages cpupid information as the existing
2066         * information potentially belongs to a now completely
2067         * unrelated process.
2068         */
2069        if (page)
2070                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2071
2072        flush_cache_page(vma, address, pte_pfn(orig_pte));
2073        entry = pte_mkyoung(orig_pte);
2074        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075        if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076                update_mmu_cache(vma, address, page_table);
2077        pte_unmap_unlock(page_table, ptl);
2078
2079        if (dirty_shared) {
2080                struct address_space *mapping;
2081                int dirtied;
2082
2083                if (!page_mkwrite)
2084                        lock_page(page);
2085
2086                dirtied = set_page_dirty(page);
2087                VM_BUG_ON_PAGE(PageAnon(page), page);
2088                mapping = page->mapping;
2089                unlock_page(page);
2090                put_page(page);
2091
2092                if ((dirtied || page_mkwrite) && mapping) {
2093                        /*
2094                         * Some device drivers do not set page.mapping
2095                         * but still dirty their pages
2096                         */
2097                        balance_dirty_pages_ratelimited(mapping);
2098                }
2099
2100                if (!page_mkwrite)
2101                        file_update_time(vma->vm_file);
2102        }
2103
2104        return VM_FAULT_WRITE;
2105}
2106
2107/*
2108 * Handle the case of a page which we actually need to copy to a new page.
2109 *
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2112 *
2113 * High level logic flow:
2114 *
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 *   relevant references. This includes dropping the reference the page-table
2120 *   held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2122 */
2123static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124                        unsigned long address, pte_t *page_table, pmd_t *pmd,
2125                        pte_t orig_pte, struct page *old_page)
2126{
2127        struct page *new_page = NULL;
2128        spinlock_t *ptl = NULL;
2129        pte_t entry;
2130        int page_copied = 0;
2131        const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2132        const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2133        struct mem_cgroup *memcg;
2134
2135        if (unlikely(anon_vma_prepare(vma)))
2136                goto oom;
2137
2138        if (is_zero_pfn(pte_pfn(orig_pte))) {
2139                new_page = alloc_zeroed_user_highpage_movable(vma, address);
2140                if (!new_page)
2141                        goto oom;
2142        } else {
2143                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2144                if (!new_page)
2145                        goto oom;
2146                cow_user_page(new_page, old_page, address, vma);
2147        }
2148
2149        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150                goto oom_free_new;
2151
2152        __SetPageUptodate(new_page);
2153
2154        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2155
2156        /*
2157         * Re-check the pte - we dropped the lock
2158         */
2159        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160        if (likely(pte_same(*page_table, orig_pte))) {
2161                if (old_page) {
2162                        if (!PageAnon(old_page)) {
2163                                dec_mm_counter_fast(mm,
2164                                                mm_counter_file(old_page));
2165                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2166                        }
2167                } else {
2168                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2169                }
2170                flush_cache_page(vma, address, pte_pfn(orig_pte));
2171                entry = mk_pte(new_page, vma->vm_page_prot);
2172                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2173                /*
2174                 * Clear the pte entry and flush it first, before updating the
2175                 * pte with the new entry. This will avoid a race condition
2176                 * seen in the presence of one thread doing SMC and another
2177                 * thread doing COW.
2178                 */
2179                ptep_clear_flush_notify(vma, address, page_table);
2180                page_add_new_anon_rmap(new_page, vma, address, false);
2181                mem_cgroup_commit_charge(new_page, memcg, false, false);
2182                lru_cache_add_active_or_unevictable(new_page, vma);
2183                /*
2184                 * We call the notify macro here because, when using secondary
2185                 * mmu page tables (such as kvm shadow page tables), we want the
2186                 * new page to be mapped directly into the secondary page table.
2187                 */
2188                set_pte_at_notify(mm, address, page_table, entry);
2189                update_mmu_cache(vma, address, page_table);
2190                if (old_page) {
2191                        /*
2192                         * Only after switching the pte to the new page may
2193                         * we remove the mapcount here. Otherwise another
2194                         * process may come and find the rmap count decremented
2195                         * before the pte is switched to the new page, and
2196                         * "reuse" the old page writing into it while our pte
2197                         * here still points into it and can be read by other
2198                         * threads.
2199                         *
2200                         * The critical issue is to order this
2201                         * page_remove_rmap with the ptp_clear_flush above.
2202                         * Those stores are ordered by (if nothing else,)
2203                         * the barrier present in the atomic_add_negative
2204                         * in page_remove_rmap.
2205                         *
2206                         * Then the TLB flush in ptep_clear_flush ensures that
2207                         * no process can access the old page before the
2208                         * decremented mapcount is visible. And the old page
2209                         * cannot be reused until after the decremented
2210                         * mapcount is visible. So transitively, TLBs to
2211                         * old page will be flushed before it can be reused.
2212                         */
2213                        page_remove_rmap(old_page, false);
2214                }
2215
2216                /* Free the old page.. */
2217                new_page = old_page;
2218                page_copied = 1;
2219        } else {
2220                mem_cgroup_cancel_charge(new_page, memcg, false);
2221        }
2222
2223        if (new_page)
2224                put_page(new_page);
2225
2226        pte_unmap_unlock(page_table, ptl);
2227        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2228        if (old_page) {
2229                /*
2230                 * Don't let another task, with possibly unlocked vma,
2231                 * keep the mlocked page.
2232                 */
2233                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234                        lock_page(old_page);    /* LRU manipulation */
2235                        if (PageMlocked(old_page))
2236                                munlock_vma_page(old_page);
2237                        unlock_page(old_page);
2238                }
2239                put_page(old_page);
2240        }
2241        return page_copied ? VM_FAULT_WRITE : 0;
2242oom_free_new:
2243        put_page(new_page);
2244oom:
2245        if (old_page)
2246                put_page(old_page);
2247        return VM_FAULT_OOM;
2248}
2249
2250/*
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2253 */
2254static int wp_pfn_shared(struct mm_struct *mm,
2255                        struct vm_area_struct *vma, unsigned long address,
2256                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257                        pmd_t *pmd)
2258{
2259        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260                struct vm_fault vmf = {
2261                        .page = NULL,
2262                        .pgoff = linear_page_index(vma, address),
2263                        .virtual_address = (void __user *)(address & PAGE_MASK),
2264                        .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2265                };
2266                int ret;
2267
2268                pte_unmap_unlock(page_table, ptl);
2269                ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270                if (ret & VM_FAULT_ERROR)
2271                        return ret;
2272                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2273                /*
2274                 * We might have raced with another page fault while we
2275                 * released the pte_offset_map_lock.
2276                 */
2277                if (!pte_same(*page_table, orig_pte)) {
2278                        pte_unmap_unlock(page_table, ptl);
2279                        return 0;
2280                }
2281        }
2282        return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283                             NULL, 0, 0);
2284}
2285
2286static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287                          unsigned long address, pte_t *page_table,
2288                          pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289                          struct page *old_page)
2290        __releases(ptl)
2291{
2292        int page_mkwrite = 0;
2293
2294        get_page(old_page);
2295
2296        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297                int tmp;
2298
2299                pte_unmap_unlock(page_table, ptl);
2300                tmp = do_page_mkwrite(vma, old_page, address);
2301                if (unlikely(!tmp || (tmp &
2302                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303                        put_page(old_page);
2304                        return tmp;
2305                }
2306                /*
2307                 * Since we dropped the lock we need to revalidate
2308                 * the PTE as someone else may have changed it.  If
2309                 * they did, we just return, as we can count on the
2310                 * MMU to tell us if they didn't also make it writable.
2311                 */
2312                page_table = pte_offset_map_lock(mm, pmd, address,
2313                                                 &ptl);
2314                if (!pte_same(*page_table, orig_pte)) {
2315                        unlock_page(old_page);
2316                        pte_unmap_unlock(page_table, ptl);
2317                        put_page(old_page);
2318                        return 0;
2319                }
2320                page_mkwrite = 1;
2321        }
2322
2323        return wp_page_reuse(mm, vma, address, page_table, ptl,
2324                             orig_pte, old_page, page_mkwrite, 1);
2325}
2326
2327/*
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2331 *
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2336 *
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2340 *
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2344 */
2345static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346                unsigned long address, pte_t *page_table, pmd_t *pmd,
2347                spinlock_t *ptl, pte_t orig_pte)
2348        __releases(ptl)
2349{
2350        struct page *old_page;
2351
2352        old_page = vm_normal_page(vma, address, orig_pte);
2353        if (!old_page) {
2354                /*
2355                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356                 * VM_PFNMAP VMA.
2357                 *
2358                 * We should not cow pages in a shared writeable mapping.
2359                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2360                 */
2361                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362                                     (VM_WRITE|VM_SHARED))
2363                        return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364                                             orig_pte, pmd);
2365
2366                pte_unmap_unlock(page_table, ptl);
2367                return wp_page_copy(mm, vma, address, page_table, pmd,
2368                                    orig_pte, old_page);
2369        }
2370
2371        /*
2372         * Take out anonymous pages first, anonymous shared vmas are
2373         * not dirty accountable.
2374         */
2375        if (PageAnon(old_page) && !PageKsm(old_page)) {
2376                int total_mapcount;
2377                if (!trylock_page(old_page)) {
2378                        get_page(old_page);
2379                        pte_unmap_unlock(page_table, ptl);
2380                        lock_page(old_page);
2381                        page_table = pte_offset_map_lock(mm, pmd, address,
2382                                                         &ptl);
2383                        if (!pte_same(*page_table, orig_pte)) {
2384                                unlock_page(old_page);
2385                                pte_unmap_unlock(page_table, ptl);
2386                                put_page(old_page);
2387                                return 0;
2388                        }
2389                        put_page(old_page);
2390                }
2391                if (reuse_swap_page(old_page, &total_mapcount)) {
2392                        if (total_mapcount == 1) {
2393                                /*
2394                                 * The page is all ours. Move it to
2395                                 * our anon_vma so the rmap code will
2396                                 * not search our parent or siblings.
2397                                 * Protected against the rmap code by
2398                                 * the page lock.
2399                                 */
2400                                page_move_anon_rmap(compound_head(old_page),
2401                                                    vma, address);
2402                        }
2403                        unlock_page(old_page);
2404                        return wp_page_reuse(mm, vma, address, page_table, ptl,
2405                                             orig_pte, old_page, 0, 0);
2406                }
2407                unlock_page(old_page);
2408        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409                                        (VM_WRITE|VM_SHARED))) {
2410                return wp_page_shared(mm, vma, address, page_table, pmd,
2411                                      ptl, orig_pte, old_page);
2412        }
2413
2414        /*
2415         * Ok, we need to copy. Oh, well..
2416         */
2417        get_page(old_page);
2418
2419        pte_unmap_unlock(page_table, ptl);
2420        return wp_page_copy(mm, vma, address, page_table, pmd,
2421                            orig_pte, old_page);
2422}
2423
2424static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425                unsigned long start_addr, unsigned long end_addr,
2426                struct zap_details *details)
2427{
2428        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2429}
2430
2431static inline void unmap_mapping_range_tree(struct rb_root *root,
2432                                            struct zap_details *details)
2433{
2434        struct vm_area_struct *vma;
2435        pgoff_t vba, vea, zba, zea;
2436
2437        vma_interval_tree_foreach(vma, root,
2438                        details->first_index, details->last_index) {
2439
2440                vba = vma->vm_pgoff;
2441                vea = vba + vma_pages(vma) - 1;
2442                zba = details->first_index;
2443                if (zba < vba)
2444                        zba = vba;
2445                zea = details->last_index;
2446                if (zea > vea)
2447                        zea = vea;
2448
2449                unmap_mapping_range_vma(vma,
2450                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452                                details);
2453        }
2454}
2455
2456/**
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2460 *
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file.  This will be rounded down to a PAGE_SIZE
2464 * boundary.  Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page.  In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes.  This will be rounded
2468 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2472 */
2473void unmap_mapping_range(struct address_space *mapping,
2474                loff_t const holebegin, loff_t const holelen, int even_cows)
2475{
2476        struct zap_details details = { };
2477        pgoff_t hba = holebegin >> PAGE_SHIFT;
2478        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2479
2480        /* Check for overflow. */
2481        if (sizeof(holelen) > sizeof(hlen)) {
2482                long long holeend =
2483                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484                if (holeend & ~(long long)ULONG_MAX)
2485                        hlen = ULONG_MAX - hba + 1;
2486        }
2487
2488        details.check_mapping = even_cows? NULL: mapping;
2489        details.first_index = hba;
2490        details.last_index = hba + hlen - 1;
2491        if (details.last_index < details.first_index)
2492                details.last_index = ULONG_MAX;
2493
2494
2495        /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496        i_mmap_lock_write(mapping);
2497        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499        i_mmap_unlock_write(mapping);
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
2503/*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2510 */
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512                unsigned long address, pte_t *page_table, pmd_t *pmd,
2513                unsigned int flags, pte_t orig_pte)
2514{
2515        spinlock_t *ptl;
2516        struct page *page, *swapcache;
2517        struct mem_cgroup *memcg;
2518        swp_entry_t entry;
2519        pte_t pte;
2520        int locked;
2521        int exclusive = 0;
2522        int ret = 0;
2523
2524        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525                goto out;
2526
2527        entry = pte_to_swp_entry(orig_pte);
2528        if (unlikely(non_swap_entry(entry))) {
2529                if (is_migration_entry(entry)) {
2530                        migration_entry_wait(mm, pmd, address);
2531                } else if (is_hwpoison_entry(entry)) {
2532                        ret = VM_FAULT_HWPOISON;
2533                } else {
2534                        print_bad_pte(vma, address, orig_pte, NULL);
2535                        ret = VM_FAULT_SIGBUS;
2536                }
2537                goto out;
2538        }
2539        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540        page = lookup_swap_cache(entry);
2541        if (!page) {
2542                page = swapin_readahead(entry,
2543                                        GFP_HIGHUSER_MOVABLE, vma, address);
2544                if (!page) {
2545                        /*
2546                         * Back out if somebody else faulted in this pte
2547                         * while we released the pte lock.
2548                         */
2549                        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550                        if (likely(pte_same(*page_table, orig_pte)))
2551                                ret = VM_FAULT_OOM;
2552                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553                        goto unlock;
2554                }
2555
2556                /* Had to read the page from swap area: Major fault */
2557                ret = VM_FAULT_MAJOR;
2558                count_vm_event(PGMAJFAULT);
2559                mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560        } else if (PageHWPoison(page)) {
2561                /*
2562                 * hwpoisoned dirty swapcache pages are kept for killing
2563                 * owner processes (which may be unknown at hwpoison time)
2564                 */
2565                ret = VM_FAULT_HWPOISON;
2566                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567                swapcache = page;
2568                goto out_release;
2569        }
2570
2571        swapcache = page;
2572        locked = lock_page_or_retry(page, mm, flags);
2573
2574        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575        if (!locked) {
2576                ret |= VM_FAULT_RETRY;
2577                goto out_release;
2578        }
2579
2580        /*
2581         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582         * release the swapcache from under us.  The page pin, and pte_same
2583         * test below, are not enough to exclude that.  Even if it is still
2584         * swapcache, we need to check that the page's swap has not changed.
2585         */
2586        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587                goto out_page;
2588
2589        page = ksm_might_need_to_copy(page, vma, address);
2590        if (unlikely(!page)) {
2591                ret = VM_FAULT_OOM;
2592                page = swapcache;
2593                goto out_page;
2594        }
2595
2596        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597                ret = VM_FAULT_OOM;
2598                goto out_page;
2599        }
2600
2601        /*
2602         * Back out if somebody else already faulted in this pte.
2603         */
2604        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605        if (unlikely(!pte_same(*page_table, orig_pte)))
2606                goto out_nomap;
2607
2608        if (unlikely(!PageUptodate(page))) {
2609                ret = VM_FAULT_SIGBUS;
2610                goto out_nomap;
2611        }
2612
2613        /*
2614         * The page isn't present yet, go ahead with the fault.
2615         *
2616         * Be careful about the sequence of operations here.
2617         * To get its accounting right, reuse_swap_page() must be called
2618         * while the page is counted on swap but not yet in mapcount i.e.
2619         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620         * must be called after the swap_free(), or it will never succeed.
2621         */
2622
2623        inc_mm_counter_fast(mm, MM_ANONPAGES);
2624        dec_mm_counter_fast(mm, MM_SWAPENTS);
2625        pte = mk_pte(page, vma->vm_page_prot);
2626        if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628                flags &= ~FAULT_FLAG_WRITE;
2629                ret |= VM_FAULT_WRITE;
2630                exclusive = RMAP_EXCLUSIVE;
2631        }
2632        flush_icache_page(vma, page);
2633        if (pte_swp_soft_dirty(orig_pte))
2634                pte = pte_mksoft_dirty(pte);
2635        set_pte_at(mm, address, page_table, pte);
2636        if (page == swapcache) {
2637                do_page_add_anon_rmap(page, vma, address, exclusive);
2638                mem_cgroup_commit_charge(page, memcg, true, false);
2639        } else { /* ksm created a completely new copy */
2640                page_add_new_anon_rmap(page, vma, address, false);
2641                mem_cgroup_commit_charge(page, memcg, false, false);
2642                lru_cache_add_active_or_unevictable(page, vma);
2643        }
2644
2645        swap_free(entry);
2646        if (mem_cgroup_swap_full(page) ||
2647            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648                try_to_free_swap(page);
2649        unlock_page(page);
2650        if (page != swapcache) {
2651                /*
2652                 * Hold the lock to avoid the swap entry to be reused
2653                 * until we take the PT lock for the pte_same() check
2654                 * (to avoid false positives from pte_same). For
2655                 * further safety release the lock after the swap_free
2656                 * so that the swap count won't change under a
2657                 * parallel locked swapcache.
2658                 */
2659                unlock_page(swapcache);
2660                put_page(swapcache);
2661        }
2662
2663        if (flags & FAULT_FLAG_WRITE) {
2664                ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665                if (ret & VM_FAULT_ERROR)
2666                        ret &= VM_FAULT_ERROR;
2667                goto out;
2668        }
2669
2670        /* No need to invalidate - it was non-present before */
2671        update_mmu_cache(vma, address, page_table);
2672unlock:
2673        pte_unmap_unlock(page_table, ptl);
2674out:
2675        return ret;
2676out_nomap:
2677        mem_cgroup_cancel_charge(page, memcg, false);
2678        pte_unmap_unlock(page_table, ptl);
2679out_page:
2680        unlock_page(page);
2681out_release:
2682        put_page(page);
2683        if (page != swapcache) {
2684                unlock_page(swapcache);
2685                put_page(swapcache);
2686        }
2687        return ret;
2688}
2689
2690/*
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697        address &= PAGE_MASK;
2698        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699                struct vm_area_struct *prev = vma->vm_prev;
2700
2701                /*
2702                 * Is there a mapping abutting this one below?
2703                 *
2704                 * That's only ok if it's the same stack mapping
2705                 * that has gotten split..
2706                 */
2707                if (prev && prev->vm_end == address)
2708                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709
2710                return expand_downwards(vma, address - PAGE_SIZE);
2711        }
2712        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713                struct vm_area_struct *next = vma->vm_next;
2714
2715                /* As VM_GROWSDOWN but s/below/above/ */
2716                if (next && next->vm_start == address + PAGE_SIZE)
2717                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
2719                return expand_upwards(vma, address + PAGE_SIZE);
2720        }
2721        return 0;
2722}
2723
2724/*
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2728 */
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730                unsigned long address, pte_t *page_table, pmd_t *pmd,
2731                unsigned int flags)
2732{
2733        struct mem_cgroup *memcg;
2734        struct page *page;
2735        spinlock_t *ptl;
2736        pte_t entry;
2737
2738        pte_unmap(page_table);
2739
2740        /* File mapping without ->vm_ops ? */
2741        if (vma->vm_flags & VM_SHARED)
2742                return VM_FAULT_SIGBUS;
2743
2744        /* Check if we need to add a guard page to the stack */
2745        if (check_stack_guard_page(vma, address) < 0)
2746                return VM_FAULT_SIGSEGV;
2747
2748        /* Use the zero-page for reads */
2749        if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750                entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751                                                vma->vm_page_prot));
2752                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753                if (!pte_none(*page_table))
2754                        goto unlock;
2755                /* Deliver the page fault to userland, check inside PT lock */
2756                if (userfaultfd_missing(vma)) {
2757                        pte_unmap_unlock(page_table, ptl);
2758                        return handle_userfault(vma, address, flags,
2759                                                VM_UFFD_MISSING);
2760                }
2761                goto setpte;
2762        }
2763
2764        /* Allocate our own private page. */
2765        if (unlikely(anon_vma_prepare(vma)))
2766                goto oom;
2767        page = alloc_zeroed_user_highpage_movable(vma, address);
2768        if (!page)
2769                goto oom;
2770
2771        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772                goto oom_free_page;
2773
2774        /*
2775         * The memory barrier inside __SetPageUptodate makes sure that
2776         * preceeding stores to the page contents become visible before
2777         * the set_pte_at() write.
2778         */
2779        __SetPageUptodate(page);
2780
2781        entry = mk_pte(page, vma->vm_page_prot);
2782        if (vma->vm_flags & VM_WRITE)
2783                entry = pte_mkwrite(pte_mkdirty(entry));
2784
2785        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786        if (!pte_none(*page_table))
2787                goto release;
2788
2789        /* Deliver the page fault to userland, check inside PT lock */
2790        if (userfaultfd_missing(vma)) {
2791                pte_unmap_unlock(page_table, ptl);
2792                mem_cgroup_cancel_charge(page, memcg, false);
2793                put_page(page);
2794                return handle_userfault(vma, address, flags,
2795                                        VM_UFFD_MISSING);
2796        }
2797
2798        inc_mm_counter_fast(mm, MM_ANONPAGES);
2799        page_add_new_anon_rmap(page, vma, address, false);
2800        mem_cgroup_commit_charge(page, memcg, false, false);
2801        lru_cache_add_active_or_unevictable(page, vma);
2802setpte:
2803        set_pte_at(mm, address, page_table, entry);
2804
2805        /* No need to invalidate - it was non-present before */
2806        update_mmu_cache(vma, address, page_table);
2807unlock:
2808        pte_unmap_unlock(page_table, ptl);
2809        return 0;
2810release:
2811        mem_cgroup_cancel_charge(page, memcg, false);
2812        put_page(page);
2813        goto unlock;
2814oom_free_page:
2815        put_page(page);
2816oom:
2817        return VM_FAULT_OOM;
2818}
2819
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826                        pgoff_t pgoff, unsigned int flags,
2827                        struct page *cow_page, struct page **page)
2828{
2829        struct vm_fault vmf;
2830        int ret;
2831
2832        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833        vmf.pgoff = pgoff;
2834        vmf.flags = flags;
2835        vmf.page = NULL;
2836        vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837        vmf.cow_page = cow_page;
2838
2839        ret = vma->vm_ops->fault(vma, &vmf);
2840        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841                return ret;
2842        if (!vmf.page)
2843                goto out;
2844
2845        if (unlikely(PageHWPoison(vmf.page))) {
2846                if (ret & VM_FAULT_LOCKED)
2847                        unlock_page(vmf.page);
2848                put_page(vmf.page);
2849                return VM_FAULT_HWPOISON;
2850        }
2851
2852        if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853                lock_page(vmf.page);
2854        else
2855                VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2856
2857 out:
2858        *page = vmf.page;
2859        return ret;
2860}
2861
2862/**
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2864 *
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2871 *
2872 * Caller must hold page table lock relevant for @pte.
2873 *
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2876 */
2877void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878                struct page *page, pte_t *pte, bool write, bool anon)
2879{
2880        pte_t entry;
2881
2882        flush_icache_page(vma, page);
2883        entry = mk_pte(page, vma->vm_page_prot);
2884        if (write)
2885                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2886        if (anon) {
2887                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888                page_add_new_anon_rmap(page, vma, address, false);
2889        } else {
2890                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891                page_add_file_rmap(page);
2892        }
2893        set_pte_at(vma->vm_mm, address, pte, entry);
2894
2895        /* no need to invalidate: a not-present page won't be cached */
2896        update_mmu_cache(vma, address, pte);
2897}
2898
2899static unsigned long fault_around_bytes __read_mostly =
2900        rounddown_pow_of_two(65536);
2901
2902#ifdef CONFIG_DEBUG_FS
2903static int fault_around_bytes_get(void *data, u64 *val)
2904{
2905        *val = fault_around_bytes;
2906        return 0;
2907}
2908
2909/*
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2913 */
2914static int fault_around_bytes_set(void *data, u64 val)
2915{
2916        if (val / PAGE_SIZE > PTRS_PER_PTE)
2917                return -EINVAL;
2918        if (val > PAGE_SIZE)
2919                fault_around_bytes = rounddown_pow_of_two(val);
2920        else
2921                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922        return 0;
2923}
2924DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2926
2927static int __init fault_around_debugfs(void)
2928{
2929        void *ret;
2930
2931        ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932                        &fault_around_bytes_fops);
2933        if (!ret)
2934                pr_warn("Failed to create fault_around_bytes in debugfs");
2935        return 0;
2936}
2937late_initcall(fault_around_debugfs);
2938#endif
2939
2940/*
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2944 *
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2947 *
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2951 *
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2954 *
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2958 *
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order).  This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2962 */
2963static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964                pte_t *pte, pgoff_t pgoff, unsigned int flags)
2965{
2966        unsigned long start_addr, nr_pages, mask;
2967        pgoff_t max_pgoff;
2968        struct vm_fault vmf;
2969        int off;
2970
2971        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2973
2974        start_addr = max(address & mask, vma->vm_start);
2975        off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976        pte -= off;
2977        pgoff -= off;
2978
2979        /*
2980         *  max_pgoff is either end of page table or end of vma
2981         *  or fault_around_pages() from pgoff, depending what is nearest.
2982         */
2983        max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2984                PTRS_PER_PTE - 1;
2985        max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986                        pgoff + nr_pages - 1);
2987
2988        /* Check if it makes any sense to call ->map_pages */
2989        while (!pte_none(*pte)) {
2990                if (++pgoff > max_pgoff)
2991                        return;
2992                start_addr += PAGE_SIZE;
2993                if (start_addr >= vma->vm_end)
2994                        return;
2995                pte++;
2996        }
2997
2998        vmf.virtual_address = (void __user *) start_addr;
2999        vmf.pte = pte;
3000        vmf.pgoff = pgoff;
3001        vmf.max_pgoff = max_pgoff;
3002        vmf.flags = flags;
3003        vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004        vma->vm_ops->map_pages(vma, &vmf);
3005}
3006
3007static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008                unsigned long address, pmd_t *pmd,
3009                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010{
3011        struct page *fault_page;
3012        spinlock_t *ptl;
3013        pte_t *pte;
3014        int ret = 0;
3015
3016        /*
3017         * Let's call ->map_pages() first and use ->fault() as fallback
3018         * if page by the offset is not ready to be mapped (cold cache or
3019         * something).
3020         */
3021        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022                pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023                do_fault_around(vma, address, pte, pgoff, flags);
3024                if (!pte_same(*pte, orig_pte))
3025                        goto unlock_out;
3026                pte_unmap_unlock(pte, ptl);
3027        }
3028
3029        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031                return ret;
3032
3033        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034        if (unlikely(!pte_same(*pte, orig_pte))) {
3035                pte_unmap_unlock(pte, ptl);
3036                unlock_page(fault_page);
3037                put_page(fault_page);
3038                return ret;
3039        }
3040        do_set_pte(vma, address, fault_page, pte, false, false);
3041        unlock_page(fault_page);
3042unlock_out:
3043        pte_unmap_unlock(pte, ptl);
3044        return ret;
3045}
3046
3047static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048                unsigned long address, pmd_t *pmd,
3049                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050{
3051        struct page *fault_page, *new_page;
3052        struct mem_cgroup *memcg;
3053        spinlock_t *ptl;
3054        pte_t *pte;
3055        int ret;
3056
3057        if (unlikely(anon_vma_prepare(vma)))
3058                return VM_FAULT_OOM;
3059
3060        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061        if (!new_page)
3062                return VM_FAULT_OOM;
3063
3064        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065                put_page(new_page);
3066                return VM_FAULT_OOM;
3067        }
3068
3069        ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071                goto uncharge_out;
3072
3073        if (fault_page)
3074                copy_user_highpage(new_page, fault_page, address, vma);
3075        __SetPageUptodate(new_page);
3076
3077        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078        if (unlikely(!pte_same(*pte, orig_pte))) {
3079                pte_unmap_unlock(pte, ptl);
3080                if (fault_page) {
3081                        unlock_page(fault_page);
3082                        put_page(fault_page);
3083                } else {
3084                        /*
3085                         * The fault handler has no page to lock, so it holds
3086                         * i_mmap_lock for read to protect against truncate.
3087                         */
3088                        i_mmap_unlock_read(vma->vm_file->f_mapping);
3089                }
3090                goto uncharge_out;
3091        }
3092        do_set_pte(vma, address, new_page, pte, true, true);
3093        mem_cgroup_commit_charge(new_page, memcg, false, false);
3094        lru_cache_add_active_or_unevictable(new_page, vma);
3095        pte_unmap_unlock(pte, ptl);
3096        if (fault_page) {
3097                unlock_page(fault_page);
3098                put_page(fault_page);
3099        } else {
3100                /*
3101                 * The fault handler has no page to lock, so it holds
3102                 * i_mmap_lock for read to protect against truncate.
3103                 */
3104                i_mmap_unlock_read(vma->vm_file->f_mapping);
3105        }
3106        return ret;
3107uncharge_out:
3108        mem_cgroup_cancel_charge(new_page, memcg, false);
3109        put_page(new_page);
3110        return ret;
3111}
3112
3113static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114                unsigned long address, pmd_t *pmd,
3115                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3116{
3117        struct page *fault_page;
3118        struct address_space *mapping;
3119        spinlock_t *ptl;
3120        pte_t *pte;
3121        int dirtied = 0;
3122        int ret, tmp;
3123
3124        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126                return ret;
3127
3128        /*
3129         * Check if the backing address space wants to know that the page is
3130         * about to become writable
3131         */
3132        if (vma->vm_ops->page_mkwrite) {
3133                unlock_page(fault_page);
3134                tmp = do_page_mkwrite(vma, fault_page, address);
3135                if (unlikely(!tmp ||
3136                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137                        put_page(fault_page);
3138                        return tmp;
3139                }
3140        }
3141
3142        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143        if (unlikely(!pte_same(*pte, orig_pte))) {
3144                pte_unmap_unlock(pte, ptl);
3145                unlock_page(fault_page);
3146                put_page(fault_page);
3147                return ret;
3148        }
3149        do_set_pte(vma, address, fault_page, pte, true, false);
3150        pte_unmap_unlock(pte, ptl);
3151
3152        if (set_page_dirty(fault_page))
3153                dirtied = 1;
3154        /*
3155         * Take a local copy of the address_space - page.mapping may be zeroed
3156         * by truncate after unlock_page().   The address_space itself remains
3157         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3158         * release semantics to prevent the compiler from undoing this copying.
3159         */
3160        mapping = page_rmapping(fault_page);
3161        unlock_page(fault_page);
3162        if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3163                /*
3164                 * Some device drivers do not set page.mapping but still
3165                 * dirty their pages
3166                 */
3167                balance_dirty_pages_ratelimited(mapping);
3168        }
3169
3170        if (!vma->vm_ops->page_mkwrite)
3171                file_update_time(vma->vm_file);
3172
3173        return ret;
3174}
3175
3176/*
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value.  See filemap_fault() and __lock_page_or_retry().
3181 */
3182static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183                unsigned long address, pte_t *page_table, pmd_t *pmd,
3184                unsigned int flags, pte_t orig_pte)
3185{
3186        pgoff_t pgoff = linear_page_index(vma, address);
3187
3188        pte_unmap(page_table);
3189        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190        if (!vma->vm_ops->fault)
3191                return VM_FAULT_SIGBUS;
3192        if (!(flags & FAULT_FLAG_WRITE))
3193                return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194                                orig_pte);
3195        if (!(vma->vm_flags & VM_SHARED))
3196                return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197                                orig_pte);
3198        return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3199}
3200
3201static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202                                unsigned long addr, int page_nid,
3203                                int *flags)
3204{
3205        get_page(page);
3206
3207        count_vm_numa_event(NUMA_HINT_FAULTS);
3208        if (page_nid == numa_node_id()) {
3209                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210                *flags |= TNF_FAULT_LOCAL;
3211        }
3212
3213        return mpol_misplaced(page, vma, addr);
3214}
3215
3216static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217                   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3218{
3219        struct page *page = NULL;
3220        spinlock_t *ptl;
3221        int page_nid = -1;
3222        int last_cpupid;
3223        int target_nid;
3224        bool migrated = false;
3225        bool was_writable = pte_write(pte);
3226        int flags = 0;
3227
3228        /* A PROT_NONE fault should not end up here */
3229        BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3230
3231        /*
3232        * The "pte" at this point cannot be used safely without
3233        * validation through pte_unmap_same(). It's of NUMA type but
3234        * the pfn may be screwed if the read is non atomic.
3235        *
3236        * We can safely just do a "set_pte_at()", because the old
3237        * page table entry is not accessible, so there would be no
3238        * concurrent hardware modifications to the PTE.
3239        */
3240        ptl = pte_lockptr(mm, pmd);
3241        spin_lock(ptl);
3242        if (unlikely(!pte_same(*ptep, pte))) {
3243                pte_unmap_unlock(ptep, ptl);
3244                goto out;
3245        }
3246
3247        /* Make it present again */
3248        pte = pte_modify(pte, vma->vm_page_prot);
3249        pte = pte_mkyoung(pte);
3250        if (was_writable)
3251                pte = pte_mkwrite(pte);
3252        set_pte_at(mm, addr, ptep, pte);
3253        update_mmu_cache(vma, addr, ptep);
3254
3255        page = vm_normal_page(vma, addr, pte);
3256        if (!page) {
3257                pte_unmap_unlock(ptep, ptl);
3258                return 0;
3259        }
3260
3261        /* TODO: handle PTE-mapped THP */
3262        if (PageCompound(page)) {
3263                pte_unmap_unlock(ptep, ptl);
3264                return 0;
3265        }
3266
3267        /*
3268         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269         * much anyway since they can be in shared cache state. This misses
3270         * the case where a mapping is writable but the process never writes
3271         * to it but pte_write gets cleared during protection updates and
3272         * pte_dirty has unpredictable behaviour between PTE scan updates,
3273         * background writeback, dirty balancing and application behaviour.
3274         */
3275        if (!(vma->vm_flags & VM_WRITE))
3276                flags |= TNF_NO_GROUP;
3277
3278        /*
3279         * Flag if the page is shared between multiple address spaces. This
3280         * is later used when determining whether to group tasks together
3281         */
3282        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283                flags |= TNF_SHARED;
3284
3285        last_cpupid = page_cpupid_last(page);
3286        page_nid = page_to_nid(page);
3287        target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288        pte_unmap_unlock(ptep, ptl);
3289        if (target_nid == -1) {
3290                put_page(page);
3291                goto out;
3292        }
3293
3294        /* Migrate to the requested node */
3295        migrated = migrate_misplaced_page(page, vma, target_nid);
3296        if (migrated) {
3297                page_nid = target_nid;
3298                flags |= TNF_MIGRATED;
3299        } else
3300                flags |= TNF_MIGRATE_FAIL;
3301
3302out:
3303        if (page_nid != -1)
3304                task_numa_fault(last_cpupid, page_nid, 1, flags);
3305        return 0;
3306}
3307
3308static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309                        unsigned long address, pmd_t *pmd, unsigned int flags)
3310{
3311        if (vma_is_anonymous(vma))
3312                return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313        if (vma->vm_ops->pmd_fault)
3314                return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3315        return VM_FAULT_FALLBACK;
3316}
3317
3318static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320                        unsigned int flags)
3321{
3322        if (vma_is_anonymous(vma))
3323                return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324        if (vma->vm_ops->pmd_fault)
3325                return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3326        return VM_FAULT_FALLBACK;
3327}
3328
3329/*
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures).  The early dirtying is also good on the i386.
3333 *
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value.  See filemap_fault() and __lock_page_or_retry().
3344 */
3345static int handle_pte_fault(struct mm_struct *mm,
3346                     struct vm_area_struct *vma, unsigned long address,
3347                     pte_t *pte, pmd_t *pmd, unsigned int flags)
3348{
3349        pte_t entry;
3350        spinlock_t *ptl;
3351
3352        /*
3353         * some architectures can have larger ptes than wordsize,
3354         * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355         * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356         * The code below just needs a consistent view for the ifs and
3357         * we later double check anyway with the ptl lock held. So here
3358         * a barrier will do.
3359         */
3360        entry = *pte;
3361        barrier();
3362        if (!pte_present(entry)) {
3363                if (pte_none(entry)) {
3364                        if (vma_is_anonymous(vma))
3365                                return do_anonymous_page(mm, vma, address,
3366                                                         pte, pmd, flags);
3367                        else
3368                                return do_fault(mm, vma, address, pte, pmd,
3369                                                flags, entry);
3370                }
3371                return do_swap_page(mm, vma, address,
3372                                        pte, pmd, flags, entry);
3373        }
3374
3375        if (pte_protnone(entry))
3376                return do_numa_page(mm, vma, address, entry, pte, pmd);
3377
3378        ptl = pte_lockptr(mm, pmd);
3379        spin_lock(ptl);
3380        if (unlikely(!pte_same(*pte, entry)))
3381                goto unlock;
3382        if (flags & FAULT_FLAG_WRITE) {
3383                if (!pte_write(entry))
3384                        return do_wp_page(mm, vma, address,
3385                                        pte, pmd, ptl, entry);
3386                entry = pte_mkdirty(entry);
3387        }
3388        entry = pte_mkyoung(entry);
3389        if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390                update_mmu_cache(vma, address, pte);
3391        } else {
3392                /*
3393                 * This is needed only for protection faults but the arch code
3394                 * is not yet telling us if this is a protection fault or not.
3395                 * This still avoids useless tlb flushes for .text page faults
3396                 * with threads.
3397                 */
3398                if (flags & FAULT_FLAG_WRITE)
3399                        flush_tlb_fix_spurious_fault(vma, address);
3400        }
3401unlock:
3402        pte_unmap_unlock(pte, ptl);
3403        return 0;
3404}
3405
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value.  See filemap_fault() and __lock_page_or_retry().
3411 */
3412static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413                             unsigned long address, unsigned int flags)
3414{
3415        pgd_t *pgd;
3416        pud_t *pud;
3417        pmd_t *pmd;
3418        pte_t *pte;
3419
3420        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421                                            flags & FAULT_FLAG_INSTRUCTION,
3422                                            flags & FAULT_FLAG_REMOTE))
3423                return VM_FAULT_SIGSEGV;
3424
3425        if (unlikely(is_vm_hugetlb_page(vma)))
3426                return hugetlb_fault(mm, vma, address, flags);
3427
3428        pgd = pgd_offset(mm, address);
3429        pud = pud_alloc(mm, pgd, address);
3430        if (!pud)
3431                return VM_FAULT_OOM;
3432        pmd = pmd_alloc(mm, pud, address);
3433        if (!pmd)
3434                return VM_FAULT_OOM;
3435        if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436                int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3437                if (!(ret & VM_FAULT_FALLBACK))
3438                        return ret;
3439        } else {
3440                pmd_t orig_pmd = *pmd;
3441                int ret;
3442
3443                barrier();
3444                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445                        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3446
3447                        if (pmd_protnone(orig_pmd))
3448                                return do_huge_pmd_numa_page(mm, vma, address,
3449                                                             orig_pmd, pmd);
3450
3451                        if (dirty && !pmd_write(orig_pmd)) {
3452                                ret = wp_huge_pmd(mm, vma, address, pmd,
3453                                                        orig_pmd, flags);
3454                                if (!(ret & VM_FAULT_FALLBACK))
3455                                        return ret;
3456                        } else {
3457                                huge_pmd_set_accessed(mm, vma, address, pmd,
3458                                                      orig_pmd, dirty);
3459                                return 0;
3460                        }
3461                }
3462        }
3463
3464        /*
3465         * Use pte_alloc() instead of pte_alloc_map, because we can't
3466         * run pte_offset_map on the pmd, if an huge pmd could
3467         * materialize from under us from a different thread.
3468         */
3469        if (unlikely(pte_alloc(mm, pmd, address)))
3470                return VM_FAULT_OOM;
3471        /*
3472         * If a huge pmd materialized under us just retry later.  Use
3473         * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474         * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475         * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476         * in a different thread of this mm, in turn leading to a misleading
3477         * pmd_trans_huge() retval.  All we have to ensure is that it is a
3478         * regular pmd that we can walk with pte_offset_map() and we can do that
3479         * through an atomic read in C, which is what pmd_trans_unstable()
3480         * provides.
3481         */
3482        if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483                return 0;
3484        /*
3485         * A regular pmd is established and it can't morph into a huge pmd
3486         * from under us anymore at this point because we hold the mmap_sem
3487         * read mode and khugepaged takes it in write mode. So now it's
3488         * safe to run pte_offset_map().
3489         */
3490        pte = pte_offset_map(pmd, address);
3491
3492        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3493}
3494
3495/*
3496 * By the time we get here, we already hold the mm semaphore
3497 *
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value.  See filemap_fault() and __lock_page_or_retry().
3500 */
3501int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502                    unsigned long address, unsigned int flags)
3503{
3504        int ret;
3505
3506        __set_current_state(TASK_RUNNING);
3507
3508        count_vm_event(PGFAULT);
3509        mem_cgroup_count_vm_event(mm, PGFAULT);
3510
3511        /* do counter updates before entering really critical section. */
3512        check_sync_rss_stat(current);
3513
3514        /*
3515         * Enable the memcg OOM handling for faults triggered in user
3516         * space.  Kernel faults are handled more gracefully.
3517         */
3518        if (flags & FAULT_FLAG_USER)
3519                mem_cgroup_oom_enable();
3520
3521        ret = __handle_mm_fault(mm, vma, address, flags);
3522
3523        if (flags & FAULT_FLAG_USER) {
3524                mem_cgroup_oom_disable();
3525                /*
3526                 * The task may have entered a memcg OOM situation but
3527                 * if the allocation error was handled gracefully (no
3528                 * VM_FAULT_OOM), there is no need to kill anything.
3529                 * Just clean up the OOM state peacefully.
3530                 */
3531                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532                        mem_cgroup_oom_synchronize(false);
3533        }
3534
3535        return ret;
3536}
3537EXPORT_SYMBOL_GPL(handle_mm_fault);
3538
3539#ifndef __PAGETABLE_PUD_FOLDED
3540/*
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3543 */
3544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3545{
3546        pud_t *new = pud_alloc_one(mm, address);
3547        if (!new)
3548                return -ENOMEM;
3549
3550        smp_wmb(); /* See comment in __pte_alloc */
3551
3552        spin_lock(&mm->page_table_lock);
3553        if (pgd_present(*pgd))          /* Another has populated it */
3554                pud_free(mm, new);
3555        else
3556                pgd_populate(mm, pgd, new);
3557        spin_unlock(&mm->page_table_lock);
3558        return 0;
3559}
3560#endif /* __PAGETABLE_PUD_FOLDED */
3561
3562#ifndef __PAGETABLE_PMD_FOLDED
3563/*
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3566 */
3567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3568{
3569        pmd_t *new = pmd_alloc_one(mm, address);
3570        if (!new)
3571                return -ENOMEM;
3572
3573        smp_wmb(); /* See comment in __pte_alloc */
3574
3575        spin_lock(&mm->page_table_lock);
3576#ifndef __ARCH_HAS_4LEVEL_HACK
3577        if (!pud_present(*pud)) {
3578                mm_inc_nr_pmds(mm);
3579                pud_populate(mm, pud, new);
3580        } else  /* Another has populated it */
3581                pmd_free(mm, new);
3582#else
3583        if (!pgd_present(*pud)) {
3584                mm_inc_nr_pmds(mm);
3585                pgd_populate(mm, pud, new);
3586        } else /* Another has populated it */
3587                pmd_free(mm, new);
3588#endif /* __ARCH_HAS_4LEVEL_HACK */
3589        spin_unlock(&mm->page_table_lock);
3590        return 0;
3591}
3592#endif /* __PAGETABLE_PMD_FOLDED */
3593
3594static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595                pte_t **ptepp, spinlock_t **ptlp)
3596{
3597        pgd_t *pgd;
3598        pud_t *pud;
3599        pmd_t *pmd;
3600        pte_t *ptep;
3601
3602        pgd = pgd_offset(mm, address);
3603        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604                goto out;
3605
3606        pud = pud_offset(pgd, address);
3607        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608                goto out;
3609
3610        pmd = pmd_offset(pud, address);
3611        VM_BUG_ON(pmd_trans_huge(*pmd));
3612        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613                goto out;
3614
3615        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616        if (pmd_huge(*pmd))
3617                goto out;
3618
3619        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620        if (!ptep)
3621                goto out;
3622        if (!pte_present(*ptep))
3623                goto unlock;
3624        *ptepp = ptep;
3625        return 0;
3626unlock:
3627        pte_unmap_unlock(ptep, *ptlp);
3628out:
3629        return -EINVAL;
3630}
3631
3632static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633                             pte_t **ptepp, spinlock_t **ptlp)
3634{
3635        int res;
3636
3637        /* (void) is needed to make gcc happy */
3638        (void) __cond_lock(*ptlp,
3639                           !(res = __follow_pte(mm, address, ptepp, ptlp)));
3640        return res;
3641}
3642
3643/**
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3648 *
3649 * Only IO mappings and raw PFN mappings are allowed.
3650 *
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3652 */
3653int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654        unsigned long *pfn)
3655{
3656        int ret = -EINVAL;
3657        spinlock_t *ptl;
3658        pte_t *ptep;
3659
3660        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661                return ret;
3662
3663        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664        if (ret)
3665                return ret;
3666        *pfn = pte_pfn(*ptep);
3667        pte_unmap_unlock(ptep, ptl);
3668        return 0;
3669}
3670EXPORT_SYMBOL(follow_pfn);
3671
3672#ifdef CONFIG_HAVE_IOREMAP_PROT
3673int follow_phys(struct vm_area_struct *vma,
3674                unsigned long address, unsigned int flags,
3675                unsigned long *prot, resource_size_t *phys)
3676{
3677        int ret = -EINVAL;
3678        pte_t *ptep, pte;
3679        spinlock_t *ptl;
3680
3681        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682                goto out;
3683
3684        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685                goto out;
3686        pte = *ptep;
3687
3688        if ((flags & FOLL_WRITE) && !pte_write(pte))
3689                goto unlock;
3690
3691        *prot = pgprot_val(pte_pgprot(pte));
3692        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3693
3694        ret = 0;
3695unlock:
3696        pte_unmap_unlock(ptep, ptl);
3697out:
3698        return ret;
3699}
3700
3701int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702                        void *buf, int len, int write)
3703{
3704        resource_size_t phys_addr;
3705        unsigned long prot = 0;
3706        void __iomem *maddr;
3707        int offset = addr & (PAGE_SIZE-1);
3708
3709        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710                return -EINVAL;
3711
3712        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713        if (write)
3714                memcpy_toio(maddr + offset, buf, len);
3715        else
3716                memcpy_fromio(buf, maddr + offset, len);
3717        iounmap(maddr);
3718
3719        return len;
3720}
3721EXPORT_SYMBOL_GPL(generic_access_phys);
3722#endif
3723
3724/*
3725 * Access another process' address space as given in mm.  If non-NULL, use the
3726 * given task for page fault accounting.
3727 */
3728static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729                unsigned long addr, void *buf, int len, int write)
3730{
3731        struct vm_area_struct *vma;
3732        void *old_buf = buf;
3733
3734        down_read(&mm->mmap_sem);
3735        /* ignore errors, just check how much was successfully transferred */
3736        while (len) {
3737                int bytes, ret, offset;
3738                void *maddr;
3739                struct page *page = NULL;
3740
3741                ret = get_user_pages_remote(tsk, mm, addr, 1,
3742                                write, 1, &page, &vma);
3743                if (ret <= 0) {
3744#ifndef CONFIG_HAVE_IOREMAP_PROT
3745                        break;
3746#else
3747                        /*
3748                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749                         * we can access using slightly different code.
3750                         */
3751                        vma = find_vma(mm, addr);
3752                        if (!vma || vma->vm_start > addr)
3753                                break;
3754                        if (vma->vm_ops && vma->vm_ops->access)
3755                                ret = vma->vm_ops->access(vma, addr, buf,
3756                                                          len, write);
3757                        if (ret <= 0)
3758                                break;
3759                        bytes = ret;
3760#endif
3761                } else {
3762                        bytes = len;
3763                        offset = addr & (PAGE_SIZE-1);
3764                        if (bytes > PAGE_SIZE-offset)
3765                                bytes = PAGE_SIZE-offset;
3766
3767                        maddr = kmap(page);
3768                        if (write) {
3769                                copy_to_user_page(vma, page, addr,
3770                                                  maddr + offset, buf, bytes);
3771                                set_page_dirty_lock(page);
3772                        } else {
3773                                copy_from_user_page(vma, page, addr,
3774                                                    buf, maddr + offset, bytes);
3775                        }
3776                        kunmap(page);
3777                        put_page(page);
3778                }
3779                len -= bytes;
3780                buf += bytes;
3781                addr += bytes;
3782        }
3783        up_read(&mm->mmap_sem);
3784
3785        return buf - old_buf;
3786}
3787
3788/**
3789 * access_remote_vm - access another process' address space
3790 * @mm:         the mm_struct of the target address space
3791 * @addr:       start address to access
3792 * @buf:        source or destination buffer
3793 * @len:        number of bytes to transfer
3794 * @write:      whether the access is a write
3795 *
3796 * The caller must hold a reference on @mm.
3797 */
3798int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799                void *buf, int len, int write)
3800{
3801        return __access_remote_vm(NULL, mm, addr, buf, len, write);
3802}
3803
3804/*
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3808 */
3809int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810                void *buf, int len, int write)
3811{
3812        struct mm_struct *mm;
3813        int ret;
3814
3815        mm = get_task_mm(tsk);
3816        if (!mm)
3817                return 0;
3818
3819        ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3820        mmput(mm);
3821
3822        return ret;
3823}
3824
3825/*
3826 * Print the name of a VMA.
3827 */
3828void print_vma_addr(char *prefix, unsigned long ip)
3829{
3830        struct mm_struct *mm = current->mm;
3831        struct vm_area_struct *vma;
3832
3833        /*
3834         * Do not print if we are in atomic
3835         * contexts (in exception stacks, etc.):
3836         */
3837        if (preempt_count())
3838                return;
3839
3840        down_read(&mm->mmap_sem);
3841        vma = find_vma(mm, ip);
3842        if (vma && vma->vm_file) {
3843                struct file *f = vma->vm_file;
3844                char *buf = (char *)__get_free_page(GFP_KERNEL);
3845                if (buf) {
3846                        char *p;
3847
3848                        p = file_path(f, buf, PAGE_SIZE);
3849                        if (IS_ERR(p))
3850                                p = "?";
3851                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3852                                        vma->vm_start,
3853                                        vma->vm_end - vma->vm_start);
3854                        free_page((unsigned long)buf);
3855                }
3856        }
3857        up_read(&mm->mmap_sem);
3858}
3859
3860#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861void __might_fault(const char *file, int line)
3862{
3863        /*
3864         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865         * holding the mmap_sem, this is safe because kernel memory doesn't
3866         * get paged out, therefore we'll never actually fault, and the
3867         * below annotations will generate false positives.
3868         */
3869        if (segment_eq(get_fs(), KERNEL_DS))
3870                return;
3871        if (pagefault_disabled())
3872                return;
3873        __might_sleep(file, line, 0);
3874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3875        if (current->mm)
3876                might_lock_read(&current->mm->mmap_sem);
3877#endif
3878}
3879EXPORT_SYMBOL(__might_fault);
3880#endif
3881
3882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883static void clear_gigantic_page(struct page *page,
3884                                unsigned long addr,
3885                                unsigned int pages_per_huge_page)
3886{
3887        int i;
3888        struct page *p = page;
3889
3890        might_sleep();
3891        for (i = 0; i < pages_per_huge_page;
3892             i++, p = mem_map_next(p, page, i)) {
3893                cond_resched();
3894                clear_user_highpage(p, addr + i * PAGE_SIZE);
3895        }
3896}
3897void clear_huge_page(struct page *page,
3898                     unsigned long addr, unsigned int pages_per_huge_page)
3899{
3900        int i;
3901
3902        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903                clear_gigantic_page(page, addr, pages_per_huge_page);
3904                return;
3905        }
3906
3907        might_sleep();
3908        for (i = 0; i < pages_per_huge_page; i++) {
3909                cond_resched();
3910                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3911        }
3912}
3913
3914static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915                                    unsigned long addr,
3916                                    struct vm_area_struct *vma,
3917                                    unsigned int pages_per_huge_page)
3918{
3919        int i;
3920        struct page *dst_base = dst;
3921        struct page *src_base = src;
3922
3923        for (i = 0; i < pages_per_huge_page; ) {
3924                cond_resched();
3925                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926
3927                i++;
3928                dst = mem_map_next(dst, dst_base, i);
3929                src = mem_map_next(src, src_base, i);
3930        }
3931}
3932
3933void copy_user_huge_page(struct page *dst, struct page *src,
3934                         unsigned long addr, struct vm_area_struct *vma,
3935                         unsigned int pages_per_huge_page)
3936{
3937        int i;
3938
3939        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940                copy_user_gigantic_page(dst, src, addr, vma,
3941                                        pages_per_huge_page);
3942                return;
3943        }
3944
3945        might_sleep();
3946        for (i = 0; i < pages_per_huge_page; i++) {
3947                cond_resched();
3948                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3949        }
3950}
3951#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3952
3953#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3954
3955static struct kmem_cache *page_ptl_cachep;
3956
3957void __init ptlock_cache_init(void)
3958{
3959        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960                        SLAB_PANIC, NULL);
3961}
3962
3963bool ptlock_alloc(struct page *page)
3964{
3965        spinlock_t *ptl;
3966
3967        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968        if (!ptl)
3969                return false;
3970        page->ptl = ptl;
3971        return true;
3972}
3973
3974void ptlock_free(struct page *page)
3975{
3976        kmem_cache_free(page_ptl_cachep, page->ptl);
3977}
3978#endif
3979