linux/mm/percpu.c
<<
>>
Prefs
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009           SUSE Linux Products GmbH
   5 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
  56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  57
  58#include <linux/bitmap.h>
  59#include <linux/bootmem.h>
  60#include <linux/err.h>
  61#include <linux/list.h>
  62#include <linux/log2.h>
  63#include <linux/mm.h>
  64#include <linux/module.h>
  65#include <linux/mutex.h>
  66#include <linux/percpu.h>
  67#include <linux/pfn.h>
  68#include <linux/slab.h>
  69#include <linux/spinlock.h>
  70#include <linux/vmalloc.h>
  71#include <linux/workqueue.h>
  72#include <linux/kmemleak.h>
  73
  74#include <asm/cacheflush.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/io.h>
  78
  79#define PCPU_SLOT_BASE_SHIFT            5       /* 1-31 shares the same slot */
  80#define PCPU_DFL_MAP_ALLOC              16      /* start a map with 16 ents */
  81#define PCPU_ATOMIC_MAP_MARGIN_LOW      32
  82#define PCPU_ATOMIC_MAP_MARGIN_HIGH     64
  83#define PCPU_EMPTY_POP_PAGES_LOW        2
  84#define PCPU_EMPTY_POP_PAGES_HIGH       4
  85
  86#ifdef CONFIG_SMP
  87/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  88#ifndef __addr_to_pcpu_ptr
  89#define __addr_to_pcpu_ptr(addr)                                        \
  90        (void __percpu *)((unsigned long)(addr) -                       \
  91                          (unsigned long)pcpu_base_addr +               \
  92                          (unsigned long)__per_cpu_start)
  93#endif
  94#ifndef __pcpu_ptr_to_addr
  95#define __pcpu_ptr_to_addr(ptr)                                         \
  96        (void __force *)((unsigned long)(ptr) +                         \
  97                         (unsigned long)pcpu_base_addr -                \
  98                         (unsigned long)__per_cpu_start)
  99#endif
 100#else   /* CONFIG_SMP */
 101/* on UP, it's always identity mapped */
 102#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 103#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 104#endif  /* CONFIG_SMP */
 105
 106struct pcpu_chunk {
 107        struct list_head        list;           /* linked to pcpu_slot lists */
 108        int                     free_size;      /* free bytes in the chunk */
 109        int                     contig_hint;    /* max contiguous size hint */
 110        void                    *base_addr;     /* base address of this chunk */
 111
 112        int                     map_used;       /* # of map entries used before the sentry */
 113        int                     map_alloc;      /* # of map entries allocated */
 114        int                     *map;           /* allocation map */
 115        struct work_struct      map_extend_work;/* async ->map[] extension */
 116
 117        void                    *data;          /* chunk data */
 118        int                     first_free;     /* no free below this */
 119        bool                    immutable;      /* no [de]population allowed */
 120        int                     nr_populated;   /* # of populated pages */
 121        unsigned long           populated[];    /* populated bitmap */
 122};
 123
 124static int pcpu_unit_pages __read_mostly;
 125static int pcpu_unit_size __read_mostly;
 126static int pcpu_nr_units __read_mostly;
 127static int pcpu_atom_size __read_mostly;
 128static int pcpu_nr_slots __read_mostly;
 129static size_t pcpu_chunk_struct_size __read_mostly;
 130
 131/* cpus with the lowest and highest unit addresses */
 132static unsigned int pcpu_low_unit_cpu __read_mostly;
 133static unsigned int pcpu_high_unit_cpu __read_mostly;
 134
 135/* the address of the first chunk which starts with the kernel static area */
 136void *pcpu_base_addr __read_mostly;
 137EXPORT_SYMBOL_GPL(pcpu_base_addr);
 138
 139static const int *pcpu_unit_map __read_mostly;          /* cpu -> unit */
 140const unsigned long *pcpu_unit_offsets __read_mostly;   /* cpu -> unit offset */
 141
 142/* group information, used for vm allocation */
 143static int pcpu_nr_groups __read_mostly;
 144static const unsigned long *pcpu_group_offsets __read_mostly;
 145static const size_t *pcpu_group_sizes __read_mostly;
 146
 147/*
 148 * The first chunk which always exists.  Note that unlike other
 149 * chunks, this one can be allocated and mapped in several different
 150 * ways and thus often doesn't live in the vmalloc area.
 151 */
 152static struct pcpu_chunk *pcpu_first_chunk;
 153
 154/*
 155 * Optional reserved chunk.  This chunk reserves part of the first
 156 * chunk and serves it for reserved allocations.  The amount of
 157 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 158 * area doesn't exist, the following variables contain NULL and 0
 159 * respectively.
 160 */
 161static struct pcpu_chunk *pcpu_reserved_chunk;
 162static int pcpu_reserved_chunk_limit;
 163
 164static DEFINE_SPINLOCK(pcpu_lock);      /* all internal data structures */
 165static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop */
 166
 167static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 168
 169/*
 170 * The number of empty populated pages, protected by pcpu_lock.  The
 171 * reserved chunk doesn't contribute to the count.
 172 */
 173static int pcpu_nr_empty_pop_pages;
 174
 175/*
 176 * Balance work is used to populate or destroy chunks asynchronously.  We
 177 * try to keep the number of populated free pages between
 178 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 179 * empty chunk.
 180 */
 181static void pcpu_balance_workfn(struct work_struct *work);
 182static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 183static bool pcpu_async_enabled __read_mostly;
 184static bool pcpu_atomic_alloc_failed;
 185
 186static void pcpu_schedule_balance_work(void)
 187{
 188        if (pcpu_async_enabled)
 189                schedule_work(&pcpu_balance_work);
 190}
 191
 192static bool pcpu_addr_in_first_chunk(void *addr)
 193{
 194        void *first_start = pcpu_first_chunk->base_addr;
 195
 196        return addr >= first_start && addr < first_start + pcpu_unit_size;
 197}
 198
 199static bool pcpu_addr_in_reserved_chunk(void *addr)
 200{
 201        void *first_start = pcpu_first_chunk->base_addr;
 202
 203        return addr >= first_start &&
 204                addr < first_start + pcpu_reserved_chunk_limit;
 205}
 206
 207static int __pcpu_size_to_slot(int size)
 208{
 209        int highbit = fls(size);        /* size is in bytes */
 210        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 211}
 212
 213static int pcpu_size_to_slot(int size)
 214{
 215        if (size == pcpu_unit_size)
 216                return pcpu_nr_slots - 1;
 217        return __pcpu_size_to_slot(size);
 218}
 219
 220static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 221{
 222        if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 223                return 0;
 224
 225        return pcpu_size_to_slot(chunk->free_size);
 226}
 227
 228/* set the pointer to a chunk in a page struct */
 229static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 230{
 231        page->index = (unsigned long)pcpu;
 232}
 233
 234/* obtain pointer to a chunk from a page struct */
 235static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 236{
 237        return (struct pcpu_chunk *)page->index;
 238}
 239
 240static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 241{
 242        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 243}
 244
 245static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 246                                     unsigned int cpu, int page_idx)
 247{
 248        return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 249                (page_idx << PAGE_SHIFT);
 250}
 251
 252static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 253                                           int *rs, int *re, int end)
 254{
 255        *rs = find_next_zero_bit(chunk->populated, end, *rs);
 256        *re = find_next_bit(chunk->populated, end, *rs + 1);
 257}
 258
 259static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 260                                         int *rs, int *re, int end)
 261{
 262        *rs = find_next_bit(chunk->populated, end, *rs);
 263        *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 264}
 265
 266/*
 267 * (Un)populated page region iterators.  Iterate over (un)populated
 268 * page regions between @start and @end in @chunk.  @rs and @re should
 269 * be integer variables and will be set to start and end page index of
 270 * the current region.
 271 */
 272#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)               \
 273        for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 274             (rs) < (re);                                                   \
 275             (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 276
 277#define pcpu_for_each_pop_region(chunk, rs, re, start, end)                 \
 278        for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 279             (rs) < (re);                                                   \
 280             (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 281
 282/**
 283 * pcpu_mem_zalloc - allocate memory
 284 * @size: bytes to allocate
 285 *
 286 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 287 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
 288 * memory is always zeroed.
 289 *
 290 * CONTEXT:
 291 * Does GFP_KERNEL allocation.
 292 *
 293 * RETURNS:
 294 * Pointer to the allocated area on success, NULL on failure.
 295 */
 296static void *pcpu_mem_zalloc(size_t size)
 297{
 298        if (WARN_ON_ONCE(!slab_is_available()))
 299                return NULL;
 300
 301        if (size <= PAGE_SIZE)
 302                return kzalloc(size, GFP_KERNEL);
 303        else
 304                return vzalloc(size);
 305}
 306
 307/**
 308 * pcpu_mem_free - free memory
 309 * @ptr: memory to free
 310 *
 311 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 312 */
 313static void pcpu_mem_free(void *ptr)
 314{
 315        kvfree(ptr);
 316}
 317
 318/**
 319 * pcpu_count_occupied_pages - count the number of pages an area occupies
 320 * @chunk: chunk of interest
 321 * @i: index of the area in question
 322 *
 323 * Count the number of pages chunk's @i'th area occupies.  When the area's
 324 * start and/or end address isn't aligned to page boundary, the straddled
 325 * page is included in the count iff the rest of the page is free.
 326 */
 327static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
 328{
 329        int off = chunk->map[i] & ~1;
 330        int end = chunk->map[i + 1] & ~1;
 331
 332        if (!PAGE_ALIGNED(off) && i > 0) {
 333                int prev = chunk->map[i - 1];
 334
 335                if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
 336                        off = round_down(off, PAGE_SIZE);
 337        }
 338
 339        if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
 340                int next = chunk->map[i + 1];
 341                int nend = chunk->map[i + 2] & ~1;
 342
 343                if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
 344                        end = round_up(end, PAGE_SIZE);
 345        }
 346
 347        return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
 348}
 349
 350/**
 351 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 352 * @chunk: chunk of interest
 353 * @oslot: the previous slot it was on
 354 *
 355 * This function is called after an allocation or free changed @chunk.
 356 * New slot according to the changed state is determined and @chunk is
 357 * moved to the slot.  Note that the reserved chunk is never put on
 358 * chunk slots.
 359 *
 360 * CONTEXT:
 361 * pcpu_lock.
 362 */
 363static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 364{
 365        int nslot = pcpu_chunk_slot(chunk);
 366
 367        if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 368                if (oslot < nslot)
 369                        list_move(&chunk->list, &pcpu_slot[nslot]);
 370                else
 371                        list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 372        }
 373}
 374
 375/**
 376 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 377 * @chunk: chunk of interest
 378 * @is_atomic: the allocation context
 379 *
 380 * Determine whether area map of @chunk needs to be extended.  If
 381 * @is_atomic, only the amount necessary for a new allocation is
 382 * considered; however, async extension is scheduled if the left amount is
 383 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 384 * ensures that the map is likely to have enough available space to
 385 * accomodate atomic allocations which can't extend maps directly.
 386 *
 387 * CONTEXT:
 388 * pcpu_lock.
 389 *
 390 * RETURNS:
 391 * New target map allocation length if extension is necessary, 0
 392 * otherwise.
 393 */
 394static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
 395{
 396        int margin, new_alloc;
 397
 398        if (is_atomic) {
 399                margin = 3;
 400
 401                if (chunk->map_alloc <
 402                    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
 403                    pcpu_async_enabled)
 404                        schedule_work(&chunk->map_extend_work);
 405        } else {
 406                margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
 407        }
 408
 409        if (chunk->map_alloc >= chunk->map_used + margin)
 410                return 0;
 411
 412        new_alloc = PCPU_DFL_MAP_ALLOC;
 413        while (new_alloc < chunk->map_used + margin)
 414                new_alloc *= 2;
 415
 416        return new_alloc;
 417}
 418
 419/**
 420 * pcpu_extend_area_map - extend area map of a chunk
 421 * @chunk: chunk of interest
 422 * @new_alloc: new target allocation length of the area map
 423 *
 424 * Extend area map of @chunk to have @new_alloc entries.
 425 *
 426 * CONTEXT:
 427 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 428 *
 429 * RETURNS:
 430 * 0 on success, -errno on failure.
 431 */
 432static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 433{
 434        int *old = NULL, *new = NULL;
 435        size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 436        unsigned long flags;
 437
 438        new = pcpu_mem_zalloc(new_size);
 439        if (!new)
 440                return -ENOMEM;
 441
 442        /* acquire pcpu_lock and switch to new area map */
 443        spin_lock_irqsave(&pcpu_lock, flags);
 444
 445        if (new_alloc <= chunk->map_alloc)
 446                goto out_unlock;
 447
 448        old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 449        old = chunk->map;
 450
 451        memcpy(new, old, old_size);
 452
 453        chunk->map_alloc = new_alloc;
 454        chunk->map = new;
 455        new = NULL;
 456
 457out_unlock:
 458        spin_unlock_irqrestore(&pcpu_lock, flags);
 459
 460        /*
 461         * pcpu_mem_free() might end up calling vfree() which uses
 462         * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 463         */
 464        pcpu_mem_free(old);
 465        pcpu_mem_free(new);
 466
 467        return 0;
 468}
 469
 470static void pcpu_map_extend_workfn(struct work_struct *work)
 471{
 472        struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
 473                                                map_extend_work);
 474        int new_alloc;
 475
 476        spin_lock_irq(&pcpu_lock);
 477        new_alloc = pcpu_need_to_extend(chunk, false);
 478        spin_unlock_irq(&pcpu_lock);
 479
 480        if (new_alloc)
 481                pcpu_extend_area_map(chunk, new_alloc);
 482}
 483
 484/**
 485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 486 * @chunk: chunk the candidate area belongs to
 487 * @off: the offset to the start of the candidate area
 488 * @this_size: the size of the candidate area
 489 * @size: the size of the target allocation
 490 * @align: the alignment of the target allocation
 491 * @pop_only: only allocate from already populated region
 492 *
 493 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 494 * at @off sized @this_size is a candidate.  This function determines
 495 * whether the target allocation fits in the candidate area and returns the
 496 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 497 * is returned.
 498 *
 499 * If @pop_only is %true, this function only considers the already
 500 * populated part of the candidate area.
 501 */
 502static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
 503                            int size, int align, bool pop_only)
 504{
 505        int cand_off = off;
 506
 507        while (true) {
 508                int head = ALIGN(cand_off, align) - off;
 509                int page_start, page_end, rs, re;
 510
 511                if (this_size < head + size)
 512                        return -1;
 513
 514                if (!pop_only)
 515                        return head;
 516
 517                /*
 518                 * If the first unpopulated page is beyond the end of the
 519                 * allocation, the whole allocation is populated;
 520                 * otherwise, retry from the end of the unpopulated area.
 521                 */
 522                page_start = PFN_DOWN(head + off);
 523                page_end = PFN_UP(head + off + size);
 524
 525                rs = page_start;
 526                pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
 527                if (rs >= page_end)
 528                        return head;
 529                cand_off = re * PAGE_SIZE;
 530        }
 531}
 532
 533/**
 534 * pcpu_alloc_area - allocate area from a pcpu_chunk
 535 * @chunk: chunk of interest
 536 * @size: wanted size in bytes
 537 * @align: wanted align
 538 * @pop_only: allocate only from the populated area
 539 * @occ_pages_p: out param for the number of pages the area occupies
 540 *
 541 * Try to allocate @size bytes area aligned at @align from @chunk.
 542 * Note that this function only allocates the offset.  It doesn't
 543 * populate or map the area.
 544 *
 545 * @chunk->map must have at least two free slots.
 546 *
 547 * CONTEXT:
 548 * pcpu_lock.
 549 *
 550 * RETURNS:
 551 * Allocated offset in @chunk on success, -1 if no matching area is
 552 * found.
 553 */
 554static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
 555                           bool pop_only, int *occ_pages_p)
 556{
 557        int oslot = pcpu_chunk_slot(chunk);
 558        int max_contig = 0;
 559        int i, off;
 560        bool seen_free = false;
 561        int *p;
 562
 563        for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
 564                int head, tail;
 565                int this_size;
 566
 567                off = *p;
 568                if (off & 1)
 569                        continue;
 570
 571                this_size = (p[1] & ~1) - off;
 572
 573                head = pcpu_fit_in_area(chunk, off, this_size, size, align,
 574                                        pop_only);
 575                if (head < 0) {
 576                        if (!seen_free) {
 577                                chunk->first_free = i;
 578                                seen_free = true;
 579                        }
 580                        max_contig = max(this_size, max_contig);
 581                        continue;
 582                }
 583
 584                /*
 585                 * If head is small or the previous block is free,
 586                 * merge'em.  Note that 'small' is defined as smaller
 587                 * than sizeof(int), which is very small but isn't too
 588                 * uncommon for percpu allocations.
 589                 */
 590                if (head && (head < sizeof(int) || !(p[-1] & 1))) {
 591                        *p = off += head;
 592                        if (p[-1] & 1)
 593                                chunk->free_size -= head;
 594                        else
 595                                max_contig = max(*p - p[-1], max_contig);
 596                        this_size -= head;
 597                        head = 0;
 598                }
 599
 600                /* if tail is small, just keep it around */
 601                tail = this_size - head - size;
 602                if (tail < sizeof(int)) {
 603                        tail = 0;
 604                        size = this_size - head;
 605                }
 606
 607                /* split if warranted */
 608                if (head || tail) {
 609                        int nr_extra = !!head + !!tail;
 610
 611                        /* insert new subblocks */
 612                        memmove(p + nr_extra + 1, p + 1,
 613                                sizeof(chunk->map[0]) * (chunk->map_used - i));
 614                        chunk->map_used += nr_extra;
 615
 616                        if (head) {
 617                                if (!seen_free) {
 618                                        chunk->first_free = i;
 619                                        seen_free = true;
 620                                }
 621                                *++p = off += head;
 622                                ++i;
 623                                max_contig = max(head, max_contig);
 624                        }
 625                        if (tail) {
 626                                p[1] = off + size;
 627                                max_contig = max(tail, max_contig);
 628                        }
 629                }
 630
 631                if (!seen_free)
 632                        chunk->first_free = i + 1;
 633
 634                /* update hint and mark allocated */
 635                if (i + 1 == chunk->map_used)
 636                        chunk->contig_hint = max_contig; /* fully scanned */
 637                else
 638                        chunk->contig_hint = max(chunk->contig_hint,
 639                                                 max_contig);
 640
 641                chunk->free_size -= size;
 642                *p |= 1;
 643
 644                *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 645                pcpu_chunk_relocate(chunk, oslot);
 646                return off;
 647        }
 648
 649        chunk->contig_hint = max_contig;        /* fully scanned */
 650        pcpu_chunk_relocate(chunk, oslot);
 651
 652        /* tell the upper layer that this chunk has no matching area */
 653        return -1;
 654}
 655
 656/**
 657 * pcpu_free_area - free area to a pcpu_chunk
 658 * @chunk: chunk of interest
 659 * @freeme: offset of area to free
 660 * @occ_pages_p: out param for the number of pages the area occupies
 661 *
 662 * Free area starting from @freeme to @chunk.  Note that this function
 663 * only modifies the allocation map.  It doesn't depopulate or unmap
 664 * the area.
 665 *
 666 * CONTEXT:
 667 * pcpu_lock.
 668 */
 669static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
 670                           int *occ_pages_p)
 671{
 672        int oslot = pcpu_chunk_slot(chunk);
 673        int off = 0;
 674        unsigned i, j;
 675        int to_free = 0;
 676        int *p;
 677
 678        freeme |= 1;    /* we are searching for <given offset, in use> pair */
 679
 680        i = 0;
 681        j = chunk->map_used;
 682        while (i != j) {
 683                unsigned k = (i + j) / 2;
 684                off = chunk->map[k];
 685                if (off < freeme)
 686                        i = k + 1;
 687                else if (off > freeme)
 688                        j = k;
 689                else
 690                        i = j = k;
 691        }
 692        BUG_ON(off != freeme);
 693
 694        if (i < chunk->first_free)
 695                chunk->first_free = i;
 696
 697        p = chunk->map + i;
 698        *p = off &= ~1;
 699        chunk->free_size += (p[1] & ~1) - off;
 700
 701        *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 702
 703        /* merge with next? */
 704        if (!(p[1] & 1))
 705                to_free++;
 706        /* merge with previous? */
 707        if (i > 0 && !(p[-1] & 1)) {
 708                to_free++;
 709                i--;
 710                p--;
 711        }
 712        if (to_free) {
 713                chunk->map_used -= to_free;
 714                memmove(p + 1, p + 1 + to_free,
 715                        (chunk->map_used - i) * sizeof(chunk->map[0]));
 716        }
 717
 718        chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
 719        pcpu_chunk_relocate(chunk, oslot);
 720}
 721
 722static struct pcpu_chunk *pcpu_alloc_chunk(void)
 723{
 724        struct pcpu_chunk *chunk;
 725
 726        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
 727        if (!chunk)
 728                return NULL;
 729
 730        chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
 731                                                sizeof(chunk->map[0]));
 732        if (!chunk->map) {
 733                pcpu_mem_free(chunk);
 734                return NULL;
 735        }
 736
 737        chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 738        chunk->map[0] = 0;
 739        chunk->map[1] = pcpu_unit_size | 1;
 740        chunk->map_used = 1;
 741
 742        INIT_LIST_HEAD(&chunk->list);
 743        INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
 744        chunk->free_size = pcpu_unit_size;
 745        chunk->contig_hint = pcpu_unit_size;
 746
 747        return chunk;
 748}
 749
 750static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 751{
 752        if (!chunk)
 753                return;
 754        pcpu_mem_free(chunk->map);
 755        pcpu_mem_free(chunk);
 756}
 757
 758/**
 759 * pcpu_chunk_populated - post-population bookkeeping
 760 * @chunk: pcpu_chunk which got populated
 761 * @page_start: the start page
 762 * @page_end: the end page
 763 *
 764 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 765 * the bookkeeping information accordingly.  Must be called after each
 766 * successful population.
 767 */
 768static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
 769                                 int page_start, int page_end)
 770{
 771        int nr = page_end - page_start;
 772
 773        lockdep_assert_held(&pcpu_lock);
 774
 775        bitmap_set(chunk->populated, page_start, nr);
 776        chunk->nr_populated += nr;
 777        pcpu_nr_empty_pop_pages += nr;
 778}
 779
 780/**
 781 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 782 * @chunk: pcpu_chunk which got depopulated
 783 * @page_start: the start page
 784 * @page_end: the end page
 785 *
 786 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 787 * Update the bookkeeping information accordingly.  Must be called after
 788 * each successful depopulation.
 789 */
 790static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
 791                                   int page_start, int page_end)
 792{
 793        int nr = page_end - page_start;
 794
 795        lockdep_assert_held(&pcpu_lock);
 796
 797        bitmap_clear(chunk->populated, page_start, nr);
 798        chunk->nr_populated -= nr;
 799        pcpu_nr_empty_pop_pages -= nr;
 800}
 801
 802/*
 803 * Chunk management implementation.
 804 *
 805 * To allow different implementations, chunk alloc/free and
 806 * [de]population are implemented in a separate file which is pulled
 807 * into this file and compiled together.  The following functions
 808 * should be implemented.
 809 *
 810 * pcpu_populate_chunk          - populate the specified range of a chunk
 811 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
 812 * pcpu_create_chunk            - create a new chunk
 813 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
 814 * pcpu_addr_to_page            - translate address to physical address
 815 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
 816 */
 817static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 818static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 819static struct pcpu_chunk *pcpu_create_chunk(void);
 820static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 821static struct page *pcpu_addr_to_page(void *addr);
 822static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 823
 824#ifdef CONFIG_NEED_PER_CPU_KM
 825#include "percpu-km.c"
 826#else
 827#include "percpu-vm.c"
 828#endif
 829
 830/**
 831 * pcpu_chunk_addr_search - determine chunk containing specified address
 832 * @addr: address for which the chunk needs to be determined.
 833 *
 834 * RETURNS:
 835 * The address of the found chunk.
 836 */
 837static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 838{
 839        /* is it in the first chunk? */
 840        if (pcpu_addr_in_first_chunk(addr)) {
 841                /* is it in the reserved area? */
 842                if (pcpu_addr_in_reserved_chunk(addr))
 843                        return pcpu_reserved_chunk;
 844                return pcpu_first_chunk;
 845        }
 846
 847        /*
 848         * The address is relative to unit0 which might be unused and
 849         * thus unmapped.  Offset the address to the unit space of the
 850         * current processor before looking it up in the vmalloc
 851         * space.  Note that any possible cpu id can be used here, so
 852         * there's no need to worry about preemption or cpu hotplug.
 853         */
 854        addr += pcpu_unit_offsets[raw_smp_processor_id()];
 855        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 856}
 857
 858/**
 859 * pcpu_alloc - the percpu allocator
 860 * @size: size of area to allocate in bytes
 861 * @align: alignment of area (max PAGE_SIZE)
 862 * @reserved: allocate from the reserved chunk if available
 863 * @gfp: allocation flags
 864 *
 865 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 866 * contain %GFP_KERNEL, the allocation is atomic.
 867 *
 868 * RETURNS:
 869 * Percpu pointer to the allocated area on success, NULL on failure.
 870 */
 871static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
 872                                 gfp_t gfp)
 873{
 874        static int warn_limit = 10;
 875        struct pcpu_chunk *chunk;
 876        const char *err;
 877        bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
 878        int occ_pages = 0;
 879        int slot, off, new_alloc, cpu, ret;
 880        unsigned long flags;
 881        void __percpu *ptr;
 882
 883        /*
 884         * We want the lowest bit of offset available for in-use/free
 885         * indicator, so force >= 16bit alignment and make size even.
 886         */
 887        if (unlikely(align < 2))
 888                align = 2;
 889
 890        size = ALIGN(size, 2);
 891
 892        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 893                WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
 894                     size, align);
 895                return NULL;
 896        }
 897
 898        spin_lock_irqsave(&pcpu_lock, flags);
 899
 900        /* serve reserved allocations from the reserved chunk if available */
 901        if (reserved && pcpu_reserved_chunk) {
 902                chunk = pcpu_reserved_chunk;
 903
 904                if (size > chunk->contig_hint) {
 905                        err = "alloc from reserved chunk failed";
 906                        goto fail_unlock;
 907                }
 908
 909                while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
 910                        spin_unlock_irqrestore(&pcpu_lock, flags);
 911                        if (is_atomic ||
 912                            pcpu_extend_area_map(chunk, new_alloc) < 0) {
 913                                err = "failed to extend area map of reserved chunk";
 914                                goto fail;
 915                        }
 916                        spin_lock_irqsave(&pcpu_lock, flags);
 917                }
 918
 919                off = pcpu_alloc_area(chunk, size, align, is_atomic,
 920                                      &occ_pages);
 921                if (off >= 0)
 922                        goto area_found;
 923
 924                err = "alloc from reserved chunk failed";
 925                goto fail_unlock;
 926        }
 927
 928restart:
 929        /* search through normal chunks */
 930        for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 931                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 932                        if (size > chunk->contig_hint)
 933                                continue;
 934
 935                        new_alloc = pcpu_need_to_extend(chunk, is_atomic);
 936                        if (new_alloc) {
 937                                if (is_atomic)
 938                                        continue;
 939                                spin_unlock_irqrestore(&pcpu_lock, flags);
 940                                if (pcpu_extend_area_map(chunk,
 941                                                         new_alloc) < 0) {
 942                                        err = "failed to extend area map";
 943                                        goto fail;
 944                                }
 945                                spin_lock_irqsave(&pcpu_lock, flags);
 946                                /*
 947                                 * pcpu_lock has been dropped, need to
 948                                 * restart cpu_slot list walking.
 949                                 */
 950                                goto restart;
 951                        }
 952
 953                        off = pcpu_alloc_area(chunk, size, align, is_atomic,
 954                                              &occ_pages);
 955                        if (off >= 0)
 956                                goto area_found;
 957                }
 958        }
 959
 960        spin_unlock_irqrestore(&pcpu_lock, flags);
 961
 962        /*
 963         * No space left.  Create a new chunk.  We don't want multiple
 964         * tasks to create chunks simultaneously.  Serialize and create iff
 965         * there's still no empty chunk after grabbing the mutex.
 966         */
 967        if (is_atomic)
 968                goto fail;
 969
 970        mutex_lock(&pcpu_alloc_mutex);
 971
 972        if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
 973                chunk = pcpu_create_chunk();
 974                if (!chunk) {
 975                        mutex_unlock(&pcpu_alloc_mutex);
 976                        err = "failed to allocate new chunk";
 977                        goto fail;
 978                }
 979
 980                spin_lock_irqsave(&pcpu_lock, flags);
 981                pcpu_chunk_relocate(chunk, -1);
 982        } else {
 983                spin_lock_irqsave(&pcpu_lock, flags);
 984        }
 985
 986        mutex_unlock(&pcpu_alloc_mutex);
 987        goto restart;
 988
 989area_found:
 990        spin_unlock_irqrestore(&pcpu_lock, flags);
 991
 992        /* populate if not all pages are already there */
 993        if (!is_atomic) {
 994                int page_start, page_end, rs, re;
 995
 996                mutex_lock(&pcpu_alloc_mutex);
 997
 998                page_start = PFN_DOWN(off);
 999                page_end = PFN_UP(off + size);
1000
1001                pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1002                        WARN_ON(chunk->immutable);
1003
1004                        ret = pcpu_populate_chunk(chunk, rs, re);
1005
1006                        spin_lock_irqsave(&pcpu_lock, flags);
1007                        if (ret) {
1008                                mutex_unlock(&pcpu_alloc_mutex);
1009                                pcpu_free_area(chunk, off, &occ_pages);
1010                                err = "failed to populate";
1011                                goto fail_unlock;
1012                        }
1013                        pcpu_chunk_populated(chunk, rs, re);
1014                        spin_unlock_irqrestore(&pcpu_lock, flags);
1015                }
1016
1017                mutex_unlock(&pcpu_alloc_mutex);
1018        }
1019
1020        if (chunk != pcpu_reserved_chunk)
1021                pcpu_nr_empty_pop_pages -= occ_pages;
1022
1023        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1024                pcpu_schedule_balance_work();
1025
1026        /* clear the areas and return address relative to base address */
1027        for_each_possible_cpu(cpu)
1028                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1029
1030        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1031        kmemleak_alloc_percpu(ptr, size, gfp);
1032        return ptr;
1033
1034fail_unlock:
1035        spin_unlock_irqrestore(&pcpu_lock, flags);
1036fail:
1037        if (!is_atomic && warn_limit) {
1038                pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1039                        size, align, is_atomic, err);
1040                dump_stack();
1041                if (!--warn_limit)
1042                        pr_info("limit reached, disable warning\n");
1043        }
1044        if (is_atomic) {
1045                /* see the flag handling in pcpu_blance_workfn() */
1046                pcpu_atomic_alloc_failed = true;
1047                pcpu_schedule_balance_work();
1048        }
1049        return NULL;
1050}
1051
1052/**
1053 * __alloc_percpu_gfp - allocate dynamic percpu area
1054 * @size: size of area to allocate in bytes
1055 * @align: alignment of area (max PAGE_SIZE)
1056 * @gfp: allocation flags
1057 *
1058 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060 * be called from any context but is a lot more likely to fail.
1061 *
1062 * RETURNS:
1063 * Percpu pointer to the allocated area on success, NULL on failure.
1064 */
1065void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1066{
1067        return pcpu_alloc(size, align, false, gfp);
1068}
1069EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1070
1071/**
1072 * __alloc_percpu - allocate dynamic percpu area
1073 * @size: size of area to allocate in bytes
1074 * @align: alignment of area (max PAGE_SIZE)
1075 *
1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1077 */
1078void __percpu *__alloc_percpu(size_t size, size_t align)
1079{
1080        return pcpu_alloc(size, align, false, GFP_KERNEL);
1081}
1082EXPORT_SYMBOL_GPL(__alloc_percpu);
1083
1084/**
1085 * __alloc_reserved_percpu - allocate reserved percpu area
1086 * @size: size of area to allocate in bytes
1087 * @align: alignment of area (max PAGE_SIZE)
1088 *
1089 * Allocate zero-filled percpu area of @size bytes aligned at @align
1090 * from reserved percpu area if arch has set it up; otherwise,
1091 * allocation is served from the same dynamic area.  Might sleep.
1092 * Might trigger writeouts.
1093 *
1094 * CONTEXT:
1095 * Does GFP_KERNEL allocation.
1096 *
1097 * RETURNS:
1098 * Percpu pointer to the allocated area on success, NULL on failure.
1099 */
1100void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1101{
1102        return pcpu_alloc(size, align, true, GFP_KERNEL);
1103}
1104
1105/**
1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1107 * @work: unused
1108 *
1109 * Reclaim all fully free chunks except for the first one.
1110 */
1111static void pcpu_balance_workfn(struct work_struct *work)
1112{
1113        LIST_HEAD(to_free);
1114        struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1115        struct pcpu_chunk *chunk, *next;
1116        int slot, nr_to_pop, ret;
1117
1118        /*
1119         * There's no reason to keep around multiple unused chunks and VM
1120         * areas can be scarce.  Destroy all free chunks except for one.
1121         */
1122        mutex_lock(&pcpu_alloc_mutex);
1123        spin_lock_irq(&pcpu_lock);
1124
1125        list_for_each_entry_safe(chunk, next, free_head, list) {
1126                WARN_ON(chunk->immutable);
1127
1128                /* spare the first one */
1129                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1130                        continue;
1131
1132                list_move(&chunk->list, &to_free);
1133        }
1134
1135        spin_unlock_irq(&pcpu_lock);
1136
1137        list_for_each_entry_safe(chunk, next, &to_free, list) {
1138                int rs, re;
1139
1140                pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141                        pcpu_depopulate_chunk(chunk, rs, re);
1142                        spin_lock_irq(&pcpu_lock);
1143                        pcpu_chunk_depopulated(chunk, rs, re);
1144                        spin_unlock_irq(&pcpu_lock);
1145                }
1146                pcpu_destroy_chunk(chunk);
1147        }
1148
1149        /*
1150         * Ensure there are certain number of free populated pages for
1151         * atomic allocs.  Fill up from the most packed so that atomic
1152         * allocs don't increase fragmentation.  If atomic allocation
1153         * failed previously, always populate the maximum amount.  This
1154         * should prevent atomic allocs larger than PAGE_SIZE from keeping
1155         * failing indefinitely; however, large atomic allocs are not
1156         * something we support properly and can be highly unreliable and
1157         * inefficient.
1158         */
1159retry_pop:
1160        if (pcpu_atomic_alloc_failed) {
1161                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1162                /* best effort anyway, don't worry about synchronization */
1163                pcpu_atomic_alloc_failed = false;
1164        } else {
1165                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1166                                  pcpu_nr_empty_pop_pages,
1167                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
1168        }
1169
1170        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1171                int nr_unpop = 0, rs, re;
1172
1173                if (!nr_to_pop)
1174                        break;
1175
1176                spin_lock_irq(&pcpu_lock);
1177                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1178                        nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1179                        if (nr_unpop)
1180                                break;
1181                }
1182                spin_unlock_irq(&pcpu_lock);
1183
1184                if (!nr_unpop)
1185                        continue;
1186
1187                /* @chunk can't go away while pcpu_alloc_mutex is held */
1188                pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1189                        int nr = min(re - rs, nr_to_pop);
1190
1191                        ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1192                        if (!ret) {
1193                                nr_to_pop -= nr;
1194                                spin_lock_irq(&pcpu_lock);
1195                                pcpu_chunk_populated(chunk, rs, rs + nr);
1196                                spin_unlock_irq(&pcpu_lock);
1197                        } else {
1198                                nr_to_pop = 0;
1199                        }
1200
1201                        if (!nr_to_pop)
1202                                break;
1203                }
1204        }
1205
1206        if (nr_to_pop) {
1207                /* ran out of chunks to populate, create a new one and retry */
1208                chunk = pcpu_create_chunk();
1209                if (chunk) {
1210                        spin_lock_irq(&pcpu_lock);
1211                        pcpu_chunk_relocate(chunk, -1);
1212                        spin_unlock_irq(&pcpu_lock);
1213                        goto retry_pop;
1214                }
1215        }
1216
1217        mutex_unlock(&pcpu_alloc_mutex);
1218}
1219
1220/**
1221 * free_percpu - free percpu area
1222 * @ptr: pointer to area to free
1223 *
1224 * Free percpu area @ptr.
1225 *
1226 * CONTEXT:
1227 * Can be called from atomic context.
1228 */
1229void free_percpu(void __percpu *ptr)
1230{
1231        void *addr;
1232        struct pcpu_chunk *chunk;
1233        unsigned long flags;
1234        int off, occ_pages;
1235
1236        if (!ptr)
1237                return;
1238
1239        kmemleak_free_percpu(ptr);
1240
1241        addr = __pcpu_ptr_to_addr(ptr);
1242
1243        spin_lock_irqsave(&pcpu_lock, flags);
1244
1245        chunk = pcpu_chunk_addr_search(addr);
1246        off = addr - chunk->base_addr;
1247
1248        pcpu_free_area(chunk, off, &occ_pages);
1249
1250        if (chunk != pcpu_reserved_chunk)
1251                pcpu_nr_empty_pop_pages += occ_pages;
1252
1253        /* if there are more than one fully free chunks, wake up grim reaper */
1254        if (chunk->free_size == pcpu_unit_size) {
1255                struct pcpu_chunk *pos;
1256
1257                list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1258                        if (pos != chunk) {
1259                                pcpu_schedule_balance_work();
1260                                break;
1261                        }
1262        }
1263
1264        spin_unlock_irqrestore(&pcpu_lock, flags);
1265}
1266EXPORT_SYMBOL_GPL(free_percpu);
1267
1268/**
1269 * is_kernel_percpu_address - test whether address is from static percpu area
1270 * @addr: address to test
1271 *
1272 * Test whether @addr belongs to in-kernel static percpu area.  Module
1273 * static percpu areas are not considered.  For those, use
1274 * is_module_percpu_address().
1275 *
1276 * RETURNS:
1277 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1278 */
1279bool is_kernel_percpu_address(unsigned long addr)
1280{
1281#ifdef CONFIG_SMP
1282        const size_t static_size = __per_cpu_end - __per_cpu_start;
1283        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1284        unsigned int cpu;
1285
1286        for_each_possible_cpu(cpu) {
1287                void *start = per_cpu_ptr(base, cpu);
1288
1289                if ((void *)addr >= start && (void *)addr < start + static_size)
1290                        return true;
1291        }
1292#endif
1293        /* on UP, can't distinguish from other static vars, always false */
1294        return false;
1295}
1296
1297/**
1298 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1299 * @addr: the address to be converted to physical address
1300 *
1301 * Given @addr which is dereferenceable address obtained via one of
1302 * percpu access macros, this function translates it into its physical
1303 * address.  The caller is responsible for ensuring @addr stays valid
1304 * until this function finishes.
1305 *
1306 * percpu allocator has special setup for the first chunk, which currently
1307 * supports either embedding in linear address space or vmalloc mapping,
1308 * and, from the second one, the backing allocator (currently either vm or
1309 * km) provides translation.
1310 *
1311 * The addr can be translated simply without checking if it falls into the
1312 * first chunk. But the current code reflects better how percpu allocator
1313 * actually works, and the verification can discover both bugs in percpu
1314 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1315 * code.
1316 *
1317 * RETURNS:
1318 * The physical address for @addr.
1319 */
1320phys_addr_t per_cpu_ptr_to_phys(void *addr)
1321{
1322        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1323        bool in_first_chunk = false;
1324        unsigned long first_low, first_high;
1325        unsigned int cpu;
1326
1327        /*
1328         * The following test on unit_low/high isn't strictly
1329         * necessary but will speed up lookups of addresses which
1330         * aren't in the first chunk.
1331         */
1332        first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1333        first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1334                                     pcpu_unit_pages);
1335        if ((unsigned long)addr >= first_low &&
1336            (unsigned long)addr < first_high) {
1337                for_each_possible_cpu(cpu) {
1338                        void *start = per_cpu_ptr(base, cpu);
1339
1340                        if (addr >= start && addr < start + pcpu_unit_size) {
1341                                in_first_chunk = true;
1342                                break;
1343                        }
1344                }
1345        }
1346
1347        if (in_first_chunk) {
1348                if (!is_vmalloc_addr(addr))
1349                        return __pa(addr);
1350                else
1351                        return page_to_phys(vmalloc_to_page(addr)) +
1352                               offset_in_page(addr);
1353        } else
1354                return page_to_phys(pcpu_addr_to_page(addr)) +
1355                       offset_in_page(addr);
1356}
1357
1358/**
1359 * pcpu_alloc_alloc_info - allocate percpu allocation info
1360 * @nr_groups: the number of groups
1361 * @nr_units: the number of units
1362 *
1363 * Allocate ai which is large enough for @nr_groups groups containing
1364 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1365 * cpu_map array which is long enough for @nr_units and filled with
1366 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1367 * pointer of other groups.
1368 *
1369 * RETURNS:
1370 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1371 * failure.
1372 */
1373struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1374                                                      int nr_units)
1375{
1376        struct pcpu_alloc_info *ai;
1377        size_t base_size, ai_size;
1378        void *ptr;
1379        int unit;
1380
1381        base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1382                          __alignof__(ai->groups[0].cpu_map[0]));
1383        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1384
1385        ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1386        if (!ptr)
1387                return NULL;
1388        ai = ptr;
1389        ptr += base_size;
1390
1391        ai->groups[0].cpu_map = ptr;
1392
1393        for (unit = 0; unit < nr_units; unit++)
1394                ai->groups[0].cpu_map[unit] = NR_CPUS;
1395
1396        ai->nr_groups = nr_groups;
1397        ai->__ai_size = PFN_ALIGN(ai_size);
1398
1399        return ai;
1400}
1401
1402/**
1403 * pcpu_free_alloc_info - free percpu allocation info
1404 * @ai: pcpu_alloc_info to free
1405 *
1406 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1407 */
1408void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1409{
1410        memblock_free_early(__pa(ai), ai->__ai_size);
1411}
1412
1413/**
1414 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1415 * @lvl: loglevel
1416 * @ai: allocation info to dump
1417 *
1418 * Print out information about @ai using loglevel @lvl.
1419 */
1420static void pcpu_dump_alloc_info(const char *lvl,
1421                                 const struct pcpu_alloc_info *ai)
1422{
1423        int group_width = 1, cpu_width = 1, width;
1424        char empty_str[] = "--------";
1425        int alloc = 0, alloc_end = 0;
1426        int group, v;
1427        int upa, apl;   /* units per alloc, allocs per line */
1428
1429        v = ai->nr_groups;
1430        while (v /= 10)
1431                group_width++;
1432
1433        v = num_possible_cpus();
1434        while (v /= 10)
1435                cpu_width++;
1436        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1437
1438        upa = ai->alloc_size / ai->unit_size;
1439        width = upa * (cpu_width + 1) + group_width + 3;
1440        apl = rounddown_pow_of_two(max(60 / width, 1));
1441
1442        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1443               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1444               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1445
1446        for (group = 0; group < ai->nr_groups; group++) {
1447                const struct pcpu_group_info *gi = &ai->groups[group];
1448                int unit = 0, unit_end = 0;
1449
1450                BUG_ON(gi->nr_units % upa);
1451                for (alloc_end += gi->nr_units / upa;
1452                     alloc < alloc_end; alloc++) {
1453                        if (!(alloc % apl)) {
1454                                pr_cont("\n");
1455                                printk("%spcpu-alloc: ", lvl);
1456                        }
1457                        pr_cont("[%0*d] ", group_width, group);
1458
1459                        for (unit_end += upa; unit < unit_end; unit++)
1460                                if (gi->cpu_map[unit] != NR_CPUS)
1461                                        pr_cont("%0*d ",
1462                                                cpu_width, gi->cpu_map[unit]);
1463                                else
1464                                        pr_cont("%s ", empty_str);
1465                }
1466        }
1467        pr_cont("\n");
1468}
1469
1470/**
1471 * pcpu_setup_first_chunk - initialize the first percpu chunk
1472 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1473 * @base_addr: mapped address
1474 *
1475 * Initialize the first percpu chunk which contains the kernel static
1476 * perpcu area.  This function is to be called from arch percpu area
1477 * setup path.
1478 *
1479 * @ai contains all information necessary to initialize the first
1480 * chunk and prime the dynamic percpu allocator.
1481 *
1482 * @ai->static_size is the size of static percpu area.
1483 *
1484 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1485 * reserve after the static area in the first chunk.  This reserves
1486 * the first chunk such that it's available only through reserved
1487 * percpu allocation.  This is primarily used to serve module percpu
1488 * static areas on architectures where the addressing model has
1489 * limited offset range for symbol relocations to guarantee module
1490 * percpu symbols fall inside the relocatable range.
1491 *
1492 * @ai->dyn_size determines the number of bytes available for dynamic
1493 * allocation in the first chunk.  The area between @ai->static_size +
1494 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1495 *
1496 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1497 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1498 * @ai->dyn_size.
1499 *
1500 * @ai->atom_size is the allocation atom size and used as alignment
1501 * for vm areas.
1502 *
1503 * @ai->alloc_size is the allocation size and always multiple of
1504 * @ai->atom_size.  This is larger than @ai->atom_size if
1505 * @ai->unit_size is larger than @ai->atom_size.
1506 *
1507 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1508 * percpu areas.  Units which should be colocated are put into the
1509 * same group.  Dynamic VM areas will be allocated according to these
1510 * groupings.  If @ai->nr_groups is zero, a single group containing
1511 * all units is assumed.
1512 *
1513 * The caller should have mapped the first chunk at @base_addr and
1514 * copied static data to each unit.
1515 *
1516 * If the first chunk ends up with both reserved and dynamic areas, it
1517 * is served by two chunks - one to serve the core static and reserved
1518 * areas and the other for the dynamic area.  They share the same vm
1519 * and page map but uses different area allocation map to stay away
1520 * from each other.  The latter chunk is circulated in the chunk slots
1521 * and available for dynamic allocation like any other chunks.
1522 *
1523 * RETURNS:
1524 * 0 on success, -errno on failure.
1525 */
1526int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1527                                  void *base_addr)
1528{
1529        static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1530        static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1531        size_t dyn_size = ai->dyn_size;
1532        size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1533        struct pcpu_chunk *schunk, *dchunk = NULL;
1534        unsigned long *group_offsets;
1535        size_t *group_sizes;
1536        unsigned long *unit_off;
1537        unsigned int cpu;
1538        int *unit_map;
1539        int group, unit, i;
1540
1541#define PCPU_SETUP_BUG_ON(cond) do {                                    \
1542        if (unlikely(cond)) {                                           \
1543                pr_emerg("failed to initialize, %s\n", #cond);          \
1544                pr_emerg("cpu_possible_mask=%*pb\n",                    \
1545                         cpumask_pr_args(cpu_possible_mask));           \
1546                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
1547                BUG();                                                  \
1548        }                                                               \
1549} while (0)
1550
1551        /* sanity checks */
1552        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1553#ifdef CONFIG_SMP
1554        PCPU_SETUP_BUG_ON(!ai->static_size);
1555        PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1556#endif
1557        PCPU_SETUP_BUG_ON(!base_addr);
1558        PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1559        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1560        PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1561        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1562        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1563        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1564
1565        /* process group information and build config tables accordingly */
1566        group_offsets = memblock_virt_alloc(ai->nr_groups *
1567                                             sizeof(group_offsets[0]), 0);
1568        group_sizes = memblock_virt_alloc(ai->nr_groups *
1569                                           sizeof(group_sizes[0]), 0);
1570        unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1571        unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1572
1573        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1574                unit_map[cpu] = UINT_MAX;
1575
1576        pcpu_low_unit_cpu = NR_CPUS;
1577        pcpu_high_unit_cpu = NR_CPUS;
1578
1579        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1580                const struct pcpu_group_info *gi = &ai->groups[group];
1581
1582                group_offsets[group] = gi->base_offset;
1583                group_sizes[group] = gi->nr_units * ai->unit_size;
1584
1585                for (i = 0; i < gi->nr_units; i++) {
1586                        cpu = gi->cpu_map[i];
1587                        if (cpu == NR_CPUS)
1588                                continue;
1589
1590                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1591                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1592                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1593
1594                        unit_map[cpu] = unit + i;
1595                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1596
1597                        /* determine low/high unit_cpu */
1598                        if (pcpu_low_unit_cpu == NR_CPUS ||
1599                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1600                                pcpu_low_unit_cpu = cpu;
1601                        if (pcpu_high_unit_cpu == NR_CPUS ||
1602                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1603                                pcpu_high_unit_cpu = cpu;
1604                }
1605        }
1606        pcpu_nr_units = unit;
1607
1608        for_each_possible_cpu(cpu)
1609                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1610
1611        /* we're done parsing the input, undefine BUG macro and dump config */
1612#undef PCPU_SETUP_BUG_ON
1613        pcpu_dump_alloc_info(KERN_DEBUG, ai);
1614
1615        pcpu_nr_groups = ai->nr_groups;
1616        pcpu_group_offsets = group_offsets;
1617        pcpu_group_sizes = group_sizes;
1618        pcpu_unit_map = unit_map;
1619        pcpu_unit_offsets = unit_off;
1620
1621        /* determine basic parameters */
1622        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1623        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1624        pcpu_atom_size = ai->atom_size;
1625        pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1626                BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1627
1628        /*
1629         * Allocate chunk slots.  The additional last slot is for
1630         * empty chunks.
1631         */
1632        pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1633        pcpu_slot = memblock_virt_alloc(
1634                        pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1635        for (i = 0; i < pcpu_nr_slots; i++)
1636                INIT_LIST_HEAD(&pcpu_slot[i]);
1637
1638        /*
1639         * Initialize static chunk.  If reserved_size is zero, the
1640         * static chunk covers static area + dynamic allocation area
1641         * in the first chunk.  If reserved_size is not zero, it
1642         * covers static area + reserved area (mostly used for module
1643         * static percpu allocation).
1644         */
1645        schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1646        INIT_LIST_HEAD(&schunk->list);
1647        INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1648        schunk->base_addr = base_addr;
1649        schunk->map = smap;
1650        schunk->map_alloc = ARRAY_SIZE(smap);
1651        schunk->immutable = true;
1652        bitmap_fill(schunk->populated, pcpu_unit_pages);
1653        schunk->nr_populated = pcpu_unit_pages;
1654
1655        if (ai->reserved_size) {
1656                schunk->free_size = ai->reserved_size;
1657                pcpu_reserved_chunk = schunk;
1658                pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1659        } else {
1660                schunk->free_size = dyn_size;
1661                dyn_size = 0;                   /* dynamic area covered */
1662        }
1663        schunk->contig_hint = schunk->free_size;
1664
1665        schunk->map[0] = 1;
1666        schunk->map[1] = ai->static_size;
1667        schunk->map_used = 1;
1668        if (schunk->free_size)
1669                schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1670        schunk->map[schunk->map_used] |= 1;
1671
1672        /* init dynamic chunk if necessary */
1673        if (dyn_size) {
1674                dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1675                INIT_LIST_HEAD(&dchunk->list);
1676                INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1677                dchunk->base_addr = base_addr;
1678                dchunk->map = dmap;
1679                dchunk->map_alloc = ARRAY_SIZE(dmap);
1680                dchunk->immutable = true;
1681                bitmap_fill(dchunk->populated, pcpu_unit_pages);
1682                dchunk->nr_populated = pcpu_unit_pages;
1683
1684                dchunk->contig_hint = dchunk->free_size = dyn_size;
1685                dchunk->map[0] = 1;
1686                dchunk->map[1] = pcpu_reserved_chunk_limit;
1687                dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1688                dchunk->map_used = 2;
1689        }
1690
1691        /* link the first chunk in */
1692        pcpu_first_chunk = dchunk ?: schunk;
1693        pcpu_nr_empty_pop_pages +=
1694                pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1695        pcpu_chunk_relocate(pcpu_first_chunk, -1);
1696
1697        /* we're done */
1698        pcpu_base_addr = base_addr;
1699        return 0;
1700}
1701
1702#ifdef CONFIG_SMP
1703
1704const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1705        [PCPU_FC_AUTO]  = "auto",
1706        [PCPU_FC_EMBED] = "embed",
1707        [PCPU_FC_PAGE]  = "page",
1708};
1709
1710enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1711
1712static int __init percpu_alloc_setup(char *str)
1713{
1714        if (!str)
1715                return -EINVAL;
1716
1717        if (0)
1718                /* nada */;
1719#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1720        else if (!strcmp(str, "embed"))
1721                pcpu_chosen_fc = PCPU_FC_EMBED;
1722#endif
1723#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1724        else if (!strcmp(str, "page"))
1725                pcpu_chosen_fc = PCPU_FC_PAGE;
1726#endif
1727        else
1728                pr_warn("unknown allocator %s specified\n", str);
1729
1730        return 0;
1731}
1732early_param("percpu_alloc", percpu_alloc_setup);
1733
1734/*
1735 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1736 * Build it if needed by the arch config or the generic setup is going
1737 * to be used.
1738 */
1739#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741#define BUILD_EMBED_FIRST_CHUNK
1742#endif
1743
1744/* build pcpu_page_first_chunk() iff needed by the arch config */
1745#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1746#define BUILD_PAGE_FIRST_CHUNK
1747#endif
1748
1749/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1750#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1751/**
1752 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1753 * @reserved_size: the size of reserved percpu area in bytes
1754 * @dyn_size: minimum free size for dynamic allocation in bytes
1755 * @atom_size: allocation atom size
1756 * @cpu_distance_fn: callback to determine distance between cpus, optional
1757 *
1758 * This function determines grouping of units, their mappings to cpus
1759 * and other parameters considering needed percpu size, allocation
1760 * atom size and distances between CPUs.
1761 *
1762 * Groups are always multiples of atom size and CPUs which are of
1763 * LOCAL_DISTANCE both ways are grouped together and share space for
1764 * units in the same group.  The returned configuration is guaranteed
1765 * to have CPUs on different nodes on different groups and >=75% usage
1766 * of allocated virtual address space.
1767 *
1768 * RETURNS:
1769 * On success, pointer to the new allocation_info is returned.  On
1770 * failure, ERR_PTR value is returned.
1771 */
1772static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1773                                size_t reserved_size, size_t dyn_size,
1774                                size_t atom_size,
1775                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1776{
1777        static int group_map[NR_CPUS] __initdata;
1778        static int group_cnt[NR_CPUS] __initdata;
1779        const size_t static_size = __per_cpu_end - __per_cpu_start;
1780        int nr_groups = 1, nr_units = 0;
1781        size_t size_sum, min_unit_size, alloc_size;
1782        int upa, max_upa, uninitialized_var(best_upa);  /* units_per_alloc */
1783        int last_allocs, group, unit;
1784        unsigned int cpu, tcpu;
1785        struct pcpu_alloc_info *ai;
1786        unsigned int *cpu_map;
1787
1788        /* this function may be called multiple times */
1789        memset(group_map, 0, sizeof(group_map));
1790        memset(group_cnt, 0, sizeof(group_cnt));
1791
1792        /* calculate size_sum and ensure dyn_size is enough for early alloc */
1793        size_sum = PFN_ALIGN(static_size + reserved_size +
1794                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1795        dyn_size = size_sum - static_size - reserved_size;
1796
1797        /*
1798         * Determine min_unit_size, alloc_size and max_upa such that
1799         * alloc_size is multiple of atom_size and is the smallest
1800         * which can accommodate 4k aligned segments which are equal to
1801         * or larger than min_unit_size.
1802         */
1803        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1804
1805        alloc_size = roundup(min_unit_size, atom_size);
1806        upa = alloc_size / min_unit_size;
1807        while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1808                upa--;
1809        max_upa = upa;
1810
1811        /* group cpus according to their proximity */
1812        for_each_possible_cpu(cpu) {
1813                group = 0;
1814        next_group:
1815                for_each_possible_cpu(tcpu) {
1816                        if (cpu == tcpu)
1817                                break;
1818                        if (group_map[tcpu] == group && cpu_distance_fn &&
1819                            (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1820                             cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1821                                group++;
1822                                nr_groups = max(nr_groups, group + 1);
1823                                goto next_group;
1824                        }
1825                }
1826                group_map[cpu] = group;
1827                group_cnt[group]++;
1828        }
1829
1830        /*
1831         * Expand unit size until address space usage goes over 75%
1832         * and then as much as possible without using more address
1833         * space.
1834         */
1835        last_allocs = INT_MAX;
1836        for (upa = max_upa; upa; upa--) {
1837                int allocs = 0, wasted = 0;
1838
1839                if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1840                        continue;
1841
1842                for (group = 0; group < nr_groups; group++) {
1843                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1844                        allocs += this_allocs;
1845                        wasted += this_allocs * upa - group_cnt[group];
1846                }
1847
1848                /*
1849                 * Don't accept if wastage is over 1/3.  The
1850                 * greater-than comparison ensures upa==1 always
1851                 * passes the following check.
1852                 */
1853                if (wasted > num_possible_cpus() / 3)
1854                        continue;
1855
1856                /* and then don't consume more memory */
1857                if (allocs > last_allocs)
1858                        break;
1859                last_allocs = allocs;
1860                best_upa = upa;
1861        }
1862        upa = best_upa;
1863
1864        /* allocate and fill alloc_info */
1865        for (group = 0; group < nr_groups; group++)
1866                nr_units += roundup(group_cnt[group], upa);
1867
1868        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1869        if (!ai)
1870                return ERR_PTR(-ENOMEM);
1871        cpu_map = ai->groups[0].cpu_map;
1872
1873        for (group = 0; group < nr_groups; group++) {
1874                ai->groups[group].cpu_map = cpu_map;
1875                cpu_map += roundup(group_cnt[group], upa);
1876        }
1877
1878        ai->static_size = static_size;
1879        ai->reserved_size = reserved_size;
1880        ai->dyn_size = dyn_size;
1881        ai->unit_size = alloc_size / upa;
1882        ai->atom_size = atom_size;
1883        ai->alloc_size = alloc_size;
1884
1885        for (group = 0, unit = 0; group_cnt[group]; group++) {
1886                struct pcpu_group_info *gi = &ai->groups[group];
1887
1888                /*
1889                 * Initialize base_offset as if all groups are located
1890                 * back-to-back.  The caller should update this to
1891                 * reflect actual allocation.
1892                 */
1893                gi->base_offset = unit * ai->unit_size;
1894
1895                for_each_possible_cpu(cpu)
1896                        if (group_map[cpu] == group)
1897                                gi->cpu_map[gi->nr_units++] = cpu;
1898                gi->nr_units = roundup(gi->nr_units, upa);
1899                unit += gi->nr_units;
1900        }
1901        BUG_ON(unit != nr_units);
1902
1903        return ai;
1904}
1905#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1906
1907#if defined(BUILD_EMBED_FIRST_CHUNK)
1908/**
1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910 * @reserved_size: the size of reserved percpu area in bytes
1911 * @dyn_size: minimum free size for dynamic allocation in bytes
1912 * @atom_size: allocation atom size
1913 * @cpu_distance_fn: callback to determine distance between cpus, optional
1914 * @alloc_fn: function to allocate percpu page
1915 * @free_fn: function to free percpu page
1916 *
1917 * This is a helper to ease setting up embedded first percpu chunk and
1918 * can be called where pcpu_setup_first_chunk() is expected.
1919 *
1920 * If this function is used to setup the first chunk, it is allocated
1921 * by calling @alloc_fn and used as-is without being mapped into
1922 * vmalloc area.  Allocations are always whole multiples of @atom_size
1923 * aligned to @atom_size.
1924 *
1925 * This enables the first chunk to piggy back on the linear physical
1926 * mapping which often uses larger page size.  Please note that this
1927 * can result in very sparse cpu->unit mapping on NUMA machines thus
1928 * requiring large vmalloc address space.  Don't use this allocator if
1929 * vmalloc space is not orders of magnitude larger than distances
1930 * between node memory addresses (ie. 32bit NUMA machines).
1931 *
1932 * @dyn_size specifies the minimum dynamic area size.
1933 *
1934 * If the needed size is smaller than the minimum or specified unit
1935 * size, the leftover is returned using @free_fn.
1936 *
1937 * RETURNS:
1938 * 0 on success, -errno on failure.
1939 */
1940int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1941                                  size_t atom_size,
1942                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1943                                  pcpu_fc_alloc_fn_t alloc_fn,
1944                                  pcpu_fc_free_fn_t free_fn)
1945{
1946        void *base = (void *)ULONG_MAX;
1947        void **areas = NULL;
1948        struct pcpu_alloc_info *ai;
1949        size_t size_sum, areas_size, max_distance;
1950        int group, i, rc;
1951
1952        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1953                                   cpu_distance_fn);
1954        if (IS_ERR(ai))
1955                return PTR_ERR(ai);
1956
1957        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1958        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1959
1960        areas = memblock_virt_alloc_nopanic(areas_size, 0);
1961        if (!areas) {
1962                rc = -ENOMEM;
1963                goto out_free;
1964        }
1965
1966        /* allocate, copy and determine base address */
1967        for (group = 0; group < ai->nr_groups; group++) {
1968                struct pcpu_group_info *gi = &ai->groups[group];
1969                unsigned int cpu = NR_CPUS;
1970                void *ptr;
1971
1972                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1973                        cpu = gi->cpu_map[i];
1974                BUG_ON(cpu == NR_CPUS);
1975
1976                /* allocate space for the whole group */
1977                ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1978                if (!ptr) {
1979                        rc = -ENOMEM;
1980                        goto out_free_areas;
1981                }
1982                /* kmemleak tracks the percpu allocations separately */
1983                kmemleak_free(ptr);
1984                areas[group] = ptr;
1985
1986                base = min(ptr, base);
1987        }
1988
1989        /*
1990         * Copy data and free unused parts.  This should happen after all
1991         * allocations are complete; otherwise, we may end up with
1992         * overlapping groups.
1993         */
1994        for (group = 0; group < ai->nr_groups; group++) {
1995                struct pcpu_group_info *gi = &ai->groups[group];
1996                void *ptr = areas[group];
1997
1998                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1999                        if (gi->cpu_map[i] == NR_CPUS) {
2000                                /* unused unit, free whole */
2001                                free_fn(ptr, ai->unit_size);
2002                                continue;
2003                        }
2004                        /* copy and return the unused part */
2005                        memcpy(ptr, __per_cpu_load, ai->static_size);
2006                        free_fn(ptr + size_sum, ai->unit_size - size_sum);
2007                }
2008        }
2009
2010        /* base address is now known, determine group base offsets */
2011        max_distance = 0;
2012        for (group = 0; group < ai->nr_groups; group++) {
2013                ai->groups[group].base_offset = areas[group] - base;
2014                max_distance = max_t(size_t, max_distance,
2015                                     ai->groups[group].base_offset);
2016        }
2017        max_distance += ai->unit_size;
2018
2019        /* warn if maximum distance is further than 75% of vmalloc space */
2020        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2021                pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2022                        max_distance, VMALLOC_TOTAL);
2023#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2024                /* and fail if we have fallback */
2025                rc = -EINVAL;
2026                goto out_free;
2027#endif
2028        }
2029
2030        pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2031                PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2032                ai->dyn_size, ai->unit_size);
2033
2034        rc = pcpu_setup_first_chunk(ai, base);
2035        goto out_free;
2036
2037out_free_areas:
2038        for (group = 0; group < ai->nr_groups; group++)
2039                if (areas[group])
2040                        free_fn(areas[group],
2041                                ai->groups[group].nr_units * ai->unit_size);
2042out_free:
2043        pcpu_free_alloc_info(ai);
2044        if (areas)
2045                memblock_free_early(__pa(areas), areas_size);
2046        return rc;
2047}
2048#endif /* BUILD_EMBED_FIRST_CHUNK */
2049
2050#ifdef BUILD_PAGE_FIRST_CHUNK
2051/**
2052 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2053 * @reserved_size: the size of reserved percpu area in bytes
2054 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2055 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2056 * @populate_pte_fn: function to populate pte
2057 *
2058 * This is a helper to ease setting up page-remapped first percpu
2059 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2060 *
2061 * This is the basic allocator.  Static percpu area is allocated
2062 * page-by-page into vmalloc area.
2063 *
2064 * RETURNS:
2065 * 0 on success, -errno on failure.
2066 */
2067int __init pcpu_page_first_chunk(size_t reserved_size,
2068                                 pcpu_fc_alloc_fn_t alloc_fn,
2069                                 pcpu_fc_free_fn_t free_fn,
2070                                 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2071{
2072        static struct vm_struct vm;
2073        struct pcpu_alloc_info *ai;
2074        char psize_str[16];
2075        int unit_pages;
2076        size_t pages_size;
2077        struct page **pages;
2078        int unit, i, j, rc;
2079
2080        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2081
2082        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2083        if (IS_ERR(ai))
2084                return PTR_ERR(ai);
2085        BUG_ON(ai->nr_groups != 1);
2086        BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2087
2088        unit_pages = ai->unit_size >> PAGE_SHIFT;
2089
2090        /* unaligned allocations can't be freed, round up to page size */
2091        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2092                               sizeof(pages[0]));
2093        pages = memblock_virt_alloc(pages_size, 0);
2094
2095        /* allocate pages */
2096        j = 0;
2097        for (unit = 0; unit < num_possible_cpus(); unit++)
2098                for (i = 0; i < unit_pages; i++) {
2099                        unsigned int cpu = ai->groups[0].cpu_map[unit];
2100                        void *ptr;
2101
2102                        ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2103                        if (!ptr) {
2104                                pr_warn("failed to allocate %s page for cpu%u\n",
2105                                        psize_str, cpu);
2106                                goto enomem;
2107                        }
2108                        /* kmemleak tracks the percpu allocations separately */
2109                        kmemleak_free(ptr);
2110                        pages[j++] = virt_to_page(ptr);
2111                }
2112
2113        /* allocate vm area, map the pages and copy static data */
2114        vm.flags = VM_ALLOC;
2115        vm.size = num_possible_cpus() * ai->unit_size;
2116        vm_area_register_early(&vm, PAGE_SIZE);
2117
2118        for (unit = 0; unit < num_possible_cpus(); unit++) {
2119                unsigned long unit_addr =
2120                        (unsigned long)vm.addr + unit * ai->unit_size;
2121
2122                for (i = 0; i < unit_pages; i++)
2123                        populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2124
2125                /* pte already populated, the following shouldn't fail */
2126                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2127                                      unit_pages);
2128                if (rc < 0)
2129                        panic("failed to map percpu area, err=%d\n", rc);
2130
2131                /*
2132                 * FIXME: Archs with virtual cache should flush local
2133                 * cache for the linear mapping here - something
2134                 * equivalent to flush_cache_vmap() on the local cpu.
2135                 * flush_cache_vmap() can't be used as most supporting
2136                 * data structures are not set up yet.
2137                 */
2138
2139                /* copy static data */
2140                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2141        }
2142
2143        /* we're ready, commit */
2144        pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2145                unit_pages, psize_str, vm.addr, ai->static_size,
2146                ai->reserved_size, ai->dyn_size);
2147
2148        rc = pcpu_setup_first_chunk(ai, vm.addr);
2149        goto out_free_ar;
2150
2151enomem:
2152        while (--j >= 0)
2153                free_fn(page_address(pages[j]), PAGE_SIZE);
2154        rc = -ENOMEM;
2155out_free_ar:
2156        memblock_free_early(__pa(pages), pages_size);
2157        pcpu_free_alloc_info(ai);
2158        return rc;
2159}
2160#endif /* BUILD_PAGE_FIRST_CHUNK */
2161
2162#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2163/*
2164 * Generic SMP percpu area setup.
2165 *
2166 * The embedding helper is used because its behavior closely resembles
2167 * the original non-dynamic generic percpu area setup.  This is
2168 * important because many archs have addressing restrictions and might
2169 * fail if the percpu area is located far away from the previous
2170 * location.  As an added bonus, in non-NUMA cases, embedding is
2171 * generally a good idea TLB-wise because percpu area can piggy back
2172 * on the physical linear memory mapping which uses large page
2173 * mappings on applicable archs.
2174 */
2175unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2176EXPORT_SYMBOL(__per_cpu_offset);
2177
2178static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2179                                       size_t align)
2180{
2181        return  memblock_virt_alloc_from_nopanic(
2182                        size, align, __pa(MAX_DMA_ADDRESS));
2183}
2184
2185static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2186{
2187        memblock_free_early(__pa(ptr), size);
2188}
2189
2190void __init setup_per_cpu_areas(void)
2191{
2192        unsigned long delta;
2193        unsigned int cpu;
2194        int rc;
2195
2196        /*
2197         * Always reserve area for module percpu variables.  That's
2198         * what the legacy allocator did.
2199         */
2200        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2201                                    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2202                                    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2203        if (rc < 0)
2204                panic("Failed to initialize percpu areas.");
2205
2206        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2207        for_each_possible_cpu(cpu)
2208                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2209}
2210#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2211
2212#else   /* CONFIG_SMP */
2213
2214/*
2215 * UP percpu area setup.
2216 *
2217 * UP always uses km-based percpu allocator with identity mapping.
2218 * Static percpu variables are indistinguishable from the usual static
2219 * variables and don't require any special preparation.
2220 */
2221void __init setup_per_cpu_areas(void)
2222{
2223        const size_t unit_size =
2224                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2225                                         PERCPU_DYNAMIC_RESERVE));
2226        struct pcpu_alloc_info *ai;
2227        void *fc;
2228
2229        ai = pcpu_alloc_alloc_info(1, 1);
2230        fc = memblock_virt_alloc_from_nopanic(unit_size,
2231                                              PAGE_SIZE,
2232                                              __pa(MAX_DMA_ADDRESS));
2233        if (!ai || !fc)
2234                panic("Failed to allocate memory for percpu areas.");
2235        /* kmemleak tracks the percpu allocations separately */
2236        kmemleak_free(fc);
2237
2238        ai->dyn_size = unit_size;
2239        ai->unit_size = unit_size;
2240        ai->atom_size = unit_size;
2241        ai->alloc_size = unit_size;
2242        ai->groups[0].nr_units = 1;
2243        ai->groups[0].cpu_map[0] = 0;
2244
2245        if (pcpu_setup_first_chunk(ai, fc) < 0)
2246                panic("Failed to initialize percpu areas.");
2247}
2248
2249#endif  /* CONFIG_SMP */
2250
2251/*
2252 * First and reserved chunks are initialized with temporary allocation
2253 * map in initdata so that they can be used before slab is online.
2254 * This function is called after slab is brought up and replaces those
2255 * with properly allocated maps.
2256 */
2257void __init percpu_init_late(void)
2258{
2259        struct pcpu_chunk *target_chunks[] =
2260                { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2261        struct pcpu_chunk *chunk;
2262        unsigned long flags;
2263        int i;
2264
2265        for (i = 0; (chunk = target_chunks[i]); i++) {
2266                int *map;
2267                const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2268
2269                BUILD_BUG_ON(size > PAGE_SIZE);
2270
2271                map = pcpu_mem_zalloc(size);
2272                BUG_ON(!map);
2273
2274                spin_lock_irqsave(&pcpu_lock, flags);
2275                memcpy(map, chunk->map, size);
2276                chunk->map = map;
2277                spin_unlock_irqrestore(&pcpu_lock, flags);
2278        }
2279}
2280
2281/*
2282 * Percpu allocator is initialized early during boot when neither slab or
2283 * workqueue is available.  Plug async management until everything is up
2284 * and running.
2285 */
2286static int __init percpu_enable_async(void)
2287{
2288        pcpu_async_enabled = true;
2289        return 0;
2290}
2291subsys_initcall(percpu_enable_async);
2292