linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/uio.h>
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69#include <linux/syscalls.h>
  70#include <linux/fcntl.h>
  71#include <uapi/linux/memfd.h>
  72
  73#include <asm/uaccess.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  79#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  80
  81/* Pretend that each entry is of this size in directory's i_size */
  82#define BOGO_DIRENT_SIZE 20
  83
  84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  85#define SHORT_SYMLINK_LEN 128
  86
  87/*
  88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  89 * inode->i_private (with i_mutex making sure that it has only one user at
  90 * a time): we would prefer not to enlarge the shmem inode just for that.
  91 */
  92struct shmem_falloc {
  93        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  94        pgoff_t start;          /* start of range currently being fallocated */
  95        pgoff_t next;           /* the next page offset to be fallocated */
  96        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  97        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  98};
  99
 100/* Flag allocation requirements to shmem_getpage */
 101enum sgp_type {
 102        SGP_READ,       /* don't exceed i_size, don't allocate page */
 103        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 104        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 105        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 106        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112        return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123                                struct shmem_inode_info *info, pgoff_t index);
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 126
 127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 128        struct page **pagep, enum sgp_type sgp, int *fault_type)
 129{
 130        return shmem_getpage_gfp(inode, index, pagep, sgp,
 131                        mapping_gfp_mask(inode->i_mapping), fault_type);
 132}
 133
 134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 135{
 136        return sb->s_fs_info;
 137}
 138
 139/*
 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 141 * for shared memory and for shared anonymous (/dev/zero) mappings
 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 143 * consistent with the pre-accounting of private mappings ...
 144 */
 145static inline int shmem_acct_size(unsigned long flags, loff_t size)
 146{
 147        return (flags & VM_NORESERVE) ?
 148                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 149}
 150
 151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 152{
 153        if (!(flags & VM_NORESERVE))
 154                vm_unacct_memory(VM_ACCT(size));
 155}
 156
 157static inline int shmem_reacct_size(unsigned long flags,
 158                loff_t oldsize, loff_t newsize)
 159{
 160        if (!(flags & VM_NORESERVE)) {
 161                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 162                        return security_vm_enough_memory_mm(current->mm,
 163                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 164                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 165                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 166        }
 167        return 0;
 168}
 169
 170/*
 171 * ... whereas tmpfs objects are accounted incrementally as
 172 * pages are allocated, in order to allow huge sparse files.
 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 175 */
 176static inline int shmem_acct_block(unsigned long flags)
 177{
 178        return (flags & VM_NORESERVE) ?
 179                security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
 180}
 181
 182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 183{
 184        if (flags & VM_NORESERVE)
 185                vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 186}
 187
 188static const struct super_operations shmem_ops;
 189static const struct address_space_operations shmem_aops;
 190static const struct file_operations shmem_file_operations;
 191static const struct inode_operations shmem_inode_operations;
 192static const struct inode_operations shmem_dir_inode_operations;
 193static const struct inode_operations shmem_special_inode_operations;
 194static const struct vm_operations_struct shmem_vm_ops;
 195
 196static LIST_HEAD(shmem_swaplist);
 197static DEFINE_MUTEX(shmem_swaplist_mutex);
 198
 199static int shmem_reserve_inode(struct super_block *sb)
 200{
 201        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 202        if (sbinfo->max_inodes) {
 203                spin_lock(&sbinfo->stat_lock);
 204                if (!sbinfo->free_inodes) {
 205                        spin_unlock(&sbinfo->stat_lock);
 206                        return -ENOSPC;
 207                }
 208                sbinfo->free_inodes--;
 209                spin_unlock(&sbinfo->stat_lock);
 210        }
 211        return 0;
 212}
 213
 214static void shmem_free_inode(struct super_block *sb)
 215{
 216        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 217        if (sbinfo->max_inodes) {
 218                spin_lock(&sbinfo->stat_lock);
 219                sbinfo->free_inodes++;
 220                spin_unlock(&sbinfo->stat_lock);
 221        }
 222}
 223
 224/**
 225 * shmem_recalc_inode - recalculate the block usage of an inode
 226 * @inode: inode to recalc
 227 *
 228 * We have to calculate the free blocks since the mm can drop
 229 * undirtied hole pages behind our back.
 230 *
 231 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 233 *
 234 * It has to be called with the spinlock held.
 235 */
 236static void shmem_recalc_inode(struct inode *inode)
 237{
 238        struct shmem_inode_info *info = SHMEM_I(inode);
 239        long freed;
 240
 241        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 242        if (freed > 0) {
 243                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 244                if (sbinfo->max_blocks)
 245                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 246                info->alloced -= freed;
 247                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 248                shmem_unacct_blocks(info->flags, freed);
 249        }
 250}
 251
 252/*
 253 * Replace item expected in radix tree by a new item, while holding tree lock.
 254 */
 255static int shmem_radix_tree_replace(struct address_space *mapping,
 256                        pgoff_t index, void *expected, void *replacement)
 257{
 258        void **pslot;
 259        void *item;
 260
 261        VM_BUG_ON(!expected);
 262        VM_BUG_ON(!replacement);
 263        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 264        if (!pslot)
 265                return -ENOENT;
 266        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 267        if (item != expected)
 268                return -ENOENT;
 269        radix_tree_replace_slot(pslot, replacement);
 270        return 0;
 271}
 272
 273/*
 274 * Sometimes, before we decide whether to proceed or to fail, we must check
 275 * that an entry was not already brought back from swap by a racing thread.
 276 *
 277 * Checking page is not enough: by the time a SwapCache page is locked, it
 278 * might be reused, and again be SwapCache, using the same swap as before.
 279 */
 280static bool shmem_confirm_swap(struct address_space *mapping,
 281                               pgoff_t index, swp_entry_t swap)
 282{
 283        void *item;
 284
 285        rcu_read_lock();
 286        item = radix_tree_lookup(&mapping->page_tree, index);
 287        rcu_read_unlock();
 288        return item == swp_to_radix_entry(swap);
 289}
 290
 291/*
 292 * Like add_to_page_cache_locked, but error if expected item has gone.
 293 */
 294static int shmem_add_to_page_cache(struct page *page,
 295                                   struct address_space *mapping,
 296                                   pgoff_t index, void *expected)
 297{
 298        int error;
 299
 300        VM_BUG_ON_PAGE(!PageLocked(page), page);
 301        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 302
 303        get_page(page);
 304        page->mapping = mapping;
 305        page->index = index;
 306
 307        spin_lock_irq(&mapping->tree_lock);
 308        if (!expected)
 309                error = radix_tree_insert(&mapping->page_tree, index, page);
 310        else
 311                error = shmem_radix_tree_replace(mapping, index, expected,
 312                                                                 page);
 313        if (!error) {
 314                mapping->nrpages++;
 315                __inc_zone_page_state(page, NR_FILE_PAGES);
 316                __inc_zone_page_state(page, NR_SHMEM);
 317                spin_unlock_irq(&mapping->tree_lock);
 318        } else {
 319                page->mapping = NULL;
 320                spin_unlock_irq(&mapping->tree_lock);
 321                put_page(page);
 322        }
 323        return error;
 324}
 325
 326/*
 327 * Like delete_from_page_cache, but substitutes swap for page.
 328 */
 329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 330{
 331        struct address_space *mapping = page->mapping;
 332        int error;
 333
 334        spin_lock_irq(&mapping->tree_lock);
 335        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 336        page->mapping = NULL;
 337        mapping->nrpages--;
 338        __dec_zone_page_state(page, NR_FILE_PAGES);
 339        __dec_zone_page_state(page, NR_SHMEM);
 340        spin_unlock_irq(&mapping->tree_lock);
 341        put_page(page);
 342        BUG_ON(error);
 343}
 344
 345/*
 346 * Remove swap entry from radix tree, free the swap and its page cache.
 347 */
 348static int shmem_free_swap(struct address_space *mapping,
 349                           pgoff_t index, void *radswap)
 350{
 351        void *old;
 352
 353        spin_lock_irq(&mapping->tree_lock);
 354        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 355        spin_unlock_irq(&mapping->tree_lock);
 356        if (old != radswap)
 357                return -ENOENT;
 358        free_swap_and_cache(radix_to_swp_entry(radswap));
 359        return 0;
 360}
 361
 362/*
 363 * Determine (in bytes) how many of the shmem object's pages mapped by the
 364 * given offsets are swapped out.
 365 *
 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 367 * as long as the inode doesn't go away and racy results are not a problem.
 368 */
 369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 370                                                pgoff_t start, pgoff_t end)
 371{
 372        struct radix_tree_iter iter;
 373        void **slot;
 374        struct page *page;
 375        unsigned long swapped = 0;
 376
 377        rcu_read_lock();
 378
 379        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 380                if (iter.index >= end)
 381                        break;
 382
 383                page = radix_tree_deref_slot(slot);
 384
 385                if (radix_tree_deref_retry(page)) {
 386                        slot = radix_tree_iter_retry(&iter);
 387                        continue;
 388                }
 389
 390                if (radix_tree_exceptional_entry(page))
 391                        swapped++;
 392
 393                if (need_resched()) {
 394                        cond_resched_rcu();
 395                        slot = radix_tree_iter_next(&iter);
 396                }
 397        }
 398
 399        rcu_read_unlock();
 400
 401        return swapped << PAGE_SHIFT;
 402}
 403
 404/*
 405 * Determine (in bytes) how many of the shmem object's pages mapped by the
 406 * given vma is swapped out.
 407 *
 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 409 * as long as the inode doesn't go away and racy results are not a problem.
 410 */
 411unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 412{
 413        struct inode *inode = file_inode(vma->vm_file);
 414        struct shmem_inode_info *info = SHMEM_I(inode);
 415        struct address_space *mapping = inode->i_mapping;
 416        unsigned long swapped;
 417
 418        /* Be careful as we don't hold info->lock */
 419        swapped = READ_ONCE(info->swapped);
 420
 421        /*
 422         * The easier cases are when the shmem object has nothing in swap, or
 423         * the vma maps it whole. Then we can simply use the stats that we
 424         * already track.
 425         */
 426        if (!swapped)
 427                return 0;
 428
 429        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 430                return swapped << PAGE_SHIFT;
 431
 432        /* Here comes the more involved part */
 433        return shmem_partial_swap_usage(mapping,
 434                        linear_page_index(vma, vma->vm_start),
 435                        linear_page_index(vma, vma->vm_end));
 436}
 437
 438/*
 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 440 */
 441void shmem_unlock_mapping(struct address_space *mapping)
 442{
 443        struct pagevec pvec;
 444        pgoff_t indices[PAGEVEC_SIZE];
 445        pgoff_t index = 0;
 446
 447        pagevec_init(&pvec, 0);
 448        /*
 449         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 450         */
 451        while (!mapping_unevictable(mapping)) {
 452                /*
 453                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 454                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 455                 */
 456                pvec.nr = find_get_entries(mapping, index,
 457                                           PAGEVEC_SIZE, pvec.pages, indices);
 458                if (!pvec.nr)
 459                        break;
 460                index = indices[pvec.nr - 1] + 1;
 461                pagevec_remove_exceptionals(&pvec);
 462                check_move_unevictable_pages(pvec.pages, pvec.nr);
 463                pagevec_release(&pvec);
 464                cond_resched();
 465        }
 466}
 467
 468/*
 469 * Remove range of pages and swap entries from radix tree, and free them.
 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 471 */
 472static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 473                                                                 bool unfalloc)
 474{
 475        struct address_space *mapping = inode->i_mapping;
 476        struct shmem_inode_info *info = SHMEM_I(inode);
 477        pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 478        pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 479        unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 480        unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 481        struct pagevec pvec;
 482        pgoff_t indices[PAGEVEC_SIZE];
 483        long nr_swaps_freed = 0;
 484        pgoff_t index;
 485        int i;
 486
 487        if (lend == -1)
 488                end = -1;       /* unsigned, so actually very big */
 489
 490        pagevec_init(&pvec, 0);
 491        index = start;
 492        while (index < end) {
 493                pvec.nr = find_get_entries(mapping, index,
 494                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 495                        pvec.pages, indices);
 496                if (!pvec.nr)
 497                        break;
 498                for (i = 0; i < pagevec_count(&pvec); i++) {
 499                        struct page *page = pvec.pages[i];
 500
 501                        index = indices[i];
 502                        if (index >= end)
 503                                break;
 504
 505                        if (radix_tree_exceptional_entry(page)) {
 506                                if (unfalloc)
 507                                        continue;
 508                                nr_swaps_freed += !shmem_free_swap(mapping,
 509                                                                index, page);
 510                                continue;
 511                        }
 512
 513                        if (!trylock_page(page))
 514                                continue;
 515                        if (!unfalloc || !PageUptodate(page)) {
 516                                if (page->mapping == mapping) {
 517                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 518                                        truncate_inode_page(mapping, page);
 519                                }
 520                        }
 521                        unlock_page(page);
 522                }
 523                pagevec_remove_exceptionals(&pvec);
 524                pagevec_release(&pvec);
 525                cond_resched();
 526                index++;
 527        }
 528
 529        if (partial_start) {
 530                struct page *page = NULL;
 531                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 532                if (page) {
 533                        unsigned int top = PAGE_SIZE;
 534                        if (start > end) {
 535                                top = partial_end;
 536                                partial_end = 0;
 537                        }
 538                        zero_user_segment(page, partial_start, top);
 539                        set_page_dirty(page);
 540                        unlock_page(page);
 541                        put_page(page);
 542                }
 543        }
 544        if (partial_end) {
 545                struct page *page = NULL;
 546                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 547                if (page) {
 548                        zero_user_segment(page, 0, partial_end);
 549                        set_page_dirty(page);
 550                        unlock_page(page);
 551                        put_page(page);
 552                }
 553        }
 554        if (start >= end)
 555                return;
 556
 557        index = start;
 558        while (index < end) {
 559                cond_resched();
 560
 561                pvec.nr = find_get_entries(mapping, index,
 562                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 563                                pvec.pages, indices);
 564                if (!pvec.nr) {
 565                        /* If all gone or hole-punch or unfalloc, we're done */
 566                        if (index == start || end != -1)
 567                                break;
 568                        /* But if truncating, restart to make sure all gone */
 569                        index = start;
 570                        continue;
 571                }
 572                for (i = 0; i < pagevec_count(&pvec); i++) {
 573                        struct page *page = pvec.pages[i];
 574
 575                        index = indices[i];
 576                        if (index >= end)
 577                                break;
 578
 579                        if (radix_tree_exceptional_entry(page)) {
 580                                if (unfalloc)
 581                                        continue;
 582                                if (shmem_free_swap(mapping, index, page)) {
 583                                        /* Swap was replaced by page: retry */
 584                                        index--;
 585                                        break;
 586                                }
 587                                nr_swaps_freed++;
 588                                continue;
 589                        }
 590
 591                        lock_page(page);
 592                        if (!unfalloc || !PageUptodate(page)) {
 593                                if (page->mapping == mapping) {
 594                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 595                                        truncate_inode_page(mapping, page);
 596                                } else {
 597                                        /* Page was replaced by swap: retry */
 598                                        unlock_page(page);
 599                                        index--;
 600                                        break;
 601                                }
 602                        }
 603                        unlock_page(page);
 604                }
 605                pagevec_remove_exceptionals(&pvec);
 606                pagevec_release(&pvec);
 607                index++;
 608        }
 609
 610        spin_lock(&info->lock);
 611        info->swapped -= nr_swaps_freed;
 612        shmem_recalc_inode(inode);
 613        spin_unlock(&info->lock);
 614}
 615
 616void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 617{
 618        shmem_undo_range(inode, lstart, lend, false);
 619        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 620}
 621EXPORT_SYMBOL_GPL(shmem_truncate_range);
 622
 623static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
 624                         struct kstat *stat)
 625{
 626        struct inode *inode = dentry->d_inode;
 627        struct shmem_inode_info *info = SHMEM_I(inode);
 628
 629        if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 630                spin_lock(&info->lock);
 631                shmem_recalc_inode(inode);
 632                spin_unlock(&info->lock);
 633        }
 634        generic_fillattr(inode, stat);
 635        return 0;
 636}
 637
 638static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 639{
 640        struct inode *inode = d_inode(dentry);
 641        struct shmem_inode_info *info = SHMEM_I(inode);
 642        int error;
 643
 644        error = inode_change_ok(inode, attr);
 645        if (error)
 646                return error;
 647
 648        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 649                loff_t oldsize = inode->i_size;
 650                loff_t newsize = attr->ia_size;
 651
 652                /* protected by i_mutex */
 653                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 654                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 655                        return -EPERM;
 656
 657                if (newsize != oldsize) {
 658                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
 659                                        oldsize, newsize);
 660                        if (error)
 661                                return error;
 662                        i_size_write(inode, newsize);
 663                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 664                }
 665                if (newsize <= oldsize) {
 666                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 667                        if (oldsize > holebegin)
 668                                unmap_mapping_range(inode->i_mapping,
 669                                                        holebegin, 0, 1);
 670                        if (info->alloced)
 671                                shmem_truncate_range(inode,
 672                                                        newsize, (loff_t)-1);
 673                        /* unmap again to remove racily COWed private pages */
 674                        if (oldsize > holebegin)
 675                                unmap_mapping_range(inode->i_mapping,
 676                                                        holebegin, 0, 1);
 677                }
 678        }
 679
 680        setattr_copy(inode, attr);
 681        if (attr->ia_valid & ATTR_MODE)
 682                error = posix_acl_chmod(inode, inode->i_mode);
 683        return error;
 684}
 685
 686static void shmem_evict_inode(struct inode *inode)
 687{
 688        struct shmem_inode_info *info = SHMEM_I(inode);
 689
 690        if (inode->i_mapping->a_ops == &shmem_aops) {
 691                shmem_unacct_size(info->flags, inode->i_size);
 692                inode->i_size = 0;
 693                shmem_truncate_range(inode, 0, (loff_t)-1);
 694                if (!list_empty(&info->swaplist)) {
 695                        mutex_lock(&shmem_swaplist_mutex);
 696                        list_del_init(&info->swaplist);
 697                        mutex_unlock(&shmem_swaplist_mutex);
 698                }
 699        }
 700
 701        simple_xattrs_free(&info->xattrs);
 702        WARN_ON(inode->i_blocks);
 703        shmem_free_inode(inode->i_sb);
 704        clear_inode(inode);
 705}
 706
 707/*
 708 * If swap found in inode, free it and move page from swapcache to filecache.
 709 */
 710static int shmem_unuse_inode(struct shmem_inode_info *info,
 711                             swp_entry_t swap, struct page **pagep)
 712{
 713        struct address_space *mapping = info->vfs_inode.i_mapping;
 714        void *radswap;
 715        pgoff_t index;
 716        gfp_t gfp;
 717        int error = 0;
 718
 719        radswap = swp_to_radix_entry(swap);
 720        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 721        if (index == -1)
 722                return -EAGAIN; /* tell shmem_unuse we found nothing */
 723
 724        /*
 725         * Move _head_ to start search for next from here.
 726         * But be careful: shmem_evict_inode checks list_empty without taking
 727         * mutex, and there's an instant in list_move_tail when info->swaplist
 728         * would appear empty, if it were the only one on shmem_swaplist.
 729         */
 730        if (shmem_swaplist.next != &info->swaplist)
 731                list_move_tail(&shmem_swaplist, &info->swaplist);
 732
 733        gfp = mapping_gfp_mask(mapping);
 734        if (shmem_should_replace_page(*pagep, gfp)) {
 735                mutex_unlock(&shmem_swaplist_mutex);
 736                error = shmem_replace_page(pagep, gfp, info, index);
 737                mutex_lock(&shmem_swaplist_mutex);
 738                /*
 739                 * We needed to drop mutex to make that restrictive page
 740                 * allocation, but the inode might have been freed while we
 741                 * dropped it: although a racing shmem_evict_inode() cannot
 742                 * complete without emptying the radix_tree, our page lock
 743                 * on this swapcache page is not enough to prevent that -
 744                 * free_swap_and_cache() of our swap entry will only
 745                 * trylock_page(), removing swap from radix_tree whatever.
 746                 *
 747                 * We must not proceed to shmem_add_to_page_cache() if the
 748                 * inode has been freed, but of course we cannot rely on
 749                 * inode or mapping or info to check that.  However, we can
 750                 * safely check if our swap entry is still in use (and here
 751                 * it can't have got reused for another page): if it's still
 752                 * in use, then the inode cannot have been freed yet, and we
 753                 * can safely proceed (if it's no longer in use, that tells
 754                 * nothing about the inode, but we don't need to unuse swap).
 755                 */
 756                if (!page_swapcount(*pagep))
 757                        error = -ENOENT;
 758        }
 759
 760        /*
 761         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 762         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 763         * beneath us (pagelock doesn't help until the page is in pagecache).
 764         */
 765        if (!error)
 766                error = shmem_add_to_page_cache(*pagep, mapping, index,
 767                                                radswap);
 768        if (error != -ENOMEM) {
 769                /*
 770                 * Truncation and eviction use free_swap_and_cache(), which
 771                 * only does trylock page: if we raced, best clean up here.
 772                 */
 773                delete_from_swap_cache(*pagep);
 774                set_page_dirty(*pagep);
 775                if (!error) {
 776                        spin_lock(&info->lock);
 777                        info->swapped--;
 778                        spin_unlock(&info->lock);
 779                        swap_free(swap);
 780                }
 781        }
 782        return error;
 783}
 784
 785/*
 786 * Search through swapped inodes to find and replace swap by page.
 787 */
 788int shmem_unuse(swp_entry_t swap, struct page *page)
 789{
 790        struct list_head *this, *next;
 791        struct shmem_inode_info *info;
 792        struct mem_cgroup *memcg;
 793        int error = 0;
 794
 795        /*
 796         * There's a faint possibility that swap page was replaced before
 797         * caller locked it: caller will come back later with the right page.
 798         */
 799        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 800                goto out;
 801
 802        /*
 803         * Charge page using GFP_KERNEL while we can wait, before taking
 804         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 805         * Charged back to the user (not to caller) when swap account is used.
 806         */
 807        error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
 808                        false);
 809        if (error)
 810                goto out;
 811        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 812        error = -EAGAIN;
 813
 814        mutex_lock(&shmem_swaplist_mutex);
 815        list_for_each_safe(this, next, &shmem_swaplist) {
 816                info = list_entry(this, struct shmem_inode_info, swaplist);
 817                if (info->swapped)
 818                        error = shmem_unuse_inode(info, swap, &page);
 819                else
 820                        list_del_init(&info->swaplist);
 821                cond_resched();
 822                if (error != -EAGAIN)
 823                        break;
 824                /* found nothing in this: move on to search the next */
 825        }
 826        mutex_unlock(&shmem_swaplist_mutex);
 827
 828        if (error) {
 829                if (error != -ENOMEM)
 830                        error = 0;
 831                mem_cgroup_cancel_charge(page, memcg, false);
 832        } else
 833                mem_cgroup_commit_charge(page, memcg, true, false);
 834out:
 835        unlock_page(page);
 836        put_page(page);
 837        return error;
 838}
 839
 840/*
 841 * Move the page from the page cache to the swap cache.
 842 */
 843static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 844{
 845        struct shmem_inode_info *info;
 846        struct address_space *mapping;
 847        struct inode *inode;
 848        swp_entry_t swap;
 849        pgoff_t index;
 850
 851        BUG_ON(!PageLocked(page));
 852        mapping = page->mapping;
 853        index = page->index;
 854        inode = mapping->host;
 855        info = SHMEM_I(inode);
 856        if (info->flags & VM_LOCKED)
 857                goto redirty;
 858        if (!total_swap_pages)
 859                goto redirty;
 860
 861        /*
 862         * Our capabilities prevent regular writeback or sync from ever calling
 863         * shmem_writepage; but a stacking filesystem might use ->writepage of
 864         * its underlying filesystem, in which case tmpfs should write out to
 865         * swap only in response to memory pressure, and not for the writeback
 866         * threads or sync.
 867         */
 868        if (!wbc->for_reclaim) {
 869                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 870                goto redirty;
 871        }
 872
 873        /*
 874         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 875         * value into swapfile.c, the only way we can correctly account for a
 876         * fallocated page arriving here is now to initialize it and write it.
 877         *
 878         * That's okay for a page already fallocated earlier, but if we have
 879         * not yet completed the fallocation, then (a) we want to keep track
 880         * of this page in case we have to undo it, and (b) it may not be a
 881         * good idea to continue anyway, once we're pushing into swap.  So
 882         * reactivate the page, and let shmem_fallocate() quit when too many.
 883         */
 884        if (!PageUptodate(page)) {
 885                if (inode->i_private) {
 886                        struct shmem_falloc *shmem_falloc;
 887                        spin_lock(&inode->i_lock);
 888                        shmem_falloc = inode->i_private;
 889                        if (shmem_falloc &&
 890                            !shmem_falloc->waitq &&
 891                            index >= shmem_falloc->start &&
 892                            index < shmem_falloc->next)
 893                                shmem_falloc->nr_unswapped++;
 894                        else
 895                                shmem_falloc = NULL;
 896                        spin_unlock(&inode->i_lock);
 897                        if (shmem_falloc)
 898                                goto redirty;
 899                }
 900                clear_highpage(page);
 901                flush_dcache_page(page);
 902                SetPageUptodate(page);
 903        }
 904
 905        swap = get_swap_page();
 906        if (!swap.val)
 907                goto redirty;
 908
 909        if (mem_cgroup_try_charge_swap(page, swap))
 910                goto free_swap;
 911
 912        /*
 913         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 914         * if it's not already there.  Do it now before the page is
 915         * moved to swap cache, when its pagelock no longer protects
 916         * the inode from eviction.  But don't unlock the mutex until
 917         * we've incremented swapped, because shmem_unuse_inode() will
 918         * prune a !swapped inode from the swaplist under this mutex.
 919         */
 920        mutex_lock(&shmem_swaplist_mutex);
 921        if (list_empty(&info->swaplist))
 922                list_add_tail(&info->swaplist, &shmem_swaplist);
 923
 924        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 925                spin_lock(&info->lock);
 926                shmem_recalc_inode(inode);
 927                info->swapped++;
 928                spin_unlock(&info->lock);
 929
 930                swap_shmem_alloc(swap);
 931                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 932
 933                mutex_unlock(&shmem_swaplist_mutex);
 934                BUG_ON(page_mapped(page));
 935                swap_writepage(page, wbc);
 936                return 0;
 937        }
 938
 939        mutex_unlock(&shmem_swaplist_mutex);
 940free_swap:
 941        swapcache_free(swap);
 942redirty:
 943        set_page_dirty(page);
 944        if (wbc->for_reclaim)
 945                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 946        unlock_page(page);
 947        return 0;
 948}
 949
 950#ifdef CONFIG_NUMA
 951#ifdef CONFIG_TMPFS
 952static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 953{
 954        char buffer[64];
 955
 956        if (!mpol || mpol->mode == MPOL_DEFAULT)
 957                return;         /* show nothing */
 958
 959        mpol_to_str(buffer, sizeof(buffer), mpol);
 960
 961        seq_printf(seq, ",mpol=%s", buffer);
 962}
 963
 964static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 965{
 966        struct mempolicy *mpol = NULL;
 967        if (sbinfo->mpol) {
 968                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 969                mpol = sbinfo->mpol;
 970                mpol_get(mpol);
 971                spin_unlock(&sbinfo->stat_lock);
 972        }
 973        return mpol;
 974}
 975#endif /* CONFIG_TMPFS */
 976
 977static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 978                        struct shmem_inode_info *info, pgoff_t index)
 979{
 980        struct vm_area_struct pvma;
 981        struct page *page;
 982
 983        /* Create a pseudo vma that just contains the policy */
 984        pvma.vm_start = 0;
 985        /* Bias interleave by inode number to distribute better across nodes */
 986        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 987        pvma.vm_ops = NULL;
 988        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 989
 990        page = swapin_readahead(swap, gfp, &pvma, 0);
 991
 992        /* Drop reference taken by mpol_shared_policy_lookup() */
 993        mpol_cond_put(pvma.vm_policy);
 994
 995        return page;
 996}
 997
 998static struct page *shmem_alloc_page(gfp_t gfp,
 999                        struct shmem_inode_info *info, pgoff_t index)
1000{
1001        struct vm_area_struct pvma;
1002        struct page *page;
1003
1004        /* Create a pseudo vma that just contains the policy */
1005        pvma.vm_start = 0;
1006        /* Bias interleave by inode number to distribute better across nodes */
1007        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008        pvma.vm_ops = NULL;
1009        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1010
1011        page = alloc_page_vma(gfp, &pvma, 0);
1012
1013        /* Drop reference taken by mpol_shared_policy_lookup() */
1014        mpol_cond_put(pvma.vm_policy);
1015
1016        return page;
1017}
1018#else /* !CONFIG_NUMA */
1019#ifdef CONFIG_TMPFS
1020static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1021{
1022}
1023#endif /* CONFIG_TMPFS */
1024
1025static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026                        struct shmem_inode_info *info, pgoff_t index)
1027{
1028        return swapin_readahead(swap, gfp, NULL, 0);
1029}
1030
1031static inline struct page *shmem_alloc_page(gfp_t gfp,
1032                        struct shmem_inode_info *info, pgoff_t index)
1033{
1034        return alloc_page(gfp);
1035}
1036#endif /* CONFIG_NUMA */
1037
1038#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1040{
1041        return NULL;
1042}
1043#endif
1044
1045/*
1046 * When a page is moved from swapcache to shmem filecache (either by the
1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049 * ignorance of the mapping it belongs to.  If that mapping has special
1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051 * we may need to copy to a suitable page before moving to filecache.
1052 *
1053 * In a future release, this may well be extended to respect cpuset and
1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055 * but for now it is a simple matter of zone.
1056 */
1057static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1058{
1059        return page_zonenum(page) > gfp_zone(gfp);
1060}
1061
1062static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063                                struct shmem_inode_info *info, pgoff_t index)
1064{
1065        struct page *oldpage, *newpage;
1066        struct address_space *swap_mapping;
1067        pgoff_t swap_index;
1068        int error;
1069
1070        oldpage = *pagep;
1071        swap_index = page_private(oldpage);
1072        swap_mapping = page_mapping(oldpage);
1073
1074        /*
1075         * We have arrived here because our zones are constrained, so don't
1076         * limit chance of success by further cpuset and node constraints.
1077         */
1078        gfp &= ~GFP_CONSTRAINT_MASK;
1079        newpage = shmem_alloc_page(gfp, info, index);
1080        if (!newpage)
1081                return -ENOMEM;
1082
1083        get_page(newpage);
1084        copy_highpage(newpage, oldpage);
1085        flush_dcache_page(newpage);
1086
1087        __SetPageLocked(newpage);
1088        SetPageUptodate(newpage);
1089        SetPageSwapBacked(newpage);
1090        set_page_private(newpage, swap_index);
1091        SetPageSwapCache(newpage);
1092
1093        /*
1094         * Our caller will very soon move newpage out of swapcache, but it's
1095         * a nice clean interface for us to replace oldpage by newpage there.
1096         */
1097        spin_lock_irq(&swap_mapping->tree_lock);
1098        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099                                                                   newpage);
1100        if (!error) {
1101                __inc_zone_page_state(newpage, NR_FILE_PAGES);
1102                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1103        }
1104        spin_unlock_irq(&swap_mapping->tree_lock);
1105
1106        if (unlikely(error)) {
1107                /*
1108                 * Is this possible?  I think not, now that our callers check
1109                 * both PageSwapCache and page_private after getting page lock;
1110                 * but be defensive.  Reverse old to newpage for clear and free.
1111                 */
1112                oldpage = newpage;
1113        } else {
1114                mem_cgroup_migrate(oldpage, newpage);
1115                lru_cache_add_anon(newpage);
1116                *pagep = newpage;
1117        }
1118
1119        ClearPageSwapCache(oldpage);
1120        set_page_private(oldpage, 0);
1121
1122        unlock_page(oldpage);
1123        put_page(oldpage);
1124        put_page(oldpage);
1125        return error;
1126}
1127
1128/*
1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1130 *
1131 * If we allocate a new one we do not mark it dirty. That's up to the
1132 * vm. If we swap it in we mark it dirty since we also free the swap
1133 * entry since a page cannot live in both the swap and page cache
1134 */
1135static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1137{
1138        struct address_space *mapping = inode->i_mapping;
1139        struct shmem_inode_info *info;
1140        struct shmem_sb_info *sbinfo;
1141        struct mem_cgroup *memcg;
1142        struct page *page;
1143        swp_entry_t swap;
1144        int error;
1145        int once = 0;
1146        int alloced = 0;
1147
1148        if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149                return -EFBIG;
1150repeat:
1151        swap.val = 0;
1152        page = find_lock_entry(mapping, index);
1153        if (radix_tree_exceptional_entry(page)) {
1154                swap = radix_to_swp_entry(page);
1155                page = NULL;
1156        }
1157
1158        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160                error = -EINVAL;
1161                goto unlock;
1162        }
1163
1164        if (page && sgp == SGP_WRITE)
1165                mark_page_accessed(page);
1166
1167        /* fallocated page? */
1168        if (page && !PageUptodate(page)) {
1169                if (sgp != SGP_READ)
1170                        goto clear;
1171                unlock_page(page);
1172                put_page(page);
1173                page = NULL;
1174        }
1175        if (page || (sgp == SGP_READ && !swap.val)) {
1176                *pagep = page;
1177                return 0;
1178        }
1179
1180        /*
1181         * Fast cache lookup did not find it:
1182         * bring it back from swap or allocate.
1183         */
1184        info = SHMEM_I(inode);
1185        sbinfo = SHMEM_SB(inode->i_sb);
1186
1187        if (swap.val) {
1188                /* Look it up and read it in.. */
1189                page = lookup_swap_cache(swap);
1190                if (!page) {
1191                        /* here we actually do the io */
1192                        if (fault_type)
1193                                *fault_type |= VM_FAULT_MAJOR;
1194                        page = shmem_swapin(swap, gfp, info, index);
1195                        if (!page) {
1196                                error = -ENOMEM;
1197                                goto failed;
1198                        }
1199                }
1200
1201                /* We have to do this with page locked to prevent races */
1202                lock_page(page);
1203                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204                    !shmem_confirm_swap(mapping, index, swap)) {
1205                        error = -EEXIST;        /* try again */
1206                        goto unlock;
1207                }
1208                if (!PageUptodate(page)) {
1209                        error = -EIO;
1210                        goto failed;
1211                }
1212                wait_on_page_writeback(page);
1213
1214                if (shmem_should_replace_page(page, gfp)) {
1215                        error = shmem_replace_page(&page, gfp, info, index);
1216                        if (error)
1217                                goto failed;
1218                }
1219
1220                error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221                                false);
1222                if (!error) {
1223                        error = shmem_add_to_page_cache(page, mapping, index,
1224                                                swp_to_radix_entry(swap));
1225                        /*
1226                         * We already confirmed swap under page lock, and make
1227                         * no memory allocation here, so usually no possibility
1228                         * of error; but free_swap_and_cache() only trylocks a
1229                         * page, so it is just possible that the entry has been
1230                         * truncated or holepunched since swap was confirmed.
1231                         * shmem_undo_range() will have done some of the
1232                         * unaccounting, now delete_from_swap_cache() will do
1233                         * the rest.
1234                         * Reset swap.val? No, leave it so "failed" goes back to
1235                         * "repeat": reading a hole and writing should succeed.
1236                         */
1237                        if (error) {
1238                                mem_cgroup_cancel_charge(page, memcg, false);
1239                                delete_from_swap_cache(page);
1240                        }
1241                }
1242                if (error)
1243                        goto failed;
1244
1245                mem_cgroup_commit_charge(page, memcg, true, false);
1246
1247                spin_lock(&info->lock);
1248                info->swapped--;
1249                shmem_recalc_inode(inode);
1250                spin_unlock(&info->lock);
1251
1252                if (sgp == SGP_WRITE)
1253                        mark_page_accessed(page);
1254
1255                delete_from_swap_cache(page);
1256                set_page_dirty(page);
1257                swap_free(swap);
1258
1259        } else {
1260                if (shmem_acct_block(info->flags)) {
1261                        error = -ENOSPC;
1262                        goto failed;
1263                }
1264                if (sbinfo->max_blocks) {
1265                        if (percpu_counter_compare(&sbinfo->used_blocks,
1266                                                sbinfo->max_blocks) >= 0) {
1267                                error = -ENOSPC;
1268                                goto unacct;
1269                        }
1270                        percpu_counter_inc(&sbinfo->used_blocks);
1271                }
1272
1273                page = shmem_alloc_page(gfp, info, index);
1274                if (!page) {
1275                        error = -ENOMEM;
1276                        goto decused;
1277                }
1278
1279                __SetPageSwapBacked(page);
1280                __SetPageLocked(page);
1281                if (sgp == SGP_WRITE)
1282                        __SetPageReferenced(page);
1283
1284                error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285                                false);
1286                if (error)
1287                        goto decused;
1288                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289                if (!error) {
1290                        error = shmem_add_to_page_cache(page, mapping, index,
1291                                                        NULL);
1292                        radix_tree_preload_end();
1293                }
1294                if (error) {
1295                        mem_cgroup_cancel_charge(page, memcg, false);
1296                        goto decused;
1297                }
1298                mem_cgroup_commit_charge(page, memcg, false, false);
1299                lru_cache_add_anon(page);
1300
1301                spin_lock(&info->lock);
1302                info->alloced++;
1303                inode->i_blocks += BLOCKS_PER_PAGE;
1304                shmem_recalc_inode(inode);
1305                spin_unlock(&info->lock);
1306                alloced = true;
1307
1308                /*
1309                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1310                 */
1311                if (sgp == SGP_FALLOC)
1312                        sgp = SGP_WRITE;
1313clear:
1314                /*
1315                 * Let SGP_WRITE caller clear ends if write does not fill page;
1316                 * but SGP_FALLOC on a page fallocated earlier must initialize
1317                 * it now, lest undo on failure cancel our earlier guarantee.
1318                 */
1319                if (sgp != SGP_WRITE) {
1320                        clear_highpage(page);
1321                        flush_dcache_page(page);
1322                        SetPageUptodate(page);
1323                }
1324                if (sgp == SGP_DIRTY)
1325                        set_page_dirty(page);
1326        }
1327
1328        /* Perhaps the file has been truncated since we checked */
1329        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331                if (alloced) {
1332                        ClearPageDirty(page);
1333                        delete_from_page_cache(page);
1334                        spin_lock(&info->lock);
1335                        shmem_recalc_inode(inode);
1336                        spin_unlock(&info->lock);
1337                }
1338                error = -EINVAL;
1339                goto unlock;
1340        }
1341        *pagep = page;
1342        return 0;
1343
1344        /*
1345         * Error recovery.
1346         */
1347decused:
1348        if (sbinfo->max_blocks)
1349                percpu_counter_add(&sbinfo->used_blocks, -1);
1350unacct:
1351        shmem_unacct_blocks(info->flags, 1);
1352failed:
1353        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354                error = -EEXIST;
1355unlock:
1356        if (page) {
1357                unlock_page(page);
1358                put_page(page);
1359        }
1360        if (error == -ENOSPC && !once++) {
1361                info = SHMEM_I(inode);
1362                spin_lock(&info->lock);
1363                shmem_recalc_inode(inode);
1364                spin_unlock(&info->lock);
1365                goto repeat;
1366        }
1367        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1368                goto repeat;
1369        return error;
1370}
1371
1372static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1373{
1374        struct inode *inode = file_inode(vma->vm_file);
1375        int error;
1376        int ret = VM_FAULT_LOCKED;
1377
1378        /*
1379         * Trinity finds that probing a hole which tmpfs is punching can
1380         * prevent the hole-punch from ever completing: which in turn
1381         * locks writers out with its hold on i_mutex.  So refrain from
1382         * faulting pages into the hole while it's being punched.  Although
1383         * shmem_undo_range() does remove the additions, it may be unable to
1384         * keep up, as each new page needs its own unmap_mapping_range() call,
1385         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386         *
1387         * It does not matter if we sometimes reach this check just before the
1388         * hole-punch begins, so that one fault then races with the punch:
1389         * we just need to make racing faults a rare case.
1390         *
1391         * The implementation below would be much simpler if we just used a
1392         * standard mutex or completion: but we cannot take i_mutex in fault,
1393         * and bloating every shmem inode for this unlikely case would be sad.
1394         */
1395        if (unlikely(inode->i_private)) {
1396                struct shmem_falloc *shmem_falloc;
1397
1398                spin_lock(&inode->i_lock);
1399                shmem_falloc = inode->i_private;
1400                if (shmem_falloc &&
1401                    shmem_falloc->waitq &&
1402                    vmf->pgoff >= shmem_falloc->start &&
1403                    vmf->pgoff < shmem_falloc->next) {
1404                        wait_queue_head_t *shmem_falloc_waitq;
1405                        DEFINE_WAIT(shmem_fault_wait);
1406
1407                        ret = VM_FAULT_NOPAGE;
1408                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410                                /* It's polite to up mmap_sem if we can */
1411                                up_read(&vma->vm_mm->mmap_sem);
1412                                ret = VM_FAULT_RETRY;
1413                        }
1414
1415                        shmem_falloc_waitq = shmem_falloc->waitq;
1416                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417                                        TASK_UNINTERRUPTIBLE);
1418                        spin_unlock(&inode->i_lock);
1419                        schedule();
1420
1421                        /*
1422                         * shmem_falloc_waitq points into the shmem_fallocate()
1423                         * stack of the hole-punching task: shmem_falloc_waitq
1424                         * is usually invalid by the time we reach here, but
1425                         * finish_wait() does not dereference it in that case;
1426                         * though i_lock needed lest racing with wake_up_all().
1427                         */
1428                        spin_lock(&inode->i_lock);
1429                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430                        spin_unlock(&inode->i_lock);
1431                        return ret;
1432                }
1433                spin_unlock(&inode->i_lock);
1434        }
1435
1436        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437        if (error)
1438                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1439
1440        if (ret & VM_FAULT_MAJOR) {
1441                count_vm_event(PGMAJFAULT);
1442                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1443        }
1444        return ret;
1445}
1446
1447#ifdef CONFIG_NUMA
1448static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449{
1450        struct inode *inode = file_inode(vma->vm_file);
1451        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1452}
1453
1454static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455                                          unsigned long addr)
1456{
1457        struct inode *inode = file_inode(vma->vm_file);
1458        pgoff_t index;
1459
1460        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1462}
1463#endif
1464
1465int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466{
1467        struct inode *inode = file_inode(file);
1468        struct shmem_inode_info *info = SHMEM_I(inode);
1469        int retval = -ENOMEM;
1470
1471        spin_lock(&info->lock);
1472        if (lock && !(info->flags & VM_LOCKED)) {
1473                if (!user_shm_lock(inode->i_size, user))
1474                        goto out_nomem;
1475                info->flags |= VM_LOCKED;
1476                mapping_set_unevictable(file->f_mapping);
1477        }
1478        if (!lock && (info->flags & VM_LOCKED) && user) {
1479                user_shm_unlock(inode->i_size, user);
1480                info->flags &= ~VM_LOCKED;
1481                mapping_clear_unevictable(file->f_mapping);
1482        }
1483        retval = 0;
1484
1485out_nomem:
1486        spin_unlock(&info->lock);
1487        return retval;
1488}
1489
1490static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491{
1492        file_accessed(file);
1493        vma->vm_ops = &shmem_vm_ops;
1494        return 0;
1495}
1496
1497static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1498                                     umode_t mode, dev_t dev, unsigned long flags)
1499{
1500        struct inode *inode;
1501        struct shmem_inode_info *info;
1502        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1503
1504        if (shmem_reserve_inode(sb))
1505                return NULL;
1506
1507        inode = new_inode(sb);
1508        if (inode) {
1509                inode->i_ino = get_next_ino();
1510                inode_init_owner(inode, dir, mode);
1511                inode->i_blocks = 0;
1512                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513                inode->i_generation = get_seconds();
1514                info = SHMEM_I(inode);
1515                memset(info, 0, (char *)inode - (char *)info);
1516                spin_lock_init(&info->lock);
1517                info->seals = F_SEAL_SEAL;
1518                info->flags = flags & VM_NORESERVE;
1519                INIT_LIST_HEAD(&info->swaplist);
1520                simple_xattrs_init(&info->xattrs);
1521                cache_no_acl(inode);
1522
1523                switch (mode & S_IFMT) {
1524                default:
1525                        inode->i_op = &shmem_special_inode_operations;
1526                        init_special_inode(inode, mode, dev);
1527                        break;
1528                case S_IFREG:
1529                        inode->i_mapping->a_ops = &shmem_aops;
1530                        inode->i_op = &shmem_inode_operations;
1531                        inode->i_fop = &shmem_file_operations;
1532                        mpol_shared_policy_init(&info->policy,
1533                                                 shmem_get_sbmpol(sbinfo));
1534                        break;
1535                case S_IFDIR:
1536                        inc_nlink(inode);
1537                        /* Some things misbehave if size == 0 on a directory */
1538                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539                        inode->i_op = &shmem_dir_inode_operations;
1540                        inode->i_fop = &simple_dir_operations;
1541                        break;
1542                case S_IFLNK:
1543                        /*
1544                         * Must not load anything in the rbtree,
1545                         * mpol_free_shared_policy will not be called.
1546                         */
1547                        mpol_shared_policy_init(&info->policy, NULL);
1548                        break;
1549                }
1550        } else
1551                shmem_free_inode(sb);
1552        return inode;
1553}
1554
1555bool shmem_mapping(struct address_space *mapping)
1556{
1557        if (!mapping->host)
1558                return false;
1559
1560        return mapping->host->i_sb->s_op == &shmem_ops;
1561}
1562
1563#ifdef CONFIG_TMPFS
1564static const struct inode_operations shmem_symlink_inode_operations;
1565static const struct inode_operations shmem_short_symlink_operations;
1566
1567#ifdef CONFIG_TMPFS_XATTR
1568static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569#else
1570#define shmem_initxattrs NULL
1571#endif
1572
1573static int
1574shmem_write_begin(struct file *file, struct address_space *mapping,
1575                        loff_t pos, unsigned len, unsigned flags,
1576                        struct page **pagep, void **fsdata)
1577{
1578        struct inode *inode = mapping->host;
1579        struct shmem_inode_info *info = SHMEM_I(inode);
1580        pgoff_t index = pos >> PAGE_SHIFT;
1581
1582        /* i_mutex is held by caller */
1583        if (unlikely(info->seals)) {
1584                if (info->seals & F_SEAL_WRITE)
1585                        return -EPERM;
1586                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587                        return -EPERM;
1588        }
1589
1590        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1591}
1592
1593static int
1594shmem_write_end(struct file *file, struct address_space *mapping,
1595                        loff_t pos, unsigned len, unsigned copied,
1596                        struct page *page, void *fsdata)
1597{
1598        struct inode *inode = mapping->host;
1599
1600        if (pos + copied > inode->i_size)
1601                i_size_write(inode, pos + copied);
1602
1603        if (!PageUptodate(page)) {
1604                if (copied < PAGE_SIZE) {
1605                        unsigned from = pos & (PAGE_SIZE - 1);
1606                        zero_user_segments(page, 0, from,
1607                                        from + copied, PAGE_SIZE);
1608                }
1609                SetPageUptodate(page);
1610        }
1611        set_page_dirty(page);
1612        unlock_page(page);
1613        put_page(page);
1614
1615        return copied;
1616}
1617
1618static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619{
1620        struct file *file = iocb->ki_filp;
1621        struct inode *inode = file_inode(file);
1622        struct address_space *mapping = inode->i_mapping;
1623        pgoff_t index;
1624        unsigned long offset;
1625        enum sgp_type sgp = SGP_READ;
1626        int error = 0;
1627        ssize_t retval = 0;
1628        loff_t *ppos = &iocb->ki_pos;
1629
1630        /*
1631         * Might this read be for a stacking filesystem?  Then when reading
1632         * holes of a sparse file, we actually need to allocate those pages,
1633         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634         */
1635        if (!iter_is_iovec(to))
1636                sgp = SGP_DIRTY;
1637
1638        index = *ppos >> PAGE_SHIFT;
1639        offset = *ppos & ~PAGE_MASK;
1640
1641        for (;;) {
1642                struct page *page = NULL;
1643                pgoff_t end_index;
1644                unsigned long nr, ret;
1645                loff_t i_size = i_size_read(inode);
1646
1647                end_index = i_size >> PAGE_SHIFT;
1648                if (index > end_index)
1649                        break;
1650                if (index == end_index) {
1651                        nr = i_size & ~PAGE_MASK;
1652                        if (nr <= offset)
1653                                break;
1654                }
1655
1656                error = shmem_getpage(inode, index, &page, sgp, NULL);
1657                if (error) {
1658                        if (error == -EINVAL)
1659                                error = 0;
1660                        break;
1661                }
1662                if (page)
1663                        unlock_page(page);
1664
1665                /*
1666                 * We must evaluate after, since reads (unlike writes)
1667                 * are called without i_mutex protection against truncate
1668                 */
1669                nr = PAGE_SIZE;
1670                i_size = i_size_read(inode);
1671                end_index = i_size >> PAGE_SHIFT;
1672                if (index == end_index) {
1673                        nr = i_size & ~PAGE_MASK;
1674                        if (nr <= offset) {
1675                                if (page)
1676                                        put_page(page);
1677                                break;
1678                        }
1679                }
1680                nr -= offset;
1681
1682                if (page) {
1683                        /*
1684                         * If users can be writing to this page using arbitrary
1685                         * virtual addresses, take care about potential aliasing
1686                         * before reading the page on the kernel side.
1687                         */
1688                        if (mapping_writably_mapped(mapping))
1689                                flush_dcache_page(page);
1690                        /*
1691                         * Mark the page accessed if we read the beginning.
1692                         */
1693                        if (!offset)
1694                                mark_page_accessed(page);
1695                } else {
1696                        page = ZERO_PAGE(0);
1697                        get_page(page);
1698                }
1699
1700                /*
1701                 * Ok, we have the page, and it's up-to-date, so
1702                 * now we can copy it to user space...
1703                 */
1704                ret = copy_page_to_iter(page, offset, nr, to);
1705                retval += ret;
1706                offset += ret;
1707                index += offset >> PAGE_SHIFT;
1708                offset &= ~PAGE_MASK;
1709
1710                put_page(page);
1711                if (!iov_iter_count(to))
1712                        break;
1713                if (ret < nr) {
1714                        error = -EFAULT;
1715                        break;
1716                }
1717                cond_resched();
1718        }
1719
1720        *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721        file_accessed(file);
1722        return retval ? retval : error;
1723}
1724
1725static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726                                struct pipe_inode_info *pipe, size_t len,
1727                                unsigned int flags)
1728{
1729        struct address_space *mapping = in->f_mapping;
1730        struct inode *inode = mapping->host;
1731        unsigned int loff, nr_pages, req_pages;
1732        struct page *pages[PIPE_DEF_BUFFERS];
1733        struct partial_page partial[PIPE_DEF_BUFFERS];
1734        struct page *page;
1735        pgoff_t index, end_index;
1736        loff_t isize, left;
1737        int error, page_nr;
1738        struct splice_pipe_desc spd = {
1739                .pages = pages,
1740                .partial = partial,
1741                .nr_pages_max = PIPE_DEF_BUFFERS,
1742                .flags = flags,
1743                .ops = &page_cache_pipe_buf_ops,
1744                .spd_release = spd_release_page,
1745        };
1746
1747        isize = i_size_read(inode);
1748        if (unlikely(*ppos >= isize))
1749                return 0;
1750
1751        left = isize - *ppos;
1752        if (unlikely(left < len))
1753                len = left;
1754
1755        if (splice_grow_spd(pipe, &spd))
1756                return -ENOMEM;
1757
1758        index = *ppos >> PAGE_SHIFT;
1759        loff = *ppos & ~PAGE_MASK;
1760        req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761        nr_pages = min(req_pages, spd.nr_pages_max);
1762
1763        spd.nr_pages = find_get_pages_contig(mapping, index,
1764                                                nr_pages, spd.pages);
1765        index += spd.nr_pages;
1766        error = 0;
1767
1768        while (spd.nr_pages < nr_pages) {
1769                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770                if (error)
1771                        break;
1772                unlock_page(page);
1773                spd.pages[spd.nr_pages++] = page;
1774                index++;
1775        }
1776
1777        index = *ppos >> PAGE_SHIFT;
1778        nr_pages = spd.nr_pages;
1779        spd.nr_pages = 0;
1780
1781        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782                unsigned int this_len;
1783
1784                if (!len)
1785                        break;
1786
1787                this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788                page = spd.pages[page_nr];
1789
1790                if (!PageUptodate(page) || page->mapping != mapping) {
1791                        error = shmem_getpage(inode, index, &page,
1792                                                        SGP_CACHE, NULL);
1793                        if (error)
1794                                break;
1795                        unlock_page(page);
1796                        put_page(spd.pages[page_nr]);
1797                        spd.pages[page_nr] = page;
1798                }
1799
1800                isize = i_size_read(inode);
1801                end_index = (isize - 1) >> PAGE_SHIFT;
1802                if (unlikely(!isize || index > end_index))
1803                        break;
1804
1805                if (end_index == index) {
1806                        unsigned int plen;
1807
1808                        plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809                        if (plen <= loff)
1810                                break;
1811
1812                        this_len = min(this_len, plen - loff);
1813                        len = this_len;
1814                }
1815
1816                spd.partial[page_nr].offset = loff;
1817                spd.partial[page_nr].len = this_len;
1818                len -= this_len;
1819                loff = 0;
1820                spd.nr_pages++;
1821                index++;
1822        }
1823
1824        while (page_nr < nr_pages)
1825                put_page(spd.pages[page_nr++]);
1826
1827        if (spd.nr_pages)
1828                error = splice_to_pipe(pipe, &spd);
1829
1830        splice_shrink_spd(&spd);
1831
1832        if (error > 0) {
1833                *ppos += error;
1834                file_accessed(in);
1835        }
1836        return error;
1837}
1838
1839/*
1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841 */
1842static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843                                    pgoff_t index, pgoff_t end, int whence)
1844{
1845        struct page *page;
1846        struct pagevec pvec;
1847        pgoff_t indices[PAGEVEC_SIZE];
1848        bool done = false;
1849        int i;
1850
1851        pagevec_init(&pvec, 0);
1852        pvec.nr = 1;            /* start small: we may be there already */
1853        while (!done) {
1854                pvec.nr = find_get_entries(mapping, index,
1855                                        pvec.nr, pvec.pages, indices);
1856                if (!pvec.nr) {
1857                        if (whence == SEEK_DATA)
1858                                index = end;
1859                        break;
1860                }
1861                for (i = 0; i < pvec.nr; i++, index++) {
1862                        if (index < indices[i]) {
1863                                if (whence == SEEK_HOLE) {
1864                                        done = true;
1865                                        break;
1866                                }
1867                                index = indices[i];
1868                        }
1869                        page = pvec.pages[i];
1870                        if (page && !radix_tree_exceptional_entry(page)) {
1871                                if (!PageUptodate(page))
1872                                        page = NULL;
1873                        }
1874                        if (index >= end ||
1875                            (page && whence == SEEK_DATA) ||
1876                            (!page && whence == SEEK_HOLE)) {
1877                                done = true;
1878                                break;
1879                        }
1880                }
1881                pagevec_remove_exceptionals(&pvec);
1882                pagevec_release(&pvec);
1883                pvec.nr = PAGEVEC_SIZE;
1884                cond_resched();
1885        }
1886        return index;
1887}
1888
1889static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890{
1891        struct address_space *mapping = file->f_mapping;
1892        struct inode *inode = mapping->host;
1893        pgoff_t start, end;
1894        loff_t new_offset;
1895
1896        if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897                return generic_file_llseek_size(file, offset, whence,
1898                                        MAX_LFS_FILESIZE, i_size_read(inode));
1899        inode_lock(inode);
1900        /* We're holding i_mutex so we can access i_size directly */
1901
1902        if (offset < 0)
1903                offset = -EINVAL;
1904        else if (offset >= inode->i_size)
1905                offset = -ENXIO;
1906        else {
1907                start = offset >> PAGE_SHIFT;
1908                end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910                new_offset <<= PAGE_SHIFT;
1911                if (new_offset > offset) {
1912                        if (new_offset < inode->i_size)
1913                                offset = new_offset;
1914                        else if (whence == SEEK_DATA)
1915                                offset = -ENXIO;
1916                        else
1917                                offset = inode->i_size;
1918                }
1919        }
1920
1921        if (offset >= 0)
1922                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923        inode_unlock(inode);
1924        return offset;
1925}
1926
1927/*
1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930 */
1931#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1932#define LAST_SCAN               4       /* about 150ms max */
1933
1934static void shmem_tag_pins(struct address_space *mapping)
1935{
1936        struct radix_tree_iter iter;
1937        void **slot;
1938        pgoff_t start;
1939        struct page *page;
1940
1941        lru_add_drain();
1942        start = 0;
1943        rcu_read_lock();
1944
1945        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946                page = radix_tree_deref_slot(slot);
1947                if (!page || radix_tree_exception(page)) {
1948                        if (radix_tree_deref_retry(page)) {
1949                                slot = radix_tree_iter_retry(&iter);
1950                                continue;
1951                        }
1952                } else if (page_count(page) - page_mapcount(page) > 1) {
1953                        spin_lock_irq(&mapping->tree_lock);
1954                        radix_tree_tag_set(&mapping->page_tree, iter.index,
1955                                           SHMEM_TAG_PINNED);
1956                        spin_unlock_irq(&mapping->tree_lock);
1957                }
1958
1959                if (need_resched()) {
1960                        cond_resched_rcu();
1961                        slot = radix_tree_iter_next(&iter);
1962                }
1963        }
1964        rcu_read_unlock();
1965}
1966
1967/*
1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969 * via get_user_pages(), drivers might have some pending I/O without any active
1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972 * them to be dropped.
1973 * The caller must guarantee that no new user will acquire writable references
1974 * to those pages to avoid races.
1975 */
1976static int shmem_wait_for_pins(struct address_space *mapping)
1977{
1978        struct radix_tree_iter iter;
1979        void **slot;
1980        pgoff_t start;
1981        struct page *page;
1982        int error, scan;
1983
1984        shmem_tag_pins(mapping);
1985
1986        error = 0;
1987        for (scan = 0; scan <= LAST_SCAN; scan++) {
1988                if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989                        break;
1990
1991                if (!scan)
1992                        lru_add_drain_all();
1993                else if (schedule_timeout_killable((HZ << scan) / 200))
1994                        scan = LAST_SCAN;
1995
1996                start = 0;
1997                rcu_read_lock();
1998                radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999                                           start, SHMEM_TAG_PINNED) {
2000
2001                        page = radix_tree_deref_slot(slot);
2002                        if (radix_tree_exception(page)) {
2003                                if (radix_tree_deref_retry(page)) {
2004                                        slot = radix_tree_iter_retry(&iter);
2005                                        continue;
2006                                }
2007
2008                                page = NULL;
2009                        }
2010
2011                        if (page &&
2012                            page_count(page) - page_mapcount(page) != 1) {
2013                                if (scan < LAST_SCAN)
2014                                        goto continue_resched;
2015
2016                                /*
2017                                 * On the last scan, we clean up all those tags
2018                                 * we inserted; but make a note that we still
2019                                 * found pages pinned.
2020                                 */
2021                                error = -EBUSY;
2022                        }
2023
2024                        spin_lock_irq(&mapping->tree_lock);
2025                        radix_tree_tag_clear(&mapping->page_tree,
2026                                             iter.index, SHMEM_TAG_PINNED);
2027                        spin_unlock_irq(&mapping->tree_lock);
2028continue_resched:
2029                        if (need_resched()) {
2030                                cond_resched_rcu();
2031                                slot = radix_tree_iter_next(&iter);
2032                        }
2033                }
2034                rcu_read_unlock();
2035        }
2036
2037        return error;
2038}
2039
2040#define F_ALL_SEALS (F_SEAL_SEAL | \
2041                     F_SEAL_SHRINK | \
2042                     F_SEAL_GROW | \
2043                     F_SEAL_WRITE)
2044
2045int shmem_add_seals(struct file *file, unsigned int seals)
2046{
2047        struct inode *inode = file_inode(file);
2048        struct shmem_inode_info *info = SHMEM_I(inode);
2049        int error;
2050
2051        /*
2052         * SEALING
2053         * Sealing allows multiple parties to share a shmem-file but restrict
2054         * access to a specific subset of file operations. Seals can only be
2055         * added, but never removed. This way, mutually untrusted parties can
2056         * share common memory regions with a well-defined policy. A malicious
2057         * peer can thus never perform unwanted operations on a shared object.
2058         *
2059         * Seals are only supported on special shmem-files and always affect
2060         * the whole underlying inode. Once a seal is set, it may prevent some
2061         * kinds of access to the file. Currently, the following seals are
2062         * defined:
2063         *   SEAL_SEAL: Prevent further seals from being set on this file
2064         *   SEAL_SHRINK: Prevent the file from shrinking
2065         *   SEAL_GROW: Prevent the file from growing
2066         *   SEAL_WRITE: Prevent write access to the file
2067         *
2068         * As we don't require any trust relationship between two parties, we
2069         * must prevent seals from being removed. Therefore, sealing a file
2070         * only adds a given set of seals to the file, it never touches
2071         * existing seals. Furthermore, the "setting seals"-operation can be
2072         * sealed itself, which basically prevents any further seal from being
2073         * added.
2074         *
2075         * Semantics of sealing are only defined on volatile files. Only
2076         * anonymous shmem files support sealing. More importantly, seals are
2077         * never written to disk. Therefore, there's no plan to support it on
2078         * other file types.
2079         */
2080
2081        if (file->f_op != &shmem_file_operations)
2082                return -EINVAL;
2083        if (!(file->f_mode & FMODE_WRITE))
2084                return -EPERM;
2085        if (seals & ~(unsigned int)F_ALL_SEALS)
2086                return -EINVAL;
2087
2088        inode_lock(inode);
2089
2090        if (info->seals & F_SEAL_SEAL) {
2091                error = -EPERM;
2092                goto unlock;
2093        }
2094
2095        if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096                error = mapping_deny_writable(file->f_mapping);
2097                if (error)
2098                        goto unlock;
2099
2100                error = shmem_wait_for_pins(file->f_mapping);
2101                if (error) {
2102                        mapping_allow_writable(file->f_mapping);
2103                        goto unlock;
2104                }
2105        }
2106
2107        info->seals |= seals;
2108        error = 0;
2109
2110unlock:
2111        inode_unlock(inode);
2112        return error;
2113}
2114EXPORT_SYMBOL_GPL(shmem_add_seals);
2115
2116int shmem_get_seals(struct file *file)
2117{
2118        if (file->f_op != &shmem_file_operations)
2119                return -EINVAL;
2120
2121        return SHMEM_I(file_inode(file))->seals;
2122}
2123EXPORT_SYMBOL_GPL(shmem_get_seals);
2124
2125long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2126{
2127        long error;
2128
2129        switch (cmd) {
2130        case F_ADD_SEALS:
2131                /* disallow upper 32bit */
2132                if (arg > UINT_MAX)
2133                        return -EINVAL;
2134
2135                error = shmem_add_seals(file, arg);
2136                break;
2137        case F_GET_SEALS:
2138                error = shmem_get_seals(file);
2139                break;
2140        default:
2141                error = -EINVAL;
2142                break;
2143        }
2144
2145        return error;
2146}
2147
2148static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149                                                         loff_t len)
2150{
2151        struct inode *inode = file_inode(file);
2152        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153        struct shmem_inode_info *info = SHMEM_I(inode);
2154        struct shmem_falloc shmem_falloc;
2155        pgoff_t start, index, end;
2156        int error;
2157
2158        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159                return -EOPNOTSUPP;
2160
2161        inode_lock(inode);
2162
2163        if (mode & FALLOC_FL_PUNCH_HOLE) {
2164                struct address_space *mapping = file->f_mapping;
2165                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168
2169                /* protected by i_mutex */
2170                if (info->seals & F_SEAL_WRITE) {
2171                        error = -EPERM;
2172                        goto out;
2173                }
2174
2175                shmem_falloc.waitq = &shmem_falloc_waitq;
2176                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178                spin_lock(&inode->i_lock);
2179                inode->i_private = &shmem_falloc;
2180                spin_unlock(&inode->i_lock);
2181
2182                if ((u64)unmap_end > (u64)unmap_start)
2183                        unmap_mapping_range(mapping, unmap_start,
2184                                            1 + unmap_end - unmap_start, 0);
2185                shmem_truncate_range(inode, offset, offset + len - 1);
2186                /* No need to unmap again: hole-punching leaves COWed pages */
2187
2188                spin_lock(&inode->i_lock);
2189                inode->i_private = NULL;
2190                wake_up_all(&shmem_falloc_waitq);
2191                spin_unlock(&inode->i_lock);
2192                error = 0;
2193                goto out;
2194        }
2195
2196        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197        error = inode_newsize_ok(inode, offset + len);
2198        if (error)
2199                goto out;
2200
2201        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202                error = -EPERM;
2203                goto out;
2204        }
2205
2206        start = offset >> PAGE_SHIFT;
2207        end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208        /* Try to avoid a swapstorm if len is impossible to satisfy */
2209        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210                error = -ENOSPC;
2211                goto out;
2212        }
2213
2214        shmem_falloc.waitq = NULL;
2215        shmem_falloc.start = start;
2216        shmem_falloc.next  = start;
2217        shmem_falloc.nr_falloced = 0;
2218        shmem_falloc.nr_unswapped = 0;
2219        spin_lock(&inode->i_lock);
2220        inode->i_private = &shmem_falloc;
2221        spin_unlock(&inode->i_lock);
2222
2223        for (index = start; index < end; index++) {
2224                struct page *page;
2225
2226                /*
2227                 * Good, the fallocate(2) manpage permits EINTR: we may have
2228                 * been interrupted because we are using up too much memory.
2229                 */
2230                if (signal_pending(current))
2231                        error = -EINTR;
2232                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233                        error = -ENOMEM;
2234                else
2235                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236                                                                        NULL);
2237                if (error) {
2238                        /* Remove the !PageUptodate pages we added */
2239                        shmem_undo_range(inode,
2240                                (loff_t)start << PAGE_SHIFT,
2241                                (loff_t)index << PAGE_SHIFT, true);
2242                        goto undone;
2243                }
2244
2245                /*
2246                 * Inform shmem_writepage() how far we have reached.
2247                 * No need for lock or barrier: we have the page lock.
2248                 */
2249                shmem_falloc.next++;
2250                if (!PageUptodate(page))
2251                        shmem_falloc.nr_falloced++;
2252
2253                /*
2254                 * If !PageUptodate, leave it that way so that freeable pages
2255                 * can be recognized if we need to rollback on error later.
2256                 * But set_page_dirty so that memory pressure will swap rather
2257                 * than free the pages we are allocating (and SGP_CACHE pages
2258                 * might still be clean: we now need to mark those dirty too).
2259                 */
2260                set_page_dirty(page);
2261                unlock_page(page);
2262                put_page(page);
2263                cond_resched();
2264        }
2265
2266        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267                i_size_write(inode, offset + len);
2268        inode->i_ctime = CURRENT_TIME;
2269undone:
2270        spin_lock(&inode->i_lock);
2271        inode->i_private = NULL;
2272        spin_unlock(&inode->i_lock);
2273out:
2274        inode_unlock(inode);
2275        return error;
2276}
2277
2278static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279{
2280        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281
2282        buf->f_type = TMPFS_MAGIC;
2283        buf->f_bsize = PAGE_SIZE;
2284        buf->f_namelen = NAME_MAX;
2285        if (sbinfo->max_blocks) {
2286                buf->f_blocks = sbinfo->max_blocks;
2287                buf->f_bavail =
2288                buf->f_bfree  = sbinfo->max_blocks -
2289                                percpu_counter_sum(&sbinfo->used_blocks);
2290        }
2291        if (sbinfo->max_inodes) {
2292                buf->f_files = sbinfo->max_inodes;
2293                buf->f_ffree = sbinfo->free_inodes;
2294        }
2295        /* else leave those fields 0 like simple_statfs */
2296        return 0;
2297}
2298
2299/*
2300 * File creation. Allocate an inode, and we're done..
2301 */
2302static int
2303shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2304{
2305        struct inode *inode;
2306        int error = -ENOSPC;
2307
2308        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309        if (inode) {
2310                error = simple_acl_create(dir, inode);
2311                if (error)
2312                        goto out_iput;
2313                error = security_inode_init_security(inode, dir,
2314                                                     &dentry->d_name,
2315                                                     shmem_initxattrs, NULL);
2316                if (error && error != -EOPNOTSUPP)
2317                        goto out_iput;
2318
2319                error = 0;
2320                dir->i_size += BOGO_DIRENT_SIZE;
2321                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2322                d_instantiate(dentry, inode);
2323                dget(dentry); /* Extra count - pin the dentry in core */
2324        }
2325        return error;
2326out_iput:
2327        iput(inode);
2328        return error;
2329}
2330
2331static int
2332shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2333{
2334        struct inode *inode;
2335        int error = -ENOSPC;
2336
2337        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338        if (inode) {
2339                error = security_inode_init_security(inode, dir,
2340                                                     NULL,
2341                                                     shmem_initxattrs, NULL);
2342                if (error && error != -EOPNOTSUPP)
2343                        goto out_iput;
2344                error = simple_acl_create(dir, inode);
2345                if (error)
2346                        goto out_iput;
2347                d_tmpfile(dentry, inode);
2348        }
2349        return error;
2350out_iput:
2351        iput(inode);
2352        return error;
2353}
2354
2355static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2356{
2357        int error;
2358
2359        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2360                return error;
2361        inc_nlink(dir);
2362        return 0;
2363}
2364
2365static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366                bool excl)
2367{
2368        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2369}
2370
2371/*
2372 * Link a file..
2373 */
2374static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375{
2376        struct inode *inode = d_inode(old_dentry);
2377        int ret;
2378
2379        /*
2380         * No ordinary (disk based) filesystem counts links as inodes;
2381         * but each new link needs a new dentry, pinning lowmem, and
2382         * tmpfs dentries cannot be pruned until they are unlinked.
2383         */
2384        ret = shmem_reserve_inode(inode->i_sb);
2385        if (ret)
2386                goto out;
2387
2388        dir->i_size += BOGO_DIRENT_SIZE;
2389        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390        inc_nlink(inode);
2391        ihold(inode);   /* New dentry reference */
2392        dget(dentry);           /* Extra pinning count for the created dentry */
2393        d_instantiate(dentry, inode);
2394out:
2395        return ret;
2396}
2397
2398static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399{
2400        struct inode *inode = d_inode(dentry);
2401
2402        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403                shmem_free_inode(inode->i_sb);
2404
2405        dir->i_size -= BOGO_DIRENT_SIZE;
2406        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407        drop_nlink(inode);
2408        dput(dentry);   /* Undo the count from "create" - this does all the work */
2409        return 0;
2410}
2411
2412static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413{
2414        if (!simple_empty(dentry))
2415                return -ENOTEMPTY;
2416
2417        drop_nlink(d_inode(dentry));
2418        drop_nlink(dir);
2419        return shmem_unlink(dir, dentry);
2420}
2421
2422static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423{
2424        bool old_is_dir = d_is_dir(old_dentry);
2425        bool new_is_dir = d_is_dir(new_dentry);
2426
2427        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428                if (old_is_dir) {
2429                        drop_nlink(old_dir);
2430                        inc_nlink(new_dir);
2431                } else {
2432                        drop_nlink(new_dir);
2433                        inc_nlink(old_dir);
2434                }
2435        }
2436        old_dir->i_ctime = old_dir->i_mtime =
2437        new_dir->i_ctime = new_dir->i_mtime =
2438        d_inode(old_dentry)->i_ctime =
2439        d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2440
2441        return 0;
2442}
2443
2444static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445{
2446        struct dentry *whiteout;
2447        int error;
2448
2449        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450        if (!whiteout)
2451                return -ENOMEM;
2452
2453        error = shmem_mknod(old_dir, whiteout,
2454                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455        dput(whiteout);
2456        if (error)
2457                return error;
2458
2459        /*
2460         * Cheat and hash the whiteout while the old dentry is still in
2461         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462         *
2463         * d_lookup() will consistently find one of them at this point,
2464         * not sure which one, but that isn't even important.
2465         */
2466        d_rehash(whiteout);
2467        return 0;
2468}
2469
2470/*
2471 * The VFS layer already does all the dentry stuff for rename,
2472 * we just have to decrement the usage count for the target if
2473 * it exists so that the VFS layer correctly free's it when it
2474 * gets overwritten.
2475 */
2476static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2477{
2478        struct inode *inode = d_inode(old_dentry);
2479        int they_are_dirs = S_ISDIR(inode->i_mode);
2480
2481        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482                return -EINVAL;
2483
2484        if (flags & RENAME_EXCHANGE)
2485                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486
2487        if (!simple_empty(new_dentry))
2488                return -ENOTEMPTY;
2489
2490        if (flags & RENAME_WHITEOUT) {
2491                int error;
2492
2493                error = shmem_whiteout(old_dir, old_dentry);
2494                if (error)
2495                        return error;
2496        }
2497
2498        if (d_really_is_positive(new_dentry)) {
2499                (void) shmem_unlink(new_dir, new_dentry);
2500                if (they_are_dirs) {
2501                        drop_nlink(d_inode(new_dentry));
2502                        drop_nlink(old_dir);
2503                }
2504        } else if (they_are_dirs) {
2505                drop_nlink(old_dir);
2506                inc_nlink(new_dir);
2507        }
2508
2509        old_dir->i_size -= BOGO_DIRENT_SIZE;
2510        new_dir->i_size += BOGO_DIRENT_SIZE;
2511        old_dir->i_ctime = old_dir->i_mtime =
2512        new_dir->i_ctime = new_dir->i_mtime =
2513        inode->i_ctime = CURRENT_TIME;
2514        return 0;
2515}
2516
2517static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2518{
2519        int error;
2520        int len;
2521        struct inode *inode;
2522        struct page *page;
2523        struct shmem_inode_info *info;
2524
2525        len = strlen(symname) + 1;
2526        if (len > PAGE_SIZE)
2527                return -ENAMETOOLONG;
2528
2529        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2530        if (!inode)
2531                return -ENOSPC;
2532
2533        error = security_inode_init_security(inode, dir, &dentry->d_name,
2534                                             shmem_initxattrs, NULL);
2535        if (error) {
2536                if (error != -EOPNOTSUPP) {
2537                        iput(inode);
2538                        return error;
2539                }
2540                error = 0;
2541        }
2542
2543        info = SHMEM_I(inode);
2544        inode->i_size = len-1;
2545        if (len <= SHORT_SYMLINK_LEN) {
2546                inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547                if (!inode->i_link) {
2548                        iput(inode);
2549                        return -ENOMEM;
2550                }
2551                inode->i_op = &shmem_short_symlink_operations;
2552        } else {
2553                inode_nohighmem(inode);
2554                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555                if (error) {
2556                        iput(inode);
2557                        return error;
2558                }
2559                inode->i_mapping->a_ops = &shmem_aops;
2560                inode->i_op = &shmem_symlink_inode_operations;
2561                memcpy(page_address(page), symname, len);
2562                SetPageUptodate(page);
2563                set_page_dirty(page);
2564                unlock_page(page);
2565                put_page(page);
2566        }
2567        dir->i_size += BOGO_DIRENT_SIZE;
2568        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569        d_instantiate(dentry, inode);
2570        dget(dentry);
2571        return 0;
2572}
2573
2574static void shmem_put_link(void *arg)
2575{
2576        mark_page_accessed(arg);
2577        put_page(arg);
2578}
2579
2580static const char *shmem_get_link(struct dentry *dentry,
2581                                  struct inode *inode,
2582                                  struct delayed_call *done)
2583{
2584        struct page *page = NULL;
2585        int error;
2586        if (!dentry) {
2587                page = find_get_page(inode->i_mapping, 0);
2588                if (!page)
2589                        return ERR_PTR(-ECHILD);
2590                if (!PageUptodate(page)) {
2591                        put_page(page);
2592                        return ERR_PTR(-ECHILD);
2593                }
2594        } else {
2595                error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596                if (error)
2597                        return ERR_PTR(error);
2598                unlock_page(page);
2599        }
2600        set_delayed_call(done, shmem_put_link, page);
2601        return page_address(page);
2602}
2603
2604#ifdef CONFIG_TMPFS_XATTR
2605/*
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
2612/*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615static int shmem_initxattrs(struct inode *inode,
2616                            const struct xattr *xattr_array,
2617                            void *fs_info)
2618{
2619        struct shmem_inode_info *info = SHMEM_I(inode);
2620        const struct xattr *xattr;
2621        struct simple_xattr *new_xattr;
2622        size_t len;
2623
2624        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626                if (!new_xattr)
2627                        return -ENOMEM;
2628
2629                len = strlen(xattr->name) + 1;
2630                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631                                          GFP_KERNEL);
2632                if (!new_xattr->name) {
2633                        kfree(new_xattr);
2634                        return -ENOMEM;
2635                }
2636
2637                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638                       XATTR_SECURITY_PREFIX_LEN);
2639                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640                       xattr->name, len);
2641
2642                simple_xattr_list_add(&info->xattrs, new_xattr);
2643        }
2644
2645        return 0;
2646}
2647
2648static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649                                   struct dentry *dentry, const char *name,
2650                                   void *buffer, size_t size)
2651{
2652        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653
2654        name = xattr_full_name(handler, name);
2655        return simple_xattr_get(&info->xattrs, name, buffer, size);
2656}
2657
2658static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659                                   struct dentry *dentry, const char *name,
2660                                   const void *value, size_t size, int flags)
2661{
2662        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2663
2664        name = xattr_full_name(handler, name);
2665        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666}
2667
2668static const struct xattr_handler shmem_security_xattr_handler = {
2669        .prefix = XATTR_SECURITY_PREFIX,
2670        .get = shmem_xattr_handler_get,
2671        .set = shmem_xattr_handler_set,
2672};
2673
2674static const struct xattr_handler shmem_trusted_xattr_handler = {
2675        .prefix = XATTR_TRUSTED_PREFIX,
2676        .get = shmem_xattr_handler_get,
2677        .set = shmem_xattr_handler_set,
2678};
2679
2680static const struct xattr_handler *shmem_xattr_handlers[] = {
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682        &posix_acl_access_xattr_handler,
2683        &posix_acl_default_xattr_handler,
2684#endif
2685        &shmem_security_xattr_handler,
2686        &shmem_trusted_xattr_handler,
2687        NULL
2688};
2689
2690static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691{
2692        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693        return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694}
2695#endif /* CONFIG_TMPFS_XATTR */
2696
2697static const struct inode_operations shmem_short_symlink_operations = {
2698        .readlink       = generic_readlink,
2699        .get_link       = simple_get_link,
2700#ifdef CONFIG_TMPFS_XATTR
2701        .setxattr       = generic_setxattr,
2702        .getxattr       = generic_getxattr,
2703        .listxattr      = shmem_listxattr,
2704        .removexattr    = generic_removexattr,
2705#endif
2706};
2707
2708static const struct inode_operations shmem_symlink_inode_operations = {
2709        .readlink       = generic_readlink,
2710        .get_link       = shmem_get_link,
2711#ifdef CONFIG_TMPFS_XATTR
2712        .setxattr       = generic_setxattr,
2713        .getxattr       = generic_getxattr,
2714        .listxattr      = shmem_listxattr,
2715        .removexattr    = generic_removexattr,
2716#endif
2717};
2718
2719static struct dentry *shmem_get_parent(struct dentry *child)
2720{
2721        return ERR_PTR(-ESTALE);
2722}
2723
2724static int shmem_match(struct inode *ino, void *vfh)
2725{
2726        __u32 *fh = vfh;
2727        __u64 inum = fh[2];
2728        inum = (inum << 32) | fh[1];
2729        return ino->i_ino == inum && fh[0] == ino->i_generation;
2730}
2731
2732static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733                struct fid *fid, int fh_len, int fh_type)
2734{
2735        struct inode *inode;
2736        struct dentry *dentry = NULL;
2737        u64 inum;
2738
2739        if (fh_len < 3)
2740                return NULL;
2741
2742        inum = fid->raw[2];
2743        inum = (inum << 32) | fid->raw[1];
2744
2745        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746                        shmem_match, fid->raw);
2747        if (inode) {
2748                dentry = d_find_alias(inode);
2749                iput(inode);
2750        }
2751
2752        return dentry;
2753}
2754
2755static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756                                struct inode *parent)
2757{
2758        if (*len < 3) {
2759                *len = 3;
2760                return FILEID_INVALID;
2761        }
2762
2763        if (inode_unhashed(inode)) {
2764                /* Unfortunately insert_inode_hash is not idempotent,
2765                 * so as we hash inodes here rather than at creation
2766                 * time, we need a lock to ensure we only try
2767                 * to do it once
2768                 */
2769                static DEFINE_SPINLOCK(lock);
2770                spin_lock(&lock);
2771                if (inode_unhashed(inode))
2772                        __insert_inode_hash(inode,
2773                                            inode->i_ino + inode->i_generation);
2774                spin_unlock(&lock);
2775        }
2776
2777        fh[0] = inode->i_generation;
2778        fh[1] = inode->i_ino;
2779        fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781        *len = 3;
2782        return 1;
2783}
2784
2785static const struct export_operations shmem_export_ops = {
2786        .get_parent     = shmem_get_parent,
2787        .encode_fh      = shmem_encode_fh,
2788        .fh_to_dentry   = shmem_fh_to_dentry,
2789};
2790
2791static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792                               bool remount)
2793{
2794        char *this_char, *value, *rest;
2795        struct mempolicy *mpol = NULL;
2796        uid_t uid;
2797        gid_t gid;
2798
2799        while (options != NULL) {
2800                this_char = options;
2801                for (;;) {
2802                        /*
2803                         * NUL-terminate this option: unfortunately,
2804                         * mount options form a comma-separated list,
2805                         * but mpol's nodelist may also contain commas.
2806                         */
2807                        options = strchr(options, ',');
2808                        if (options == NULL)
2809                                break;
2810                        options++;
2811                        if (!isdigit(*options)) {
2812                                options[-1] = '\0';
2813                                break;
2814                        }
2815                }
2816                if (!*this_char)
2817                        continue;
2818                if ((value = strchr(this_char,'=')) != NULL) {
2819                        *value++ = 0;
2820                } else {
2821                        pr_err("tmpfs: No value for mount option '%s'\n",
2822                               this_char);
2823                        goto error;
2824                }
2825
2826                if (!strcmp(this_char,"size")) {
2827                        unsigned long long size;
2828                        size = memparse(value,&rest);
2829                        if (*rest == '%') {
2830                                size <<= PAGE_SHIFT;
2831                                size *= totalram_pages;
2832                                do_div(size, 100);
2833                                rest++;
2834                        }
2835                        if (*rest)
2836                                goto bad_val;
2837                        sbinfo->max_blocks =
2838                                DIV_ROUND_UP(size, PAGE_SIZE);
2839                } else if (!strcmp(this_char,"nr_blocks")) {
2840                        sbinfo->max_blocks = memparse(value, &rest);
2841                        if (*rest)
2842                                goto bad_val;
2843                } else if (!strcmp(this_char,"nr_inodes")) {
2844                        sbinfo->max_inodes = memparse(value, &rest);
2845                        if (*rest)
2846                                goto bad_val;
2847                } else if (!strcmp(this_char,"mode")) {
2848                        if (remount)
2849                                continue;
2850                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851                        if (*rest)
2852                                goto bad_val;
2853                } else if (!strcmp(this_char,"uid")) {
2854                        if (remount)
2855                                continue;
2856                        uid = simple_strtoul(value, &rest, 0);
2857                        if (*rest)
2858                                goto bad_val;
2859                        sbinfo->uid = make_kuid(current_user_ns(), uid);
2860                        if (!uid_valid(sbinfo->uid))
2861                                goto bad_val;
2862                } else if (!strcmp(this_char,"gid")) {
2863                        if (remount)
2864                                continue;
2865                        gid = simple_strtoul(value, &rest, 0);
2866                        if (*rest)
2867                                goto bad_val;
2868                        sbinfo->gid = make_kgid(current_user_ns(), gid);
2869                        if (!gid_valid(sbinfo->gid))
2870                                goto bad_val;
2871                } else if (!strcmp(this_char,"mpol")) {
2872                        mpol_put(mpol);
2873                        mpol = NULL;
2874                        if (mpol_parse_str(value, &mpol))
2875                                goto bad_val;
2876                } else {
2877                        pr_err("tmpfs: Bad mount option %s\n", this_char);
2878                        goto error;
2879                }
2880        }
2881        sbinfo->mpol = mpol;
2882        return 0;
2883
2884bad_val:
2885        pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886               value, this_char);
2887error:
2888        mpol_put(mpol);
2889        return 1;
2890
2891}
2892
2893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2894{
2895        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896        struct shmem_sb_info config = *sbinfo;
2897        unsigned long inodes;
2898        int error = -EINVAL;
2899
2900        config.mpol = NULL;
2901        if (shmem_parse_options(data, &config, true))
2902                return error;
2903
2904        spin_lock(&sbinfo->stat_lock);
2905        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907                goto out;
2908        if (config.max_inodes < inodes)
2909                goto out;
2910        /*
2911         * Those tests disallow limited->unlimited while any are in use;
2912         * but we must separately disallow unlimited->limited, because
2913         * in that case we have no record of how much is already in use.
2914         */
2915        if (config.max_blocks && !sbinfo->max_blocks)
2916                goto out;
2917        if (config.max_inodes && !sbinfo->max_inodes)
2918                goto out;
2919
2920        error = 0;
2921        sbinfo->max_blocks  = config.max_blocks;
2922        sbinfo->max_inodes  = config.max_inodes;
2923        sbinfo->free_inodes = config.max_inodes - inodes;
2924
2925        /*
2926         * Preserve previous mempolicy unless mpol remount option was specified.
2927         */
2928        if (config.mpol) {
2929                mpol_put(sbinfo->mpol);
2930                sbinfo->mpol = config.mpol;     /* transfers initial ref */
2931        }
2932out:
2933        spin_unlock(&sbinfo->stat_lock);
2934        return error;
2935}
2936
2937static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2938{
2939        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2940
2941        if (sbinfo->max_blocks != shmem_default_max_blocks())
2942                seq_printf(seq, ",size=%luk",
2943                        sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944        if (sbinfo->max_inodes != shmem_default_max_inodes())
2945                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949                seq_printf(seq, ",uid=%u",
2950                                from_kuid_munged(&init_user_ns, sbinfo->uid));
2951        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952                seq_printf(seq, ",gid=%u",
2953                                from_kgid_munged(&init_user_ns, sbinfo->gid));
2954        shmem_show_mpol(seq, sbinfo->mpol);
2955        return 0;
2956}
2957
2958#define MFD_NAME_PREFIX "memfd:"
2959#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2961
2962#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2963
2964SYSCALL_DEFINE2(memfd_create,
2965                const char __user *, uname,
2966                unsigned int, flags)
2967{
2968        struct shmem_inode_info *info;
2969        struct file *file;
2970        int fd, error;
2971        char *name;
2972        long len;
2973
2974        if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975                return -EINVAL;
2976
2977        /* length includes terminating zero */
2978        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979        if (len <= 0)
2980                return -EFAULT;
2981        if (len > MFD_NAME_MAX_LEN + 1)
2982                return -EINVAL;
2983
2984        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985        if (!name)
2986                return -ENOMEM;
2987
2988        strcpy(name, MFD_NAME_PREFIX);
2989        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990                error = -EFAULT;
2991                goto err_name;
2992        }
2993
2994        /* terminating-zero may have changed after strnlen_user() returned */
2995        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996                error = -EFAULT;
2997                goto err_name;
2998        }
2999
3000        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001        if (fd < 0) {
3002                error = fd;
3003                goto err_name;
3004        }
3005
3006        file = shmem_file_setup(name, 0, VM_NORESERVE);
3007        if (IS_ERR(file)) {
3008                error = PTR_ERR(file);
3009                goto err_fd;
3010        }
3011        info = SHMEM_I(file_inode(file));
3012        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013        file->f_flags |= O_RDWR | O_LARGEFILE;
3014        if (flags & MFD_ALLOW_SEALING)
3015                info->seals &= ~F_SEAL_SEAL;
3016
3017        fd_install(fd, file);
3018        kfree(name);
3019        return fd;
3020
3021err_fd:
3022        put_unused_fd(fd);
3023err_name:
3024        kfree(name);
3025        return error;
3026}
3027
3028#endif /* CONFIG_TMPFS */
3029
3030static void shmem_put_super(struct super_block *sb)
3031{
3032        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3033
3034        percpu_counter_destroy(&sbinfo->used_blocks);
3035        mpol_put(sbinfo->mpol);
3036        kfree(sbinfo);
3037        sb->s_fs_info = NULL;
3038}
3039
3040int shmem_fill_super(struct super_block *sb, void *data, int silent)
3041{
3042        struct inode *inode;
3043        struct shmem_sb_info *sbinfo;
3044        int err = -ENOMEM;
3045
3046        /* Round up to L1_CACHE_BYTES to resist false sharing */
3047        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048                                L1_CACHE_BYTES), GFP_KERNEL);
3049        if (!sbinfo)
3050                return -ENOMEM;
3051
3052        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053        sbinfo->uid = current_fsuid();
3054        sbinfo->gid = current_fsgid();
3055        sb->s_fs_info = sbinfo;
3056
3057#ifdef CONFIG_TMPFS
3058        /*
3059         * Per default we only allow half of the physical ram per
3060         * tmpfs instance, limiting inodes to one per page of lowmem;
3061         * but the internal instance is left unlimited.
3062         */
3063        if (!(sb->s_flags & MS_KERNMOUNT)) {
3064                sbinfo->max_blocks = shmem_default_max_blocks();
3065                sbinfo->max_inodes = shmem_default_max_inodes();
3066                if (shmem_parse_options(data, sbinfo, false)) {
3067                        err = -EINVAL;
3068                        goto failed;
3069                }
3070        } else {
3071                sb->s_flags |= MS_NOUSER;
3072        }
3073        sb->s_export_op = &shmem_export_ops;
3074        sb->s_flags |= MS_NOSEC;
3075#else
3076        sb->s_flags |= MS_NOUSER;
3077#endif
3078
3079        spin_lock_init(&sbinfo->stat_lock);
3080        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081                goto failed;
3082        sbinfo->free_inodes = sbinfo->max_inodes;
3083
3084        sb->s_maxbytes = MAX_LFS_FILESIZE;
3085        sb->s_blocksize = PAGE_SIZE;
3086        sb->s_blocksize_bits = PAGE_SHIFT;
3087        sb->s_magic = TMPFS_MAGIC;
3088        sb->s_op = &shmem_ops;
3089        sb->s_time_gran = 1;
3090#ifdef CONFIG_TMPFS_XATTR
3091        sb->s_xattr = shmem_xattr_handlers;
3092#endif
3093#ifdef CONFIG_TMPFS_POSIX_ACL
3094        sb->s_flags |= MS_POSIXACL;
3095#endif
3096
3097        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098        if (!inode)
3099                goto failed;
3100        inode->i_uid = sbinfo->uid;
3101        inode->i_gid = sbinfo->gid;
3102        sb->s_root = d_make_root(inode);
3103        if (!sb->s_root)
3104                goto failed;
3105        return 0;
3106
3107failed:
3108        shmem_put_super(sb);
3109        return err;
3110}
3111
3112static struct kmem_cache *shmem_inode_cachep;
3113
3114static struct inode *shmem_alloc_inode(struct super_block *sb)
3115{
3116        struct shmem_inode_info *info;
3117        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118        if (!info)
3119                return NULL;
3120        return &info->vfs_inode;
3121}
3122
3123static void shmem_destroy_callback(struct rcu_head *head)
3124{
3125        struct inode *inode = container_of(head, struct inode, i_rcu);
3126        kfree(inode->i_link);
3127        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3128}
3129
3130static void shmem_destroy_inode(struct inode *inode)
3131{
3132        if (S_ISREG(inode->i_mode))
3133                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3135}
3136
3137static void shmem_init_inode(void *foo)
3138{
3139        struct shmem_inode_info *info = foo;
3140        inode_init_once(&info->vfs_inode);
3141}
3142
3143static int shmem_init_inodecache(void)
3144{
3145        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146                                sizeof(struct shmem_inode_info),
3147                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148        return 0;
3149}
3150
3151static void shmem_destroy_inodecache(void)
3152{
3153        kmem_cache_destroy(shmem_inode_cachep);
3154}
3155
3156static const struct address_space_operations shmem_aops = {
3157        .writepage      = shmem_writepage,
3158        .set_page_dirty = __set_page_dirty_no_writeback,
3159#ifdef CONFIG_TMPFS
3160        .write_begin    = shmem_write_begin,
3161        .write_end      = shmem_write_end,
3162#endif
3163#ifdef CONFIG_MIGRATION
3164        .migratepage    = migrate_page,
3165#endif
3166        .error_remove_page = generic_error_remove_page,
3167};
3168
3169static const struct file_operations shmem_file_operations = {
3170        .mmap           = shmem_mmap,
3171#ifdef CONFIG_TMPFS
3172        .llseek         = shmem_file_llseek,
3173        .read_iter      = shmem_file_read_iter,
3174        .write_iter     = generic_file_write_iter,
3175        .fsync          = noop_fsync,
3176        .splice_read    = shmem_file_splice_read,
3177        .splice_write   = iter_file_splice_write,
3178        .fallocate      = shmem_fallocate,
3179#endif
3180};
3181
3182static const struct inode_operations shmem_inode_operations = {
3183        .getattr        = shmem_getattr,
3184        .setattr        = shmem_setattr,
3185#ifdef CONFIG_TMPFS_XATTR
3186        .setxattr       = generic_setxattr,
3187        .getxattr       = generic_getxattr,
3188        .listxattr      = shmem_listxattr,
3189        .removexattr    = generic_removexattr,
3190        .set_acl        = simple_set_acl,
3191#endif
3192};
3193
3194static const struct inode_operations shmem_dir_inode_operations = {
3195#ifdef CONFIG_TMPFS
3196        .create         = shmem_create,
3197        .lookup         = simple_lookup,
3198        .link           = shmem_link,
3199        .unlink         = shmem_unlink,
3200        .symlink        = shmem_symlink,
3201        .mkdir          = shmem_mkdir,
3202        .rmdir          = shmem_rmdir,
3203        .mknod          = shmem_mknod,
3204        .rename2        = shmem_rename2,
3205        .tmpfile        = shmem_tmpfile,
3206#endif
3207#ifdef CONFIG_TMPFS_XATTR
3208        .setxattr       = generic_setxattr,
3209        .getxattr       = generic_getxattr,
3210        .listxattr      = shmem_listxattr,
3211        .removexattr    = generic_removexattr,
3212#endif
3213#ifdef CONFIG_TMPFS_POSIX_ACL
3214        .setattr        = shmem_setattr,
3215        .set_acl        = simple_set_acl,
3216#endif
3217};
3218
3219static const struct inode_operations shmem_special_inode_operations = {
3220#ifdef CONFIG_TMPFS_XATTR
3221        .setxattr       = generic_setxattr,
3222        .getxattr       = generic_getxattr,
3223        .listxattr      = shmem_listxattr,
3224        .removexattr    = generic_removexattr,
3225#endif
3226#ifdef CONFIG_TMPFS_POSIX_ACL
3227        .setattr        = shmem_setattr,
3228        .set_acl        = simple_set_acl,
3229#endif
3230};
3231
3232static const struct super_operations shmem_ops = {
3233        .alloc_inode    = shmem_alloc_inode,
3234        .destroy_inode  = shmem_destroy_inode,
3235#ifdef CONFIG_TMPFS
3236        .statfs         = shmem_statfs,
3237        .remount_fs     = shmem_remount_fs,
3238        .show_options   = shmem_show_options,
3239#endif
3240        .evict_inode    = shmem_evict_inode,
3241        .drop_inode     = generic_delete_inode,
3242        .put_super      = shmem_put_super,
3243};
3244
3245static const struct vm_operations_struct shmem_vm_ops = {
3246        .fault          = shmem_fault,
3247        .map_pages      = filemap_map_pages,
3248#ifdef CONFIG_NUMA
3249        .set_policy     = shmem_set_policy,
3250        .get_policy     = shmem_get_policy,
3251#endif
3252};
3253
3254static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255        int flags, const char *dev_name, void *data)
3256{
3257        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3258}
3259
3260static struct file_system_type shmem_fs_type = {
3261        .owner          = THIS_MODULE,
3262        .name           = "tmpfs",
3263        .mount          = shmem_mount,
3264        .kill_sb        = kill_litter_super,
3265        .fs_flags       = FS_USERNS_MOUNT,
3266};
3267
3268int __init shmem_init(void)
3269{
3270        int error;
3271
3272        /* If rootfs called this, don't re-init */
3273        if (shmem_inode_cachep)
3274                return 0;
3275
3276        error = shmem_init_inodecache();
3277        if (error)
3278                goto out3;
3279
3280        error = register_filesystem(&shmem_fs_type);
3281        if (error) {
3282                pr_err("Could not register tmpfs\n");
3283                goto out2;
3284        }
3285
3286        shm_mnt = kern_mount(&shmem_fs_type);
3287        if (IS_ERR(shm_mnt)) {
3288                error = PTR_ERR(shm_mnt);
3289                pr_err("Could not kern_mount tmpfs\n");
3290                goto out1;
3291        }
3292        return 0;
3293
3294out1:
3295        unregister_filesystem(&shmem_fs_type);
3296out2:
3297        shmem_destroy_inodecache();
3298out3:
3299        shm_mnt = ERR_PTR(error);
3300        return error;
3301}
3302
3303#else /* !CONFIG_SHMEM */
3304
3305/*
3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3307 *
3308 * This is intended for small system where the benefits of the full
3309 * shmem code (swap-backed and resource-limited) are outweighed by
3310 * their complexity. On systems without swap this code should be
3311 * effectively equivalent, but much lighter weight.
3312 */
3313
3314static struct file_system_type shmem_fs_type = {
3315        .name           = "tmpfs",
3316        .mount          = ramfs_mount,
3317        .kill_sb        = kill_litter_super,
3318        .fs_flags       = FS_USERNS_MOUNT,
3319};
3320
3321int __init shmem_init(void)
3322{
3323        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3324
3325        shm_mnt = kern_mount(&shmem_fs_type);
3326        BUG_ON(IS_ERR(shm_mnt));
3327
3328        return 0;
3329}
3330
3331int shmem_unuse(swp_entry_t swap, struct page *page)
3332{
3333        return 0;
3334}
3335
3336int shmem_lock(struct file *file, int lock, struct user_struct *user)
3337{
3338        return 0;
3339}
3340
3341void shmem_unlock_mapping(struct address_space *mapping)
3342{
3343}
3344
3345void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3346{
3347        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3348}
3349EXPORT_SYMBOL_GPL(shmem_truncate_range);
3350
3351#define shmem_vm_ops                            generic_file_vm_ops
3352#define shmem_file_operations                   ramfs_file_operations
3353#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3354#define shmem_acct_size(flags, size)            0
3355#define shmem_unacct_size(flags, size)          do {} while (0)
3356
3357#endif /* CONFIG_SHMEM */
3358
3359/* common code */
3360
3361static struct dentry_operations anon_ops = {
3362        .d_dname = simple_dname
3363};
3364
3365static struct file *__shmem_file_setup(const char *name, loff_t size,
3366                                       unsigned long flags, unsigned int i_flags)
3367{
3368        struct file *res;
3369        struct inode *inode;
3370        struct path path;
3371        struct super_block *sb;
3372        struct qstr this;
3373
3374        if (IS_ERR(shm_mnt))
3375                return ERR_CAST(shm_mnt);
3376
3377        if (size < 0 || size > MAX_LFS_FILESIZE)
3378                return ERR_PTR(-EINVAL);
3379
3380        if (shmem_acct_size(flags, size))
3381                return ERR_PTR(-ENOMEM);
3382
3383        res = ERR_PTR(-ENOMEM);
3384        this.name = name;
3385        this.len = strlen(name);
3386        this.hash = 0; /* will go */
3387        sb = shm_mnt->mnt_sb;
3388        path.mnt = mntget(shm_mnt);
3389        path.dentry = d_alloc_pseudo(sb, &this);
3390        if (!path.dentry)
3391                goto put_memory;
3392        d_set_d_op(path.dentry, &anon_ops);
3393
3394        res = ERR_PTR(-ENOSPC);
3395        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396        if (!inode)
3397                goto put_memory;
3398
3399        inode->i_flags |= i_flags;
3400        d_instantiate(path.dentry, inode);
3401        inode->i_size = size;
3402        clear_nlink(inode);     /* It is unlinked */
3403        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3404        if (IS_ERR(res))
3405                goto put_path;
3406
3407        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3408                  &shmem_file_operations);
3409        if (IS_ERR(res))
3410                goto put_path;
3411
3412        return res;
3413
3414put_memory:
3415        shmem_unacct_size(flags, size);
3416put_path:
3417        path_put(&path);
3418        return res;
3419}
3420
3421/**
3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423 *      kernel internal.  There will be NO LSM permission checks against the
3424 *      underlying inode.  So users of this interface must do LSM checks at a
3425 *      higher layer.  The users are the big_key and shm implementations.  LSM
3426 *      checks are provided at the key or shm level rather than the inode.
3427 * @name: name for dentry (to be seen in /proc/<pid>/maps
3428 * @size: size to be set for the file
3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3430 */
3431struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3432{
3433        return __shmem_file_setup(name, size, flags, S_PRIVATE);
3434}
3435
3436/**
3437 * shmem_file_setup - get an unlinked file living in tmpfs
3438 * @name: name for dentry (to be seen in /proc/<pid>/maps
3439 * @size: size to be set for the file
3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3441 */
3442struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3443{
3444        return __shmem_file_setup(name, size, flags, 0);
3445}
3446EXPORT_SYMBOL_GPL(shmem_file_setup);
3447
3448/**
3449 * shmem_zero_setup - setup a shared anonymous mapping
3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3451 */
3452int shmem_zero_setup(struct vm_area_struct *vma)
3453{
3454        struct file *file;
3455        loff_t size = vma->vm_end - vma->vm_start;
3456
3457        /*
3458         * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459         * between XFS directory reading and selinux: since this file is only
3460         * accessible to the user through its mapping, use S_PRIVATE flag to
3461         * bypass file security, in the same way as shmem_kernel_file_setup().
3462         */
3463        file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464        if (IS_ERR(file))
3465                return PTR_ERR(file);
3466
3467        if (vma->vm_file)
3468                fput(vma->vm_file);
3469        vma->vm_file = file;
3470        vma->vm_ops = &shmem_vm_ops;
3471        return 0;
3472}
3473
3474/**
3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476 * @mapping:    the page's address_space
3477 * @index:      the page index
3478 * @gfp:        the page allocator flags to use if allocating
3479 *
3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481 * with any new page allocations done using the specified allocation flags.
3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3485 *
3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3488 */
3489struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490                                         pgoff_t index, gfp_t gfp)
3491{
3492#ifdef CONFIG_SHMEM
3493        struct inode *inode = mapping->host;
3494        struct page *page;
3495        int error;
3496
3497        BUG_ON(mapping->a_ops != &shmem_aops);
3498        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3499        if (error)
3500                page = ERR_PTR(error);
3501        else
3502                unlock_page(page);
3503        return page;
3504#else
3505        /*
3506         * The tiny !SHMEM case uses ramfs without swap
3507         */
3508        return read_cache_page_gfp(mapping, index, gfp);
3509#endif
3510}
3511EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3512