linux/mm/memory_hotplug.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
  20#include <linux/memremap.h>
  21#include <linux/memory_hotplug.h>
  22#include <linux/highmem.h>
  23#include <linux/vmalloc.h>
  24#include <linux/ioport.h>
  25#include <linux/delay.h>
  26#include <linux/migrate.h>
  27#include <linux/page-isolation.h>
  28#include <linux/pfn.h>
  29#include <linux/suspend.h>
  30#include <linux/mm_inline.h>
  31#include <linux/firmware-map.h>
  32#include <linux/stop_machine.h>
  33#include <linux/hugetlb.h>
  34#include <linux/memblock.h>
  35#include <linux/bootmem.h>
  36#include <linux/compaction.h>
  37
  38#include <asm/tlbflush.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * online_page_callback contains pointer to current page onlining function.
  44 * Initially it is generic_online_page(). If it is required it could be
  45 * changed by calling set_online_page_callback() for callback registration
  46 * and restore_online_page_callback() for generic callback restore.
  47 */
  48
  49static void generic_online_page(struct page *page);
  50
  51static online_page_callback_t online_page_callback = generic_online_page;
  52static DEFINE_MUTEX(online_page_callback_lock);
  53
  54/* The same as the cpu_hotplug lock, but for memory hotplug. */
  55static struct {
  56        struct task_struct *active_writer;
  57        struct mutex lock; /* Synchronizes accesses to refcount, */
  58        /*
  59         * Also blocks the new readers during
  60         * an ongoing mem hotplug operation.
  61         */
  62        int refcount;
  63
  64#ifdef CONFIG_DEBUG_LOCK_ALLOC
  65        struct lockdep_map dep_map;
  66#endif
  67} mem_hotplug = {
  68        .active_writer = NULL,
  69        .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
  70        .refcount = 0,
  71#ifdef CONFIG_DEBUG_LOCK_ALLOC
  72        .dep_map = {.name = "mem_hotplug.lock" },
  73#endif
  74};
  75
  76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
  77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
  78#define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
  79#define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
  80
  81bool memhp_auto_online;
  82EXPORT_SYMBOL_GPL(memhp_auto_online);
  83
  84void get_online_mems(void)
  85{
  86        might_sleep();
  87        if (mem_hotplug.active_writer == current)
  88                return;
  89        memhp_lock_acquire_read();
  90        mutex_lock(&mem_hotplug.lock);
  91        mem_hotplug.refcount++;
  92        mutex_unlock(&mem_hotplug.lock);
  93
  94}
  95
  96void put_online_mems(void)
  97{
  98        if (mem_hotplug.active_writer == current)
  99                return;
 100        mutex_lock(&mem_hotplug.lock);
 101
 102        if (WARN_ON(!mem_hotplug.refcount))
 103                mem_hotplug.refcount++; /* try to fix things up */
 104
 105        if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
 106                wake_up_process(mem_hotplug.active_writer);
 107        mutex_unlock(&mem_hotplug.lock);
 108        memhp_lock_release();
 109
 110}
 111
 112void mem_hotplug_begin(void)
 113{
 114        mem_hotplug.active_writer = current;
 115
 116        memhp_lock_acquire();
 117        for (;;) {
 118                mutex_lock(&mem_hotplug.lock);
 119                if (likely(!mem_hotplug.refcount))
 120                        break;
 121                __set_current_state(TASK_UNINTERRUPTIBLE);
 122                mutex_unlock(&mem_hotplug.lock);
 123                schedule();
 124        }
 125}
 126
 127void mem_hotplug_done(void)
 128{
 129        mem_hotplug.active_writer = NULL;
 130        mutex_unlock(&mem_hotplug.lock);
 131        memhp_lock_release();
 132}
 133
 134/* add this memory to iomem resource */
 135static struct resource *register_memory_resource(u64 start, u64 size)
 136{
 137        struct resource *res;
 138        res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 139        if (!res)
 140                return ERR_PTR(-ENOMEM);
 141
 142        res->name = "System RAM";
 143        res->start = start;
 144        res->end = start + size - 1;
 145        res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 146        if (request_resource(&iomem_resource, res) < 0) {
 147                pr_debug("System RAM resource %pR cannot be added\n", res);
 148                kfree(res);
 149                return ERR_PTR(-EEXIST);
 150        }
 151        return res;
 152}
 153
 154static void release_memory_resource(struct resource *res)
 155{
 156        if (!res)
 157                return;
 158        release_resource(res);
 159        kfree(res);
 160        return;
 161}
 162
 163#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 164void get_page_bootmem(unsigned long info,  struct page *page,
 165                      unsigned long type)
 166{
 167        page->lru.next = (struct list_head *) type;
 168        SetPagePrivate(page);
 169        set_page_private(page, info);
 170        page_ref_inc(page);
 171}
 172
 173void put_page_bootmem(struct page *page)
 174{
 175        unsigned long type;
 176
 177        type = (unsigned long) page->lru.next;
 178        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 179               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 180
 181        if (page_ref_dec_return(page) == 1) {
 182                ClearPagePrivate(page);
 183                set_page_private(page, 0);
 184                INIT_LIST_HEAD(&page->lru);
 185                free_reserved_page(page);
 186        }
 187}
 188
 189#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 190#ifndef CONFIG_SPARSEMEM_VMEMMAP
 191static void register_page_bootmem_info_section(unsigned long start_pfn)
 192{
 193        unsigned long *usemap, mapsize, section_nr, i;
 194        struct mem_section *ms;
 195        struct page *page, *memmap;
 196
 197        section_nr = pfn_to_section_nr(start_pfn);
 198        ms = __nr_to_section(section_nr);
 199
 200        /* Get section's memmap address */
 201        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 202
 203        /*
 204         * Get page for the memmap's phys address
 205         * XXX: need more consideration for sparse_vmemmap...
 206         */
 207        page = virt_to_page(memmap);
 208        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 209        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 210
 211        /* remember memmap's page */
 212        for (i = 0; i < mapsize; i++, page++)
 213                get_page_bootmem(section_nr, page, SECTION_INFO);
 214
 215        usemap = __nr_to_section(section_nr)->pageblock_flags;
 216        page = virt_to_page(usemap);
 217
 218        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 219
 220        for (i = 0; i < mapsize; i++, page++)
 221                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 222
 223}
 224#else /* CONFIG_SPARSEMEM_VMEMMAP */
 225static void register_page_bootmem_info_section(unsigned long start_pfn)
 226{
 227        unsigned long *usemap, mapsize, section_nr, i;
 228        struct mem_section *ms;
 229        struct page *page, *memmap;
 230
 231        if (!pfn_valid(start_pfn))
 232                return;
 233
 234        section_nr = pfn_to_section_nr(start_pfn);
 235        ms = __nr_to_section(section_nr);
 236
 237        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 238
 239        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 240
 241        usemap = __nr_to_section(section_nr)->pageblock_flags;
 242        page = virt_to_page(usemap);
 243
 244        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 245
 246        for (i = 0; i < mapsize; i++, page++)
 247                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 248}
 249#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 250
 251void register_page_bootmem_info_node(struct pglist_data *pgdat)
 252{
 253        unsigned long i, pfn, end_pfn, nr_pages;
 254        int node = pgdat->node_id;
 255        struct page *page;
 256        struct zone *zone;
 257
 258        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 259        page = virt_to_page(pgdat);
 260
 261        for (i = 0; i < nr_pages; i++, page++)
 262                get_page_bootmem(node, page, NODE_INFO);
 263
 264        zone = &pgdat->node_zones[0];
 265        for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 266                if (zone_is_initialized(zone)) {
 267                        nr_pages = zone->wait_table_hash_nr_entries
 268                                * sizeof(wait_queue_head_t);
 269                        nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 270                        page = virt_to_page(zone->wait_table);
 271
 272                        for (i = 0; i < nr_pages; i++, page++)
 273                                get_page_bootmem(node, page, NODE_INFO);
 274                }
 275        }
 276
 277        pfn = pgdat->node_start_pfn;
 278        end_pfn = pgdat_end_pfn(pgdat);
 279
 280        /* register section info */
 281        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 282                /*
 283                 * Some platforms can assign the same pfn to multiple nodes - on
 284                 * node0 as well as nodeN.  To avoid registering a pfn against
 285                 * multiple nodes we check that this pfn does not already
 286                 * reside in some other nodes.
 287                 */
 288                if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 289                        register_page_bootmem_info_section(pfn);
 290        }
 291}
 292#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 293
 294static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
 295                                     unsigned long end_pfn)
 296{
 297        unsigned long old_zone_end_pfn;
 298
 299        zone_span_writelock(zone);
 300
 301        old_zone_end_pfn = zone_end_pfn(zone);
 302        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 303                zone->zone_start_pfn = start_pfn;
 304
 305        zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 306                                zone->zone_start_pfn;
 307
 308        zone_span_writeunlock(zone);
 309}
 310
 311static void resize_zone(struct zone *zone, unsigned long start_pfn,
 312                unsigned long end_pfn)
 313{
 314        zone_span_writelock(zone);
 315
 316        if (end_pfn - start_pfn) {
 317                zone->zone_start_pfn = start_pfn;
 318                zone->spanned_pages = end_pfn - start_pfn;
 319        } else {
 320                /*
 321                 * make it consist as free_area_init_core(),
 322                 * if spanned_pages = 0, then keep start_pfn = 0
 323                 */
 324                zone->zone_start_pfn = 0;
 325                zone->spanned_pages = 0;
 326        }
 327
 328        zone_span_writeunlock(zone);
 329}
 330
 331static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 332                unsigned long end_pfn)
 333{
 334        enum zone_type zid = zone_idx(zone);
 335        int nid = zone->zone_pgdat->node_id;
 336        unsigned long pfn;
 337
 338        for (pfn = start_pfn; pfn < end_pfn; pfn++)
 339                set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 340}
 341
 342/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 343 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 344static int __ref ensure_zone_is_initialized(struct zone *zone,
 345                        unsigned long start_pfn, unsigned long num_pages)
 346{
 347        if (!zone_is_initialized(zone))
 348                return init_currently_empty_zone(zone, start_pfn, num_pages);
 349
 350        return 0;
 351}
 352
 353static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 354                unsigned long start_pfn, unsigned long end_pfn)
 355{
 356        int ret;
 357        unsigned long flags;
 358        unsigned long z1_start_pfn;
 359
 360        ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 361        if (ret)
 362                return ret;
 363
 364        pgdat_resize_lock(z1->zone_pgdat, &flags);
 365
 366        /* can't move pfns which are higher than @z2 */
 367        if (end_pfn > zone_end_pfn(z2))
 368                goto out_fail;
 369        /* the move out part must be at the left most of @z2 */
 370        if (start_pfn > z2->zone_start_pfn)
 371                goto out_fail;
 372        /* must included/overlap */
 373        if (end_pfn <= z2->zone_start_pfn)
 374                goto out_fail;
 375
 376        /* use start_pfn for z1's start_pfn if z1 is empty */
 377        if (!zone_is_empty(z1))
 378                z1_start_pfn = z1->zone_start_pfn;
 379        else
 380                z1_start_pfn = start_pfn;
 381
 382        resize_zone(z1, z1_start_pfn, end_pfn);
 383        resize_zone(z2, end_pfn, zone_end_pfn(z2));
 384
 385        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 386
 387        fix_zone_id(z1, start_pfn, end_pfn);
 388
 389        return 0;
 390out_fail:
 391        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 392        return -1;
 393}
 394
 395static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 396                unsigned long start_pfn, unsigned long end_pfn)
 397{
 398        int ret;
 399        unsigned long flags;
 400        unsigned long z2_end_pfn;
 401
 402        ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 403        if (ret)
 404                return ret;
 405
 406        pgdat_resize_lock(z1->zone_pgdat, &flags);
 407
 408        /* can't move pfns which are lower than @z1 */
 409        if (z1->zone_start_pfn > start_pfn)
 410                goto out_fail;
 411        /* the move out part mast at the right most of @z1 */
 412        if (zone_end_pfn(z1) >  end_pfn)
 413                goto out_fail;
 414        /* must included/overlap */
 415        if (start_pfn >= zone_end_pfn(z1))
 416                goto out_fail;
 417
 418        /* use end_pfn for z2's end_pfn if z2 is empty */
 419        if (!zone_is_empty(z2))
 420                z2_end_pfn = zone_end_pfn(z2);
 421        else
 422                z2_end_pfn = end_pfn;
 423
 424        resize_zone(z1, z1->zone_start_pfn, start_pfn);
 425        resize_zone(z2, start_pfn, z2_end_pfn);
 426
 427        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 428
 429        fix_zone_id(z2, start_pfn, end_pfn);
 430
 431        return 0;
 432out_fail:
 433        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 434        return -1;
 435}
 436
 437static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 438                                      unsigned long end_pfn)
 439{
 440        unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 441
 442        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 443                pgdat->node_start_pfn = start_pfn;
 444
 445        pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 446                                        pgdat->node_start_pfn;
 447}
 448
 449static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 450{
 451        struct pglist_data *pgdat = zone->zone_pgdat;
 452        int nr_pages = PAGES_PER_SECTION;
 453        int nid = pgdat->node_id;
 454        int zone_type;
 455        unsigned long flags, pfn;
 456        int ret;
 457
 458        zone_type = zone - pgdat->node_zones;
 459        ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 460        if (ret)
 461                return ret;
 462
 463        pgdat_resize_lock(zone->zone_pgdat, &flags);
 464        grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 465        grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 466                        phys_start_pfn + nr_pages);
 467        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 468        memmap_init_zone(nr_pages, nid, zone_type,
 469                         phys_start_pfn, MEMMAP_HOTPLUG);
 470
 471        /* online_page_range is called later and expects pages reserved */
 472        for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
 473                if (!pfn_valid(pfn))
 474                        continue;
 475
 476                SetPageReserved(pfn_to_page(pfn));
 477        }
 478        return 0;
 479}
 480
 481static int __meminit __add_section(int nid, struct zone *zone,
 482                                        unsigned long phys_start_pfn)
 483{
 484        int ret;
 485
 486        if (pfn_valid(phys_start_pfn))
 487                return -EEXIST;
 488
 489        ret = sparse_add_one_section(zone, phys_start_pfn);
 490
 491        if (ret < 0)
 492                return ret;
 493
 494        ret = __add_zone(zone, phys_start_pfn);
 495
 496        if (ret < 0)
 497                return ret;
 498
 499        return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 500}
 501
 502/*
 503 * Reasonably generic function for adding memory.  It is
 504 * expected that archs that support memory hotplug will
 505 * call this function after deciding the zone to which to
 506 * add the new pages.
 507 */
 508int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 509                        unsigned long nr_pages)
 510{
 511        unsigned long i;
 512        int err = 0;
 513        int start_sec, end_sec;
 514        struct vmem_altmap *altmap;
 515
 516        clear_zone_contiguous(zone);
 517
 518        /* during initialize mem_map, align hot-added range to section */
 519        start_sec = pfn_to_section_nr(phys_start_pfn);
 520        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 521
 522        altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
 523        if (altmap) {
 524                /*
 525                 * Validate altmap is within bounds of the total request
 526                 */
 527                if (altmap->base_pfn != phys_start_pfn
 528                                || vmem_altmap_offset(altmap) > nr_pages) {
 529                        pr_warn_once("memory add fail, invalid altmap\n");
 530                        err = -EINVAL;
 531                        goto out;
 532                }
 533                altmap->alloc = 0;
 534        }
 535
 536        for (i = start_sec; i <= end_sec; i++) {
 537                err = __add_section(nid, zone, section_nr_to_pfn(i));
 538
 539                /*
 540                 * EEXIST is finally dealt with by ioresource collision
 541                 * check. see add_memory() => register_memory_resource()
 542                 * Warning will be printed if there is collision.
 543                 */
 544                if (err && (err != -EEXIST))
 545                        break;
 546                err = 0;
 547        }
 548        vmemmap_populate_print_last();
 549out:
 550        set_zone_contiguous(zone);
 551        return err;
 552}
 553EXPORT_SYMBOL_GPL(__add_pages);
 554
 555#ifdef CONFIG_MEMORY_HOTREMOVE
 556/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 557static int find_smallest_section_pfn(int nid, struct zone *zone,
 558                                     unsigned long start_pfn,
 559                                     unsigned long end_pfn)
 560{
 561        struct mem_section *ms;
 562
 563        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 564                ms = __pfn_to_section(start_pfn);
 565
 566                if (unlikely(!valid_section(ms)))
 567                        continue;
 568
 569                if (unlikely(pfn_to_nid(start_pfn) != nid))
 570                        continue;
 571
 572                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 573                        continue;
 574
 575                return start_pfn;
 576        }
 577
 578        return 0;
 579}
 580
 581/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 582static int find_biggest_section_pfn(int nid, struct zone *zone,
 583                                    unsigned long start_pfn,
 584                                    unsigned long end_pfn)
 585{
 586        struct mem_section *ms;
 587        unsigned long pfn;
 588
 589        /* pfn is the end pfn of a memory section. */
 590        pfn = end_pfn - 1;
 591        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 592                ms = __pfn_to_section(pfn);
 593
 594                if (unlikely(!valid_section(ms)))
 595                        continue;
 596
 597                if (unlikely(pfn_to_nid(pfn) != nid))
 598                        continue;
 599
 600                if (zone && zone != page_zone(pfn_to_page(pfn)))
 601                        continue;
 602
 603                return pfn;
 604        }
 605
 606        return 0;
 607}
 608
 609static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 610                             unsigned long end_pfn)
 611{
 612        unsigned long zone_start_pfn = zone->zone_start_pfn;
 613        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 614        unsigned long zone_end_pfn = z;
 615        unsigned long pfn;
 616        struct mem_section *ms;
 617        int nid = zone_to_nid(zone);
 618
 619        zone_span_writelock(zone);
 620        if (zone_start_pfn == start_pfn) {
 621                /*
 622                 * If the section is smallest section in the zone, it need
 623                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 624                 * In this case, we find second smallest valid mem_section
 625                 * for shrinking zone.
 626                 */
 627                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 628                                                zone_end_pfn);
 629                if (pfn) {
 630                        zone->zone_start_pfn = pfn;
 631                        zone->spanned_pages = zone_end_pfn - pfn;
 632                }
 633        } else if (zone_end_pfn == end_pfn) {
 634                /*
 635                 * If the section is biggest section in the zone, it need
 636                 * shrink zone->spanned_pages.
 637                 * In this case, we find second biggest valid mem_section for
 638                 * shrinking zone.
 639                 */
 640                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 641                                               start_pfn);
 642                if (pfn)
 643                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 644        }
 645
 646        /*
 647         * The section is not biggest or smallest mem_section in the zone, it
 648         * only creates a hole in the zone. So in this case, we need not
 649         * change the zone. But perhaps, the zone has only hole data. Thus
 650         * it check the zone has only hole or not.
 651         */
 652        pfn = zone_start_pfn;
 653        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 654                ms = __pfn_to_section(pfn);
 655
 656                if (unlikely(!valid_section(ms)))
 657                        continue;
 658
 659                if (page_zone(pfn_to_page(pfn)) != zone)
 660                        continue;
 661
 662                 /* If the section is current section, it continues the loop */
 663                if (start_pfn == pfn)
 664                        continue;
 665
 666                /* If we find valid section, we have nothing to do */
 667                zone_span_writeunlock(zone);
 668                return;
 669        }
 670
 671        /* The zone has no valid section */
 672        zone->zone_start_pfn = 0;
 673        zone->spanned_pages = 0;
 674        zone_span_writeunlock(zone);
 675}
 676
 677static void shrink_pgdat_span(struct pglist_data *pgdat,
 678                              unsigned long start_pfn, unsigned long end_pfn)
 679{
 680        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 681        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 682        unsigned long pgdat_end_pfn = p;
 683        unsigned long pfn;
 684        struct mem_section *ms;
 685        int nid = pgdat->node_id;
 686
 687        if (pgdat_start_pfn == start_pfn) {
 688                /*
 689                 * If the section is smallest section in the pgdat, it need
 690                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 691                 * In this case, we find second smallest valid mem_section
 692                 * for shrinking zone.
 693                 */
 694                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 695                                                pgdat_end_pfn);
 696                if (pfn) {
 697                        pgdat->node_start_pfn = pfn;
 698                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 699                }
 700        } else if (pgdat_end_pfn == end_pfn) {
 701                /*
 702                 * If the section is biggest section in the pgdat, it need
 703                 * shrink pgdat->node_spanned_pages.
 704                 * In this case, we find second biggest valid mem_section for
 705                 * shrinking zone.
 706                 */
 707                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 708                                               start_pfn);
 709                if (pfn)
 710                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 711        }
 712
 713        /*
 714         * If the section is not biggest or smallest mem_section in the pgdat,
 715         * it only creates a hole in the pgdat. So in this case, we need not
 716         * change the pgdat.
 717         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 718         * has only hole or not.
 719         */
 720        pfn = pgdat_start_pfn;
 721        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 722                ms = __pfn_to_section(pfn);
 723
 724                if (unlikely(!valid_section(ms)))
 725                        continue;
 726
 727                if (pfn_to_nid(pfn) != nid)
 728                        continue;
 729
 730                 /* If the section is current section, it continues the loop */
 731                if (start_pfn == pfn)
 732                        continue;
 733
 734                /* If we find valid section, we have nothing to do */
 735                return;
 736        }
 737
 738        /* The pgdat has no valid section */
 739        pgdat->node_start_pfn = 0;
 740        pgdat->node_spanned_pages = 0;
 741}
 742
 743static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 744{
 745        struct pglist_data *pgdat = zone->zone_pgdat;
 746        int nr_pages = PAGES_PER_SECTION;
 747        int zone_type;
 748        unsigned long flags;
 749
 750        zone_type = zone - pgdat->node_zones;
 751
 752        pgdat_resize_lock(zone->zone_pgdat, &flags);
 753        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 754        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 755        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 756}
 757
 758static int __remove_section(struct zone *zone, struct mem_section *ms,
 759                unsigned long map_offset)
 760{
 761        unsigned long start_pfn;
 762        int scn_nr;
 763        int ret = -EINVAL;
 764
 765        if (!valid_section(ms))
 766                return ret;
 767
 768        ret = unregister_memory_section(ms);
 769        if (ret)
 770                return ret;
 771
 772        scn_nr = __section_nr(ms);
 773        start_pfn = section_nr_to_pfn(scn_nr);
 774        __remove_zone(zone, start_pfn);
 775
 776        sparse_remove_one_section(zone, ms, map_offset);
 777        return 0;
 778}
 779
 780/**
 781 * __remove_pages() - remove sections of pages from a zone
 782 * @zone: zone from which pages need to be removed
 783 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 784 * @nr_pages: number of pages to remove (must be multiple of section size)
 785 *
 786 * Generic helper function to remove section mappings and sysfs entries
 787 * for the section of the memory we are removing. Caller needs to make
 788 * sure that pages are marked reserved and zones are adjust properly by
 789 * calling offline_pages().
 790 */
 791int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 792                 unsigned long nr_pages)
 793{
 794        unsigned long i;
 795        unsigned long map_offset = 0;
 796        int sections_to_remove, ret = 0;
 797
 798        /* In the ZONE_DEVICE case device driver owns the memory region */
 799        if (is_dev_zone(zone)) {
 800                struct page *page = pfn_to_page(phys_start_pfn);
 801                struct vmem_altmap *altmap;
 802
 803                altmap = to_vmem_altmap((unsigned long) page);
 804                if (altmap)
 805                        map_offset = vmem_altmap_offset(altmap);
 806        } else {
 807                resource_size_t start, size;
 808
 809                start = phys_start_pfn << PAGE_SHIFT;
 810                size = nr_pages * PAGE_SIZE;
 811
 812                ret = release_mem_region_adjustable(&iomem_resource, start,
 813                                        size);
 814                if (ret) {
 815                        resource_size_t endres = start + size - 1;
 816
 817                        pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 818                                        &start, &endres, ret);
 819                }
 820        }
 821
 822        clear_zone_contiguous(zone);
 823
 824        /*
 825         * We can only remove entire sections
 826         */
 827        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 828        BUG_ON(nr_pages % PAGES_PER_SECTION);
 829
 830        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 831        for (i = 0; i < sections_to_remove; i++) {
 832                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 833
 834                ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
 835                map_offset = 0;
 836                if (ret)
 837                        break;
 838        }
 839
 840        set_zone_contiguous(zone);
 841
 842        return ret;
 843}
 844EXPORT_SYMBOL_GPL(__remove_pages);
 845#endif /* CONFIG_MEMORY_HOTREMOVE */
 846
 847int set_online_page_callback(online_page_callback_t callback)
 848{
 849        int rc = -EINVAL;
 850
 851        get_online_mems();
 852        mutex_lock(&online_page_callback_lock);
 853
 854        if (online_page_callback == generic_online_page) {
 855                online_page_callback = callback;
 856                rc = 0;
 857        }
 858
 859        mutex_unlock(&online_page_callback_lock);
 860        put_online_mems();
 861
 862        return rc;
 863}
 864EXPORT_SYMBOL_GPL(set_online_page_callback);
 865
 866int restore_online_page_callback(online_page_callback_t callback)
 867{
 868        int rc = -EINVAL;
 869
 870        get_online_mems();
 871        mutex_lock(&online_page_callback_lock);
 872
 873        if (online_page_callback == callback) {
 874                online_page_callback = generic_online_page;
 875                rc = 0;
 876        }
 877
 878        mutex_unlock(&online_page_callback_lock);
 879        put_online_mems();
 880
 881        return rc;
 882}
 883EXPORT_SYMBOL_GPL(restore_online_page_callback);
 884
 885void __online_page_set_limits(struct page *page)
 886{
 887}
 888EXPORT_SYMBOL_GPL(__online_page_set_limits);
 889
 890void __online_page_increment_counters(struct page *page)
 891{
 892        adjust_managed_page_count(page, 1);
 893}
 894EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 895
 896void __online_page_free(struct page *page)
 897{
 898        __free_reserved_page(page);
 899}
 900EXPORT_SYMBOL_GPL(__online_page_free);
 901
 902static void generic_online_page(struct page *page)
 903{
 904        __online_page_set_limits(page);
 905        __online_page_increment_counters(page);
 906        __online_page_free(page);
 907}
 908
 909static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 910                        void *arg)
 911{
 912        unsigned long i;
 913        unsigned long onlined_pages = *(unsigned long *)arg;
 914        struct page *page;
 915        if (PageReserved(pfn_to_page(start_pfn)))
 916                for (i = 0; i < nr_pages; i++) {
 917                        page = pfn_to_page(start_pfn + i);
 918                        (*online_page_callback)(page);
 919                        onlined_pages++;
 920                }
 921        *(unsigned long *)arg = onlined_pages;
 922        return 0;
 923}
 924
 925#ifdef CONFIG_MOVABLE_NODE
 926/*
 927 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 928 * normal memory.
 929 */
 930static bool can_online_high_movable(struct zone *zone)
 931{
 932        return true;
 933}
 934#else /* CONFIG_MOVABLE_NODE */
 935/* ensure every online node has NORMAL memory */
 936static bool can_online_high_movable(struct zone *zone)
 937{
 938        return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 939}
 940#endif /* CONFIG_MOVABLE_NODE */
 941
 942/* check which state of node_states will be changed when online memory */
 943static void node_states_check_changes_online(unsigned long nr_pages,
 944        struct zone *zone, struct memory_notify *arg)
 945{
 946        int nid = zone_to_nid(zone);
 947        enum zone_type zone_last = ZONE_NORMAL;
 948
 949        /*
 950         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 951         * contains nodes which have zones of 0...ZONE_NORMAL,
 952         * set zone_last to ZONE_NORMAL.
 953         *
 954         * If we don't have HIGHMEM nor movable node,
 955         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 956         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 957         */
 958        if (N_MEMORY == N_NORMAL_MEMORY)
 959                zone_last = ZONE_MOVABLE;
 960
 961        /*
 962         * if the memory to be online is in a zone of 0...zone_last, and
 963         * the zones of 0...zone_last don't have memory before online, we will
 964         * need to set the node to node_states[N_NORMAL_MEMORY] after
 965         * the memory is online.
 966         */
 967        if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 968                arg->status_change_nid_normal = nid;
 969        else
 970                arg->status_change_nid_normal = -1;
 971
 972#ifdef CONFIG_HIGHMEM
 973        /*
 974         * If we have movable node, node_states[N_HIGH_MEMORY]
 975         * contains nodes which have zones of 0...ZONE_HIGHMEM,
 976         * set zone_last to ZONE_HIGHMEM.
 977         *
 978         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 979         * contains nodes which have zones of 0...ZONE_MOVABLE,
 980         * set zone_last to ZONE_MOVABLE.
 981         */
 982        zone_last = ZONE_HIGHMEM;
 983        if (N_MEMORY == N_HIGH_MEMORY)
 984                zone_last = ZONE_MOVABLE;
 985
 986        if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 987                arg->status_change_nid_high = nid;
 988        else
 989                arg->status_change_nid_high = -1;
 990#else
 991        arg->status_change_nid_high = arg->status_change_nid_normal;
 992#endif
 993
 994        /*
 995         * if the node don't have memory befor online, we will need to
 996         * set the node to node_states[N_MEMORY] after the memory
 997         * is online.
 998         */
 999        if (!node_state(nid, N_MEMORY))
1000                arg->status_change_nid = nid;
1001        else
1002                arg->status_change_nid = -1;
1003}
1004
1005static void node_states_set_node(int node, struct memory_notify *arg)
1006{
1007        if (arg->status_change_nid_normal >= 0)
1008                node_set_state(node, N_NORMAL_MEMORY);
1009
1010        if (arg->status_change_nid_high >= 0)
1011                node_set_state(node, N_HIGH_MEMORY);
1012
1013        node_set_state(node, N_MEMORY);
1014}
1015
1016
1017/* Must be protected by mem_hotplug_begin() */
1018int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1019{
1020        unsigned long flags;
1021        unsigned long onlined_pages = 0;
1022        struct zone *zone;
1023        int need_zonelists_rebuild = 0;
1024        int nid;
1025        int ret;
1026        struct memory_notify arg;
1027
1028        /*
1029         * This doesn't need a lock to do pfn_to_page().
1030         * The section can't be removed here because of the
1031         * memory_block->state_mutex.
1032         */
1033        zone = page_zone(pfn_to_page(pfn));
1034
1035        if ((zone_idx(zone) > ZONE_NORMAL ||
1036            online_type == MMOP_ONLINE_MOVABLE) &&
1037            !can_online_high_movable(zone))
1038                return -EINVAL;
1039
1040        if (online_type == MMOP_ONLINE_KERNEL &&
1041            zone_idx(zone) == ZONE_MOVABLE) {
1042                if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043                        return -EINVAL;
1044        }
1045        if (online_type == MMOP_ONLINE_MOVABLE &&
1046            zone_idx(zone) == ZONE_MOVABLE - 1) {
1047                if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048                        return -EINVAL;
1049        }
1050
1051        /* Previous code may changed the zone of the pfn range */
1052        zone = page_zone(pfn_to_page(pfn));
1053
1054        arg.start_pfn = pfn;
1055        arg.nr_pages = nr_pages;
1056        node_states_check_changes_online(nr_pages, zone, &arg);
1057
1058        nid = zone_to_nid(zone);
1059
1060        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061        ret = notifier_to_errno(ret);
1062        if (ret)
1063                goto failed_addition;
1064
1065        /*
1066         * If this zone is not populated, then it is not in zonelist.
1067         * This means the page allocator ignores this zone.
1068         * So, zonelist must be updated after online.
1069         */
1070        mutex_lock(&zonelists_mutex);
1071        if (!populated_zone(zone)) {
1072                need_zonelists_rebuild = 1;
1073                build_all_zonelists(NULL, zone);
1074        }
1075
1076        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077                online_pages_range);
1078        if (ret) {
1079                if (need_zonelists_rebuild)
1080                        zone_pcp_reset(zone);
1081                mutex_unlock(&zonelists_mutex);
1082                goto failed_addition;
1083        }
1084
1085        zone->present_pages += onlined_pages;
1086
1087        pgdat_resize_lock(zone->zone_pgdat, &flags);
1088        zone->zone_pgdat->node_present_pages += onlined_pages;
1089        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090
1091        if (onlined_pages) {
1092                node_states_set_node(nid, &arg);
1093                if (need_zonelists_rebuild)
1094                        build_all_zonelists(NULL, NULL);
1095                else
1096                        zone_pcp_update(zone);
1097        }
1098
1099        mutex_unlock(&zonelists_mutex);
1100
1101        init_per_zone_wmark_min();
1102
1103        if (onlined_pages) {
1104                kswapd_run(nid);
1105                kcompactd_run(nid);
1106        }
1107
1108        vm_total_pages = nr_free_pagecache_pages();
1109
1110        writeback_set_ratelimit();
1111
1112        if (onlined_pages)
1113                memory_notify(MEM_ONLINE, &arg);
1114        return 0;
1115
1116failed_addition:
1117        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118                 (unsigned long long) pfn << PAGE_SHIFT,
1119                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120        memory_notify(MEM_CANCEL_ONLINE, &arg);
1121        return ret;
1122}
1123#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124
1125static void reset_node_present_pages(pg_data_t *pgdat)
1126{
1127        struct zone *z;
1128
1129        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130                z->present_pages = 0;
1131
1132        pgdat->node_present_pages = 0;
1133}
1134
1135/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137{
1138        struct pglist_data *pgdat;
1139        unsigned long zones_size[MAX_NR_ZONES] = {0};
1140        unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141        unsigned long start_pfn = PFN_DOWN(start);
1142
1143        pgdat = NODE_DATA(nid);
1144        if (!pgdat) {
1145                pgdat = arch_alloc_nodedata(nid);
1146                if (!pgdat)
1147                        return NULL;
1148
1149                arch_refresh_nodedata(nid, pgdat);
1150        } else {
1151                /* Reset the nr_zones and classzone_idx to 0 before reuse */
1152                pgdat->nr_zones = 0;
1153                pgdat->classzone_idx = 0;
1154        }
1155
1156        /* we can use NODE_DATA(nid) from here */
1157
1158        /* init node's zones as empty zones, we don't have any present pages.*/
1159        free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160
1161        /*
1162         * The node we allocated has no zone fallback lists. For avoiding
1163         * to access not-initialized zonelist, build here.
1164         */
1165        mutex_lock(&zonelists_mutex);
1166        build_all_zonelists(pgdat, NULL);
1167        mutex_unlock(&zonelists_mutex);
1168
1169        /*
1170         * zone->managed_pages is set to an approximate value in
1171         * free_area_init_core(), which will cause
1172         * /sys/device/system/node/nodeX/meminfo has wrong data.
1173         * So reset it to 0 before any memory is onlined.
1174         */
1175        reset_node_managed_pages(pgdat);
1176
1177        /*
1178         * When memory is hot-added, all the memory is in offline state. So
1179         * clear all zones' present_pages because they will be updated in
1180         * online_pages() and offline_pages().
1181         */
1182        reset_node_present_pages(pgdat);
1183
1184        return pgdat;
1185}
1186
1187static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188{
1189        arch_refresh_nodedata(nid, NULL);
1190        arch_free_nodedata(pgdat);
1191        return;
1192}
1193
1194
1195/**
1196 * try_online_node - online a node if offlined
1197 *
1198 * called by cpu_up() to online a node without onlined memory.
1199 */
1200int try_online_node(int nid)
1201{
1202        pg_data_t       *pgdat;
1203        int     ret;
1204
1205        if (node_online(nid))
1206                return 0;
1207
1208        mem_hotplug_begin();
1209        pgdat = hotadd_new_pgdat(nid, 0);
1210        if (!pgdat) {
1211                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212                ret = -ENOMEM;
1213                goto out;
1214        }
1215        node_set_online(nid);
1216        ret = register_one_node(nid);
1217        BUG_ON(ret);
1218
1219        if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220                mutex_lock(&zonelists_mutex);
1221                build_all_zonelists(NULL, NULL);
1222                mutex_unlock(&zonelists_mutex);
1223        }
1224
1225out:
1226        mem_hotplug_done();
1227        return ret;
1228}
1229
1230static int check_hotplug_memory_range(u64 start, u64 size)
1231{
1232        u64 start_pfn = PFN_DOWN(start);
1233        u64 nr_pages = size >> PAGE_SHIFT;
1234
1235        /* Memory range must be aligned with section */
1236        if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237            (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238                pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239                                (unsigned long long)start,
1240                                (unsigned long long)size);
1241                return -EINVAL;
1242        }
1243
1244        return 0;
1245}
1246
1247/*
1248 * If movable zone has already been setup, newly added memory should be check.
1249 * If its address is higher than movable zone, it should be added as movable.
1250 * Without this check, movable zone may overlap with other zone.
1251 */
1252static int should_add_memory_movable(int nid, u64 start, u64 size)
1253{
1254        unsigned long start_pfn = start >> PAGE_SHIFT;
1255        pg_data_t *pgdat = NODE_DATA(nid);
1256        struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257
1258        if (zone_is_empty(movable_zone))
1259                return 0;
1260
1261        if (movable_zone->zone_start_pfn <= start_pfn)
1262                return 1;
1263
1264        return 0;
1265}
1266
1267int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268                bool for_device)
1269{
1270#ifdef CONFIG_ZONE_DEVICE
1271        if (for_device)
1272                return ZONE_DEVICE;
1273#endif
1274        if (should_add_memory_movable(nid, start, size))
1275                return ZONE_MOVABLE;
1276
1277        return zone_default;
1278}
1279
1280static int online_memory_block(struct memory_block *mem, void *arg)
1281{
1282        return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1283}
1284
1285/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286int __ref add_memory_resource(int nid, struct resource *res, bool online)
1287{
1288        u64 start, size;
1289        pg_data_t *pgdat = NULL;
1290        bool new_pgdat;
1291        bool new_node;
1292        int ret;
1293
1294        start = res->start;
1295        size = resource_size(res);
1296
1297        ret = check_hotplug_memory_range(start, size);
1298        if (ret)
1299                return ret;
1300
1301        {       /* Stupid hack to suppress address-never-null warning */
1302                void *p = NODE_DATA(nid);
1303                new_pgdat = !p;
1304        }
1305
1306        mem_hotplug_begin();
1307
1308        /*
1309         * Add new range to memblock so that when hotadd_new_pgdat() is called
1310         * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311         * this new range and calculate total pages correctly.  The range will
1312         * be removed at hot-remove time.
1313         */
1314        memblock_add_node(start, size, nid);
1315
1316        new_node = !node_online(nid);
1317        if (new_node) {
1318                pgdat = hotadd_new_pgdat(nid, start);
1319                ret = -ENOMEM;
1320                if (!pgdat)
1321                        goto error;
1322        }
1323
1324        /* call arch's memory hotadd */
1325        ret = arch_add_memory(nid, start, size, false);
1326
1327        if (ret < 0)
1328                goto error;
1329
1330        /* we online node here. we can't roll back from here. */
1331        node_set_online(nid);
1332
1333        if (new_node) {
1334                ret = register_one_node(nid);
1335                /*
1336                 * If sysfs file of new node can't create, cpu on the node
1337                 * can't be hot-added. There is no rollback way now.
1338                 * So, check by BUG_ON() to catch it reluctantly..
1339                 */
1340                BUG_ON(ret);
1341        }
1342
1343        /* create new memmap entry */
1344        firmware_map_add_hotplug(start, start + size, "System RAM");
1345
1346        /* online pages if requested */
1347        if (online)
1348                walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349                                  NULL, online_memory_block);
1350
1351        goto out;
1352
1353error:
1354        /* rollback pgdat allocation and others */
1355        if (new_pgdat)
1356                rollback_node_hotadd(nid, pgdat);
1357        memblock_remove(start, size);
1358
1359out:
1360        mem_hotplug_done();
1361        return ret;
1362}
1363EXPORT_SYMBOL_GPL(add_memory_resource);
1364
1365int __ref add_memory(int nid, u64 start, u64 size)
1366{
1367        struct resource *res;
1368        int ret;
1369
1370        res = register_memory_resource(start, size);
1371        if (IS_ERR(res))
1372                return PTR_ERR(res);
1373
1374        ret = add_memory_resource(nid, res, memhp_auto_online);
1375        if (ret < 0)
1376                release_memory_resource(res);
1377        return ret;
1378}
1379EXPORT_SYMBOL_GPL(add_memory);
1380
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382/*
1383 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384 * set and the size of the free page is given by page_order(). Using this,
1385 * the function determines if the pageblock contains only free pages.
1386 * Due to buddy contraints, a free page at least the size of a pageblock will
1387 * be located at the start of the pageblock
1388 */
1389static inline int pageblock_free(struct page *page)
1390{
1391        return PageBuddy(page) && page_order(page) >= pageblock_order;
1392}
1393
1394/* Return the start of the next active pageblock after a given page */
1395static struct page *next_active_pageblock(struct page *page)
1396{
1397        /* Ensure the starting page is pageblock-aligned */
1398        BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399
1400        /* If the entire pageblock is free, move to the end of free page */
1401        if (pageblock_free(page)) {
1402                int order;
1403                /* be careful. we don't have locks, page_order can be changed.*/
1404                order = page_order(page);
1405                if ((order < MAX_ORDER) && (order >= pageblock_order))
1406                        return page + (1 << order);
1407        }
1408
1409        return page + pageblock_nr_pages;
1410}
1411
1412/* Checks if this range of memory is likely to be hot-removable. */
1413int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1414{
1415        struct page *page = pfn_to_page(start_pfn);
1416        struct page *end_page = page + nr_pages;
1417
1418        /* Check the starting page of each pageblock within the range */
1419        for (; page < end_page; page = next_active_pageblock(page)) {
1420                if (!is_pageblock_removable_nolock(page))
1421                        return 0;
1422                cond_resched();
1423        }
1424
1425        /* All pageblocks in the memory block are likely to be hot-removable */
1426        return 1;
1427}
1428
1429/*
1430 * Confirm all pages in a range [start, end) is belongs to the same zone.
1431 */
1432int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433{
1434        unsigned long pfn, sec_end_pfn;
1435        struct zone *zone = NULL;
1436        struct page *page;
1437        int i;
1438        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439             pfn < end_pfn;
1440             pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441                /* Make sure the memory section is present first */
1442                if (!present_section_nr(pfn_to_section_nr(pfn)))
1443                        continue;
1444                for (; pfn < sec_end_pfn && pfn < end_pfn;
1445                     pfn += MAX_ORDER_NR_PAGES) {
1446                        i = 0;
1447                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448                        while ((i < MAX_ORDER_NR_PAGES) &&
1449                                !pfn_valid_within(pfn + i))
1450                                i++;
1451                        if (i == MAX_ORDER_NR_PAGES)
1452                                continue;
1453                        page = pfn_to_page(pfn + i);
1454                        if (zone && page_zone(page) != zone)
1455                                return 0;
1456                        zone = page_zone(page);
1457                }
1458        }
1459        return 1;
1460}
1461
1462/*
1463 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464 * and hugepages). We scan pfn because it's much easier than scanning over
1465 * linked list. This function returns the pfn of the first found movable
1466 * page if it's found, otherwise 0.
1467 */
1468static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1469{
1470        unsigned long pfn;
1471        struct page *page;
1472        for (pfn = start; pfn < end; pfn++) {
1473                if (pfn_valid(pfn)) {
1474                        page = pfn_to_page(pfn);
1475                        if (PageLRU(page))
1476                                return pfn;
1477                        if (PageHuge(page)) {
1478                                if (page_huge_active(page))
1479                                        return pfn;
1480                                else
1481                                        pfn = round_up(pfn + 1,
1482                                                1 << compound_order(page)) - 1;
1483                        }
1484                }
1485        }
1486        return 0;
1487}
1488
1489#define NR_OFFLINE_AT_ONCE_PAGES        (256)
1490static int
1491do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492{
1493        unsigned long pfn;
1494        struct page *page;
1495        int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496        int not_managed = 0;
1497        int ret = 0;
1498        LIST_HEAD(source);
1499
1500        for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501                if (!pfn_valid(pfn))
1502                        continue;
1503                page = pfn_to_page(pfn);
1504
1505                if (PageHuge(page)) {
1506                        struct page *head = compound_head(page);
1507                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508                        if (compound_order(head) > PFN_SECTION_SHIFT) {
1509                                ret = -EBUSY;
1510                                break;
1511                        }
1512                        if (isolate_huge_page(page, &source))
1513                                move_pages -= 1 << compound_order(head);
1514                        continue;
1515                }
1516
1517                if (!get_page_unless_zero(page))
1518                        continue;
1519                /*
1520                 * We can skip free pages. And we can only deal with pages on
1521                 * LRU.
1522                 */
1523                ret = isolate_lru_page(page);
1524                if (!ret) { /* Success */
1525                        put_page(page);
1526                        list_add_tail(&page->lru, &source);
1527                        move_pages--;
1528                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1529                                            page_is_file_cache(page));
1530
1531                } else {
1532#ifdef CONFIG_DEBUG_VM
1533                        pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534                        dump_page(page, "failed to remove from LRU");
1535#endif
1536                        put_page(page);
1537                        /* Because we don't have big zone->lock. we should
1538                           check this again here. */
1539                        if (page_count(page)) {
1540                                not_managed++;
1541                                ret = -EBUSY;
1542                                break;
1543                        }
1544                }
1545        }
1546        if (!list_empty(&source)) {
1547                if (not_managed) {
1548                        putback_movable_pages(&source);
1549                        goto out;
1550                }
1551
1552                /*
1553                 * alloc_migrate_target should be improooooved!!
1554                 * migrate_pages returns # of failed pages.
1555                 */
1556                ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558                if (ret)
1559                        putback_movable_pages(&source);
1560        }
1561out:
1562        return ret;
1563}
1564
1565/*
1566 * remove from free_area[] and mark all as Reserved.
1567 */
1568static int
1569offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570                        void *data)
1571{
1572        __offline_isolated_pages(start, start + nr_pages);
1573        return 0;
1574}
1575
1576static void
1577offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578{
1579        walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580                                offline_isolated_pages_cb);
1581}
1582
1583/*
1584 * Check all pages in range, recoreded as memory resource, are isolated.
1585 */
1586static int
1587check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588                        void *data)
1589{
1590        int ret;
1591        long offlined = *(long *)data;
1592        ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593        offlined = nr_pages;
1594        if (!ret)
1595                *(long *)data += offlined;
1596        return ret;
1597}
1598
1599static long
1600check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602        long offlined = 0;
1603        int ret;
1604
1605        ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606                        check_pages_isolated_cb);
1607        if (ret < 0)
1608                offlined = (long)ret;
1609        return offlined;
1610}
1611
1612#ifdef CONFIG_MOVABLE_NODE
1613/*
1614 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615 * normal memory.
1616 */
1617static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618{
1619        return true;
1620}
1621#else /* CONFIG_MOVABLE_NODE */
1622/* ensure the node has NORMAL memory if it is still online */
1623static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624{
1625        struct pglist_data *pgdat = zone->zone_pgdat;
1626        unsigned long present_pages = 0;
1627        enum zone_type zt;
1628
1629        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630                present_pages += pgdat->node_zones[zt].present_pages;
1631
1632        if (present_pages > nr_pages)
1633                return true;
1634
1635        present_pages = 0;
1636        for (; zt <= ZONE_MOVABLE; zt++)
1637                present_pages += pgdat->node_zones[zt].present_pages;
1638
1639        /*
1640         * we can't offline the last normal memory until all
1641         * higher memory is offlined.
1642         */
1643        return present_pages == 0;
1644}
1645#endif /* CONFIG_MOVABLE_NODE */
1646
1647static int __init cmdline_parse_movable_node(char *p)
1648{
1649#ifdef CONFIG_MOVABLE_NODE
1650        /*
1651         * Memory used by the kernel cannot be hot-removed because Linux
1652         * cannot migrate the kernel pages. When memory hotplug is
1653         * enabled, we should prevent memblock from allocating memory
1654         * for the kernel.
1655         *
1656         * ACPI SRAT records all hotpluggable memory ranges. But before
1657         * SRAT is parsed, we don't know about it.
1658         *
1659         * The kernel image is loaded into memory at very early time. We
1660         * cannot prevent this anyway. So on NUMA system, we set any
1661         * node the kernel resides in as un-hotpluggable.
1662         *
1663         * Since on modern servers, one node could have double-digit
1664         * gigabytes memory, we can assume the memory around the kernel
1665         * image is also un-hotpluggable. So before SRAT is parsed, just
1666         * allocate memory near the kernel image to try the best to keep
1667         * the kernel away from hotpluggable memory.
1668         */
1669        memblock_set_bottom_up(true);
1670        movable_node_enabled = true;
1671#else
1672        pr_warn("movable_node option not supported\n");
1673#endif
1674        return 0;
1675}
1676early_param("movable_node", cmdline_parse_movable_node);
1677
1678/* check which state of node_states will be changed when offline memory */
1679static void node_states_check_changes_offline(unsigned long nr_pages,
1680                struct zone *zone, struct memory_notify *arg)
1681{
1682        struct pglist_data *pgdat = zone->zone_pgdat;
1683        unsigned long present_pages = 0;
1684        enum zone_type zt, zone_last = ZONE_NORMAL;
1685
1686        /*
1687         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688         * contains nodes which have zones of 0...ZONE_NORMAL,
1689         * set zone_last to ZONE_NORMAL.
1690         *
1691         * If we don't have HIGHMEM nor movable node,
1692         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694         */
1695        if (N_MEMORY == N_NORMAL_MEMORY)
1696                zone_last = ZONE_MOVABLE;
1697
1698        /*
1699         * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700         * If the memory to be offline is in a zone of 0...zone_last,
1701         * and it is the last present memory, 0...zone_last will
1702         * become empty after offline , thus we can determind we will
1703         * need to clear the node from node_states[N_NORMAL_MEMORY].
1704         */
1705        for (zt = 0; zt <= zone_last; zt++)
1706                present_pages += pgdat->node_zones[zt].present_pages;
1707        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708                arg->status_change_nid_normal = zone_to_nid(zone);
1709        else
1710                arg->status_change_nid_normal = -1;
1711
1712#ifdef CONFIG_HIGHMEM
1713        /*
1714         * If we have movable node, node_states[N_HIGH_MEMORY]
1715         * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716         * set zone_last to ZONE_HIGHMEM.
1717         *
1718         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719         * contains nodes which have zones of 0...ZONE_MOVABLE,
1720         * set zone_last to ZONE_MOVABLE.
1721         */
1722        zone_last = ZONE_HIGHMEM;
1723        if (N_MEMORY == N_HIGH_MEMORY)
1724                zone_last = ZONE_MOVABLE;
1725
1726        for (; zt <= zone_last; zt++)
1727                present_pages += pgdat->node_zones[zt].present_pages;
1728        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729                arg->status_change_nid_high = zone_to_nid(zone);
1730        else
1731                arg->status_change_nid_high = -1;
1732#else
1733        arg->status_change_nid_high = arg->status_change_nid_normal;
1734#endif
1735
1736        /*
1737         * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1738         */
1739        zone_last = ZONE_MOVABLE;
1740
1741        /*
1742         * check whether node_states[N_HIGH_MEMORY] will be changed
1743         * If we try to offline the last present @nr_pages from the node,
1744         * we can determind we will need to clear the node from
1745         * node_states[N_HIGH_MEMORY].
1746         */
1747        for (; zt <= zone_last; zt++)
1748                present_pages += pgdat->node_zones[zt].present_pages;
1749        if (nr_pages >= present_pages)
1750                arg->status_change_nid = zone_to_nid(zone);
1751        else
1752                arg->status_change_nid = -1;
1753}
1754
1755static void node_states_clear_node(int node, struct memory_notify *arg)
1756{
1757        if (arg->status_change_nid_normal >= 0)
1758                node_clear_state(node, N_NORMAL_MEMORY);
1759
1760        if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761            (arg->status_change_nid_high >= 0))
1762                node_clear_state(node, N_HIGH_MEMORY);
1763
1764        if ((N_MEMORY != N_HIGH_MEMORY) &&
1765            (arg->status_change_nid >= 0))
1766                node_clear_state(node, N_MEMORY);
1767}
1768
1769static int __ref __offline_pages(unsigned long start_pfn,
1770                  unsigned long end_pfn, unsigned long timeout)
1771{
1772        unsigned long pfn, nr_pages, expire;
1773        long offlined_pages;
1774        int ret, drain, retry_max, node;
1775        unsigned long flags;
1776        struct zone *zone;
1777        struct memory_notify arg;
1778
1779        /* at least, alignment against pageblock is necessary */
1780        if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781                return -EINVAL;
1782        if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783                return -EINVAL;
1784        /* This makes hotplug much easier...and readable.
1785           we assume this for now. .*/
1786        if (!test_pages_in_a_zone(start_pfn, end_pfn))
1787                return -EINVAL;
1788
1789        zone = page_zone(pfn_to_page(start_pfn));
1790        node = zone_to_nid(zone);
1791        nr_pages = end_pfn - start_pfn;
1792
1793        if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794                return -EINVAL;
1795
1796        /* set above range as isolated */
1797        ret = start_isolate_page_range(start_pfn, end_pfn,
1798                                       MIGRATE_MOVABLE, true);
1799        if (ret)
1800                return ret;
1801
1802        arg.start_pfn = start_pfn;
1803        arg.nr_pages = nr_pages;
1804        node_states_check_changes_offline(nr_pages, zone, &arg);
1805
1806        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807        ret = notifier_to_errno(ret);
1808        if (ret)
1809                goto failed_removal;
1810
1811        pfn = start_pfn;
1812        expire = jiffies + timeout;
1813        drain = 0;
1814        retry_max = 5;
1815repeat:
1816        /* start memory hot removal */
1817        ret = -EAGAIN;
1818        if (time_after(jiffies, expire))
1819                goto failed_removal;
1820        ret = -EINTR;
1821        if (signal_pending(current))
1822                goto failed_removal;
1823        ret = 0;
1824        if (drain) {
1825                lru_add_drain_all();
1826                cond_resched();
1827                drain_all_pages(zone);
1828        }
1829
1830        pfn = scan_movable_pages(start_pfn, end_pfn);
1831        if (pfn) { /* We have movable pages */
1832                ret = do_migrate_range(pfn, end_pfn);
1833                if (!ret) {
1834                        drain = 1;
1835                        goto repeat;
1836                } else {
1837                        if (ret < 0)
1838                                if (--retry_max == 0)
1839                                        goto failed_removal;
1840                        yield();
1841                        drain = 1;
1842                        goto repeat;
1843                }
1844        }
1845        /* drain all zone's lru pagevec, this is asynchronous... */
1846        lru_add_drain_all();
1847        yield();
1848        /* drain pcp pages, this is synchronous. */
1849        drain_all_pages(zone);
1850        /*
1851         * dissolve free hugepages in the memory block before doing offlining
1852         * actually in order to make hugetlbfs's object counting consistent.
1853         */
1854        dissolve_free_huge_pages(start_pfn, end_pfn);
1855        /* check again */
1856        offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857        if (offlined_pages < 0) {
1858                ret = -EBUSY;
1859                goto failed_removal;
1860        }
1861        pr_info("Offlined Pages %ld\n", offlined_pages);
1862        /* Ok, all of our target is isolated.
1863           We cannot do rollback at this point. */
1864        offline_isolated_pages(start_pfn, end_pfn);
1865        /* reset pagetype flags and makes migrate type to be MOVABLE */
1866        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867        /* removal success */
1868        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869        zone->present_pages -= offlined_pages;
1870
1871        pgdat_resize_lock(zone->zone_pgdat, &flags);
1872        zone->zone_pgdat->node_present_pages -= offlined_pages;
1873        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1874
1875        init_per_zone_wmark_min();
1876
1877        if (!populated_zone(zone)) {
1878                zone_pcp_reset(zone);
1879                mutex_lock(&zonelists_mutex);
1880                build_all_zonelists(NULL, NULL);
1881                mutex_unlock(&zonelists_mutex);
1882        } else
1883                zone_pcp_update(zone);
1884
1885        node_states_clear_node(node, &arg);
1886        if (arg.status_change_nid >= 0) {
1887                kswapd_stop(node);
1888                kcompactd_stop(node);
1889        }
1890
1891        vm_total_pages = nr_free_pagecache_pages();
1892        writeback_set_ratelimit();
1893
1894        memory_notify(MEM_OFFLINE, &arg);
1895        return 0;
1896
1897failed_removal:
1898        pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899                 (unsigned long long) start_pfn << PAGE_SHIFT,
1900                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902        /* pushback to free area */
1903        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1904        return ret;
1905}
1906
1907/* Must be protected by mem_hotplug_begin() */
1908int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909{
1910        return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911}
1912#endif /* CONFIG_MEMORY_HOTREMOVE */
1913
1914/**
1915 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916 * @start_pfn: start pfn of the memory range
1917 * @end_pfn: end pfn of the memory range
1918 * @arg: argument passed to func
1919 * @func: callback for each memory section walked
1920 *
1921 * This function walks through all present mem sections in range
1922 * [start_pfn, end_pfn) and call func on each mem section.
1923 *
1924 * Returns the return value of func.
1925 */
1926int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927                void *arg, int (*func)(struct memory_block *, void *))
1928{
1929        struct memory_block *mem = NULL;
1930        struct mem_section *section;
1931        unsigned long pfn, section_nr;
1932        int ret;
1933
1934        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935                section_nr = pfn_to_section_nr(pfn);
1936                if (!present_section_nr(section_nr))
1937                        continue;
1938
1939                section = __nr_to_section(section_nr);
1940                /* same memblock? */
1941                if (mem)
1942                        if ((section_nr >= mem->start_section_nr) &&
1943                            (section_nr <= mem->end_section_nr))
1944                                continue;
1945
1946                mem = find_memory_block_hinted(section, mem);
1947                if (!mem)
1948                        continue;
1949
1950                ret = func(mem, arg);
1951                if (ret) {
1952                        kobject_put(&mem->dev.kobj);
1953                        return ret;
1954                }
1955        }
1956
1957        if (mem)
1958                kobject_put(&mem->dev.kobj);
1959
1960        return 0;
1961}
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965{
1966        int ret = !is_memblock_offlined(mem);
1967
1968        if (unlikely(ret)) {
1969                phys_addr_t beginpa, endpa;
1970
1971                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974                        &beginpa, &endpa);
1975        }
1976
1977        return ret;
1978}
1979
1980static int check_cpu_on_node(pg_data_t *pgdat)
1981{
1982        int cpu;
1983
1984        for_each_present_cpu(cpu) {
1985                if (cpu_to_node(cpu) == pgdat->node_id)
1986                        /*
1987                         * the cpu on this node isn't removed, and we can't
1988                         * offline this node.
1989                         */
1990                        return -EBUSY;
1991        }
1992
1993        return 0;
1994}
1995
1996static void unmap_cpu_on_node(pg_data_t *pgdat)
1997{
1998#ifdef CONFIG_ACPI_NUMA
1999        int cpu;
2000
2001        for_each_possible_cpu(cpu)
2002                if (cpu_to_node(cpu) == pgdat->node_id)
2003                        numa_clear_node(cpu);
2004#endif
2005}
2006
2007static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008{
2009        int ret;
2010
2011        ret = check_cpu_on_node(pgdat);
2012        if (ret)
2013                return ret;
2014
2015        /*
2016         * the node will be offlined when we come here, so we can clear
2017         * the cpu_to_node() now.
2018         */
2019
2020        unmap_cpu_on_node(pgdat);
2021        return 0;
2022}
2023
2024/**
2025 * try_offline_node
2026 *
2027 * Offline a node if all memory sections and cpus of the node are removed.
2028 *
2029 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030 * and online/offline operations before this call.
2031 */
2032void try_offline_node(int nid)
2033{
2034        pg_data_t *pgdat = NODE_DATA(nid);
2035        unsigned long start_pfn = pgdat->node_start_pfn;
2036        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037        unsigned long pfn;
2038        int i;
2039
2040        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041                unsigned long section_nr = pfn_to_section_nr(pfn);
2042
2043                if (!present_section_nr(section_nr))
2044                        continue;
2045
2046                if (pfn_to_nid(pfn) != nid)
2047                        continue;
2048
2049                /*
2050                 * some memory sections of this node are not removed, and we
2051                 * can't offline node now.
2052                 */
2053                return;
2054        }
2055
2056        if (check_and_unmap_cpu_on_node(pgdat))
2057                return;
2058
2059        /*
2060         * all memory/cpu of this node are removed, we can offline this
2061         * node now.
2062         */
2063        node_set_offline(nid);
2064        unregister_one_node(nid);
2065
2066        /* free waittable in each zone */
2067        for (i = 0; i < MAX_NR_ZONES; i++) {
2068                struct zone *zone = pgdat->node_zones + i;
2069
2070                /*
2071                 * wait_table may be allocated from boot memory,
2072                 * here only free if it's allocated by vmalloc.
2073                 */
2074                if (is_vmalloc_addr(zone->wait_table)) {
2075                        vfree(zone->wait_table);
2076                        zone->wait_table = NULL;
2077                }
2078        }
2079}
2080EXPORT_SYMBOL(try_offline_node);
2081
2082/**
2083 * remove_memory
2084 *
2085 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086 * and online/offline operations before this call, as required by
2087 * try_offline_node().
2088 */
2089void __ref remove_memory(int nid, u64 start, u64 size)
2090{
2091        int ret;
2092
2093        BUG_ON(check_hotplug_memory_range(start, size));
2094
2095        mem_hotplug_begin();
2096
2097        /*
2098         * All memory blocks must be offlined before removing memory.  Check
2099         * whether all memory blocks in question are offline and trigger a BUG()
2100         * if this is not the case.
2101         */
2102        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103                                check_memblock_offlined_cb);
2104        if (ret)
2105                BUG();
2106
2107        /* remove memmap entry */
2108        firmware_map_remove(start, start + size, "System RAM");
2109        memblock_free(start, size);
2110        memblock_remove(start, size);
2111
2112        arch_remove_memory(start, size);
2113
2114        try_offline_node(nid);
2115
2116        mem_hotplug_done();
2117}
2118EXPORT_SYMBOL_GPL(remove_memory);
2119#endif /* CONFIG_MEMORY_HOTREMOVE */
2120