linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/page_idle.h>
  41#include <linux/page_owner.h>
  42
  43#include <asm/tlbflush.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/migrate.h>
  47
  48#include "internal.h"
  49
  50/*
  51 * migrate_prep() needs to be called before we start compiling a list of pages
  52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  53 * undesirable, use migrate_prep_local()
  54 */
  55int migrate_prep(void)
  56{
  57        /*
  58         * Clear the LRU lists so pages can be isolated.
  59         * Note that pages may be moved off the LRU after we have
  60         * drained them. Those pages will fail to migrate like other
  61         * pages that may be busy.
  62         */
  63        lru_add_drain_all();
  64
  65        return 0;
  66}
  67
  68/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  69int migrate_prep_local(void)
  70{
  71        lru_add_drain();
  72
  73        return 0;
  74}
  75
  76/*
  77 * Put previously isolated pages back onto the appropriate lists
  78 * from where they were once taken off for compaction/migration.
  79 *
  80 * This function shall be used whenever the isolated pageset has been
  81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  82 * and isolate_huge_page().
  83 */
  84void putback_movable_pages(struct list_head *l)
  85{
  86        struct page *page;
  87        struct page *page2;
  88
  89        list_for_each_entry_safe(page, page2, l, lru) {
  90                if (unlikely(PageHuge(page))) {
  91                        putback_active_hugepage(page);
  92                        continue;
  93                }
  94                list_del(&page->lru);
  95                dec_zone_page_state(page, NR_ISOLATED_ANON +
  96                                page_is_file_cache(page));
  97                if (unlikely(isolated_balloon_page(page)))
  98                        balloon_page_putback(page);
  99                else
 100                        putback_lru_page(page);
 101        }
 102}
 103
 104/*
 105 * Restore a potential migration pte to a working pte entry
 106 */
 107static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 108                                 unsigned long addr, void *old)
 109{
 110        struct mm_struct *mm = vma->vm_mm;
 111        swp_entry_t entry;
 112        pmd_t *pmd;
 113        pte_t *ptep, pte;
 114        spinlock_t *ptl;
 115
 116        if (unlikely(PageHuge(new))) {
 117                ptep = huge_pte_offset(mm, addr);
 118                if (!ptep)
 119                        goto out;
 120                ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 121        } else {
 122                pmd = mm_find_pmd(mm, addr);
 123                if (!pmd)
 124                        goto out;
 125
 126                ptep = pte_offset_map(pmd, addr);
 127
 128                /*
 129                 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130                 * can race mremap's move_ptes(), which skips anon_vma lock.
 131                 */
 132
 133                ptl = pte_lockptr(mm, pmd);
 134        }
 135
 136        spin_lock(ptl);
 137        pte = *ptep;
 138        if (!is_swap_pte(pte))
 139                goto unlock;
 140
 141        entry = pte_to_swp_entry(pte);
 142
 143        if (!is_migration_entry(entry) ||
 144            migration_entry_to_page(entry) != old)
 145                goto unlock;
 146
 147        get_page(new);
 148        pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149        if (pte_swp_soft_dirty(*ptep))
 150                pte = pte_mksoft_dirty(pte);
 151
 152        /* Recheck VMA as permissions can change since migration started  */
 153        if (is_write_migration_entry(entry))
 154                pte = maybe_mkwrite(pte, vma);
 155
 156#ifdef CONFIG_HUGETLB_PAGE
 157        if (PageHuge(new)) {
 158                pte = pte_mkhuge(pte);
 159                pte = arch_make_huge_pte(pte, vma, new, 0);
 160        }
 161#endif
 162        flush_dcache_page(new);
 163        set_pte_at(mm, addr, ptep, pte);
 164
 165        if (PageHuge(new)) {
 166                if (PageAnon(new))
 167                        hugepage_add_anon_rmap(new, vma, addr);
 168                else
 169                        page_dup_rmap(new, true);
 170        } else if (PageAnon(new))
 171                page_add_anon_rmap(new, vma, addr, false);
 172        else
 173                page_add_file_rmap(new);
 174
 175        if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 176                mlock_vma_page(new);
 177
 178        /* No need to invalidate - it was non-present before */
 179        update_mmu_cache(vma, addr, ptep);
 180unlock:
 181        pte_unmap_unlock(ptep, ptl);
 182out:
 183        return SWAP_AGAIN;
 184}
 185
 186/*
 187 * Get rid of all migration entries and replace them by
 188 * references to the indicated page.
 189 */
 190void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 191{
 192        struct rmap_walk_control rwc = {
 193                .rmap_one = remove_migration_pte,
 194                .arg = old,
 195        };
 196
 197        if (locked)
 198                rmap_walk_locked(new, &rwc);
 199        else
 200                rmap_walk(new, &rwc);
 201}
 202
 203/*
 204 * Something used the pte of a page under migration. We need to
 205 * get to the page and wait until migration is finished.
 206 * When we return from this function the fault will be retried.
 207 */
 208void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 209                                spinlock_t *ptl)
 210{
 211        pte_t pte;
 212        swp_entry_t entry;
 213        struct page *page;
 214
 215        spin_lock(ptl);
 216        pte = *ptep;
 217        if (!is_swap_pte(pte))
 218                goto out;
 219
 220        entry = pte_to_swp_entry(pte);
 221        if (!is_migration_entry(entry))
 222                goto out;
 223
 224        page = migration_entry_to_page(entry);
 225
 226        /*
 227         * Once radix-tree replacement of page migration started, page_count
 228         * *must* be zero. And, we don't want to call wait_on_page_locked()
 229         * against a page without get_page().
 230         * So, we use get_page_unless_zero(), here. Even failed, page fault
 231         * will occur again.
 232         */
 233        if (!get_page_unless_zero(page))
 234                goto out;
 235        pte_unmap_unlock(ptep, ptl);
 236        wait_on_page_locked(page);
 237        put_page(page);
 238        return;
 239out:
 240        pte_unmap_unlock(ptep, ptl);
 241}
 242
 243void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 244                                unsigned long address)
 245{
 246        spinlock_t *ptl = pte_lockptr(mm, pmd);
 247        pte_t *ptep = pte_offset_map(pmd, address);
 248        __migration_entry_wait(mm, ptep, ptl);
 249}
 250
 251void migration_entry_wait_huge(struct vm_area_struct *vma,
 252                struct mm_struct *mm, pte_t *pte)
 253{
 254        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 255        __migration_entry_wait(mm, pte, ptl);
 256}
 257
 258#ifdef CONFIG_BLOCK
 259/* Returns true if all buffers are successfully locked */
 260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 261                                                        enum migrate_mode mode)
 262{
 263        struct buffer_head *bh = head;
 264
 265        /* Simple case, sync compaction */
 266        if (mode != MIGRATE_ASYNC) {
 267                do {
 268                        get_bh(bh);
 269                        lock_buffer(bh);
 270                        bh = bh->b_this_page;
 271
 272                } while (bh != head);
 273
 274                return true;
 275        }
 276
 277        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 278        do {
 279                get_bh(bh);
 280                if (!trylock_buffer(bh)) {
 281                        /*
 282                         * We failed to lock the buffer and cannot stall in
 283                         * async migration. Release the taken locks
 284                         */
 285                        struct buffer_head *failed_bh = bh;
 286                        put_bh(failed_bh);
 287                        bh = head;
 288                        while (bh != failed_bh) {
 289                                unlock_buffer(bh);
 290                                put_bh(bh);
 291                                bh = bh->b_this_page;
 292                        }
 293                        return false;
 294                }
 295
 296                bh = bh->b_this_page;
 297        } while (bh != head);
 298        return true;
 299}
 300#else
 301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 302                                                        enum migrate_mode mode)
 303{
 304        return true;
 305}
 306#endif /* CONFIG_BLOCK */
 307
 308/*
 309 * Replace the page in the mapping.
 310 *
 311 * The number of remaining references must be:
 312 * 1 for anonymous pages without a mapping
 313 * 2 for pages with a mapping
 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 315 */
 316int migrate_page_move_mapping(struct address_space *mapping,
 317                struct page *newpage, struct page *page,
 318                struct buffer_head *head, enum migrate_mode mode,
 319                int extra_count)
 320{
 321        struct zone *oldzone, *newzone;
 322        int dirty;
 323        int expected_count = 1 + extra_count;
 324        void **pslot;
 325
 326        if (!mapping) {
 327                /* Anonymous page without mapping */
 328                if (page_count(page) != expected_count)
 329                        return -EAGAIN;
 330
 331                /* No turning back from here */
 332                newpage->index = page->index;
 333                newpage->mapping = page->mapping;
 334                if (PageSwapBacked(page))
 335                        SetPageSwapBacked(newpage);
 336
 337                return MIGRATEPAGE_SUCCESS;
 338        }
 339
 340        oldzone = page_zone(page);
 341        newzone = page_zone(newpage);
 342
 343        spin_lock_irq(&mapping->tree_lock);
 344
 345        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 346                                        page_index(page));
 347
 348        expected_count += 1 + page_has_private(page);
 349        if (page_count(page) != expected_count ||
 350                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 351                spin_unlock_irq(&mapping->tree_lock);
 352                return -EAGAIN;
 353        }
 354
 355        if (!page_ref_freeze(page, expected_count)) {
 356                spin_unlock_irq(&mapping->tree_lock);
 357                return -EAGAIN;
 358        }
 359
 360        /*
 361         * In the async migration case of moving a page with buffers, lock the
 362         * buffers using trylock before the mapping is moved. If the mapping
 363         * was moved, we later failed to lock the buffers and could not move
 364         * the mapping back due to an elevated page count, we would have to
 365         * block waiting on other references to be dropped.
 366         */
 367        if (mode == MIGRATE_ASYNC && head &&
 368                        !buffer_migrate_lock_buffers(head, mode)) {
 369                page_ref_unfreeze(page, expected_count);
 370                spin_unlock_irq(&mapping->tree_lock);
 371                return -EAGAIN;
 372        }
 373
 374        /*
 375         * Now we know that no one else is looking at the page:
 376         * no turning back from here.
 377         */
 378        newpage->index = page->index;
 379        newpage->mapping = page->mapping;
 380        if (PageSwapBacked(page))
 381                SetPageSwapBacked(newpage);
 382
 383        get_page(newpage);      /* add cache reference */
 384        if (PageSwapCache(page)) {
 385                SetPageSwapCache(newpage);
 386                set_page_private(newpage, page_private(page));
 387        }
 388
 389        /* Move dirty while page refs frozen and newpage not yet exposed */
 390        dirty = PageDirty(page);
 391        if (dirty) {
 392                ClearPageDirty(page);
 393                SetPageDirty(newpage);
 394        }
 395
 396        radix_tree_replace_slot(pslot, newpage);
 397
 398        /*
 399         * Drop cache reference from old page by unfreezing
 400         * to one less reference.
 401         * We know this isn't the last reference.
 402         */
 403        page_ref_unfreeze(page, expected_count - 1);
 404
 405        spin_unlock(&mapping->tree_lock);
 406        /* Leave irq disabled to prevent preemption while updating stats */
 407
 408        /*
 409         * If moved to a different zone then also account
 410         * the page for that zone. Other VM counters will be
 411         * taken care of when we establish references to the
 412         * new page and drop references to the old page.
 413         *
 414         * Note that anonymous pages are accounted for
 415         * via NR_FILE_PAGES and NR_ANON_PAGES if they
 416         * are mapped to swap space.
 417         */
 418        if (newzone != oldzone) {
 419                __dec_zone_state(oldzone, NR_FILE_PAGES);
 420                __inc_zone_state(newzone, NR_FILE_PAGES);
 421                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 422                        __dec_zone_state(oldzone, NR_SHMEM);
 423                        __inc_zone_state(newzone, NR_SHMEM);
 424                }
 425                if (dirty && mapping_cap_account_dirty(mapping)) {
 426                        __dec_zone_state(oldzone, NR_FILE_DIRTY);
 427                        __inc_zone_state(newzone, NR_FILE_DIRTY);
 428                }
 429        }
 430        local_irq_enable();
 431
 432        return MIGRATEPAGE_SUCCESS;
 433}
 434
 435/*
 436 * The expected number of remaining references is the same as that
 437 * of migrate_page_move_mapping().
 438 */
 439int migrate_huge_page_move_mapping(struct address_space *mapping,
 440                                   struct page *newpage, struct page *page)
 441{
 442        int expected_count;
 443        void **pslot;
 444
 445        spin_lock_irq(&mapping->tree_lock);
 446
 447        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 448                                        page_index(page));
 449
 450        expected_count = 2 + page_has_private(page);
 451        if (page_count(page) != expected_count ||
 452                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 453                spin_unlock_irq(&mapping->tree_lock);
 454                return -EAGAIN;
 455        }
 456
 457        if (!page_ref_freeze(page, expected_count)) {
 458                spin_unlock_irq(&mapping->tree_lock);
 459                return -EAGAIN;
 460        }
 461
 462        newpage->index = page->index;
 463        newpage->mapping = page->mapping;
 464
 465        get_page(newpage);
 466
 467        radix_tree_replace_slot(pslot, newpage);
 468
 469        page_ref_unfreeze(page, expected_count - 1);
 470
 471        spin_unlock_irq(&mapping->tree_lock);
 472
 473        return MIGRATEPAGE_SUCCESS;
 474}
 475
 476/*
 477 * Gigantic pages are so large that we do not guarantee that page++ pointer
 478 * arithmetic will work across the entire page.  We need something more
 479 * specialized.
 480 */
 481static void __copy_gigantic_page(struct page *dst, struct page *src,
 482                                int nr_pages)
 483{
 484        int i;
 485        struct page *dst_base = dst;
 486        struct page *src_base = src;
 487
 488        for (i = 0; i < nr_pages; ) {
 489                cond_resched();
 490                copy_highpage(dst, src);
 491
 492                i++;
 493                dst = mem_map_next(dst, dst_base, i);
 494                src = mem_map_next(src, src_base, i);
 495        }
 496}
 497
 498static void copy_huge_page(struct page *dst, struct page *src)
 499{
 500        int i;
 501        int nr_pages;
 502
 503        if (PageHuge(src)) {
 504                /* hugetlbfs page */
 505                struct hstate *h = page_hstate(src);
 506                nr_pages = pages_per_huge_page(h);
 507
 508                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 509                        __copy_gigantic_page(dst, src, nr_pages);
 510                        return;
 511                }
 512        } else {
 513                /* thp page */
 514                BUG_ON(!PageTransHuge(src));
 515                nr_pages = hpage_nr_pages(src);
 516        }
 517
 518        for (i = 0; i < nr_pages; i++) {
 519                cond_resched();
 520                copy_highpage(dst + i, src + i);
 521        }
 522}
 523
 524/*
 525 * Copy the page to its new location
 526 */
 527void migrate_page_copy(struct page *newpage, struct page *page)
 528{
 529        int cpupid;
 530
 531        if (PageHuge(page) || PageTransHuge(page))
 532                copy_huge_page(newpage, page);
 533        else
 534                copy_highpage(newpage, page);
 535
 536        if (PageError(page))
 537                SetPageError(newpage);
 538        if (PageReferenced(page))
 539                SetPageReferenced(newpage);
 540        if (PageUptodate(page))
 541                SetPageUptodate(newpage);
 542        if (TestClearPageActive(page)) {
 543                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 544                SetPageActive(newpage);
 545        } else if (TestClearPageUnevictable(page))
 546                SetPageUnevictable(newpage);
 547        if (PageChecked(page))
 548                SetPageChecked(newpage);
 549        if (PageMappedToDisk(page))
 550                SetPageMappedToDisk(newpage);
 551
 552        /* Move dirty on pages not done by migrate_page_move_mapping() */
 553        if (PageDirty(page))
 554                SetPageDirty(newpage);
 555
 556        if (page_is_young(page))
 557                set_page_young(newpage);
 558        if (page_is_idle(page))
 559                set_page_idle(newpage);
 560
 561        /*
 562         * Copy NUMA information to the new page, to prevent over-eager
 563         * future migrations of this same page.
 564         */
 565        cpupid = page_cpupid_xchg_last(page, -1);
 566        page_cpupid_xchg_last(newpage, cpupid);
 567
 568        ksm_migrate_page(newpage, page);
 569        /*
 570         * Please do not reorder this without considering how mm/ksm.c's
 571         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 572         */
 573        if (PageSwapCache(page))
 574                ClearPageSwapCache(page);
 575        ClearPagePrivate(page);
 576        set_page_private(page, 0);
 577
 578        /*
 579         * If any waiters have accumulated on the new page then
 580         * wake them up.
 581         */
 582        if (PageWriteback(newpage))
 583                end_page_writeback(newpage);
 584
 585        copy_page_owner(page, newpage);
 586
 587        mem_cgroup_migrate(page, newpage);
 588}
 589
 590/************************************************************
 591 *                    Migration functions
 592 ***********************************************************/
 593
 594/*
 595 * Common logic to directly migrate a single page suitable for
 596 * pages that do not use PagePrivate/PagePrivate2.
 597 *
 598 * Pages are locked upon entry and exit.
 599 */
 600int migrate_page(struct address_space *mapping,
 601                struct page *newpage, struct page *page,
 602                enum migrate_mode mode)
 603{
 604        int rc;
 605
 606        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 607
 608        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 609
 610        if (rc != MIGRATEPAGE_SUCCESS)
 611                return rc;
 612
 613        migrate_page_copy(newpage, page);
 614        return MIGRATEPAGE_SUCCESS;
 615}
 616EXPORT_SYMBOL(migrate_page);
 617
 618#ifdef CONFIG_BLOCK
 619/*
 620 * Migration function for pages with buffers. This function can only be used
 621 * if the underlying filesystem guarantees that no other references to "page"
 622 * exist.
 623 */
 624int buffer_migrate_page(struct address_space *mapping,
 625                struct page *newpage, struct page *page, enum migrate_mode mode)
 626{
 627        struct buffer_head *bh, *head;
 628        int rc;
 629
 630        if (!page_has_buffers(page))
 631                return migrate_page(mapping, newpage, page, mode);
 632
 633        head = page_buffers(page);
 634
 635        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 636
 637        if (rc != MIGRATEPAGE_SUCCESS)
 638                return rc;
 639
 640        /*
 641         * In the async case, migrate_page_move_mapping locked the buffers
 642         * with an IRQ-safe spinlock held. In the sync case, the buffers
 643         * need to be locked now
 644         */
 645        if (mode != MIGRATE_ASYNC)
 646                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 647
 648        ClearPagePrivate(page);
 649        set_page_private(newpage, page_private(page));
 650        set_page_private(page, 0);
 651        put_page(page);
 652        get_page(newpage);
 653
 654        bh = head;
 655        do {
 656                set_bh_page(bh, newpage, bh_offset(bh));
 657                bh = bh->b_this_page;
 658
 659        } while (bh != head);
 660
 661        SetPagePrivate(newpage);
 662
 663        migrate_page_copy(newpage, page);
 664
 665        bh = head;
 666        do {
 667                unlock_buffer(bh);
 668                put_bh(bh);
 669                bh = bh->b_this_page;
 670
 671        } while (bh != head);
 672
 673        return MIGRATEPAGE_SUCCESS;
 674}
 675EXPORT_SYMBOL(buffer_migrate_page);
 676#endif
 677
 678/*
 679 * Writeback a page to clean the dirty state
 680 */
 681static int writeout(struct address_space *mapping, struct page *page)
 682{
 683        struct writeback_control wbc = {
 684                .sync_mode = WB_SYNC_NONE,
 685                .nr_to_write = 1,
 686                .range_start = 0,
 687                .range_end = LLONG_MAX,
 688                .for_reclaim = 1
 689        };
 690        int rc;
 691
 692        if (!mapping->a_ops->writepage)
 693                /* No write method for the address space */
 694                return -EINVAL;
 695
 696        if (!clear_page_dirty_for_io(page))
 697                /* Someone else already triggered a write */
 698                return -EAGAIN;
 699
 700        /*
 701         * A dirty page may imply that the underlying filesystem has
 702         * the page on some queue. So the page must be clean for
 703         * migration. Writeout may mean we loose the lock and the
 704         * page state is no longer what we checked for earlier.
 705         * At this point we know that the migration attempt cannot
 706         * be successful.
 707         */
 708        remove_migration_ptes(page, page, false);
 709
 710        rc = mapping->a_ops->writepage(page, &wbc);
 711
 712        if (rc != AOP_WRITEPAGE_ACTIVATE)
 713                /* unlocked. Relock */
 714                lock_page(page);
 715
 716        return (rc < 0) ? -EIO : -EAGAIN;
 717}
 718
 719/*
 720 * Default handling if a filesystem does not provide a migration function.
 721 */
 722static int fallback_migrate_page(struct address_space *mapping,
 723        struct page *newpage, struct page *page, enum migrate_mode mode)
 724{
 725        if (PageDirty(page)) {
 726                /* Only writeback pages in full synchronous migration */
 727                if (mode != MIGRATE_SYNC)
 728                        return -EBUSY;
 729                return writeout(mapping, page);
 730        }
 731
 732        /*
 733         * Buffers may be managed in a filesystem specific way.
 734         * We must have no buffers or drop them.
 735         */
 736        if (page_has_private(page) &&
 737            !try_to_release_page(page, GFP_KERNEL))
 738                return -EAGAIN;
 739
 740        return migrate_page(mapping, newpage, page, mode);
 741}
 742
 743/*
 744 * Move a page to a newly allocated page
 745 * The page is locked and all ptes have been successfully removed.
 746 *
 747 * The new page will have replaced the old page if this function
 748 * is successful.
 749 *
 750 * Return value:
 751 *   < 0 - error code
 752 *  MIGRATEPAGE_SUCCESS - success
 753 */
 754static int move_to_new_page(struct page *newpage, struct page *page,
 755                                enum migrate_mode mode)
 756{
 757        struct address_space *mapping;
 758        int rc;
 759
 760        VM_BUG_ON_PAGE(!PageLocked(page), page);
 761        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 762
 763        mapping = page_mapping(page);
 764        if (!mapping)
 765                rc = migrate_page(mapping, newpage, page, mode);
 766        else if (mapping->a_ops->migratepage)
 767                /*
 768                 * Most pages have a mapping and most filesystems provide a
 769                 * migratepage callback. Anonymous pages are part of swap
 770                 * space which also has its own migratepage callback. This
 771                 * is the most common path for page migration.
 772                 */
 773                rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
 774        else
 775                rc = fallback_migrate_page(mapping, newpage, page, mode);
 776
 777        /*
 778         * When successful, old pagecache page->mapping must be cleared before
 779         * page is freed; but stats require that PageAnon be left as PageAnon.
 780         */
 781        if (rc == MIGRATEPAGE_SUCCESS) {
 782                if (!PageAnon(page))
 783                        page->mapping = NULL;
 784        }
 785        return rc;
 786}
 787
 788static int __unmap_and_move(struct page *page, struct page *newpage,
 789                                int force, enum migrate_mode mode)
 790{
 791        int rc = -EAGAIN;
 792        int page_was_mapped = 0;
 793        struct anon_vma *anon_vma = NULL;
 794
 795        if (!trylock_page(page)) {
 796                if (!force || mode == MIGRATE_ASYNC)
 797                        goto out;
 798
 799                /*
 800                 * It's not safe for direct compaction to call lock_page.
 801                 * For example, during page readahead pages are added locked
 802                 * to the LRU. Later, when the IO completes the pages are
 803                 * marked uptodate and unlocked. However, the queueing
 804                 * could be merging multiple pages for one bio (e.g.
 805                 * mpage_readpages). If an allocation happens for the
 806                 * second or third page, the process can end up locking
 807                 * the same page twice and deadlocking. Rather than
 808                 * trying to be clever about what pages can be locked,
 809                 * avoid the use of lock_page for direct compaction
 810                 * altogether.
 811                 */
 812                if (current->flags & PF_MEMALLOC)
 813                        goto out;
 814
 815                lock_page(page);
 816        }
 817
 818        if (PageWriteback(page)) {
 819                /*
 820                 * Only in the case of a full synchronous migration is it
 821                 * necessary to wait for PageWriteback. In the async case,
 822                 * the retry loop is too short and in the sync-light case,
 823                 * the overhead of stalling is too much
 824                 */
 825                if (mode != MIGRATE_SYNC) {
 826                        rc = -EBUSY;
 827                        goto out_unlock;
 828                }
 829                if (!force)
 830                        goto out_unlock;
 831                wait_on_page_writeback(page);
 832        }
 833
 834        /*
 835         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 836         * we cannot notice that anon_vma is freed while we migrates a page.
 837         * This get_anon_vma() delays freeing anon_vma pointer until the end
 838         * of migration. File cache pages are no problem because of page_lock()
 839         * File Caches may use write_page() or lock_page() in migration, then,
 840         * just care Anon page here.
 841         *
 842         * Only page_get_anon_vma() understands the subtleties of
 843         * getting a hold on an anon_vma from outside one of its mms.
 844         * But if we cannot get anon_vma, then we won't need it anyway,
 845         * because that implies that the anon page is no longer mapped
 846         * (and cannot be remapped so long as we hold the page lock).
 847         */
 848        if (PageAnon(page) && !PageKsm(page))
 849                anon_vma = page_get_anon_vma(page);
 850
 851        /*
 852         * Block others from accessing the new page when we get around to
 853         * establishing additional references. We are usually the only one
 854         * holding a reference to newpage at this point. We used to have a BUG
 855         * here if trylock_page(newpage) fails, but would like to allow for
 856         * cases where there might be a race with the previous use of newpage.
 857         * This is much like races on refcount of oldpage: just don't BUG().
 858         */
 859        if (unlikely(!trylock_page(newpage)))
 860                goto out_unlock;
 861
 862        if (unlikely(isolated_balloon_page(page))) {
 863                /*
 864                 * A ballooned page does not need any special attention from
 865                 * physical to virtual reverse mapping procedures.
 866                 * Skip any attempt to unmap PTEs or to remap swap cache,
 867                 * in order to avoid burning cycles at rmap level, and perform
 868                 * the page migration right away (proteced by page lock).
 869                 */
 870                rc = balloon_page_migrate(newpage, page, mode);
 871                goto out_unlock_both;
 872        }
 873
 874        /*
 875         * Corner case handling:
 876         * 1. When a new swap-cache page is read into, it is added to the LRU
 877         * and treated as swapcache but it has no rmap yet.
 878         * Calling try_to_unmap() against a page->mapping==NULL page will
 879         * trigger a BUG.  So handle it here.
 880         * 2. An orphaned page (see truncate_complete_page) might have
 881         * fs-private metadata. The page can be picked up due to memory
 882         * offlining.  Everywhere else except page reclaim, the page is
 883         * invisible to the vm, so the page can not be migrated.  So try to
 884         * free the metadata, so the page can be freed.
 885         */
 886        if (!page->mapping) {
 887                VM_BUG_ON_PAGE(PageAnon(page), page);
 888                if (page_has_private(page)) {
 889                        try_to_free_buffers(page);
 890                        goto out_unlock_both;
 891                }
 892        } else if (page_mapped(page)) {
 893                /* Establish migration ptes */
 894                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 895                                page);
 896                try_to_unmap(page,
 897                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 898                page_was_mapped = 1;
 899        }
 900
 901        if (!page_mapped(page))
 902                rc = move_to_new_page(newpage, page, mode);
 903
 904        if (page_was_mapped)
 905                remove_migration_ptes(page,
 906                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
 907
 908out_unlock_both:
 909        unlock_page(newpage);
 910out_unlock:
 911        /* Drop an anon_vma reference if we took one */
 912        if (anon_vma)
 913                put_anon_vma(anon_vma);
 914        unlock_page(page);
 915out:
 916        return rc;
 917}
 918
 919/*
 920 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 921 * around it.
 922 */
 923#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
 924#define ICE_noinline noinline
 925#else
 926#define ICE_noinline
 927#endif
 928
 929/*
 930 * Obtain the lock on page, remove all ptes and migrate the page
 931 * to the newly allocated page in newpage.
 932 */
 933static ICE_noinline int unmap_and_move(new_page_t get_new_page,
 934                                   free_page_t put_new_page,
 935                                   unsigned long private, struct page *page,
 936                                   int force, enum migrate_mode mode,
 937                                   enum migrate_reason reason)
 938{
 939        int rc = MIGRATEPAGE_SUCCESS;
 940        int *result = NULL;
 941        struct page *newpage;
 942
 943        newpage = get_new_page(page, private, &result);
 944        if (!newpage)
 945                return -ENOMEM;
 946
 947        if (page_count(page) == 1) {
 948                /* page was freed from under us. So we are done. */
 949                goto out;
 950        }
 951
 952        if (unlikely(PageTransHuge(page))) {
 953                lock_page(page);
 954                rc = split_huge_page(page);
 955                unlock_page(page);
 956                if (rc)
 957                        goto out;
 958        }
 959
 960        rc = __unmap_and_move(page, newpage, force, mode);
 961        if (rc == MIGRATEPAGE_SUCCESS) {
 962                put_new_page = NULL;
 963                set_page_owner_migrate_reason(newpage, reason);
 964        }
 965
 966out:
 967        if (rc != -EAGAIN) {
 968                /*
 969                 * A page that has been migrated has all references
 970                 * removed and will be freed. A page that has not been
 971                 * migrated will have kepts its references and be
 972                 * restored.
 973                 */
 974                list_del(&page->lru);
 975                dec_zone_page_state(page, NR_ISOLATED_ANON +
 976                                page_is_file_cache(page));
 977                /* Soft-offlined page shouldn't go through lru cache list */
 978                if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
 979                        /*
 980                         * With this release, we free successfully migrated
 981                         * page and set PG_HWPoison on just freed page
 982                         * intentionally. Although it's rather weird, it's how
 983                         * HWPoison flag works at the moment.
 984                         */
 985                        put_page(page);
 986                        if (!test_set_page_hwpoison(page))
 987                                num_poisoned_pages_inc();
 988                } else
 989                        putback_lru_page(page);
 990        }
 991
 992        /*
 993         * If migration was not successful and there's a freeing callback, use
 994         * it.  Otherwise, putback_lru_page() will drop the reference grabbed
 995         * during isolation.
 996         */
 997        if (put_new_page)
 998                put_new_page(newpage, private);
 999        else if (unlikely(__is_movable_balloon_page(newpage))) {
1000                /* drop our reference, page already in the balloon */
1001                put_page(newpage);
1002        } else
1003                putback_lru_page(newpage);
1004
1005        if (result) {
1006                if (rc)
1007                        *result = rc;
1008                else
1009                        *result = page_to_nid(newpage);
1010        }
1011        return rc;
1012}
1013
1014/*
1015 * Counterpart of unmap_and_move_page() for hugepage migration.
1016 *
1017 * This function doesn't wait the completion of hugepage I/O
1018 * because there is no race between I/O and migration for hugepage.
1019 * Note that currently hugepage I/O occurs only in direct I/O
1020 * where no lock is held and PG_writeback is irrelevant,
1021 * and writeback status of all subpages are counted in the reference
1022 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1023 * under direct I/O, the reference of the head page is 512 and a bit more.)
1024 * This means that when we try to migrate hugepage whose subpages are
1025 * doing direct I/O, some references remain after try_to_unmap() and
1026 * hugepage migration fails without data corruption.
1027 *
1028 * There is also no race when direct I/O is issued on the page under migration,
1029 * because then pte is replaced with migration swap entry and direct I/O code
1030 * will wait in the page fault for migration to complete.
1031 */
1032static int unmap_and_move_huge_page(new_page_t get_new_page,
1033                                free_page_t put_new_page, unsigned long private,
1034                                struct page *hpage, int force,
1035                                enum migrate_mode mode, int reason)
1036{
1037        int rc = -EAGAIN;
1038        int *result = NULL;
1039        int page_was_mapped = 0;
1040        struct page *new_hpage;
1041        struct anon_vma *anon_vma = NULL;
1042
1043        /*
1044         * Movability of hugepages depends on architectures and hugepage size.
1045         * This check is necessary because some callers of hugepage migration
1046         * like soft offline and memory hotremove don't walk through page
1047         * tables or check whether the hugepage is pmd-based or not before
1048         * kicking migration.
1049         */
1050        if (!hugepage_migration_supported(page_hstate(hpage))) {
1051                putback_active_hugepage(hpage);
1052                return -ENOSYS;
1053        }
1054
1055        new_hpage = get_new_page(hpage, private, &result);
1056        if (!new_hpage)
1057                return -ENOMEM;
1058
1059        if (!trylock_page(hpage)) {
1060                if (!force || mode != MIGRATE_SYNC)
1061                        goto out;
1062                lock_page(hpage);
1063        }
1064
1065        if (PageAnon(hpage))
1066                anon_vma = page_get_anon_vma(hpage);
1067
1068        if (unlikely(!trylock_page(new_hpage)))
1069                goto put_anon;
1070
1071        if (page_mapped(hpage)) {
1072                try_to_unmap(hpage,
1073                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1074                page_was_mapped = 1;
1075        }
1076
1077        if (!page_mapped(hpage))
1078                rc = move_to_new_page(new_hpage, hpage, mode);
1079
1080        if (page_was_mapped)
1081                remove_migration_ptes(hpage,
1082                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1083
1084        unlock_page(new_hpage);
1085
1086put_anon:
1087        if (anon_vma)
1088                put_anon_vma(anon_vma);
1089
1090        if (rc == MIGRATEPAGE_SUCCESS) {
1091                hugetlb_cgroup_migrate(hpage, new_hpage);
1092                put_new_page = NULL;
1093                set_page_owner_migrate_reason(new_hpage, reason);
1094        }
1095
1096        unlock_page(hpage);
1097out:
1098        if (rc != -EAGAIN)
1099                putback_active_hugepage(hpage);
1100
1101        /*
1102         * If migration was not successful and there's a freeing callback, use
1103         * it.  Otherwise, put_page() will drop the reference grabbed during
1104         * isolation.
1105         */
1106        if (put_new_page)
1107                put_new_page(new_hpage, private);
1108        else
1109                putback_active_hugepage(new_hpage);
1110
1111        if (result) {
1112                if (rc)
1113                        *result = rc;
1114                else
1115                        *result = page_to_nid(new_hpage);
1116        }
1117        return rc;
1118}
1119
1120/*
1121 * migrate_pages - migrate the pages specified in a list, to the free pages
1122 *                 supplied as the target for the page migration
1123 *
1124 * @from:               The list of pages to be migrated.
1125 * @get_new_page:       The function used to allocate free pages to be used
1126 *                      as the target of the page migration.
1127 * @put_new_page:       The function used to free target pages if migration
1128 *                      fails, or NULL if no special handling is necessary.
1129 * @private:            Private data to be passed on to get_new_page()
1130 * @mode:               The migration mode that specifies the constraints for
1131 *                      page migration, if any.
1132 * @reason:             The reason for page migration.
1133 *
1134 * The function returns after 10 attempts or if no pages are movable any more
1135 * because the list has become empty or no retryable pages exist any more.
1136 * The caller should call putback_movable_pages() to return pages to the LRU
1137 * or free list only if ret != 0.
1138 *
1139 * Returns the number of pages that were not migrated, or an error code.
1140 */
1141int migrate_pages(struct list_head *from, new_page_t get_new_page,
1142                free_page_t put_new_page, unsigned long private,
1143                enum migrate_mode mode, int reason)
1144{
1145        int retry = 1;
1146        int nr_failed = 0;
1147        int nr_succeeded = 0;
1148        int pass = 0;
1149        struct page *page;
1150        struct page *page2;
1151        int swapwrite = current->flags & PF_SWAPWRITE;
1152        int rc;
1153
1154        if (!swapwrite)
1155                current->flags |= PF_SWAPWRITE;
1156
1157        for(pass = 0; pass < 10 && retry; pass++) {
1158                retry = 0;
1159
1160                list_for_each_entry_safe(page, page2, from, lru) {
1161                        cond_resched();
1162
1163                        if (PageHuge(page))
1164                                rc = unmap_and_move_huge_page(get_new_page,
1165                                                put_new_page, private, page,
1166                                                pass > 2, mode, reason);
1167                        else
1168                                rc = unmap_and_move(get_new_page, put_new_page,
1169                                                private, page, pass > 2, mode,
1170                                                reason);
1171
1172                        switch(rc) {
1173                        case -ENOMEM:
1174                                goto out;
1175                        case -EAGAIN:
1176                                retry++;
1177                                break;
1178                        case MIGRATEPAGE_SUCCESS:
1179                                nr_succeeded++;
1180                                break;
1181                        default:
1182                                /*
1183                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1184                                 * unlike -EAGAIN case, the failed page is
1185                                 * removed from migration page list and not
1186                                 * retried in the next outer loop.
1187                                 */
1188                                nr_failed++;
1189                                break;
1190                        }
1191                }
1192        }
1193        nr_failed += retry;
1194        rc = nr_failed;
1195out:
1196        if (nr_succeeded)
1197                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1198        if (nr_failed)
1199                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1200        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1201
1202        if (!swapwrite)
1203                current->flags &= ~PF_SWAPWRITE;
1204
1205        return rc;
1206}
1207
1208#ifdef CONFIG_NUMA
1209/*
1210 * Move a list of individual pages
1211 */
1212struct page_to_node {
1213        unsigned long addr;
1214        struct page *page;
1215        int node;
1216        int status;
1217};
1218
1219static struct page *new_page_node(struct page *p, unsigned long private,
1220                int **result)
1221{
1222        struct page_to_node *pm = (struct page_to_node *)private;
1223
1224        while (pm->node != MAX_NUMNODES && pm->page != p)
1225                pm++;
1226
1227        if (pm->node == MAX_NUMNODES)
1228                return NULL;
1229
1230        *result = &pm->status;
1231
1232        if (PageHuge(p))
1233                return alloc_huge_page_node(page_hstate(compound_head(p)),
1234                                        pm->node);
1235        else
1236                return __alloc_pages_node(pm->node,
1237                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1238}
1239
1240/*
1241 * Move a set of pages as indicated in the pm array. The addr
1242 * field must be set to the virtual address of the page to be moved
1243 * and the node number must contain a valid target node.
1244 * The pm array ends with node = MAX_NUMNODES.
1245 */
1246static int do_move_page_to_node_array(struct mm_struct *mm,
1247                                      struct page_to_node *pm,
1248                                      int migrate_all)
1249{
1250        int err;
1251        struct page_to_node *pp;
1252        LIST_HEAD(pagelist);
1253
1254        down_read(&mm->mmap_sem);
1255
1256        /*
1257         * Build a list of pages to migrate
1258         */
1259        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1260                struct vm_area_struct *vma;
1261                struct page *page;
1262
1263                err = -EFAULT;
1264                vma = find_vma(mm, pp->addr);
1265                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1266                        goto set_status;
1267
1268                /* FOLL_DUMP to ignore special (like zero) pages */
1269                page = follow_page(vma, pp->addr,
1270                                FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1271
1272                err = PTR_ERR(page);
1273                if (IS_ERR(page))
1274                        goto set_status;
1275
1276                err = -ENOENT;
1277                if (!page)
1278                        goto set_status;
1279
1280                pp->page = page;
1281                err = page_to_nid(page);
1282
1283                if (err == pp->node)
1284                        /*
1285                         * Node already in the right place
1286                         */
1287                        goto put_and_set;
1288
1289                err = -EACCES;
1290                if (page_mapcount(page) > 1 &&
1291                                !migrate_all)
1292                        goto put_and_set;
1293
1294                if (PageHuge(page)) {
1295                        if (PageHead(page))
1296                                isolate_huge_page(page, &pagelist);
1297                        goto put_and_set;
1298                }
1299
1300                err = isolate_lru_page(page);
1301                if (!err) {
1302                        list_add_tail(&page->lru, &pagelist);
1303                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1304                                            page_is_file_cache(page));
1305                }
1306put_and_set:
1307                /*
1308                 * Either remove the duplicate refcount from
1309                 * isolate_lru_page() or drop the page ref if it was
1310                 * not isolated.
1311                 */
1312                put_page(page);
1313set_status:
1314                pp->status = err;
1315        }
1316
1317        err = 0;
1318        if (!list_empty(&pagelist)) {
1319                err = migrate_pages(&pagelist, new_page_node, NULL,
1320                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1321                if (err)
1322                        putback_movable_pages(&pagelist);
1323        }
1324
1325        up_read(&mm->mmap_sem);
1326        return err;
1327}
1328
1329/*
1330 * Migrate an array of page address onto an array of nodes and fill
1331 * the corresponding array of status.
1332 */
1333static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1334                         unsigned long nr_pages,
1335                         const void __user * __user *pages,
1336                         const int __user *nodes,
1337                         int __user *status, int flags)
1338{
1339        struct page_to_node *pm;
1340        unsigned long chunk_nr_pages;
1341        unsigned long chunk_start;
1342        int err;
1343
1344        err = -ENOMEM;
1345        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1346        if (!pm)
1347                goto out;
1348
1349        migrate_prep();
1350
1351        /*
1352         * Store a chunk of page_to_node array in a page,
1353         * but keep the last one as a marker
1354         */
1355        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1356
1357        for (chunk_start = 0;
1358             chunk_start < nr_pages;
1359             chunk_start += chunk_nr_pages) {
1360                int j;
1361
1362                if (chunk_start + chunk_nr_pages > nr_pages)
1363                        chunk_nr_pages = nr_pages - chunk_start;
1364
1365                /* fill the chunk pm with addrs and nodes from user-space */
1366                for (j = 0; j < chunk_nr_pages; j++) {
1367                        const void __user *p;
1368                        int node;
1369
1370                        err = -EFAULT;
1371                        if (get_user(p, pages + j + chunk_start))
1372                                goto out_pm;
1373                        pm[j].addr = (unsigned long) p;
1374
1375                        if (get_user(node, nodes + j + chunk_start))
1376                                goto out_pm;
1377
1378                        err = -ENODEV;
1379                        if (node < 0 || node >= MAX_NUMNODES)
1380                                goto out_pm;
1381
1382                        if (!node_state(node, N_MEMORY))
1383                                goto out_pm;
1384
1385                        err = -EACCES;
1386                        if (!node_isset(node, task_nodes))
1387                                goto out_pm;
1388
1389                        pm[j].node = node;
1390                }
1391
1392                /* End marker for this chunk */
1393                pm[chunk_nr_pages].node = MAX_NUMNODES;
1394
1395                /* Migrate this chunk */
1396                err = do_move_page_to_node_array(mm, pm,
1397                                                 flags & MPOL_MF_MOVE_ALL);
1398                if (err < 0)
1399                        goto out_pm;
1400
1401                /* Return status information */
1402                for (j = 0; j < chunk_nr_pages; j++)
1403                        if (put_user(pm[j].status, status + j + chunk_start)) {
1404                                err = -EFAULT;
1405                                goto out_pm;
1406                        }
1407        }
1408        err = 0;
1409
1410out_pm:
1411        free_page((unsigned long)pm);
1412out:
1413        return err;
1414}
1415
1416/*
1417 * Determine the nodes of an array of pages and store it in an array of status.
1418 */
1419static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1420                                const void __user **pages, int *status)
1421{
1422        unsigned long i;
1423
1424        down_read(&mm->mmap_sem);
1425
1426        for (i = 0; i < nr_pages; i++) {
1427                unsigned long addr = (unsigned long)(*pages);
1428                struct vm_area_struct *vma;
1429                struct page *page;
1430                int err = -EFAULT;
1431
1432                vma = find_vma(mm, addr);
1433                if (!vma || addr < vma->vm_start)
1434                        goto set_status;
1435
1436                /* FOLL_DUMP to ignore special (like zero) pages */
1437                page = follow_page(vma, addr, FOLL_DUMP);
1438
1439                err = PTR_ERR(page);
1440                if (IS_ERR(page))
1441                        goto set_status;
1442
1443                err = page ? page_to_nid(page) : -ENOENT;
1444set_status:
1445                *status = err;
1446
1447                pages++;
1448                status++;
1449        }
1450
1451        up_read(&mm->mmap_sem);
1452}
1453
1454/*
1455 * Determine the nodes of a user array of pages and store it in
1456 * a user array of status.
1457 */
1458static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1459                         const void __user * __user *pages,
1460                         int __user *status)
1461{
1462#define DO_PAGES_STAT_CHUNK_NR 16
1463        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1464        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1465
1466        while (nr_pages) {
1467                unsigned long chunk_nr;
1468
1469                chunk_nr = nr_pages;
1470                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1471                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1472
1473                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1474                        break;
1475
1476                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1477
1478                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1479                        break;
1480
1481                pages += chunk_nr;
1482                status += chunk_nr;
1483                nr_pages -= chunk_nr;
1484        }
1485        return nr_pages ? -EFAULT : 0;
1486}
1487
1488/*
1489 * Move a list of pages in the address space of the currently executing
1490 * process.
1491 */
1492SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1493                const void __user * __user *, pages,
1494                const int __user *, nodes,
1495                int __user *, status, int, flags)
1496{
1497        const struct cred *cred = current_cred(), *tcred;
1498        struct task_struct *task;
1499        struct mm_struct *mm;
1500        int err;
1501        nodemask_t task_nodes;
1502
1503        /* Check flags */
1504        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1505                return -EINVAL;
1506
1507        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1508                return -EPERM;
1509
1510        /* Find the mm_struct */
1511        rcu_read_lock();
1512        task = pid ? find_task_by_vpid(pid) : current;
1513        if (!task) {
1514                rcu_read_unlock();
1515                return -ESRCH;
1516        }
1517        get_task_struct(task);
1518
1519        /*
1520         * Check if this process has the right to modify the specified
1521         * process. The right exists if the process has administrative
1522         * capabilities, superuser privileges or the same
1523         * userid as the target process.
1524         */
1525        tcred = __task_cred(task);
1526        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1527            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1528            !capable(CAP_SYS_NICE)) {
1529                rcu_read_unlock();
1530                err = -EPERM;
1531                goto out;
1532        }
1533        rcu_read_unlock();
1534
1535        err = security_task_movememory(task);
1536        if (err)
1537                goto out;
1538
1539        task_nodes = cpuset_mems_allowed(task);
1540        mm = get_task_mm(task);
1541        put_task_struct(task);
1542
1543        if (!mm)
1544                return -EINVAL;
1545
1546        if (nodes)
1547                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1548                                    nodes, status, flags);
1549        else
1550                err = do_pages_stat(mm, nr_pages, pages, status);
1551
1552        mmput(mm);
1553        return err;
1554
1555out:
1556        put_task_struct(task);
1557        return err;
1558}
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561/*
1562 * Returns true if this is a safe migration target node for misplaced NUMA
1563 * pages. Currently it only checks the watermarks which crude
1564 */
1565static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566                                   unsigned long nr_migrate_pages)
1567{
1568        int z;
1569        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1570                struct zone *zone = pgdat->node_zones + z;
1571
1572                if (!populated_zone(zone))
1573                        continue;
1574
1575                if (!zone_reclaimable(zone))
1576                        continue;
1577
1578                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1579                if (!zone_watermark_ok(zone, 0,
1580                                       high_wmark_pages(zone) +
1581                                       nr_migrate_pages,
1582                                       0, 0))
1583                        continue;
1584                return true;
1585        }
1586        return false;
1587}
1588
1589static struct page *alloc_misplaced_dst_page(struct page *page,
1590                                           unsigned long data,
1591                                           int **result)
1592{
1593        int nid = (int) data;
1594        struct page *newpage;
1595
1596        newpage = __alloc_pages_node(nid,
1597                                         (GFP_HIGHUSER_MOVABLE |
1598                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1599                                          __GFP_NORETRY | __GFP_NOWARN) &
1600                                         ~__GFP_RECLAIM, 0);
1601
1602        return newpage;
1603}
1604
1605/*
1606 * page migration rate limiting control.
1607 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1608 * window of time. Default here says do not migrate more than 1280M per second.
1609 */
1610static unsigned int migrate_interval_millisecs __read_mostly = 100;
1611static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1612
1613/* Returns true if the node is migrate rate-limited after the update */
1614static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1615                                        unsigned long nr_pages)
1616{
1617        /*
1618         * Rate-limit the amount of data that is being migrated to a node.
1619         * Optimal placement is no good if the memory bus is saturated and
1620         * all the time is being spent migrating!
1621         */
1622        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1623                spin_lock(&pgdat->numabalancing_migrate_lock);
1624                pgdat->numabalancing_migrate_nr_pages = 0;
1625                pgdat->numabalancing_migrate_next_window = jiffies +
1626                        msecs_to_jiffies(migrate_interval_millisecs);
1627                spin_unlock(&pgdat->numabalancing_migrate_lock);
1628        }
1629        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1630                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1631                                                                nr_pages);
1632                return true;
1633        }
1634
1635        /*
1636         * This is an unlocked non-atomic update so errors are possible.
1637         * The consequences are failing to migrate when we potentiall should
1638         * have which is not severe enough to warrant locking. If it is ever
1639         * a problem, it can be converted to a per-cpu counter.
1640         */
1641        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1642        return false;
1643}
1644
1645static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1646{
1647        int page_lru;
1648
1649        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1650
1651        /* Avoid migrating to a node that is nearly full */
1652        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1653                return 0;
1654
1655        if (isolate_lru_page(page))
1656                return 0;
1657
1658        /*
1659         * migrate_misplaced_transhuge_page() skips page migration's usual
1660         * check on page_count(), so we must do it here, now that the page
1661         * has been isolated: a GUP pin, or any other pin, prevents migration.
1662         * The expected page count is 3: 1 for page's mapcount and 1 for the
1663         * caller's pin and 1 for the reference taken by isolate_lru_page().
1664         */
1665        if (PageTransHuge(page) && page_count(page) != 3) {
1666                putback_lru_page(page);
1667                return 0;
1668        }
1669
1670        page_lru = page_is_file_cache(page);
1671        mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1672                                hpage_nr_pages(page));
1673
1674        /*
1675         * Isolating the page has taken another reference, so the
1676         * caller's reference can be safely dropped without the page
1677         * disappearing underneath us during migration.
1678         */
1679        put_page(page);
1680        return 1;
1681}
1682
1683bool pmd_trans_migrating(pmd_t pmd)
1684{
1685        struct page *page = pmd_page(pmd);
1686        return PageLocked(page);
1687}
1688
1689/*
1690 * Attempt to migrate a misplaced page to the specified destination
1691 * node. Caller is expected to have an elevated reference count on
1692 * the page that will be dropped by this function before returning.
1693 */
1694int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1695                           int node)
1696{
1697        pg_data_t *pgdat = NODE_DATA(node);
1698        int isolated;
1699        int nr_remaining;
1700        LIST_HEAD(migratepages);
1701
1702        /*
1703         * Don't migrate file pages that are mapped in multiple processes
1704         * with execute permissions as they are probably shared libraries.
1705         */
1706        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1707            (vma->vm_flags & VM_EXEC))
1708                goto out;
1709
1710        /*
1711         * Rate-limit the amount of data that is being migrated to a node.
1712         * Optimal placement is no good if the memory bus is saturated and
1713         * all the time is being spent migrating!
1714         */
1715        if (numamigrate_update_ratelimit(pgdat, 1))
1716                goto out;
1717
1718        isolated = numamigrate_isolate_page(pgdat, page);
1719        if (!isolated)
1720                goto out;
1721
1722        list_add(&page->lru, &migratepages);
1723        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1724                                     NULL, node, MIGRATE_ASYNC,
1725                                     MR_NUMA_MISPLACED);
1726        if (nr_remaining) {
1727                if (!list_empty(&migratepages)) {
1728                        list_del(&page->lru);
1729                        dec_zone_page_state(page, NR_ISOLATED_ANON +
1730                                        page_is_file_cache(page));
1731                        putback_lru_page(page);
1732                }
1733                isolated = 0;
1734        } else
1735                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1736        BUG_ON(!list_empty(&migratepages));
1737        return isolated;
1738
1739out:
1740        put_page(page);
1741        return 0;
1742}
1743#endif /* CONFIG_NUMA_BALANCING */
1744
1745#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1746/*
1747 * Migrates a THP to a given target node. page must be locked and is unlocked
1748 * before returning.
1749 */
1750int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1751                                struct vm_area_struct *vma,
1752                                pmd_t *pmd, pmd_t entry,
1753                                unsigned long address,
1754                                struct page *page, int node)
1755{
1756        spinlock_t *ptl;
1757        pg_data_t *pgdat = NODE_DATA(node);
1758        int isolated = 0;
1759        struct page *new_page = NULL;
1760        int page_lru = page_is_file_cache(page);
1761        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1762        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1763        pmd_t orig_entry;
1764
1765        /*
1766         * Rate-limit the amount of data that is being migrated to a node.
1767         * Optimal placement is no good if the memory bus is saturated and
1768         * all the time is being spent migrating!
1769         */
1770        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1771                goto out_dropref;
1772
1773        new_page = alloc_pages_node(node,
1774                (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1775                HPAGE_PMD_ORDER);
1776        if (!new_page)
1777                goto out_fail;
1778        prep_transhuge_page(new_page);
1779
1780        isolated = numamigrate_isolate_page(pgdat, page);
1781        if (!isolated) {
1782                put_page(new_page);
1783                goto out_fail;
1784        }
1785        /*
1786         * We are not sure a pending tlb flush here is for a huge page
1787         * mapping or not. Hence use the tlb range variant
1788         */
1789        if (mm_tlb_flush_pending(mm))
1790                flush_tlb_range(vma, mmun_start, mmun_end);
1791
1792        /* Prepare a page as a migration target */
1793        __SetPageLocked(new_page);
1794        SetPageSwapBacked(new_page);
1795
1796        /* anon mapping, we can simply copy page->mapping to the new page: */
1797        new_page->mapping = page->mapping;
1798        new_page->index = page->index;
1799        migrate_page_copy(new_page, page);
1800        WARN_ON(PageLRU(new_page));
1801
1802        /* Recheck the target PMD */
1803        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1804        ptl = pmd_lock(mm, pmd);
1805        if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1806fail_putback:
1807                spin_unlock(ptl);
1808                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1809
1810                /* Reverse changes made by migrate_page_copy() */
1811                if (TestClearPageActive(new_page))
1812                        SetPageActive(page);
1813                if (TestClearPageUnevictable(new_page))
1814                        SetPageUnevictable(page);
1815
1816                unlock_page(new_page);
1817                put_page(new_page);             /* Free it */
1818
1819                /* Retake the callers reference and putback on LRU */
1820                get_page(page);
1821                putback_lru_page(page);
1822                mod_zone_page_state(page_zone(page),
1823                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1824
1825                goto out_unlock;
1826        }
1827
1828        orig_entry = *pmd;
1829        entry = mk_pmd(new_page, vma->vm_page_prot);
1830        entry = pmd_mkhuge(entry);
1831        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1832
1833        /*
1834         * Clear the old entry under pagetable lock and establish the new PTE.
1835         * Any parallel GUP will either observe the old page blocking on the
1836         * page lock, block on the page table lock or observe the new page.
1837         * The SetPageUptodate on the new page and page_add_new_anon_rmap
1838         * guarantee the copy is visible before the pagetable update.
1839         */
1840        flush_cache_range(vma, mmun_start, mmun_end);
1841        page_add_anon_rmap(new_page, vma, mmun_start, true);
1842        pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1843        set_pmd_at(mm, mmun_start, pmd, entry);
1844        update_mmu_cache_pmd(vma, address, &entry);
1845
1846        if (page_count(page) != 2) {
1847                set_pmd_at(mm, mmun_start, pmd, orig_entry);
1848                flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1849                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1850                update_mmu_cache_pmd(vma, address, &entry);
1851                page_remove_rmap(new_page, true);
1852                goto fail_putback;
1853        }
1854
1855        mlock_migrate_page(new_page, page);
1856        page_remove_rmap(page, true);
1857        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1858
1859        spin_unlock(ptl);
1860        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1861
1862        /* Take an "isolate" reference and put new page on the LRU. */
1863        get_page(new_page);
1864        putback_lru_page(new_page);
1865
1866        unlock_page(new_page);
1867        unlock_page(page);
1868        put_page(page);                 /* Drop the rmap reference */
1869        put_page(page);                 /* Drop the LRU isolation reference */
1870
1871        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1872        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1873
1874        mod_zone_page_state(page_zone(page),
1875                        NR_ISOLATED_ANON + page_lru,
1876                        -HPAGE_PMD_NR);
1877        return isolated;
1878
1879out_fail:
1880        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1881out_dropref:
1882        ptl = pmd_lock(mm, pmd);
1883        if (pmd_same(*pmd, entry)) {
1884                entry = pmd_modify(entry, vma->vm_page_prot);
1885                set_pmd_at(mm, mmun_start, pmd, entry);
1886                update_mmu_cache_pmd(vma, address, &entry);
1887        }
1888        spin_unlock(ptl);
1889
1890out_unlock:
1891        unlock_page(page);
1892        put_page(page);
1893        return 0;
1894}
1895#endif /* CONFIG_NUMA_BALANCING */
1896
1897#endif /* CONFIG_NUMA */
1898