linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mm.h>
  20#include <linux/vmacache.h>
  21#include <linux/mman.h>
  22#include <linux/swap.h>
  23#include <linux/file.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <linux/blkdev.h>
  29#include <linux/backing-dev.h>
  30#include <linux/compiler.h>
  31#include <linux/mount.h>
  32#include <linux/personality.h>
  33#include <linux/security.h>
  34#include <linux/syscalls.h>
  35#include <linux/audit.h>
  36#include <linux/printk.h>
  37
  38#include <asm/uaccess.h>
  39#include <asm/tlb.h>
  40#include <asm/tlbflush.h>
  41#include <asm/mmu_context.h>
  42#include "internal.h"
  43
  44void *high_memory;
  45EXPORT_SYMBOL(high_memory);
  46struct page *mem_map;
  47unsigned long max_mapnr;
  48EXPORT_SYMBOL(max_mapnr);
  49unsigned long highest_memmap_pfn;
  50int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  51int heap_stack_gap = 0;
  52
  53atomic_long_t mmap_pages_allocated;
  54
  55EXPORT_SYMBOL(mem_map);
  56
  57/* list of mapped, potentially shareable regions */
  58static struct kmem_cache *vm_region_jar;
  59struct rb_root nommu_region_tree = RB_ROOT;
  60DECLARE_RWSEM(nommu_region_sem);
  61
  62const struct vm_operations_struct generic_file_vm_ops = {
  63};
  64
  65/*
  66 * Return the total memory allocated for this pointer, not
  67 * just what the caller asked for.
  68 *
  69 * Doesn't have to be accurate, i.e. may have races.
  70 */
  71unsigned int kobjsize(const void *objp)
  72{
  73        struct page *page;
  74
  75        /*
  76         * If the object we have should not have ksize performed on it,
  77         * return size of 0
  78         */
  79        if (!objp || !virt_addr_valid(objp))
  80                return 0;
  81
  82        page = virt_to_head_page(objp);
  83
  84        /*
  85         * If the allocator sets PageSlab, we know the pointer came from
  86         * kmalloc().
  87         */
  88        if (PageSlab(page))
  89                return ksize(objp);
  90
  91        /*
  92         * If it's not a compound page, see if we have a matching VMA
  93         * region. This test is intentionally done in reverse order,
  94         * so if there's no VMA, we still fall through and hand back
  95         * PAGE_SIZE for 0-order pages.
  96         */
  97        if (!PageCompound(page)) {
  98                struct vm_area_struct *vma;
  99
 100                vma = find_vma(current->mm, (unsigned long)objp);
 101                if (vma)
 102                        return vma->vm_end - vma->vm_start;
 103        }
 104
 105        /*
 106         * The ksize() function is only guaranteed to work for pointers
 107         * returned by kmalloc(). So handle arbitrary pointers here.
 108         */
 109        return PAGE_SIZE << compound_order(page);
 110}
 111
 112long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 113                      unsigned long start, unsigned long nr_pages,
 114                      unsigned int foll_flags, struct page **pages,
 115                      struct vm_area_struct **vmas, int *nonblocking)
 116{
 117        struct vm_area_struct *vma;
 118        unsigned long vm_flags;
 119        int i;
 120
 121        /* calculate required read or write permissions.
 122         * If FOLL_FORCE is set, we only require the "MAY" flags.
 123         */
 124        vm_flags  = (foll_flags & FOLL_WRITE) ?
 125                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 126        vm_flags &= (foll_flags & FOLL_FORCE) ?
 127                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 128
 129        for (i = 0; i < nr_pages; i++) {
 130                vma = find_vma(mm, start);
 131                if (!vma)
 132                        goto finish_or_fault;
 133
 134                /* protect what we can, including chardevs */
 135                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 136                    !(vm_flags & vma->vm_flags))
 137                        goto finish_or_fault;
 138
 139                if (pages) {
 140                        pages[i] = virt_to_page(start);
 141                        if (pages[i])
 142                                get_page(pages[i]);
 143                }
 144                if (vmas)
 145                        vmas[i] = vma;
 146                start = (start + PAGE_SIZE) & PAGE_MASK;
 147        }
 148
 149        return i;
 150
 151finish_or_fault:
 152        return i ? : -EFAULT;
 153}
 154
 155/*
 156 * get a list of pages in an address range belonging to the specified process
 157 * and indicate the VMA that covers each page
 158 * - this is potentially dodgy as we may end incrementing the page count of a
 159 *   slab page or a secondary page from a compound page
 160 * - don't permit access to VMAs that don't support it, such as I/O mappings
 161 */
 162long get_user_pages(unsigned long start, unsigned long nr_pages,
 163                    int write, int force, struct page **pages,
 164                    struct vm_area_struct **vmas)
 165{
 166        int flags = 0;
 167
 168        if (write)
 169                flags |= FOLL_WRITE;
 170        if (force)
 171                flags |= FOLL_FORCE;
 172
 173        return __get_user_pages(current, current->mm, start, nr_pages, flags,
 174                                pages, vmas, NULL);
 175}
 176EXPORT_SYMBOL(get_user_pages);
 177
 178long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 179                            int write, int force, struct page **pages,
 180                            int *locked)
 181{
 182        return get_user_pages(start, nr_pages, write, force, pages, NULL);
 183}
 184EXPORT_SYMBOL(get_user_pages_locked);
 185
 186long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
 187                               unsigned long start, unsigned long nr_pages,
 188                               int write, int force, struct page **pages,
 189                               unsigned int gup_flags)
 190{
 191        long ret;
 192        down_read(&mm->mmap_sem);
 193        ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
 194                                NULL, NULL);
 195        up_read(&mm->mmap_sem);
 196        return ret;
 197}
 198EXPORT_SYMBOL(__get_user_pages_unlocked);
 199
 200long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 201                             int write, int force, struct page **pages)
 202{
 203        return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 204                                         write, force, pages, 0);
 205}
 206EXPORT_SYMBOL(get_user_pages_unlocked);
 207
 208/**
 209 * follow_pfn - look up PFN at a user virtual address
 210 * @vma: memory mapping
 211 * @address: user virtual address
 212 * @pfn: location to store found PFN
 213 *
 214 * Only IO mappings and raw PFN mappings are allowed.
 215 *
 216 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 217 */
 218int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 219        unsigned long *pfn)
 220{
 221        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 222                return -EINVAL;
 223
 224        *pfn = address >> PAGE_SHIFT;
 225        return 0;
 226}
 227EXPORT_SYMBOL(follow_pfn);
 228
 229LIST_HEAD(vmap_area_list);
 230
 231void vfree(const void *addr)
 232{
 233        kfree(addr);
 234}
 235EXPORT_SYMBOL(vfree);
 236
 237void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 238{
 239        /*
 240         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 241         * returns only a logical address.
 242         */
 243        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 244}
 245EXPORT_SYMBOL(__vmalloc);
 246
 247void *vmalloc_user(unsigned long size)
 248{
 249        void *ret;
 250
 251        ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 252                        PAGE_KERNEL);
 253        if (ret) {
 254                struct vm_area_struct *vma;
 255
 256                down_write(&current->mm->mmap_sem);
 257                vma = find_vma(current->mm, (unsigned long)ret);
 258                if (vma)
 259                        vma->vm_flags |= VM_USERMAP;
 260                up_write(&current->mm->mmap_sem);
 261        }
 262
 263        return ret;
 264}
 265EXPORT_SYMBOL(vmalloc_user);
 266
 267struct page *vmalloc_to_page(const void *addr)
 268{
 269        return virt_to_page(addr);
 270}
 271EXPORT_SYMBOL(vmalloc_to_page);
 272
 273unsigned long vmalloc_to_pfn(const void *addr)
 274{
 275        return page_to_pfn(virt_to_page(addr));
 276}
 277EXPORT_SYMBOL(vmalloc_to_pfn);
 278
 279long vread(char *buf, char *addr, unsigned long count)
 280{
 281        /* Don't allow overflow */
 282        if ((unsigned long) buf + count < count)
 283                count = -(unsigned long) buf;
 284
 285        memcpy(buf, addr, count);
 286        return count;
 287}
 288
 289long vwrite(char *buf, char *addr, unsigned long count)
 290{
 291        /* Don't allow overflow */
 292        if ((unsigned long) addr + count < count)
 293                count = -(unsigned long) addr;
 294
 295        memcpy(addr, buf, count);
 296        return count;
 297}
 298
 299/*
 300 *      vmalloc  -  allocate virtually contiguous memory
 301 *
 302 *      @size:          allocation size
 303 *
 304 *      Allocate enough pages to cover @size from the page level
 305 *      allocator and map them into contiguous kernel virtual space.
 306 *
 307 *      For tight control over page level allocator and protection flags
 308 *      use __vmalloc() instead.
 309 */
 310void *vmalloc(unsigned long size)
 311{
 312       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 313}
 314EXPORT_SYMBOL(vmalloc);
 315
 316/*
 317 *      vzalloc - allocate virtually contiguous memory with zero fill
 318 *
 319 *      @size:          allocation size
 320 *
 321 *      Allocate enough pages to cover @size from the page level
 322 *      allocator and map them into contiguous kernel virtual space.
 323 *      The memory allocated is set to zero.
 324 *
 325 *      For tight control over page level allocator and protection flags
 326 *      use __vmalloc() instead.
 327 */
 328void *vzalloc(unsigned long size)
 329{
 330        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 331                        PAGE_KERNEL);
 332}
 333EXPORT_SYMBOL(vzalloc);
 334
 335/**
 336 * vmalloc_node - allocate memory on a specific node
 337 * @size:       allocation size
 338 * @node:       numa node
 339 *
 340 * Allocate enough pages to cover @size from the page level
 341 * allocator and map them into contiguous kernel virtual space.
 342 *
 343 * For tight control over page level allocator and protection flags
 344 * use __vmalloc() instead.
 345 */
 346void *vmalloc_node(unsigned long size, int node)
 347{
 348        return vmalloc(size);
 349}
 350EXPORT_SYMBOL(vmalloc_node);
 351
 352/**
 353 * vzalloc_node - allocate memory on a specific node with zero fill
 354 * @size:       allocation size
 355 * @node:       numa node
 356 *
 357 * Allocate enough pages to cover @size from the page level
 358 * allocator and map them into contiguous kernel virtual space.
 359 * The memory allocated is set to zero.
 360 *
 361 * For tight control over page level allocator and protection flags
 362 * use __vmalloc() instead.
 363 */
 364void *vzalloc_node(unsigned long size, int node)
 365{
 366        return vzalloc(size);
 367}
 368EXPORT_SYMBOL(vzalloc_node);
 369
 370#ifndef PAGE_KERNEL_EXEC
 371# define PAGE_KERNEL_EXEC PAGE_KERNEL
 372#endif
 373
 374/**
 375 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 376 *      @size:          allocation size
 377 *
 378 *      Kernel-internal function to allocate enough pages to cover @size
 379 *      the page level allocator and map them into contiguous and
 380 *      executable kernel virtual space.
 381 *
 382 *      For tight control over page level allocator and protection flags
 383 *      use __vmalloc() instead.
 384 */
 385
 386void *vmalloc_exec(unsigned long size)
 387{
 388        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 389}
 390
 391/**
 392 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 393 *      @size:          allocation size
 394 *
 395 *      Allocate enough 32bit PA addressable pages to cover @size from the
 396 *      page level allocator and map them into contiguous kernel virtual space.
 397 */
 398void *vmalloc_32(unsigned long size)
 399{
 400        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 401}
 402EXPORT_SYMBOL(vmalloc_32);
 403
 404/**
 405 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 406 *      @size:          allocation size
 407 *
 408 * The resulting memory area is 32bit addressable and zeroed so it can be
 409 * mapped to userspace without leaking data.
 410 *
 411 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 412 * remap_vmalloc_range() are permissible.
 413 */
 414void *vmalloc_32_user(unsigned long size)
 415{
 416        /*
 417         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 418         * but for now this can simply use vmalloc_user() directly.
 419         */
 420        return vmalloc_user(size);
 421}
 422EXPORT_SYMBOL(vmalloc_32_user);
 423
 424void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 425{
 426        BUG();
 427        return NULL;
 428}
 429EXPORT_SYMBOL(vmap);
 430
 431void vunmap(const void *addr)
 432{
 433        BUG();
 434}
 435EXPORT_SYMBOL(vunmap);
 436
 437void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 438{
 439        BUG();
 440        return NULL;
 441}
 442EXPORT_SYMBOL(vm_map_ram);
 443
 444void vm_unmap_ram(const void *mem, unsigned int count)
 445{
 446        BUG();
 447}
 448EXPORT_SYMBOL(vm_unmap_ram);
 449
 450void vm_unmap_aliases(void)
 451{
 452}
 453EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 454
 455/*
 456 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 457 * have one.
 458 */
 459void __weak vmalloc_sync_all(void)
 460{
 461}
 462
 463/**
 464 *      alloc_vm_area - allocate a range of kernel address space
 465 *      @size:          size of the area
 466 *
 467 *      Returns:        NULL on failure, vm_struct on success
 468 *
 469 *      This function reserves a range of kernel address space, and
 470 *      allocates pagetables to map that range.  No actual mappings
 471 *      are created.  If the kernel address space is not shared
 472 *      between processes, it syncs the pagetable across all
 473 *      processes.
 474 */
 475struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 476{
 477        BUG();
 478        return NULL;
 479}
 480EXPORT_SYMBOL_GPL(alloc_vm_area);
 481
 482void free_vm_area(struct vm_struct *area)
 483{
 484        BUG();
 485}
 486EXPORT_SYMBOL_GPL(free_vm_area);
 487
 488int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 489                   struct page *page)
 490{
 491        return -EINVAL;
 492}
 493EXPORT_SYMBOL(vm_insert_page);
 494
 495/*
 496 *  sys_brk() for the most part doesn't need the global kernel
 497 *  lock, except when an application is doing something nasty
 498 *  like trying to un-brk an area that has already been mapped
 499 *  to a regular file.  in this case, the unmapping will need
 500 *  to invoke file system routines that need the global lock.
 501 */
 502SYSCALL_DEFINE1(brk, unsigned long, brk)
 503{
 504        struct mm_struct *mm = current->mm;
 505
 506        if (brk < mm->start_brk || brk > mm->context.end_brk)
 507                return mm->brk;
 508
 509        if (mm->brk == brk)
 510                return mm->brk;
 511
 512        /*
 513         * Always allow shrinking brk
 514         */
 515        if (brk <= mm->brk) {
 516                mm->brk = brk;
 517                return brk;
 518        }
 519
 520        /*
 521         * Ok, looks good - let it rip.
 522         */
 523        flush_icache_range(mm->brk, brk);
 524        return mm->brk = brk;
 525}
 526
 527/*
 528 * initialise the VMA and region record slabs
 529 */
 530void __init mmap_init(void)
 531{
 532        int ret;
 533
 534        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 535        VM_BUG_ON(ret);
 536        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
 537}
 538
 539/*
 540 * validate the region tree
 541 * - the caller must hold the region lock
 542 */
 543#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 544static noinline void validate_nommu_regions(void)
 545{
 546        struct vm_region *region, *last;
 547        struct rb_node *p, *lastp;
 548
 549        lastp = rb_first(&nommu_region_tree);
 550        if (!lastp)
 551                return;
 552
 553        last = rb_entry(lastp, struct vm_region, vm_rb);
 554        BUG_ON(last->vm_end <= last->vm_start);
 555        BUG_ON(last->vm_top < last->vm_end);
 556
 557        while ((p = rb_next(lastp))) {
 558                region = rb_entry(p, struct vm_region, vm_rb);
 559                last = rb_entry(lastp, struct vm_region, vm_rb);
 560
 561                BUG_ON(region->vm_end <= region->vm_start);
 562                BUG_ON(region->vm_top < region->vm_end);
 563                BUG_ON(region->vm_start < last->vm_top);
 564
 565                lastp = p;
 566        }
 567}
 568#else
 569static void validate_nommu_regions(void)
 570{
 571}
 572#endif
 573
 574/*
 575 * add a region into the global tree
 576 */
 577static void add_nommu_region(struct vm_region *region)
 578{
 579        struct vm_region *pregion;
 580        struct rb_node **p, *parent;
 581
 582        validate_nommu_regions();
 583
 584        parent = NULL;
 585        p = &nommu_region_tree.rb_node;
 586        while (*p) {
 587                parent = *p;
 588                pregion = rb_entry(parent, struct vm_region, vm_rb);
 589                if (region->vm_start < pregion->vm_start)
 590                        p = &(*p)->rb_left;
 591                else if (region->vm_start > pregion->vm_start)
 592                        p = &(*p)->rb_right;
 593                else if (pregion == region)
 594                        return;
 595                else
 596                        BUG();
 597        }
 598
 599        rb_link_node(&region->vm_rb, parent, p);
 600        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 601
 602        validate_nommu_regions();
 603}
 604
 605/*
 606 * delete a region from the global tree
 607 */
 608static void delete_nommu_region(struct vm_region *region)
 609{
 610        BUG_ON(!nommu_region_tree.rb_node);
 611
 612        validate_nommu_regions();
 613        rb_erase(&region->vm_rb, &nommu_region_tree);
 614        validate_nommu_regions();
 615}
 616
 617/*
 618 * free a contiguous series of pages
 619 */
 620static void free_page_series(unsigned long from, unsigned long to)
 621{
 622        for (; from < to; from += PAGE_SIZE) {
 623                struct page *page = virt_to_page(from);
 624
 625                atomic_long_dec(&mmap_pages_allocated);
 626                put_page(page);
 627        }
 628}
 629
 630/*
 631 * release a reference to a region
 632 * - the caller must hold the region semaphore for writing, which this releases
 633 * - the region may not have been added to the tree yet, in which case vm_top
 634 *   will equal vm_start
 635 */
 636static void __put_nommu_region(struct vm_region *region)
 637        __releases(nommu_region_sem)
 638{
 639        BUG_ON(!nommu_region_tree.rb_node);
 640
 641        if (--region->vm_usage == 0) {
 642                if (region->vm_top > region->vm_start)
 643                        delete_nommu_region(region);
 644                up_write(&nommu_region_sem);
 645
 646                if (region->vm_file)
 647                        fput(region->vm_file);
 648
 649                /* IO memory and memory shared directly out of the pagecache
 650                 * from ramfs/tmpfs mustn't be released here */
 651                if (region->vm_flags & VM_MAPPED_COPY)
 652                        free_page_series(region->vm_start, region->vm_top);
 653                kmem_cache_free(vm_region_jar, region);
 654        } else {
 655                up_write(&nommu_region_sem);
 656        }
 657}
 658
 659/*
 660 * release a reference to a region
 661 */
 662static void put_nommu_region(struct vm_region *region)
 663{
 664        down_write(&nommu_region_sem);
 665        __put_nommu_region(region);
 666}
 667
 668/*
 669 * update protection on a vma
 670 */
 671static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 672{
 673#ifdef CONFIG_MPU
 674        struct mm_struct *mm = vma->vm_mm;
 675        long start = vma->vm_start & PAGE_MASK;
 676        while (start < vma->vm_end) {
 677                protect_page(mm, start, flags);
 678                start += PAGE_SIZE;
 679        }
 680        update_protections(mm);
 681#endif
 682}
 683
 684/*
 685 * add a VMA into a process's mm_struct in the appropriate place in the list
 686 * and tree and add to the address space's page tree also if not an anonymous
 687 * page
 688 * - should be called with mm->mmap_sem held writelocked
 689 */
 690static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 691{
 692        struct vm_area_struct *pvma, *prev;
 693        struct address_space *mapping;
 694        struct rb_node **p, *parent, *rb_prev;
 695
 696        BUG_ON(!vma->vm_region);
 697
 698        mm->map_count++;
 699        vma->vm_mm = mm;
 700
 701        protect_vma(vma, vma->vm_flags);
 702
 703        /* add the VMA to the mapping */
 704        if (vma->vm_file) {
 705                mapping = vma->vm_file->f_mapping;
 706
 707                i_mmap_lock_write(mapping);
 708                flush_dcache_mmap_lock(mapping);
 709                vma_interval_tree_insert(vma, &mapping->i_mmap);
 710                flush_dcache_mmap_unlock(mapping);
 711                i_mmap_unlock_write(mapping);
 712        }
 713
 714        /* add the VMA to the tree */
 715        parent = rb_prev = NULL;
 716        p = &mm->mm_rb.rb_node;
 717        while (*p) {
 718                parent = *p;
 719                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 720
 721                /* sort by: start addr, end addr, VMA struct addr in that order
 722                 * (the latter is necessary as we may get identical VMAs) */
 723                if (vma->vm_start < pvma->vm_start)
 724                        p = &(*p)->rb_left;
 725                else if (vma->vm_start > pvma->vm_start) {
 726                        rb_prev = parent;
 727                        p = &(*p)->rb_right;
 728                } else if (vma->vm_end < pvma->vm_end)
 729                        p = &(*p)->rb_left;
 730                else if (vma->vm_end > pvma->vm_end) {
 731                        rb_prev = parent;
 732                        p = &(*p)->rb_right;
 733                } else if (vma < pvma)
 734                        p = &(*p)->rb_left;
 735                else if (vma > pvma) {
 736                        rb_prev = parent;
 737                        p = &(*p)->rb_right;
 738                } else
 739                        BUG();
 740        }
 741
 742        rb_link_node(&vma->vm_rb, parent, p);
 743        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 744
 745        /* add VMA to the VMA list also */
 746        prev = NULL;
 747        if (rb_prev)
 748                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 749
 750        __vma_link_list(mm, vma, prev, parent);
 751}
 752
 753/*
 754 * delete a VMA from its owning mm_struct and address space
 755 */
 756static void delete_vma_from_mm(struct vm_area_struct *vma)
 757{
 758        int i;
 759        struct address_space *mapping;
 760        struct mm_struct *mm = vma->vm_mm;
 761        struct task_struct *curr = current;
 762
 763        protect_vma(vma, 0);
 764
 765        mm->map_count--;
 766        for (i = 0; i < VMACACHE_SIZE; i++) {
 767                /* if the vma is cached, invalidate the entire cache */
 768                if (curr->vmacache[i] == vma) {
 769                        vmacache_invalidate(mm);
 770                        break;
 771                }
 772        }
 773
 774        /* remove the VMA from the mapping */
 775        if (vma->vm_file) {
 776                mapping = vma->vm_file->f_mapping;
 777
 778                i_mmap_lock_write(mapping);
 779                flush_dcache_mmap_lock(mapping);
 780                vma_interval_tree_remove(vma, &mapping->i_mmap);
 781                flush_dcache_mmap_unlock(mapping);
 782                i_mmap_unlock_write(mapping);
 783        }
 784
 785        /* remove from the MM's tree and list */
 786        rb_erase(&vma->vm_rb, &mm->mm_rb);
 787
 788        if (vma->vm_prev)
 789                vma->vm_prev->vm_next = vma->vm_next;
 790        else
 791                mm->mmap = vma->vm_next;
 792
 793        if (vma->vm_next)
 794                vma->vm_next->vm_prev = vma->vm_prev;
 795}
 796
 797/*
 798 * destroy a VMA record
 799 */
 800static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 801{
 802        if (vma->vm_ops && vma->vm_ops->close)
 803                vma->vm_ops->close(vma);
 804        if (vma->vm_file)
 805                fput(vma->vm_file);
 806        put_nommu_region(vma->vm_region);
 807        kmem_cache_free(vm_area_cachep, vma);
 808}
 809
 810/*
 811 * look up the first VMA in which addr resides, NULL if none
 812 * - should be called with mm->mmap_sem at least held readlocked
 813 */
 814struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 815{
 816        struct vm_area_struct *vma;
 817
 818        /* check the cache first */
 819        vma = vmacache_find(mm, addr);
 820        if (likely(vma))
 821                return vma;
 822
 823        /* trawl the list (there may be multiple mappings in which addr
 824         * resides) */
 825        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 826                if (vma->vm_start > addr)
 827                        return NULL;
 828                if (vma->vm_end > addr) {
 829                        vmacache_update(addr, vma);
 830                        return vma;
 831                }
 832        }
 833
 834        return NULL;
 835}
 836EXPORT_SYMBOL(find_vma);
 837
 838/*
 839 * find a VMA
 840 * - we don't extend stack VMAs under NOMMU conditions
 841 */
 842struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 843{
 844        return find_vma(mm, addr);
 845}
 846
 847/*
 848 * expand a stack to a given address
 849 * - not supported under NOMMU conditions
 850 */
 851int expand_stack(struct vm_area_struct *vma, unsigned long address)
 852{
 853        return -ENOMEM;
 854}
 855
 856/*
 857 * look up the first VMA exactly that exactly matches addr
 858 * - should be called with mm->mmap_sem at least held readlocked
 859 */
 860static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 861                                             unsigned long addr,
 862                                             unsigned long len)
 863{
 864        struct vm_area_struct *vma;
 865        unsigned long end = addr + len;
 866
 867        /* check the cache first */
 868        vma = vmacache_find_exact(mm, addr, end);
 869        if (vma)
 870                return vma;
 871
 872        /* trawl the list (there may be multiple mappings in which addr
 873         * resides) */
 874        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 875                if (vma->vm_start < addr)
 876                        continue;
 877                if (vma->vm_start > addr)
 878                        return NULL;
 879                if (vma->vm_end == end) {
 880                        vmacache_update(addr, vma);
 881                        return vma;
 882                }
 883        }
 884
 885        return NULL;
 886}
 887
 888/*
 889 * determine whether a mapping should be permitted and, if so, what sort of
 890 * mapping we're capable of supporting
 891 */
 892static int validate_mmap_request(struct file *file,
 893                                 unsigned long addr,
 894                                 unsigned long len,
 895                                 unsigned long prot,
 896                                 unsigned long flags,
 897                                 unsigned long pgoff,
 898                                 unsigned long *_capabilities)
 899{
 900        unsigned long capabilities, rlen;
 901        int ret;
 902
 903        /* do the simple checks first */
 904        if (flags & MAP_FIXED)
 905                return -EINVAL;
 906
 907        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 908            (flags & MAP_TYPE) != MAP_SHARED)
 909                return -EINVAL;
 910
 911        if (!len)
 912                return -EINVAL;
 913
 914        /* Careful about overflows.. */
 915        rlen = PAGE_ALIGN(len);
 916        if (!rlen || rlen > TASK_SIZE)
 917                return -ENOMEM;
 918
 919        /* offset overflow? */
 920        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 921                return -EOVERFLOW;
 922
 923        if (file) {
 924                /* files must support mmap */
 925                if (!file->f_op->mmap)
 926                        return -ENODEV;
 927
 928                /* work out if what we've got could possibly be shared
 929                 * - we support chardevs that provide their own "memory"
 930                 * - we support files/blockdevs that are memory backed
 931                 */
 932                if (file->f_op->mmap_capabilities) {
 933                        capabilities = file->f_op->mmap_capabilities(file);
 934                } else {
 935                        /* no explicit capabilities set, so assume some
 936                         * defaults */
 937                        switch (file_inode(file)->i_mode & S_IFMT) {
 938                        case S_IFREG:
 939                        case S_IFBLK:
 940                                capabilities = NOMMU_MAP_COPY;
 941                                break;
 942
 943                        case S_IFCHR:
 944                                capabilities =
 945                                        NOMMU_MAP_DIRECT |
 946                                        NOMMU_MAP_READ |
 947                                        NOMMU_MAP_WRITE;
 948                                break;
 949
 950                        default:
 951                                return -EINVAL;
 952                        }
 953                }
 954
 955                /* eliminate any capabilities that we can't support on this
 956                 * device */
 957                if (!file->f_op->get_unmapped_area)
 958                        capabilities &= ~NOMMU_MAP_DIRECT;
 959                if (!(file->f_mode & FMODE_CAN_READ))
 960                        capabilities &= ~NOMMU_MAP_COPY;
 961
 962                /* The file shall have been opened with read permission. */
 963                if (!(file->f_mode & FMODE_READ))
 964                        return -EACCES;
 965
 966                if (flags & MAP_SHARED) {
 967                        /* do checks for writing, appending and locking */
 968                        if ((prot & PROT_WRITE) &&
 969                            !(file->f_mode & FMODE_WRITE))
 970                                return -EACCES;
 971
 972                        if (IS_APPEND(file_inode(file)) &&
 973                            (file->f_mode & FMODE_WRITE))
 974                                return -EACCES;
 975
 976                        if (locks_verify_locked(file))
 977                                return -EAGAIN;
 978
 979                        if (!(capabilities & NOMMU_MAP_DIRECT))
 980                                return -ENODEV;
 981
 982                        /* we mustn't privatise shared mappings */
 983                        capabilities &= ~NOMMU_MAP_COPY;
 984                } else {
 985                        /* we're going to read the file into private memory we
 986                         * allocate */
 987                        if (!(capabilities & NOMMU_MAP_COPY))
 988                                return -ENODEV;
 989
 990                        /* we don't permit a private writable mapping to be
 991                         * shared with the backing device */
 992                        if (prot & PROT_WRITE)
 993                                capabilities &= ~NOMMU_MAP_DIRECT;
 994                }
 995
 996                if (capabilities & NOMMU_MAP_DIRECT) {
 997                        if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
 998                            ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
 999                            ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1000                            ) {
1001                                capabilities &= ~NOMMU_MAP_DIRECT;
1002                                if (flags & MAP_SHARED) {
1003                                        pr_warn("MAP_SHARED not completely supported on !MMU\n");
1004                                        return -EINVAL;
1005                                }
1006                        }
1007                }
1008
1009                /* handle executable mappings and implied executable
1010                 * mappings */
1011                if (path_noexec(&file->f_path)) {
1012                        if (prot & PROT_EXEC)
1013                                return -EPERM;
1014                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1015                        /* handle implication of PROT_EXEC by PROT_READ */
1016                        if (current->personality & READ_IMPLIES_EXEC) {
1017                                if (capabilities & NOMMU_MAP_EXEC)
1018                                        prot |= PROT_EXEC;
1019                        }
1020                } else if ((prot & PROT_READ) &&
1021                         (prot & PROT_EXEC) &&
1022                         !(capabilities & NOMMU_MAP_EXEC)
1023                         ) {
1024                        /* backing file is not executable, try to copy */
1025                        capabilities &= ~NOMMU_MAP_DIRECT;
1026                }
1027        } else {
1028                /* anonymous mappings are always memory backed and can be
1029                 * privately mapped
1030                 */
1031                capabilities = NOMMU_MAP_COPY;
1032
1033                /* handle PROT_EXEC implication by PROT_READ */
1034                if ((prot & PROT_READ) &&
1035                    (current->personality & READ_IMPLIES_EXEC))
1036                        prot |= PROT_EXEC;
1037        }
1038
1039        /* allow the security API to have its say */
1040        ret = security_mmap_addr(addr);
1041        if (ret < 0)
1042                return ret;
1043
1044        /* looks okay */
1045        *_capabilities = capabilities;
1046        return 0;
1047}
1048
1049/*
1050 * we've determined that we can make the mapping, now translate what we
1051 * now know into VMA flags
1052 */
1053static unsigned long determine_vm_flags(struct file *file,
1054                                        unsigned long prot,
1055                                        unsigned long flags,
1056                                        unsigned long capabilities)
1057{
1058        unsigned long vm_flags;
1059
1060        vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1061        /* vm_flags |= mm->def_flags; */
1062
1063        if (!(capabilities & NOMMU_MAP_DIRECT)) {
1064                /* attempt to share read-only copies of mapped file chunks */
1065                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1066                if (file && !(prot & PROT_WRITE))
1067                        vm_flags |= VM_MAYSHARE;
1068        } else {
1069                /* overlay a shareable mapping on the backing device or inode
1070                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1071                 * romfs/cramfs */
1072                vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1073                if (flags & MAP_SHARED)
1074                        vm_flags |= VM_SHARED;
1075        }
1076
1077        /* refuse to let anyone share private mappings with this process if
1078         * it's being traced - otherwise breakpoints set in it may interfere
1079         * with another untraced process
1080         */
1081        if ((flags & MAP_PRIVATE) && current->ptrace)
1082                vm_flags &= ~VM_MAYSHARE;
1083
1084        return vm_flags;
1085}
1086
1087/*
1088 * set up a shared mapping on a file (the driver or filesystem provides and
1089 * pins the storage)
1090 */
1091static int do_mmap_shared_file(struct vm_area_struct *vma)
1092{
1093        int ret;
1094
1095        ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1096        if (ret == 0) {
1097                vma->vm_region->vm_top = vma->vm_region->vm_end;
1098                return 0;
1099        }
1100        if (ret != -ENOSYS)
1101                return ret;
1102
1103        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1104         * opposed to tried but failed) so we can only give a suitable error as
1105         * it's not possible to make a private copy if MAP_SHARED was given */
1106        return -ENODEV;
1107}
1108
1109/*
1110 * set up a private mapping or an anonymous shared mapping
1111 */
1112static int do_mmap_private(struct vm_area_struct *vma,
1113                           struct vm_region *region,
1114                           unsigned long len,
1115                           unsigned long capabilities)
1116{
1117        unsigned long total, point;
1118        void *base;
1119        int ret, order;
1120
1121        /* invoke the file's mapping function so that it can keep track of
1122         * shared mappings on devices or memory
1123         * - VM_MAYSHARE will be set if it may attempt to share
1124         */
1125        if (capabilities & NOMMU_MAP_DIRECT) {
1126                ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1127                if (ret == 0) {
1128                        /* shouldn't return success if we're not sharing */
1129                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1130                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1131                        return 0;
1132                }
1133                if (ret != -ENOSYS)
1134                        return ret;
1135
1136                /* getting an ENOSYS error indicates that direct mmap isn't
1137                 * possible (as opposed to tried but failed) so we'll try to
1138                 * make a private copy of the data and map that instead */
1139        }
1140
1141
1142        /* allocate some memory to hold the mapping
1143         * - note that this may not return a page-aligned address if the object
1144         *   we're allocating is smaller than a page
1145         */
1146        order = get_order(len);
1147        total = 1 << order;
1148        point = len >> PAGE_SHIFT;
1149
1150        /* we don't want to allocate a power-of-2 sized page set */
1151        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1152                total = point;
1153
1154        base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1155        if (!base)
1156                goto enomem;
1157
1158        atomic_long_add(total, &mmap_pages_allocated);
1159
1160        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1161        region->vm_start = (unsigned long) base;
1162        region->vm_end   = region->vm_start + len;
1163        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1164
1165        vma->vm_start = region->vm_start;
1166        vma->vm_end   = region->vm_start + len;
1167
1168        if (vma->vm_file) {
1169                /* read the contents of a file into the copy */
1170                mm_segment_t old_fs;
1171                loff_t fpos;
1172
1173                fpos = vma->vm_pgoff;
1174                fpos <<= PAGE_SHIFT;
1175
1176                old_fs = get_fs();
1177                set_fs(KERNEL_DS);
1178                ret = __vfs_read(vma->vm_file, base, len, &fpos);
1179                set_fs(old_fs);
1180
1181                if (ret < 0)
1182                        goto error_free;
1183
1184                /* clear the last little bit */
1185                if (ret < len)
1186                        memset(base + ret, 0, len - ret);
1187
1188        }
1189
1190        return 0;
1191
1192error_free:
1193        free_page_series(region->vm_start, region->vm_top);
1194        region->vm_start = vma->vm_start = 0;
1195        region->vm_end   = vma->vm_end = 0;
1196        region->vm_top   = 0;
1197        return ret;
1198
1199enomem:
1200        pr_err("Allocation of length %lu from process %d (%s) failed\n",
1201               len, current->pid, current->comm);
1202        show_free_areas(0);
1203        return -ENOMEM;
1204}
1205
1206/*
1207 * handle mapping creation for uClinux
1208 */
1209unsigned long do_mmap(struct file *file,
1210                        unsigned long addr,
1211                        unsigned long len,
1212                        unsigned long prot,
1213                        unsigned long flags,
1214                        vm_flags_t vm_flags,
1215                        unsigned long pgoff,
1216                        unsigned long *populate)
1217{
1218        struct vm_area_struct *vma;
1219        struct vm_region *region;
1220        struct rb_node *rb;
1221        unsigned long capabilities, result;
1222        int ret;
1223
1224        *populate = 0;
1225
1226        /* decide whether we should attempt the mapping, and if so what sort of
1227         * mapping */
1228        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1229                                    &capabilities);
1230        if (ret < 0)
1231                return ret;
1232
1233        /* we ignore the address hint */
1234        addr = 0;
1235        len = PAGE_ALIGN(len);
1236
1237        /* we've determined that we can make the mapping, now translate what we
1238         * now know into VMA flags */
1239        vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1240
1241        /* we're going to need to record the mapping */
1242        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1243        if (!region)
1244                goto error_getting_region;
1245
1246        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1247        if (!vma)
1248                goto error_getting_vma;
1249
1250        region->vm_usage = 1;
1251        region->vm_flags = vm_flags;
1252        region->vm_pgoff = pgoff;
1253
1254        INIT_LIST_HEAD(&vma->anon_vma_chain);
1255        vma->vm_flags = vm_flags;
1256        vma->vm_pgoff = pgoff;
1257
1258        if (file) {
1259                region->vm_file = get_file(file);
1260                vma->vm_file = get_file(file);
1261        }
1262
1263        down_write(&nommu_region_sem);
1264
1265        /* if we want to share, we need to check for regions created by other
1266         * mmap() calls that overlap with our proposed mapping
1267         * - we can only share with a superset match on most regular files
1268         * - shared mappings on character devices and memory backed files are
1269         *   permitted to overlap inexactly as far as we are concerned for in
1270         *   these cases, sharing is handled in the driver or filesystem rather
1271         *   than here
1272         */
1273        if (vm_flags & VM_MAYSHARE) {
1274                struct vm_region *pregion;
1275                unsigned long pglen, rpglen, pgend, rpgend, start;
1276
1277                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1278                pgend = pgoff + pglen;
1279
1280                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1281                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1282
1283                        if (!(pregion->vm_flags & VM_MAYSHARE))
1284                                continue;
1285
1286                        /* search for overlapping mappings on the same file */
1287                        if (file_inode(pregion->vm_file) !=
1288                            file_inode(file))
1289                                continue;
1290
1291                        if (pregion->vm_pgoff >= pgend)
1292                                continue;
1293
1294                        rpglen = pregion->vm_end - pregion->vm_start;
1295                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1296                        rpgend = pregion->vm_pgoff + rpglen;
1297                        if (pgoff >= rpgend)
1298                                continue;
1299
1300                        /* handle inexactly overlapping matches between
1301                         * mappings */
1302                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1303                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1304                                /* new mapping is not a subset of the region */
1305                                if (!(capabilities & NOMMU_MAP_DIRECT))
1306                                        goto sharing_violation;
1307                                continue;
1308                        }
1309
1310                        /* we've found a region we can share */
1311                        pregion->vm_usage++;
1312                        vma->vm_region = pregion;
1313                        start = pregion->vm_start;
1314                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1315                        vma->vm_start = start;
1316                        vma->vm_end = start + len;
1317
1318                        if (pregion->vm_flags & VM_MAPPED_COPY)
1319                                vma->vm_flags |= VM_MAPPED_COPY;
1320                        else {
1321                                ret = do_mmap_shared_file(vma);
1322                                if (ret < 0) {
1323                                        vma->vm_region = NULL;
1324                                        vma->vm_start = 0;
1325                                        vma->vm_end = 0;
1326                                        pregion->vm_usage--;
1327                                        pregion = NULL;
1328                                        goto error_just_free;
1329                                }
1330                        }
1331                        fput(region->vm_file);
1332                        kmem_cache_free(vm_region_jar, region);
1333                        region = pregion;
1334                        result = start;
1335                        goto share;
1336                }
1337
1338                /* obtain the address at which to make a shared mapping
1339                 * - this is the hook for quasi-memory character devices to
1340                 *   tell us the location of a shared mapping
1341                 */
1342                if (capabilities & NOMMU_MAP_DIRECT) {
1343                        addr = file->f_op->get_unmapped_area(file, addr, len,
1344                                                             pgoff, flags);
1345                        if (IS_ERR_VALUE(addr)) {
1346                                ret = addr;
1347                                if (ret != -ENOSYS)
1348                                        goto error_just_free;
1349
1350                                /* the driver refused to tell us where to site
1351                                 * the mapping so we'll have to attempt to copy
1352                                 * it */
1353                                ret = -ENODEV;
1354                                if (!(capabilities & NOMMU_MAP_COPY))
1355                                        goto error_just_free;
1356
1357                                capabilities &= ~NOMMU_MAP_DIRECT;
1358                        } else {
1359                                vma->vm_start = region->vm_start = addr;
1360                                vma->vm_end = region->vm_end = addr + len;
1361                        }
1362                }
1363        }
1364
1365        vma->vm_region = region;
1366
1367        /* set up the mapping
1368         * - the region is filled in if NOMMU_MAP_DIRECT is still set
1369         */
1370        if (file && vma->vm_flags & VM_SHARED)
1371                ret = do_mmap_shared_file(vma);
1372        else
1373                ret = do_mmap_private(vma, region, len, capabilities);
1374        if (ret < 0)
1375                goto error_just_free;
1376        add_nommu_region(region);
1377
1378        /* clear anonymous mappings that don't ask for uninitialized data */
1379        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1380                memset((void *)region->vm_start, 0,
1381                       region->vm_end - region->vm_start);
1382
1383        /* okay... we have a mapping; now we have to register it */
1384        result = vma->vm_start;
1385
1386        current->mm->total_vm += len >> PAGE_SHIFT;
1387
1388share:
1389        add_vma_to_mm(current->mm, vma);
1390
1391        /* we flush the region from the icache only when the first executable
1392         * mapping of it is made  */
1393        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1394                flush_icache_range(region->vm_start, region->vm_end);
1395                region->vm_icache_flushed = true;
1396        }
1397
1398        up_write(&nommu_region_sem);
1399
1400        return result;
1401
1402error_just_free:
1403        up_write(&nommu_region_sem);
1404error:
1405        if (region->vm_file)
1406                fput(region->vm_file);
1407        kmem_cache_free(vm_region_jar, region);
1408        if (vma->vm_file)
1409                fput(vma->vm_file);
1410        kmem_cache_free(vm_area_cachep, vma);
1411        return ret;
1412
1413sharing_violation:
1414        up_write(&nommu_region_sem);
1415        pr_warn("Attempt to share mismatched mappings\n");
1416        ret = -EINVAL;
1417        goto error;
1418
1419error_getting_vma:
1420        kmem_cache_free(vm_region_jar, region);
1421        pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1422                        len, current->pid);
1423        show_free_areas(0);
1424        return -ENOMEM;
1425
1426error_getting_region:
1427        pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1428                        len, current->pid);
1429        show_free_areas(0);
1430        return -ENOMEM;
1431}
1432
1433SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1434                unsigned long, prot, unsigned long, flags,
1435                unsigned long, fd, unsigned long, pgoff)
1436{
1437        struct file *file = NULL;
1438        unsigned long retval = -EBADF;
1439
1440        audit_mmap_fd(fd, flags);
1441        if (!(flags & MAP_ANONYMOUS)) {
1442                file = fget(fd);
1443                if (!file)
1444                        goto out;
1445        }
1446
1447        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1448
1449        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1450
1451        if (file)
1452                fput(file);
1453out:
1454        return retval;
1455}
1456
1457#ifdef __ARCH_WANT_SYS_OLD_MMAP
1458struct mmap_arg_struct {
1459        unsigned long addr;
1460        unsigned long len;
1461        unsigned long prot;
1462        unsigned long flags;
1463        unsigned long fd;
1464        unsigned long offset;
1465};
1466
1467SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468{
1469        struct mmap_arg_struct a;
1470
1471        if (copy_from_user(&a, arg, sizeof(a)))
1472                return -EFAULT;
1473        if (offset_in_page(a.offset))
1474                return -EINVAL;
1475
1476        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1477                              a.offset >> PAGE_SHIFT);
1478}
1479#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480
1481/*
1482 * split a vma into two pieces at address 'addr', a new vma is allocated either
1483 * for the first part or the tail.
1484 */
1485int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1486              unsigned long addr, int new_below)
1487{
1488        struct vm_area_struct *new;
1489        struct vm_region *region;
1490        unsigned long npages;
1491
1492        /* we're only permitted to split anonymous regions (these should have
1493         * only a single usage on the region) */
1494        if (vma->vm_file)
1495                return -ENOMEM;
1496
1497        if (mm->map_count >= sysctl_max_map_count)
1498                return -ENOMEM;
1499
1500        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1501        if (!region)
1502                return -ENOMEM;
1503
1504        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1505        if (!new) {
1506                kmem_cache_free(vm_region_jar, region);
1507                return -ENOMEM;
1508        }
1509
1510        /* most fields are the same, copy all, and then fixup */
1511        *new = *vma;
1512        *region = *vma->vm_region;
1513        new->vm_region = region;
1514
1515        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1516
1517        if (new_below) {
1518                region->vm_top = region->vm_end = new->vm_end = addr;
1519        } else {
1520                region->vm_start = new->vm_start = addr;
1521                region->vm_pgoff = new->vm_pgoff += npages;
1522        }
1523
1524        if (new->vm_ops && new->vm_ops->open)
1525                new->vm_ops->open(new);
1526
1527        delete_vma_from_mm(vma);
1528        down_write(&nommu_region_sem);
1529        delete_nommu_region(vma->vm_region);
1530        if (new_below) {
1531                vma->vm_region->vm_start = vma->vm_start = addr;
1532                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1533        } else {
1534                vma->vm_region->vm_end = vma->vm_end = addr;
1535                vma->vm_region->vm_top = addr;
1536        }
1537        add_nommu_region(vma->vm_region);
1538        add_nommu_region(new->vm_region);
1539        up_write(&nommu_region_sem);
1540        add_vma_to_mm(mm, vma);
1541        add_vma_to_mm(mm, new);
1542        return 0;
1543}
1544
1545/*
1546 * shrink a VMA by removing the specified chunk from either the beginning or
1547 * the end
1548 */
1549static int shrink_vma(struct mm_struct *mm,
1550                      struct vm_area_struct *vma,
1551                      unsigned long from, unsigned long to)
1552{
1553        struct vm_region *region;
1554
1555        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1556         * and list */
1557        delete_vma_from_mm(vma);
1558        if (from > vma->vm_start)
1559                vma->vm_end = from;
1560        else
1561                vma->vm_start = to;
1562        add_vma_to_mm(mm, vma);
1563
1564        /* cut the backing region down to size */
1565        region = vma->vm_region;
1566        BUG_ON(region->vm_usage != 1);
1567
1568        down_write(&nommu_region_sem);
1569        delete_nommu_region(region);
1570        if (from > region->vm_start) {
1571                to = region->vm_top;
1572                region->vm_top = region->vm_end = from;
1573        } else {
1574                region->vm_start = to;
1575        }
1576        add_nommu_region(region);
1577        up_write(&nommu_region_sem);
1578
1579        free_page_series(from, to);
1580        return 0;
1581}
1582
1583/*
1584 * release a mapping
1585 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1586 *   VMA, though it need not cover the whole VMA
1587 */
1588int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1589{
1590        struct vm_area_struct *vma;
1591        unsigned long end;
1592        int ret;
1593
1594        len = PAGE_ALIGN(len);
1595        if (len == 0)
1596                return -EINVAL;
1597
1598        end = start + len;
1599
1600        /* find the first potentially overlapping VMA */
1601        vma = find_vma(mm, start);
1602        if (!vma) {
1603                static int limit;
1604                if (limit < 5) {
1605                        pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1606                                        current->pid, current->comm,
1607                                        start, start + len - 1);
1608                        limit++;
1609                }
1610                return -EINVAL;
1611        }
1612
1613        /* we're allowed to split an anonymous VMA but not a file-backed one */
1614        if (vma->vm_file) {
1615                do {
1616                        if (start > vma->vm_start)
1617                                return -EINVAL;
1618                        if (end == vma->vm_end)
1619                                goto erase_whole_vma;
1620                        vma = vma->vm_next;
1621                } while (vma);
1622                return -EINVAL;
1623        } else {
1624                /* the chunk must be a subset of the VMA found */
1625                if (start == vma->vm_start && end == vma->vm_end)
1626                        goto erase_whole_vma;
1627                if (start < vma->vm_start || end > vma->vm_end)
1628                        return -EINVAL;
1629                if (offset_in_page(start))
1630                        return -EINVAL;
1631                if (end != vma->vm_end && offset_in_page(end))
1632                        return -EINVAL;
1633                if (start != vma->vm_start && end != vma->vm_end) {
1634                        ret = split_vma(mm, vma, start, 1);
1635                        if (ret < 0)
1636                                return ret;
1637                }
1638                return shrink_vma(mm, vma, start, end);
1639        }
1640
1641erase_whole_vma:
1642        delete_vma_from_mm(vma);
1643        delete_vma(mm, vma);
1644        return 0;
1645}
1646EXPORT_SYMBOL(do_munmap);
1647
1648int vm_munmap(unsigned long addr, size_t len)
1649{
1650        struct mm_struct *mm = current->mm;
1651        int ret;
1652
1653        down_write(&mm->mmap_sem);
1654        ret = do_munmap(mm, addr, len);
1655        up_write(&mm->mmap_sem);
1656        return ret;
1657}
1658EXPORT_SYMBOL(vm_munmap);
1659
1660SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1661{
1662        return vm_munmap(addr, len);
1663}
1664
1665/*
1666 * release all the mappings made in a process's VM space
1667 */
1668void exit_mmap(struct mm_struct *mm)
1669{
1670        struct vm_area_struct *vma;
1671
1672        if (!mm)
1673                return;
1674
1675        mm->total_vm = 0;
1676
1677        while ((vma = mm->mmap)) {
1678                mm->mmap = vma->vm_next;
1679                delete_vma_from_mm(vma);
1680                delete_vma(mm, vma);
1681                cond_resched();
1682        }
1683}
1684
1685unsigned long vm_brk(unsigned long addr, unsigned long len)
1686{
1687        return -ENOMEM;
1688}
1689
1690/*
1691 * expand (or shrink) an existing mapping, potentially moving it at the same
1692 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1693 *
1694 * under NOMMU conditions, we only permit changing a mapping's size, and only
1695 * as long as it stays within the region allocated by do_mmap_private() and the
1696 * block is not shareable
1697 *
1698 * MREMAP_FIXED is not supported under NOMMU conditions
1699 */
1700static unsigned long do_mremap(unsigned long addr,
1701                        unsigned long old_len, unsigned long new_len,
1702                        unsigned long flags, unsigned long new_addr)
1703{
1704        struct vm_area_struct *vma;
1705
1706        /* insanity checks first */
1707        old_len = PAGE_ALIGN(old_len);
1708        new_len = PAGE_ALIGN(new_len);
1709        if (old_len == 0 || new_len == 0)
1710                return (unsigned long) -EINVAL;
1711
1712        if (offset_in_page(addr))
1713                return -EINVAL;
1714
1715        if (flags & MREMAP_FIXED && new_addr != addr)
1716                return (unsigned long) -EINVAL;
1717
1718        vma = find_vma_exact(current->mm, addr, old_len);
1719        if (!vma)
1720                return (unsigned long) -EINVAL;
1721
1722        if (vma->vm_end != vma->vm_start + old_len)
1723                return (unsigned long) -EFAULT;
1724
1725        if (vma->vm_flags & VM_MAYSHARE)
1726                return (unsigned long) -EPERM;
1727
1728        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1729                return (unsigned long) -ENOMEM;
1730
1731        /* all checks complete - do it */
1732        vma->vm_end = vma->vm_start + new_len;
1733        return vma->vm_start;
1734}
1735
1736SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1737                unsigned long, new_len, unsigned long, flags,
1738                unsigned long, new_addr)
1739{
1740        unsigned long ret;
1741
1742        down_write(&current->mm->mmap_sem);
1743        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1744        up_write(&current->mm->mmap_sem);
1745        return ret;
1746}
1747
1748struct page *follow_page_mask(struct vm_area_struct *vma,
1749                              unsigned long address, unsigned int flags,
1750                              unsigned int *page_mask)
1751{
1752        *page_mask = 0;
1753        return NULL;
1754}
1755
1756int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757                unsigned long pfn, unsigned long size, pgprot_t prot)
1758{
1759        if (addr != (pfn << PAGE_SHIFT))
1760                return -EINVAL;
1761
1762        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1763        return 0;
1764}
1765EXPORT_SYMBOL(remap_pfn_range);
1766
1767int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1768{
1769        unsigned long pfn = start >> PAGE_SHIFT;
1770        unsigned long vm_len = vma->vm_end - vma->vm_start;
1771
1772        pfn += vma->vm_pgoff;
1773        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1774}
1775EXPORT_SYMBOL(vm_iomap_memory);
1776
1777int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1778                        unsigned long pgoff)
1779{
1780        unsigned int size = vma->vm_end - vma->vm_start;
1781
1782        if (!(vma->vm_flags & VM_USERMAP))
1783                return -EINVAL;
1784
1785        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1786        vma->vm_end = vma->vm_start + size;
1787
1788        return 0;
1789}
1790EXPORT_SYMBOL(remap_vmalloc_range);
1791
1792unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1793        unsigned long len, unsigned long pgoff, unsigned long flags)
1794{
1795        return -ENOMEM;
1796}
1797
1798void unmap_mapping_range(struct address_space *mapping,
1799                         loff_t const holebegin, loff_t const holelen,
1800                         int even_cows)
1801{
1802}
1803EXPORT_SYMBOL(unmap_mapping_range);
1804
1805int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1806{
1807        BUG();
1808        return 0;
1809}
1810EXPORT_SYMBOL(filemap_fault);
1811
1812void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1813{
1814        BUG();
1815}
1816EXPORT_SYMBOL(filemap_map_pages);
1817
1818static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1819                unsigned long addr, void *buf, int len, int write)
1820{
1821        struct vm_area_struct *vma;
1822
1823        down_read(&mm->mmap_sem);
1824
1825        /* the access must start within one of the target process's mappings */
1826        vma = find_vma(mm, addr);
1827        if (vma) {
1828                /* don't overrun this mapping */
1829                if (addr + len >= vma->vm_end)
1830                        len = vma->vm_end - addr;
1831
1832                /* only read or write mappings where it is permitted */
1833                if (write && vma->vm_flags & VM_MAYWRITE)
1834                        copy_to_user_page(vma, NULL, addr,
1835                                         (void *) addr, buf, len);
1836                else if (!write && vma->vm_flags & VM_MAYREAD)
1837                        copy_from_user_page(vma, NULL, addr,
1838                                            buf, (void *) addr, len);
1839                else
1840                        len = 0;
1841        } else {
1842                len = 0;
1843        }
1844
1845        up_read(&mm->mmap_sem);
1846
1847        return len;
1848}
1849
1850/**
1851 * @access_remote_vm - access another process' address space
1852 * @mm:         the mm_struct of the target address space
1853 * @addr:       start address to access
1854 * @buf:        source or destination buffer
1855 * @len:        number of bytes to transfer
1856 * @write:      whether the access is a write
1857 *
1858 * The caller must hold a reference on @mm.
1859 */
1860int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1861                void *buf, int len, int write)
1862{
1863        return __access_remote_vm(NULL, mm, addr, buf, len, write);
1864}
1865
1866/*
1867 * Access another process' address space.
1868 * - source/target buffer must be kernel space
1869 */
1870int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1871{
1872        struct mm_struct *mm;
1873
1874        if (addr + len < addr)
1875                return 0;
1876
1877        mm = get_task_mm(tsk);
1878        if (!mm)
1879                return 0;
1880
1881        len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1882
1883        mmput(mm);
1884        return len;
1885}
1886
1887/**
1888 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1889 * @inode: The inode to check
1890 * @size: The current filesize of the inode
1891 * @newsize: The proposed filesize of the inode
1892 *
1893 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1894 * make sure that that any outstanding VMAs aren't broken and then shrink the
1895 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1896 * automatically grant mappings that are too large.
1897 */
1898int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1899                                size_t newsize)
1900{
1901        struct vm_area_struct *vma;
1902        struct vm_region *region;
1903        pgoff_t low, high;
1904        size_t r_size, r_top;
1905
1906        low = newsize >> PAGE_SHIFT;
1907        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1908
1909        down_write(&nommu_region_sem);
1910        i_mmap_lock_read(inode->i_mapping);
1911
1912        /* search for VMAs that fall within the dead zone */
1913        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1914                /* found one - only interested if it's shared out of the page
1915                 * cache */
1916                if (vma->vm_flags & VM_SHARED) {
1917                        i_mmap_unlock_read(inode->i_mapping);
1918                        up_write(&nommu_region_sem);
1919                        return -ETXTBSY; /* not quite true, but near enough */
1920                }
1921        }
1922
1923        /* reduce any regions that overlap the dead zone - if in existence,
1924         * these will be pointed to by VMAs that don't overlap the dead zone
1925         *
1926         * we don't check for any regions that start beyond the EOF as there
1927         * shouldn't be any
1928         */
1929        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1930                if (!(vma->vm_flags & VM_SHARED))
1931                        continue;
1932
1933                region = vma->vm_region;
1934                r_size = region->vm_top - region->vm_start;
1935                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1936
1937                if (r_top > newsize) {
1938                        region->vm_top -= r_top - newsize;
1939                        if (region->vm_end > region->vm_top)
1940                                region->vm_end = region->vm_top;
1941                }
1942        }
1943
1944        i_mmap_unlock_read(inode->i_mapping);
1945        up_write(&nommu_region_sem);
1946        return 0;
1947}
1948
1949/*
1950 * Initialise sysctl_user_reserve_kbytes.
1951 *
1952 * This is intended to prevent a user from starting a single memory hogging
1953 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1954 * mode.
1955 *
1956 * The default value is min(3% of free memory, 128MB)
1957 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1958 */
1959static int __meminit init_user_reserve(void)
1960{
1961        unsigned long free_kbytes;
1962
1963        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1964
1965        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1966        return 0;
1967}
1968subsys_initcall(init_user_reserve);
1969
1970/*
1971 * Initialise sysctl_admin_reserve_kbytes.
1972 *
1973 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1974 * to log in and kill a memory hogging process.
1975 *
1976 * Systems with more than 256MB will reserve 8MB, enough to recover
1977 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1978 * only reserve 3% of free pages by default.
1979 */
1980static int __meminit init_admin_reserve(void)
1981{
1982        unsigned long free_kbytes;
1983
1984        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1985
1986        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1987        return 0;
1988}
1989subsys_initcall(init_admin_reserve);
1990