linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/gfp.h>
  12#include <linux/export.h>
  13#include <linux/blkdev.h>
  14#include <linux/backing-dev.h>
  15#include <linux/task_io_accounting_ops.h>
  16#include <linux/pagevec.h>
  17#include <linux/pagemap.h>
  18#include <linux/syscalls.h>
  19#include <linux/file.h>
  20#include <linux/mm_inline.h>
  21
  22#include "internal.h"
  23
  24/*
  25 * Initialise a struct file's readahead state.  Assumes that the caller has
  26 * memset *ra to zero.
  27 */
  28void
  29file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  30{
  31        ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  32        ra->prev_pos = -1;
  33}
  34EXPORT_SYMBOL_GPL(file_ra_state_init);
  35
  36/*
  37 * see if a page needs releasing upon read_cache_pages() failure
  38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  39 *   before calling, such as the NFS fs marking pages that are cached locally
  40 *   on disk, thus we need to give the fs a chance to clean up in the event of
  41 *   an error
  42 */
  43static void read_cache_pages_invalidate_page(struct address_space *mapping,
  44                                             struct page *page)
  45{
  46        if (page_has_private(page)) {
  47                if (!trylock_page(page))
  48                        BUG();
  49                page->mapping = mapping;
  50                do_invalidatepage(page, 0, PAGE_SIZE);
  51                page->mapping = NULL;
  52                unlock_page(page);
  53        }
  54        put_page(page);
  55}
  56
  57/*
  58 * release a list of pages, invalidating them first if need be
  59 */
  60static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  61                                              struct list_head *pages)
  62{
  63        struct page *victim;
  64
  65        while (!list_empty(pages)) {
  66                victim = lru_to_page(pages);
  67                list_del(&victim->lru);
  68                read_cache_pages_invalidate_page(mapping, victim);
  69        }
  70}
  71
  72/**
  73 * read_cache_pages - populate an address space with some pages & start reads against them
  74 * @mapping: the address_space
  75 * @pages: The address of a list_head which contains the target pages.  These
  76 *   pages have their ->index populated and are otherwise uninitialised.
  77 * @filler: callback routine for filling a single page.
  78 * @data: private data for the callback routine.
  79 *
  80 * Hides the details of the LRU cache etc from the filesystems.
  81 */
  82int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  83                        int (*filler)(void *, struct page *), void *data)
  84{
  85        struct page *page;
  86        int ret = 0;
  87
  88        while (!list_empty(pages)) {
  89                page = lru_to_page(pages);
  90                list_del(&page->lru);
  91                if (add_to_page_cache_lru(page, mapping, page->index,
  92                                mapping_gfp_constraint(mapping, GFP_KERNEL))) {
  93                        read_cache_pages_invalidate_page(mapping, page);
  94                        continue;
  95                }
  96                put_page(page);
  97
  98                ret = filler(data, page);
  99                if (unlikely(ret)) {
 100                        read_cache_pages_invalidate_pages(mapping, pages);
 101                        break;
 102                }
 103                task_io_account_read(PAGE_SIZE);
 104        }
 105        return ret;
 106}
 107
 108EXPORT_SYMBOL(read_cache_pages);
 109
 110static int read_pages(struct address_space *mapping, struct file *filp,
 111                struct list_head *pages, unsigned nr_pages)
 112{
 113        struct blk_plug plug;
 114        unsigned page_idx;
 115        int ret;
 116
 117        blk_start_plug(&plug);
 118
 119        if (mapping->a_ops->readpages) {
 120                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 121                /* Clean up the remaining pages */
 122                put_pages_list(pages);
 123                goto out;
 124        }
 125
 126        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 127                struct page *page = lru_to_page(pages);
 128                list_del(&page->lru);
 129                if (!add_to_page_cache_lru(page, mapping, page->index,
 130                                mapping_gfp_constraint(mapping, GFP_KERNEL))) {
 131                        mapping->a_ops->readpage(filp, page);
 132                }
 133                put_page(page);
 134        }
 135        ret = 0;
 136
 137out:
 138        blk_finish_plug(&plug);
 139
 140        return ret;
 141}
 142
 143/*
 144 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
 145 * the pages first, then submits them all for I/O. This avoids the very bad
 146 * behaviour which would occur if page allocations are causing VM writeback.
 147 * We really don't want to intermingle reads and writes like that.
 148 *
 149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 150 */
 151int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 152                        pgoff_t offset, unsigned long nr_to_read,
 153                        unsigned long lookahead_size)
 154{
 155        struct inode *inode = mapping->host;
 156        struct page *page;
 157        unsigned long end_index;        /* The last page we want to read */
 158        LIST_HEAD(page_pool);
 159        int page_idx;
 160        int ret = 0;
 161        loff_t isize = i_size_read(inode);
 162
 163        if (isize == 0)
 164                goto out;
 165
 166        end_index = ((isize - 1) >> PAGE_SHIFT);
 167
 168        /*
 169         * Preallocate as many pages as we will need.
 170         */
 171        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 172                pgoff_t page_offset = offset + page_idx;
 173
 174                if (page_offset > end_index)
 175                        break;
 176
 177                rcu_read_lock();
 178                page = radix_tree_lookup(&mapping->page_tree, page_offset);
 179                rcu_read_unlock();
 180                if (page && !radix_tree_exceptional_entry(page))
 181                        continue;
 182
 183                page = page_cache_alloc_readahead(mapping);
 184                if (!page)
 185                        break;
 186                page->index = page_offset;
 187                list_add(&page->lru, &page_pool);
 188                if (page_idx == nr_to_read - lookahead_size)
 189                        SetPageReadahead(page);
 190                ret++;
 191        }
 192
 193        /*
 194         * Now start the IO.  We ignore I/O errors - if the page is not
 195         * uptodate then the caller will launch readpage again, and
 196         * will then handle the error.
 197         */
 198        if (ret)
 199                read_pages(mapping, filp, &page_pool, ret);
 200        BUG_ON(!list_empty(&page_pool));
 201out:
 202        return ret;
 203}
 204
 205/*
 206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 207 * memory at once.
 208 */
 209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 210                pgoff_t offset, unsigned long nr_to_read)
 211{
 212        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 213                return -EINVAL;
 214
 215        nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
 216        while (nr_to_read) {
 217                int err;
 218
 219                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 220
 221                if (this_chunk > nr_to_read)
 222                        this_chunk = nr_to_read;
 223                err = __do_page_cache_readahead(mapping, filp,
 224                                                offset, this_chunk, 0);
 225                if (err < 0)
 226                        return err;
 227
 228                offset += this_chunk;
 229                nr_to_read -= this_chunk;
 230        }
 231        return 0;
 232}
 233
 234/*
 235 * Set the initial window size, round to next power of 2 and square
 236 * for small size, x 4 for medium, and x 2 for large
 237 * for 128k (32 page) max ra
 238 * 1-8 page = 32k initial, > 8 page = 128k initial
 239 */
 240static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 241{
 242        unsigned long newsize = roundup_pow_of_two(size);
 243
 244        if (newsize <= max / 32)
 245                newsize = newsize * 4;
 246        else if (newsize <= max / 4)
 247                newsize = newsize * 2;
 248        else
 249                newsize = max;
 250
 251        return newsize;
 252}
 253
 254/*
 255 *  Get the previous window size, ramp it up, and
 256 *  return it as the new window size.
 257 */
 258static unsigned long get_next_ra_size(struct file_ra_state *ra,
 259                                                unsigned long max)
 260{
 261        unsigned long cur = ra->size;
 262        unsigned long newsize;
 263
 264        if (cur < max / 16)
 265                newsize = 4 * cur;
 266        else
 267                newsize = 2 * cur;
 268
 269        return min(newsize, max);
 270}
 271
 272/*
 273 * On-demand readahead design.
 274 *
 275 * The fields in struct file_ra_state represent the most-recently-executed
 276 * readahead attempt:
 277 *
 278 *                        |<----- async_size ---------|
 279 *     |------------------- size -------------------->|
 280 *     |==================#===========================|
 281 *     ^start             ^page marked with PG_readahead
 282 *
 283 * To overlap application thinking time and disk I/O time, we do
 284 * `readahead pipelining': Do not wait until the application consumed all
 285 * readahead pages and stalled on the missing page at readahead_index;
 286 * Instead, submit an asynchronous readahead I/O as soon as there are
 287 * only async_size pages left in the readahead window. Normally async_size
 288 * will be equal to size, for maximum pipelining.
 289 *
 290 * In interleaved sequential reads, concurrent streams on the same fd can
 291 * be invalidating each other's readahead state. So we flag the new readahead
 292 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 293 * indicator. The flag won't be set on already cached pages, to avoid the
 294 * readahead-for-nothing fuss, saving pointless page cache lookups.
 295 *
 296 * prev_pos tracks the last visited byte in the _previous_ read request.
 297 * It should be maintained by the caller, and will be used for detecting
 298 * small random reads. Note that the readahead algorithm checks loosely
 299 * for sequential patterns. Hence interleaved reads might be served as
 300 * sequential ones.
 301 *
 302 * There is a special-case: if the first page which the application tries to
 303 * read happens to be the first page of the file, it is assumed that a linear
 304 * read is about to happen and the window is immediately set to the initial size
 305 * based on I/O request size and the max_readahead.
 306 *
 307 * The code ramps up the readahead size aggressively at first, but slow down as
 308 * it approaches max_readhead.
 309 */
 310
 311/*
 312 * Count contiguously cached pages from @offset-1 to @offset-@max,
 313 * this count is a conservative estimation of
 314 *      - length of the sequential read sequence, or
 315 *      - thrashing threshold in memory tight systems
 316 */
 317static pgoff_t count_history_pages(struct address_space *mapping,
 318                                   pgoff_t offset, unsigned long max)
 319{
 320        pgoff_t head;
 321
 322        rcu_read_lock();
 323        head = page_cache_prev_hole(mapping, offset - 1, max);
 324        rcu_read_unlock();
 325
 326        return offset - 1 - head;
 327}
 328
 329/*
 330 * page cache context based read-ahead
 331 */
 332static int try_context_readahead(struct address_space *mapping,
 333                                 struct file_ra_state *ra,
 334                                 pgoff_t offset,
 335                                 unsigned long req_size,
 336                                 unsigned long max)
 337{
 338        pgoff_t size;
 339
 340        size = count_history_pages(mapping, offset, max);
 341
 342        /*
 343         * not enough history pages:
 344         * it could be a random read
 345         */
 346        if (size <= req_size)
 347                return 0;
 348
 349        /*
 350         * starts from beginning of file:
 351         * it is a strong indication of long-run stream (or whole-file-read)
 352         */
 353        if (size >= offset)
 354                size *= 2;
 355
 356        ra->start = offset;
 357        ra->size = min(size + req_size, max);
 358        ra->async_size = 1;
 359
 360        return 1;
 361}
 362
 363/*
 364 * A minimal readahead algorithm for trivial sequential/random reads.
 365 */
 366static unsigned long
 367ondemand_readahead(struct address_space *mapping,
 368                   struct file_ra_state *ra, struct file *filp,
 369                   bool hit_readahead_marker, pgoff_t offset,
 370                   unsigned long req_size)
 371{
 372        unsigned long max = ra->ra_pages;
 373        pgoff_t prev_offset;
 374
 375        /*
 376         * start of file
 377         */
 378        if (!offset)
 379                goto initial_readahead;
 380
 381        /*
 382         * It's the expected callback offset, assume sequential access.
 383         * Ramp up sizes, and push forward the readahead window.
 384         */
 385        if ((offset == (ra->start + ra->size - ra->async_size) ||
 386             offset == (ra->start + ra->size))) {
 387                ra->start += ra->size;
 388                ra->size = get_next_ra_size(ra, max);
 389                ra->async_size = ra->size;
 390                goto readit;
 391        }
 392
 393        /*
 394         * Hit a marked page without valid readahead state.
 395         * E.g. interleaved reads.
 396         * Query the pagecache for async_size, which normally equals to
 397         * readahead size. Ramp it up and use it as the new readahead size.
 398         */
 399        if (hit_readahead_marker) {
 400                pgoff_t start;
 401
 402                rcu_read_lock();
 403                start = page_cache_next_hole(mapping, offset + 1, max);
 404                rcu_read_unlock();
 405
 406                if (!start || start - offset > max)
 407                        return 0;
 408
 409                ra->start = start;
 410                ra->size = start - offset;      /* old async_size */
 411                ra->size += req_size;
 412                ra->size = get_next_ra_size(ra, max);
 413                ra->async_size = ra->size;
 414                goto readit;
 415        }
 416
 417        /*
 418         * oversize read
 419         */
 420        if (req_size > max)
 421                goto initial_readahead;
 422
 423        /*
 424         * sequential cache miss
 425         * trivial case: (offset - prev_offset) == 1
 426         * unaligned reads: (offset - prev_offset) == 0
 427         */
 428        prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
 429        if (offset - prev_offset <= 1UL)
 430                goto initial_readahead;
 431
 432        /*
 433         * Query the page cache and look for the traces(cached history pages)
 434         * that a sequential stream would leave behind.
 435         */
 436        if (try_context_readahead(mapping, ra, offset, req_size, max))
 437                goto readit;
 438
 439        /*
 440         * standalone, small random read
 441         * Read as is, and do not pollute the readahead state.
 442         */
 443        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 444
 445initial_readahead:
 446        ra->start = offset;
 447        ra->size = get_init_ra_size(req_size, max);
 448        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 449
 450readit:
 451        /*
 452         * Will this read hit the readahead marker made by itself?
 453         * If so, trigger the readahead marker hit now, and merge
 454         * the resulted next readahead window into the current one.
 455         */
 456        if (offset == ra->start && ra->size == ra->async_size) {
 457                ra->async_size = get_next_ra_size(ra, max);
 458                ra->size += ra->async_size;
 459        }
 460
 461        return ra_submit(ra, mapping, filp);
 462}
 463
 464/**
 465 * page_cache_sync_readahead - generic file readahead
 466 * @mapping: address_space which holds the pagecache and I/O vectors
 467 * @ra: file_ra_state which holds the readahead state
 468 * @filp: passed on to ->readpage() and ->readpages()
 469 * @offset: start offset into @mapping, in pagecache page-sized units
 470 * @req_size: hint: total size of the read which the caller is performing in
 471 *            pagecache pages
 472 *
 473 * page_cache_sync_readahead() should be called when a cache miss happened:
 474 * it will submit the read.  The readahead logic may decide to piggyback more
 475 * pages onto the read request if access patterns suggest it will improve
 476 * performance.
 477 */
 478void page_cache_sync_readahead(struct address_space *mapping,
 479                               struct file_ra_state *ra, struct file *filp,
 480                               pgoff_t offset, unsigned long req_size)
 481{
 482        /* no read-ahead */
 483        if (!ra->ra_pages)
 484                return;
 485
 486        /* be dumb */
 487        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 488                force_page_cache_readahead(mapping, filp, offset, req_size);
 489                return;
 490        }
 491
 492        /* do read-ahead */
 493        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 494}
 495EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 496
 497/**
 498 * page_cache_async_readahead - file readahead for marked pages
 499 * @mapping: address_space which holds the pagecache and I/O vectors
 500 * @ra: file_ra_state which holds the readahead state
 501 * @filp: passed on to ->readpage() and ->readpages()
 502 * @page: the page at @offset which has the PG_readahead flag set
 503 * @offset: start offset into @mapping, in pagecache page-sized units
 504 * @req_size: hint: total size of the read which the caller is performing in
 505 *            pagecache pages
 506 *
 507 * page_cache_async_readahead() should be called when a page is used which
 508 * has the PG_readahead flag; this is a marker to suggest that the application
 509 * has used up enough of the readahead window that we should start pulling in
 510 * more pages.
 511 */
 512void
 513page_cache_async_readahead(struct address_space *mapping,
 514                           struct file_ra_state *ra, struct file *filp,
 515                           struct page *page, pgoff_t offset,
 516                           unsigned long req_size)
 517{
 518        /* no read-ahead */
 519        if (!ra->ra_pages)
 520                return;
 521
 522        /*
 523         * Same bit is used for PG_readahead and PG_reclaim.
 524         */
 525        if (PageWriteback(page))
 526                return;
 527
 528        ClearPageReadahead(page);
 529
 530        /*
 531         * Defer asynchronous read-ahead on IO congestion.
 532         */
 533        if (inode_read_congested(mapping->host))
 534                return;
 535
 536        /* do read-ahead */
 537        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 538}
 539EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 540
 541static ssize_t
 542do_readahead(struct address_space *mapping, struct file *filp,
 543             pgoff_t index, unsigned long nr)
 544{
 545        if (!mapping || !mapping->a_ops)
 546                return -EINVAL;
 547
 548        return force_page_cache_readahead(mapping, filp, index, nr);
 549}
 550
 551SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 552{
 553        ssize_t ret;
 554        struct fd f;
 555
 556        ret = -EBADF;
 557        f = fdget(fd);
 558        if (f.file) {
 559                if (f.file->f_mode & FMODE_READ) {
 560                        struct address_space *mapping = f.file->f_mapping;
 561                        pgoff_t start = offset >> PAGE_SHIFT;
 562                        pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
 563                        unsigned long len = end - start + 1;
 564                        ret = do_readahead(mapping, f.file, start, len);
 565                }
 566                fdput(f);
 567        }
 568        return ret;
 569}
 570