linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119
 120#include        <net/sock.h>
 121
 122#include        <asm/cacheflush.h>
 123#include        <asm/tlbflush.h>
 124#include        <asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include        "internal.h"
 129
 130#include        "slab.h"
 131
 132/*
 133 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *                0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS        - 1 to collect stats for /proc/slabinfo.
 137 *                0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define DEBUG           1
 144#define STATS           1
 145#define FORCED_DEBUG    1
 146#else
 147#define DEBUG           0
 148#define STATS           0
 149#define FORCED_DEBUG    0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define BYTES_PER_WORD          sizeof(void *)
 154#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184        unsigned int avail;
 185        unsigned int limit;
 186        unsigned int batchcount;
 187        unsigned int touched;
 188        void *entry[];  /*
 189                         * Must have this definition in here for the proper
 190                         * alignment of array_cache. Also simplifies accessing
 191                         * the entries.
 192                         */
 193};
 194
 195struct alien_cache {
 196        spinlock_t lock;
 197        struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define CACHE_CACHE 0
 206#define SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209                        struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211                        int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 216static int slab_early_init = 1;
 217
 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 219
 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
 221{
 222        INIT_LIST_HEAD(&parent->slabs_full);
 223        INIT_LIST_HEAD(&parent->slabs_partial);
 224        INIT_LIST_HEAD(&parent->slabs_free);
 225        parent->shared = NULL;
 226        parent->alien = NULL;
 227        parent->colour_next = 0;
 228        spin_lock_init(&parent->list_lock);
 229        parent->free_objects = 0;
 230        parent->free_touched = 0;
 231}
 232
 233#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 234        do {                                                            \
 235                INIT_LIST_HEAD(listp);                                  \
 236                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 237        } while (0)
 238
 239#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 240        do {                                                            \
 241        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 242        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 243        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 244        } while (0)
 245
 246#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 247#define CFLGS_OFF_SLAB          (0x80000000UL)
 248#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 249#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 250
 251#define BATCHREFILL_LIMIT       16
 252/*
 253 * Optimization question: fewer reaps means less probability for unnessary
 254 * cpucache drain/refill cycles.
 255 *
 256 * OTOH the cpuarrays can contain lots of objects,
 257 * which could lock up otherwise freeable slabs.
 258 */
 259#define REAPTIMEOUT_AC          (2*HZ)
 260#define REAPTIMEOUT_NODE        (4*HZ)
 261
 262#if STATS
 263#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 264#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 265#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 266#define STATS_INC_GROWN(x)      ((x)->grown++)
 267#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 268#define STATS_SET_HIGH(x)                                               \
 269        do {                                                            \
 270                if ((x)->num_active > (x)->high_mark)                   \
 271                        (x)->high_mark = (x)->num_active;               \
 272        } while (0)
 273#define STATS_INC_ERR(x)        ((x)->errors++)
 274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 275#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 276#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 277#define STATS_SET_FREEABLE(x, i)                                        \
 278        do {                                                            \
 279                if ((x)->max_freeable < i)                              \
 280                        (x)->max_freeable = i;                          \
 281        } while (0)
 282#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 283#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 284#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 285#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 286#else
 287#define STATS_INC_ACTIVE(x)     do { } while (0)
 288#define STATS_DEC_ACTIVE(x)     do { } while (0)
 289#define STATS_INC_ALLOCED(x)    do { } while (0)
 290#define STATS_INC_GROWN(x)      do { } while (0)
 291#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 292#define STATS_SET_HIGH(x)       do { } while (0)
 293#define STATS_INC_ERR(x)        do { } while (0)
 294#define STATS_INC_NODEALLOCS(x) do { } while (0)
 295#define STATS_INC_NODEFREES(x)  do { } while (0)
 296#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
 298#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 299#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 300#define STATS_INC_FREEHIT(x)    do { } while (0)
 301#define STATS_INC_FREEMISS(x)   do { } while (0)
 302#endif
 303
 304#if DEBUG
 305
 306/*
 307 * memory layout of objects:
 308 * 0            : objp
 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 310 *              the end of an object is aligned with the end of the real
 311 *              allocation. Catches writes behind the end of the allocation.
 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 313 *              redzone word.
 314 * cachep->obj_offset: The real object.
 315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 316 * cachep->size - 1* BYTES_PER_WORD: last caller address
 317 *                                      [BYTES_PER_WORD long]
 318 */
 319static int obj_offset(struct kmem_cache *cachep)
 320{
 321        return cachep->obj_offset;
 322}
 323
 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 325{
 326        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 327        return (unsigned long long*) (objp + obj_offset(cachep) -
 328                                      sizeof(unsigned long long));
 329}
 330
 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 332{
 333        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 334        if (cachep->flags & SLAB_STORE_USER)
 335                return (unsigned long long *)(objp + cachep->size -
 336                                              sizeof(unsigned long long) -
 337                                              REDZONE_ALIGN);
 338        return (unsigned long long *) (objp + cachep->size -
 339                                       sizeof(unsigned long long));
 340}
 341
 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 343{
 344        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 345        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 346}
 347
 348#else
 349
 350#define obj_offset(x)                   0
 351#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 352#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 353#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 354
 355#endif
 356
 357#ifdef CONFIG_DEBUG_SLAB_LEAK
 358
 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
 360{
 361        return atomic_read(&cachep->store_user_clean) == 1;
 362}
 363
 364static inline void set_store_user_clean(struct kmem_cache *cachep)
 365{
 366        atomic_set(&cachep->store_user_clean, 1);
 367}
 368
 369static inline void set_store_user_dirty(struct kmem_cache *cachep)
 370{
 371        if (is_store_user_clean(cachep))
 372                atomic_set(&cachep->store_user_clean, 0);
 373}
 374
 375#else
 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 377
 378#endif
 379
 380/*
 381 * Do not go above this order unless 0 objects fit into the slab or
 382 * overridden on the command line.
 383 */
 384#define SLAB_MAX_ORDER_HI       1
 385#define SLAB_MAX_ORDER_LO       0
 386static int slab_max_order = SLAB_MAX_ORDER_LO;
 387static bool slab_max_order_set __initdata;
 388
 389static inline struct kmem_cache *virt_to_cache(const void *obj)
 390{
 391        struct page *page = virt_to_head_page(obj);
 392        return page->slab_cache;
 393}
 394
 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 396                                 unsigned int idx)
 397{
 398        return page->s_mem + cache->size * idx;
 399}
 400
 401/*
 402 * We want to avoid an expensive divide : (offset / cache->size)
 403 *   Using the fact that size is a constant for a particular cache,
 404 *   we can replace (offset / cache->size) by
 405 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 406 */
 407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 408                                        const struct page *page, void *obj)
 409{
 410        u32 offset = (obj - page->s_mem);
 411        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 412}
 413
 414#define BOOT_CPUCACHE_ENTRIES   1
 415/* internal cache of cache description objs */
 416static struct kmem_cache kmem_cache_boot = {
 417        .batchcount = 1,
 418        .limit = BOOT_CPUCACHE_ENTRIES,
 419        .shared = 1,
 420        .size = sizeof(struct kmem_cache),
 421        .name = "kmem_cache",
 422};
 423
 424#define BAD_ALIEN_MAGIC 0x01020304ul
 425
 426static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 427
 428static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 429{
 430        return this_cpu_ptr(cachep->cpu_cache);
 431}
 432
 433/*
 434 * Calculate the number of objects and left-over bytes for a given buffer size.
 435 */
 436static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 437                unsigned long flags, size_t *left_over)
 438{
 439        unsigned int num;
 440        size_t slab_size = PAGE_SIZE << gfporder;
 441
 442        /*
 443         * The slab management structure can be either off the slab or
 444         * on it. For the latter case, the memory allocated for a
 445         * slab is used for:
 446         *
 447         * - @buffer_size bytes for each object
 448         * - One freelist_idx_t for each object
 449         *
 450         * We don't need to consider alignment of freelist because
 451         * freelist will be at the end of slab page. The objects will be
 452         * at the correct alignment.
 453         *
 454         * If the slab management structure is off the slab, then the
 455         * alignment will already be calculated into the size. Because
 456         * the slabs are all pages aligned, the objects will be at the
 457         * correct alignment when allocated.
 458         */
 459        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 460                num = slab_size / buffer_size;
 461                *left_over = slab_size % buffer_size;
 462        } else {
 463                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 464                *left_over = slab_size %
 465                        (buffer_size + sizeof(freelist_idx_t));
 466        }
 467
 468        return num;
 469}
 470
 471#if DEBUG
 472#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 473
 474static void __slab_error(const char *function, struct kmem_cache *cachep,
 475                        char *msg)
 476{
 477        pr_err("slab error in %s(): cache `%s': %s\n",
 478               function, cachep->name, msg);
 479        dump_stack();
 480        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 481}
 482#endif
 483
 484/*
 485 * By default on NUMA we use alien caches to stage the freeing of
 486 * objects allocated from other nodes. This causes massive memory
 487 * inefficiencies when using fake NUMA setup to split memory into a
 488 * large number of small nodes, so it can be disabled on the command
 489 * line
 490  */
 491
 492static int use_alien_caches __read_mostly = 1;
 493static int __init noaliencache_setup(char *s)
 494{
 495        use_alien_caches = 0;
 496        return 1;
 497}
 498__setup("noaliencache", noaliencache_setup);
 499
 500static int __init slab_max_order_setup(char *str)
 501{
 502        get_option(&str, &slab_max_order);
 503        slab_max_order = slab_max_order < 0 ? 0 :
 504                                min(slab_max_order, MAX_ORDER - 1);
 505        slab_max_order_set = true;
 506
 507        return 1;
 508}
 509__setup("slab_max_order=", slab_max_order_setup);
 510
 511#ifdef CONFIG_NUMA
 512/*
 513 * Special reaping functions for NUMA systems called from cache_reap().
 514 * These take care of doing round robin flushing of alien caches (containing
 515 * objects freed on different nodes from which they were allocated) and the
 516 * flushing of remote pcps by calling drain_node_pages.
 517 */
 518static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 519
 520static void init_reap_node(int cpu)
 521{
 522        int node;
 523
 524        node = next_node(cpu_to_mem(cpu), node_online_map);
 525        if (node == MAX_NUMNODES)
 526                node = first_node(node_online_map);
 527
 528        per_cpu(slab_reap_node, cpu) = node;
 529}
 530
 531static void next_reap_node(void)
 532{
 533        int node = __this_cpu_read(slab_reap_node);
 534
 535        node = next_node(node, node_online_map);
 536        if (unlikely(node >= MAX_NUMNODES))
 537                node = first_node(node_online_map);
 538        __this_cpu_write(slab_reap_node, node);
 539}
 540
 541#else
 542#define init_reap_node(cpu) do { } while (0)
 543#define next_reap_node(void) do { } while (0)
 544#endif
 545
 546/*
 547 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 548 * via the workqueue/eventd.
 549 * Add the CPU number into the expiration time to minimize the possibility of
 550 * the CPUs getting into lockstep and contending for the global cache chain
 551 * lock.
 552 */
 553static void start_cpu_timer(int cpu)
 554{
 555        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 556
 557        /*
 558         * When this gets called from do_initcalls via cpucache_init(),
 559         * init_workqueues() has already run, so keventd will be setup
 560         * at that time.
 561         */
 562        if (keventd_up() && reap_work->work.func == NULL) {
 563                init_reap_node(cpu);
 564                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 565                schedule_delayed_work_on(cpu, reap_work,
 566                                        __round_jiffies_relative(HZ, cpu));
 567        }
 568}
 569
 570static void init_arraycache(struct array_cache *ac, int limit, int batch)
 571{
 572        /*
 573         * The array_cache structures contain pointers to free object.
 574         * However, when such objects are allocated or transferred to another
 575         * cache the pointers are not cleared and they could be counted as
 576         * valid references during a kmemleak scan. Therefore, kmemleak must
 577         * not scan such objects.
 578         */
 579        kmemleak_no_scan(ac);
 580        if (ac) {
 581                ac->avail = 0;
 582                ac->limit = limit;
 583                ac->batchcount = batch;
 584                ac->touched = 0;
 585        }
 586}
 587
 588static struct array_cache *alloc_arraycache(int node, int entries,
 589                                            int batchcount, gfp_t gfp)
 590{
 591        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 592        struct array_cache *ac = NULL;
 593
 594        ac = kmalloc_node(memsize, gfp, node);
 595        init_arraycache(ac, entries, batchcount);
 596        return ac;
 597}
 598
 599static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 600                                        struct page *page, void *objp)
 601{
 602        struct kmem_cache_node *n;
 603        int page_node;
 604        LIST_HEAD(list);
 605
 606        page_node = page_to_nid(page);
 607        n = get_node(cachep, page_node);
 608
 609        spin_lock(&n->list_lock);
 610        free_block(cachep, &objp, 1, page_node, &list);
 611        spin_unlock(&n->list_lock);
 612
 613        slabs_destroy(cachep, &list);
 614}
 615
 616/*
 617 * Transfer objects in one arraycache to another.
 618 * Locking must be handled by the caller.
 619 *
 620 * Return the number of entries transferred.
 621 */
 622static int transfer_objects(struct array_cache *to,
 623                struct array_cache *from, unsigned int max)
 624{
 625        /* Figure out how many entries to transfer */
 626        int nr = min3(from->avail, max, to->limit - to->avail);
 627
 628        if (!nr)
 629                return 0;
 630
 631        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 632                        sizeof(void *) *nr);
 633
 634        from->avail -= nr;
 635        to->avail += nr;
 636        return nr;
 637}
 638
 639#ifndef CONFIG_NUMA
 640
 641#define drain_alien_cache(cachep, alien) do { } while (0)
 642#define reap_alien(cachep, n) do { } while (0)
 643
 644static inline struct alien_cache **alloc_alien_cache(int node,
 645                                                int limit, gfp_t gfp)
 646{
 647        return (struct alien_cache **)BAD_ALIEN_MAGIC;
 648}
 649
 650static inline void free_alien_cache(struct alien_cache **ac_ptr)
 651{
 652}
 653
 654static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 655{
 656        return 0;
 657}
 658
 659static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 660                gfp_t flags)
 661{
 662        return NULL;
 663}
 664
 665static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 666                 gfp_t flags, int nodeid)
 667{
 668        return NULL;
 669}
 670
 671static inline gfp_t gfp_exact_node(gfp_t flags)
 672{
 673        return flags & ~__GFP_NOFAIL;
 674}
 675
 676#else   /* CONFIG_NUMA */
 677
 678static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 679static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 680
 681static struct alien_cache *__alloc_alien_cache(int node, int entries,
 682                                                int batch, gfp_t gfp)
 683{
 684        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 685        struct alien_cache *alc = NULL;
 686
 687        alc = kmalloc_node(memsize, gfp, node);
 688        init_arraycache(&alc->ac, entries, batch);
 689        spin_lock_init(&alc->lock);
 690        return alc;
 691}
 692
 693static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 694{
 695        struct alien_cache **alc_ptr;
 696        size_t memsize = sizeof(void *) * nr_node_ids;
 697        int i;
 698
 699        if (limit > 1)
 700                limit = 12;
 701        alc_ptr = kzalloc_node(memsize, gfp, node);
 702        if (!alc_ptr)
 703                return NULL;
 704
 705        for_each_node(i) {
 706                if (i == node || !node_online(i))
 707                        continue;
 708                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 709                if (!alc_ptr[i]) {
 710                        for (i--; i >= 0; i--)
 711                                kfree(alc_ptr[i]);
 712                        kfree(alc_ptr);
 713                        return NULL;
 714                }
 715        }
 716        return alc_ptr;
 717}
 718
 719static void free_alien_cache(struct alien_cache **alc_ptr)
 720{
 721        int i;
 722
 723        if (!alc_ptr)
 724                return;
 725        for_each_node(i)
 726            kfree(alc_ptr[i]);
 727        kfree(alc_ptr);
 728}
 729
 730static void __drain_alien_cache(struct kmem_cache *cachep,
 731                                struct array_cache *ac, int node,
 732                                struct list_head *list)
 733{
 734        struct kmem_cache_node *n = get_node(cachep, node);
 735
 736        if (ac->avail) {
 737                spin_lock(&n->list_lock);
 738                /*
 739                 * Stuff objects into the remote nodes shared array first.
 740                 * That way we could avoid the overhead of putting the objects
 741                 * into the free lists and getting them back later.
 742                 */
 743                if (n->shared)
 744                        transfer_objects(n->shared, ac, ac->limit);
 745
 746                free_block(cachep, ac->entry, ac->avail, node, list);
 747                ac->avail = 0;
 748                spin_unlock(&n->list_lock);
 749        }
 750}
 751
 752/*
 753 * Called from cache_reap() to regularly drain alien caches round robin.
 754 */
 755static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 756{
 757        int node = __this_cpu_read(slab_reap_node);
 758
 759        if (n->alien) {
 760                struct alien_cache *alc = n->alien[node];
 761                struct array_cache *ac;
 762
 763                if (alc) {
 764                        ac = &alc->ac;
 765                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 766                                LIST_HEAD(list);
 767
 768                                __drain_alien_cache(cachep, ac, node, &list);
 769                                spin_unlock_irq(&alc->lock);
 770                                slabs_destroy(cachep, &list);
 771                        }
 772                }
 773        }
 774}
 775
 776static void drain_alien_cache(struct kmem_cache *cachep,
 777                                struct alien_cache **alien)
 778{
 779        int i = 0;
 780        struct alien_cache *alc;
 781        struct array_cache *ac;
 782        unsigned long flags;
 783
 784        for_each_online_node(i) {
 785                alc = alien[i];
 786                if (alc) {
 787                        LIST_HEAD(list);
 788
 789                        ac = &alc->ac;
 790                        spin_lock_irqsave(&alc->lock, flags);
 791                        __drain_alien_cache(cachep, ac, i, &list);
 792                        spin_unlock_irqrestore(&alc->lock, flags);
 793                        slabs_destroy(cachep, &list);
 794                }
 795        }
 796}
 797
 798static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 799                                int node, int page_node)
 800{
 801        struct kmem_cache_node *n;
 802        struct alien_cache *alien = NULL;
 803        struct array_cache *ac;
 804        LIST_HEAD(list);
 805
 806        n = get_node(cachep, node);
 807        STATS_INC_NODEFREES(cachep);
 808        if (n->alien && n->alien[page_node]) {
 809                alien = n->alien[page_node];
 810                ac = &alien->ac;
 811                spin_lock(&alien->lock);
 812                if (unlikely(ac->avail == ac->limit)) {
 813                        STATS_INC_ACOVERFLOW(cachep);
 814                        __drain_alien_cache(cachep, ac, page_node, &list);
 815                }
 816                ac->entry[ac->avail++] = objp;
 817                spin_unlock(&alien->lock);
 818                slabs_destroy(cachep, &list);
 819        } else {
 820                n = get_node(cachep, page_node);
 821                spin_lock(&n->list_lock);
 822                free_block(cachep, &objp, 1, page_node, &list);
 823                spin_unlock(&n->list_lock);
 824                slabs_destroy(cachep, &list);
 825        }
 826        return 1;
 827}
 828
 829static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 830{
 831        int page_node = page_to_nid(virt_to_page(objp));
 832        int node = numa_mem_id();
 833        /*
 834         * Make sure we are not freeing a object from another node to the array
 835         * cache on this cpu.
 836         */
 837        if (likely(node == page_node))
 838                return 0;
 839
 840        return __cache_free_alien(cachep, objp, node, page_node);
 841}
 842
 843/*
 844 * Construct gfp mask to allocate from a specific node but do not reclaim or
 845 * warn about failures.
 846 */
 847static inline gfp_t gfp_exact_node(gfp_t flags)
 848{
 849        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 850}
 851#endif
 852
 853/*
 854 * Allocates and initializes node for a node on each slab cache, used for
 855 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 856 * will be allocated off-node since memory is not yet online for the new node.
 857 * When hotplugging memory or a cpu, existing node are not replaced if
 858 * already in use.
 859 *
 860 * Must hold slab_mutex.
 861 */
 862static int init_cache_node_node(int node)
 863{
 864        struct kmem_cache *cachep;
 865        struct kmem_cache_node *n;
 866        const size_t memsize = sizeof(struct kmem_cache_node);
 867
 868        list_for_each_entry(cachep, &slab_caches, list) {
 869                /*
 870                 * Set up the kmem_cache_node for cpu before we can
 871                 * begin anything. Make sure some other cpu on this
 872                 * node has not already allocated this
 873                 */
 874                n = get_node(cachep, node);
 875                if (!n) {
 876                        n = kmalloc_node(memsize, GFP_KERNEL, node);
 877                        if (!n)
 878                                return -ENOMEM;
 879                        kmem_cache_node_init(n);
 880                        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 881                            ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 882
 883                        /*
 884                         * The kmem_cache_nodes don't come and go as CPUs
 885                         * come and go.  slab_mutex is sufficient
 886                         * protection here.
 887                         */
 888                        cachep->node[node] = n;
 889                }
 890
 891                spin_lock_irq(&n->list_lock);
 892                n->free_limit =
 893                        (1 + nr_cpus_node(node)) *
 894                        cachep->batchcount + cachep->num;
 895                spin_unlock_irq(&n->list_lock);
 896        }
 897        return 0;
 898}
 899
 900static inline int slabs_tofree(struct kmem_cache *cachep,
 901                                                struct kmem_cache_node *n)
 902{
 903        return (n->free_objects + cachep->num - 1) / cachep->num;
 904}
 905
 906static void cpuup_canceled(long cpu)
 907{
 908        struct kmem_cache *cachep;
 909        struct kmem_cache_node *n = NULL;
 910        int node = cpu_to_mem(cpu);
 911        const struct cpumask *mask = cpumask_of_node(node);
 912
 913        list_for_each_entry(cachep, &slab_caches, list) {
 914                struct array_cache *nc;
 915                struct array_cache *shared;
 916                struct alien_cache **alien;
 917                LIST_HEAD(list);
 918
 919                n = get_node(cachep, node);
 920                if (!n)
 921                        continue;
 922
 923                spin_lock_irq(&n->list_lock);
 924
 925                /* Free limit for this kmem_cache_node */
 926                n->free_limit -= cachep->batchcount;
 927
 928                /* cpu is dead; no one can alloc from it. */
 929                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 930                if (nc) {
 931                        free_block(cachep, nc->entry, nc->avail, node, &list);
 932                        nc->avail = 0;
 933                }
 934
 935                if (!cpumask_empty(mask)) {
 936                        spin_unlock_irq(&n->list_lock);
 937                        goto free_slab;
 938                }
 939
 940                shared = n->shared;
 941                if (shared) {
 942                        free_block(cachep, shared->entry,
 943                                   shared->avail, node, &list);
 944                        n->shared = NULL;
 945                }
 946
 947                alien = n->alien;
 948                n->alien = NULL;
 949
 950                spin_unlock_irq(&n->list_lock);
 951
 952                kfree(shared);
 953                if (alien) {
 954                        drain_alien_cache(cachep, alien);
 955                        free_alien_cache(alien);
 956                }
 957
 958free_slab:
 959                slabs_destroy(cachep, &list);
 960        }
 961        /*
 962         * In the previous loop, all the objects were freed to
 963         * the respective cache's slabs,  now we can go ahead and
 964         * shrink each nodelist to its limit.
 965         */
 966        list_for_each_entry(cachep, &slab_caches, list) {
 967                n = get_node(cachep, node);
 968                if (!n)
 969                        continue;
 970                drain_freelist(cachep, n, slabs_tofree(cachep, n));
 971        }
 972}
 973
 974static int cpuup_prepare(long cpu)
 975{
 976        struct kmem_cache *cachep;
 977        struct kmem_cache_node *n = NULL;
 978        int node = cpu_to_mem(cpu);
 979        int err;
 980
 981        /*
 982         * We need to do this right in the beginning since
 983         * alloc_arraycache's are going to use this list.
 984         * kmalloc_node allows us to add the slab to the right
 985         * kmem_cache_node and not this cpu's kmem_cache_node
 986         */
 987        err = init_cache_node_node(node);
 988        if (err < 0)
 989                goto bad;
 990
 991        /*
 992         * Now we can go ahead with allocating the shared arrays and
 993         * array caches
 994         */
 995        list_for_each_entry(cachep, &slab_caches, list) {
 996                struct array_cache *shared = NULL;
 997                struct alien_cache **alien = NULL;
 998
 999                if (cachep->shared) {
1000                        shared = alloc_arraycache(node,
1001                                cachep->shared * cachep->batchcount,
1002                                0xbaadf00d, GFP_KERNEL);
1003                        if (!shared)
1004                                goto bad;
1005                }
1006                if (use_alien_caches) {
1007                        alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008                        if (!alien) {
1009                                kfree(shared);
1010                                goto bad;
1011                        }
1012                }
1013                n = get_node(cachep, node);
1014                BUG_ON(!n);
1015
1016                spin_lock_irq(&n->list_lock);
1017                if (!n->shared) {
1018                        /*
1019                         * We are serialised from CPU_DEAD or
1020                         * CPU_UP_CANCELLED by the cpucontrol lock
1021                         */
1022                        n->shared = shared;
1023                        shared = NULL;
1024                }
1025#ifdef CONFIG_NUMA
1026                if (!n->alien) {
1027                        n->alien = alien;
1028                        alien = NULL;
1029                }
1030#endif
1031                spin_unlock_irq(&n->list_lock);
1032                kfree(shared);
1033                free_alien_cache(alien);
1034        }
1035
1036        return 0;
1037bad:
1038        cpuup_canceled(cpu);
1039        return -ENOMEM;
1040}
1041
1042static int cpuup_callback(struct notifier_block *nfb,
1043                                    unsigned long action, void *hcpu)
1044{
1045        long cpu = (long)hcpu;
1046        int err = 0;
1047
1048        switch (action) {
1049        case CPU_UP_PREPARE:
1050        case CPU_UP_PREPARE_FROZEN:
1051                mutex_lock(&slab_mutex);
1052                err = cpuup_prepare(cpu);
1053                mutex_unlock(&slab_mutex);
1054                break;
1055        case CPU_ONLINE:
1056        case CPU_ONLINE_FROZEN:
1057                start_cpu_timer(cpu);
1058                break;
1059#ifdef CONFIG_HOTPLUG_CPU
1060        case CPU_DOWN_PREPARE:
1061        case CPU_DOWN_PREPARE_FROZEN:
1062                /*
1063                 * Shutdown cache reaper. Note that the slab_mutex is
1064                 * held so that if cache_reap() is invoked it cannot do
1065                 * anything expensive but will only modify reap_work
1066                 * and reschedule the timer.
1067                */
1068                cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069                /* Now the cache_reaper is guaranteed to be not running. */
1070                per_cpu(slab_reap_work, cpu).work.func = NULL;
1071                break;
1072        case CPU_DOWN_FAILED:
1073        case CPU_DOWN_FAILED_FROZEN:
1074                start_cpu_timer(cpu);
1075                break;
1076        case CPU_DEAD:
1077        case CPU_DEAD_FROZEN:
1078                /*
1079                 * Even if all the cpus of a node are down, we don't free the
1080                 * kmem_cache_node of any cache. This to avoid a race between
1081                 * cpu_down, and a kmalloc allocation from another cpu for
1082                 * memory from the node of the cpu going down.  The node
1083                 * structure is usually allocated from kmem_cache_create() and
1084                 * gets destroyed at kmem_cache_destroy().
1085                 */
1086                /* fall through */
1087#endif
1088        case CPU_UP_CANCELED:
1089        case CPU_UP_CANCELED_FROZEN:
1090                mutex_lock(&slab_mutex);
1091                cpuup_canceled(cpu);
1092                mutex_unlock(&slab_mutex);
1093                break;
1094        }
1095        return notifier_from_errno(err);
1096}
1097
1098static struct notifier_block cpucache_notifier = {
1099        &cpuup_callback, NULL, 0
1100};
1101
1102#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103/*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
1108 * Must hold slab_mutex.
1109 */
1110static int __meminit drain_cache_node_node(int node)
1111{
1112        struct kmem_cache *cachep;
1113        int ret = 0;
1114
1115        list_for_each_entry(cachep, &slab_caches, list) {
1116                struct kmem_cache_node *n;
1117
1118                n = get_node(cachep, node);
1119                if (!n)
1120                        continue;
1121
1122                drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123
1124                if (!list_empty(&n->slabs_full) ||
1125                    !list_empty(&n->slabs_partial)) {
1126                        ret = -EBUSY;
1127                        break;
1128                }
1129        }
1130        return ret;
1131}
1132
1133static int __meminit slab_memory_callback(struct notifier_block *self,
1134                                        unsigned long action, void *arg)
1135{
1136        struct memory_notify *mnb = arg;
1137        int ret = 0;
1138        int nid;
1139
1140        nid = mnb->status_change_nid;
1141        if (nid < 0)
1142                goto out;
1143
1144        switch (action) {
1145        case MEM_GOING_ONLINE:
1146                mutex_lock(&slab_mutex);
1147                ret = init_cache_node_node(nid);
1148                mutex_unlock(&slab_mutex);
1149                break;
1150        case MEM_GOING_OFFLINE:
1151                mutex_lock(&slab_mutex);
1152                ret = drain_cache_node_node(nid);
1153                mutex_unlock(&slab_mutex);
1154                break;
1155        case MEM_ONLINE:
1156        case MEM_OFFLINE:
1157        case MEM_CANCEL_ONLINE:
1158        case MEM_CANCEL_OFFLINE:
1159                break;
1160        }
1161out:
1162        return notifier_from_errno(ret);
1163}
1164#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
1166/*
1167 * swap the static kmem_cache_node with kmalloced memory
1168 */
1169static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170                                int nodeid)
1171{
1172        struct kmem_cache_node *ptr;
1173
1174        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175        BUG_ON(!ptr);
1176
1177        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178        /*
1179         * Do not assume that spinlocks can be initialized via memcpy:
1180         */
1181        spin_lock_init(&ptr->list_lock);
1182
1183        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184        cachep->node[nodeid] = ptr;
1185}
1186
1187/*
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1190 */
1191static void __init set_up_node(struct kmem_cache *cachep, int index)
1192{
1193        int node;
1194
1195        for_each_online_node(node) {
1196                cachep->node[node] = &init_kmem_cache_node[index + node];
1197                cachep->node[node]->next_reap = jiffies +
1198                    REAPTIMEOUT_NODE +
1199                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200        }
1201}
1202
1203/*
1204 * Initialisation.  Called after the page allocator have been initialised and
1205 * before smp_init().
1206 */
1207void __init kmem_cache_init(void)
1208{
1209        int i;
1210
1211        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212                                        sizeof(struct rcu_head));
1213        kmem_cache = &kmem_cache_boot;
1214
1215        if (num_possible_nodes() == 1)
1216                use_alien_caches = 0;
1217
1218        for (i = 0; i < NUM_INIT_LISTS; i++)
1219                kmem_cache_node_init(&init_kmem_cache_node[i]);
1220
1221        /*
1222         * Fragmentation resistance on low memory - only use bigger
1223         * page orders on machines with more than 32MB of memory if
1224         * not overridden on the command line.
1225         */
1226        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227                slab_max_order = SLAB_MAX_ORDER_HI;
1228
1229        /* Bootstrap is tricky, because several objects are allocated
1230         * from caches that do not exist yet:
1231         * 1) initialize the kmem_cache cache: it contains the struct
1232         *    kmem_cache structures of all caches, except kmem_cache itself:
1233         *    kmem_cache is statically allocated.
1234         *    Initially an __init data area is used for the head array and the
1235         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236         *    array at the end of the bootstrap.
1237         * 2) Create the first kmalloc cache.
1238         *    The struct kmem_cache for the new cache is allocated normally.
1239         *    An __init data area is used for the head array.
1240         * 3) Create the remaining kmalloc caches, with minimally sized
1241         *    head arrays.
1242         * 4) Replace the __init data head arrays for kmem_cache and the first
1243         *    kmalloc cache with kmalloc allocated arrays.
1244         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245         *    the other cache's with kmalloc allocated memory.
1246         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247         */
1248
1249        /* 1) create the kmem_cache */
1250
1251        /*
1252         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253         */
1254        create_boot_cache(kmem_cache, "kmem_cache",
1255                offsetof(struct kmem_cache, node) +
1256                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1257                                  SLAB_HWCACHE_ALIGN);
1258        list_add(&kmem_cache->list, &slab_caches);
1259        slab_state = PARTIAL;
1260
1261        /*
1262         * Initialize the caches that provide memory for the  kmem_cache_node
1263         * structures first.  Without this, further allocations will bug.
1264         */
1265        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267        slab_state = PARTIAL_NODE;
1268        setup_kmalloc_cache_index_table();
1269
1270        slab_early_init = 0;
1271
1272        /* 5) Replace the bootstrap kmem_cache_node */
1273        {
1274                int nid;
1275
1276                for_each_online_node(nid) {
1277                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278
1279                        init_list(kmalloc_caches[INDEX_NODE],
1280                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281                }
1282        }
1283
1284        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285}
1286
1287void __init kmem_cache_init_late(void)
1288{
1289        struct kmem_cache *cachep;
1290
1291        slab_state = UP;
1292
1293        /* 6) resize the head arrays to their final sizes */
1294        mutex_lock(&slab_mutex);
1295        list_for_each_entry(cachep, &slab_caches, list)
1296                if (enable_cpucache(cachep, GFP_NOWAIT))
1297                        BUG();
1298        mutex_unlock(&slab_mutex);
1299
1300        /* Done! */
1301        slab_state = FULL;
1302
1303        /*
1304         * Register a cpu startup notifier callback that initializes
1305         * cpu_cache_get for all new cpus
1306         */
1307        register_cpu_notifier(&cpucache_notifier);
1308
1309#ifdef CONFIG_NUMA
1310        /*
1311         * Register a memory hotplug callback that initializes and frees
1312         * node.
1313         */
1314        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315#endif
1316
1317        /*
1318         * The reap timers are started later, with a module init call: That part
1319         * of the kernel is not yet operational.
1320         */
1321}
1322
1323static int __init cpucache_init(void)
1324{
1325        int cpu;
1326
1327        /*
1328         * Register the timers that return unneeded pages to the page allocator
1329         */
1330        for_each_online_cpu(cpu)
1331                start_cpu_timer(cpu);
1332
1333        /* Done! */
1334        slab_state = FULL;
1335        return 0;
1336}
1337__initcall(cpucache_init);
1338
1339static noinline void
1340slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341{
1342#if DEBUG
1343        struct kmem_cache_node *n;
1344        struct page *page;
1345        unsigned long flags;
1346        int node;
1347        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348                                      DEFAULT_RATELIMIT_BURST);
1349
1350        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351                return;
1352
1353        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354                nodeid, gfpflags, &gfpflags);
1355        pr_warn("  cache: %s, object size: %d, order: %d\n",
1356                cachep->name, cachep->size, cachep->gfporder);
1357
1358        for_each_kmem_cache_node(cachep, node, n) {
1359                unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360                unsigned long active_slabs = 0, num_slabs = 0;
1361
1362                spin_lock_irqsave(&n->list_lock, flags);
1363                list_for_each_entry(page, &n->slabs_full, lru) {
1364                        active_objs += cachep->num;
1365                        active_slabs++;
1366                }
1367                list_for_each_entry(page, &n->slabs_partial, lru) {
1368                        active_objs += page->active;
1369                        active_slabs++;
1370                }
1371                list_for_each_entry(page, &n->slabs_free, lru)
1372                        num_slabs++;
1373
1374                free_objects += n->free_objects;
1375                spin_unlock_irqrestore(&n->list_lock, flags);
1376
1377                num_slabs += active_slabs;
1378                num_objs = num_slabs * cachep->num;
1379                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380                        node, active_slabs, num_slabs, active_objs, num_objs,
1381                        free_objects);
1382        }
1383#endif
1384}
1385
1386/*
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
1394static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395                                                                int nodeid)
1396{
1397        struct page *page;
1398        int nr_pages;
1399
1400        flags |= cachep->allocflags;
1401        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402                flags |= __GFP_RECLAIMABLE;
1403
1404        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405        if (!page) {
1406                slab_out_of_memory(cachep, flags, nodeid);
1407                return NULL;
1408        }
1409
1410        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411                __free_pages(page, cachep->gfporder);
1412                return NULL;
1413        }
1414
1415        nr_pages = (1 << cachep->gfporder);
1416        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417                add_zone_page_state(page_zone(page),
1418                        NR_SLAB_RECLAIMABLE, nr_pages);
1419        else
1420                add_zone_page_state(page_zone(page),
1421                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1422
1423        __SetPageSlab(page);
1424        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426                SetPageSlabPfmemalloc(page);
1427
1428        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431                if (cachep->ctor)
1432                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433                else
1434                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1435        }
1436
1437        return page;
1438}
1439
1440/*
1441 * Interface to system's page release.
1442 */
1443static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444{
1445        int order = cachep->gfporder;
1446        unsigned long nr_freed = (1 << order);
1447
1448        kmemcheck_free_shadow(page, order);
1449
1450        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451                sub_zone_page_state(page_zone(page),
1452                                NR_SLAB_RECLAIMABLE, nr_freed);
1453        else
1454                sub_zone_page_state(page_zone(page),
1455                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1456
1457        BUG_ON(!PageSlab(page));
1458        __ClearPageSlabPfmemalloc(page);
1459        __ClearPageSlab(page);
1460        page_mapcount_reset(page);
1461        page->mapping = NULL;
1462
1463        if (current->reclaim_state)
1464                current->reclaim_state->reclaimed_slab += nr_freed;
1465        memcg_uncharge_slab(page, order, cachep);
1466        __free_pages(page, order);
1467}
1468
1469static void kmem_rcu_free(struct rcu_head *head)
1470{
1471        struct kmem_cache *cachep;
1472        struct page *page;
1473
1474        page = container_of(head, struct page, rcu_head);
1475        cachep = page->slab_cache;
1476
1477        kmem_freepages(cachep, page);
1478}
1479
1480#if DEBUG
1481static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482{
1483        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484                (cachep->size % PAGE_SIZE) == 0)
1485                return true;
1486
1487        return false;
1488}
1489
1490#ifdef CONFIG_DEBUG_PAGEALLOC
1491static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492                            unsigned long caller)
1493{
1494        int size = cachep->object_size;
1495
1496        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497
1498        if (size < 5 * sizeof(unsigned long))
1499                return;
1500
1501        *addr++ = 0x12345678;
1502        *addr++ = caller;
1503        *addr++ = smp_processor_id();
1504        size -= 3 * sizeof(unsigned long);
1505        {
1506                unsigned long *sptr = &caller;
1507                unsigned long svalue;
1508
1509                while (!kstack_end(sptr)) {
1510                        svalue = *sptr++;
1511                        if (kernel_text_address(svalue)) {
1512                                *addr++ = svalue;
1513                                size -= sizeof(unsigned long);
1514                                if (size <= sizeof(unsigned long))
1515                                        break;
1516                        }
1517                }
1518
1519        }
1520        *addr++ = 0x87654321;
1521}
1522
1523static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524                                int map, unsigned long caller)
1525{
1526        if (!is_debug_pagealloc_cache(cachep))
1527                return;
1528
1529        if (caller)
1530                store_stackinfo(cachep, objp, caller);
1531
1532        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533}
1534
1535#else
1536static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537                                int map, unsigned long caller) {}
1538
1539#endif
1540
1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542{
1543        int size = cachep->object_size;
1544        addr = &((char *)addr)[obj_offset(cachep)];
1545
1546        memset(addr, val, size);
1547        *(unsigned char *)(addr + size - 1) = POISON_END;
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552        int i;
1553        unsigned char error = 0;
1554        int bad_count = 0;
1555
1556        pr_err("%03x: ", offset);
1557        for (i = 0; i < limit; i++) {
1558                if (data[offset + i] != POISON_FREE) {
1559                        error = data[offset + i];
1560                        bad_count++;
1561                }
1562        }
1563        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564                        &data[offset], limit, 1);
1565
1566        if (bad_count == 1) {
1567                error ^= POISON_FREE;
1568                if (!(error & (error - 1))) {
1569                        pr_err("Single bit error detected. Probably bad RAM.\n");
1570#ifdef CONFIG_X86
1571                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1572#else
1573                        pr_err("Run a memory test tool.\n");
1574#endif
1575                }
1576        }
1577}
1578#endif
1579
1580#if DEBUG
1581
1582static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583{
1584        int i, size;
1585        char *realobj;
1586
1587        if (cachep->flags & SLAB_RED_ZONE) {
1588                pr_err("Redzone: 0x%llx/0x%llx\n",
1589                       *dbg_redzone1(cachep, objp),
1590                       *dbg_redzone2(cachep, objp));
1591        }
1592
1593        if (cachep->flags & SLAB_STORE_USER) {
1594                pr_err("Last user: [<%p>](%pSR)\n",
1595                       *dbg_userword(cachep, objp),
1596                       *dbg_userword(cachep, objp));
1597        }
1598        realobj = (char *)objp + obj_offset(cachep);
1599        size = cachep->object_size;
1600        for (i = 0; i < size && lines; i += 16, lines--) {
1601                int limit;
1602                limit = 16;
1603                if (i + limit > size)
1604                        limit = size - i;
1605                dump_line(realobj, i, limit);
1606        }
1607}
1608
1609static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610{
1611        char *realobj;
1612        int size, i;
1613        int lines = 0;
1614
1615        if (is_debug_pagealloc_cache(cachep))
1616                return;
1617
1618        realobj = (char *)objp + obj_offset(cachep);
1619        size = cachep->object_size;
1620
1621        for (i = 0; i < size; i++) {
1622                char exp = POISON_FREE;
1623                if (i == size - 1)
1624                        exp = POISON_END;
1625                if (realobj[i] != exp) {
1626                        int limit;
1627                        /* Mismatch ! */
1628                        /* Print header */
1629                        if (lines == 0) {
1630                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631                                       print_tainted(), cachep->name,
1632                                       realobj, size);
1633                                print_objinfo(cachep, objp, 0);
1634                        }
1635                        /* Hexdump the affected line */
1636                        i = (i / 16) * 16;
1637                        limit = 16;
1638                        if (i + limit > size)
1639                                limit = size - i;
1640                        dump_line(realobj, i, limit);
1641                        i += 16;
1642                        lines++;
1643                        /* Limit to 5 lines */
1644                        if (lines > 5)
1645                                break;
1646                }
1647        }
1648        if (lines != 0) {
1649                /* Print some data about the neighboring objects, if they
1650                 * exist:
1651                 */
1652                struct page *page = virt_to_head_page(objp);
1653                unsigned int objnr;
1654
1655                objnr = obj_to_index(cachep, page, objp);
1656                if (objnr) {
1657                        objp = index_to_obj(cachep, page, objnr - 1);
1658                        realobj = (char *)objp + obj_offset(cachep);
1659                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1660                        print_objinfo(cachep, objp, 2);
1661                }
1662                if (objnr + 1 < cachep->num) {
1663                        objp = index_to_obj(cachep, page, objnr + 1);
1664                        realobj = (char *)objp + obj_offset(cachep);
1665                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1666                        print_objinfo(cachep, objp, 2);
1667                }
1668        }
1669}
1670#endif
1671
1672#if DEBUG
1673static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674                                                struct page *page)
1675{
1676        int i;
1677
1678        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679                poison_obj(cachep, page->freelist - obj_offset(cachep),
1680                        POISON_FREE);
1681        }
1682
1683        for (i = 0; i < cachep->num; i++) {
1684                void *objp = index_to_obj(cachep, page, i);
1685
1686                if (cachep->flags & SLAB_POISON) {
1687                        check_poison_obj(cachep, objp);
1688                        slab_kernel_map(cachep, objp, 1, 0);
1689                }
1690                if (cachep->flags & SLAB_RED_ZONE) {
1691                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692                                slab_error(cachep, "start of a freed object was overwritten");
1693                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1694                                slab_error(cachep, "end of a freed object was overwritten");
1695                }
1696        }
1697}
1698#else
1699static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700                                                struct page *page)
1701{
1702}
1703#endif
1704
1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @page: page pointer being destroyed
1709 *
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
1713 */
1714static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1715{
1716        void *freelist;
1717
1718        freelist = page->freelist;
1719        slab_destroy_debugcheck(cachep, page);
1720        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721                call_rcu(&page->rcu_head, kmem_rcu_free);
1722        else
1723                kmem_freepages(cachep, page);
1724
1725        /*
1726         * From now on, we don't use freelist
1727         * although actual page can be freed in rcu context
1728         */
1729        if (OFF_SLAB(cachep))
1730                kmem_cache_free(cachep->freelist_cache, freelist);
1731}
1732
1733static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734{
1735        struct page *page, *n;
1736
1737        list_for_each_entry_safe(page, n, list, lru) {
1738                list_del(&page->lru);
1739                slab_destroy(cachep, page);
1740        }
1741}
1742
1743/**
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
1750 *
1751 * This could be made much more intelligent.  For now, try to avoid using
1752 * high order pages for slabs.  When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
1755static size_t calculate_slab_order(struct kmem_cache *cachep,
1756                                size_t size, unsigned long flags)
1757{
1758        size_t left_over = 0;
1759        int gfporder;
1760
1761        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1762                unsigned int num;
1763                size_t remainder;
1764
1765                num = cache_estimate(gfporder, size, flags, &remainder);
1766                if (!num)
1767                        continue;
1768
1769                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770                if (num > SLAB_OBJ_MAX_NUM)
1771                        break;
1772
1773                if (flags & CFLGS_OFF_SLAB) {
1774                        struct kmem_cache *freelist_cache;
1775                        size_t freelist_size;
1776
1777                        freelist_size = num * sizeof(freelist_idx_t);
1778                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1779                        if (!freelist_cache)
1780                                continue;
1781
1782                        /*
1783                         * Needed to avoid possible looping condition
1784                         * in cache_grow()
1785                         */
1786                        if (OFF_SLAB(freelist_cache))
1787                                continue;
1788
1789                        /* check if off slab has enough benefit */
1790                        if (freelist_cache->size > cachep->size / 2)
1791                                continue;
1792                }
1793
1794                /* Found something acceptable - save it away */
1795                cachep->num = num;
1796                cachep->gfporder = gfporder;
1797                left_over = remainder;
1798
1799                /*
1800                 * A VFS-reclaimable slab tends to have most allocations
1801                 * as GFP_NOFS and we really don't want to have to be allocating
1802                 * higher-order pages when we are unable to shrink dcache.
1803                 */
1804                if (flags & SLAB_RECLAIM_ACCOUNT)
1805                        break;
1806
1807                /*
1808                 * Large number of objects is good, but very large slabs are
1809                 * currently bad for the gfp()s.
1810                 */
1811                if (gfporder >= slab_max_order)
1812                        break;
1813
1814                /*
1815                 * Acceptable internal fragmentation?
1816                 */
1817                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1818                        break;
1819        }
1820        return left_over;
1821}
1822
1823static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824                struct kmem_cache *cachep, int entries, int batchcount)
1825{
1826        int cpu;
1827        size_t size;
1828        struct array_cache __percpu *cpu_cache;
1829
1830        size = sizeof(void *) * entries + sizeof(struct array_cache);
1831        cpu_cache = __alloc_percpu(size, sizeof(void *));
1832
1833        if (!cpu_cache)
1834                return NULL;
1835
1836        for_each_possible_cpu(cpu) {
1837                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838                                entries, batchcount);
1839        }
1840
1841        return cpu_cache;
1842}
1843
1844static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1845{
1846        if (slab_state >= FULL)
1847                return enable_cpucache(cachep, gfp);
1848
1849        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850        if (!cachep->cpu_cache)
1851                return 1;
1852
1853        if (slab_state == DOWN) {
1854                /* Creation of first cache (kmem_cache). */
1855                set_up_node(kmem_cache, CACHE_CACHE);
1856        } else if (slab_state == PARTIAL) {
1857                /* For kmem_cache_node */
1858                set_up_node(cachep, SIZE_NODE);
1859        } else {
1860                int node;
1861
1862                for_each_online_node(node) {
1863                        cachep->node[node] = kmalloc_node(
1864                                sizeof(struct kmem_cache_node), gfp, node);
1865                        BUG_ON(!cachep->node[node]);
1866                        kmem_cache_node_init(cachep->node[node]);
1867                }
1868        }
1869
1870        cachep->node[numa_mem_id()]->next_reap =
1871                        jiffies + REAPTIMEOUT_NODE +
1872                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1873
1874        cpu_cache_get(cachep)->avail = 0;
1875        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876        cpu_cache_get(cachep)->batchcount = 1;
1877        cpu_cache_get(cachep)->touched = 0;
1878        cachep->batchcount = 1;
1879        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1880        return 0;
1881}
1882
1883unsigned long kmem_cache_flags(unsigned long object_size,
1884        unsigned long flags, const char *name,
1885        void (*ctor)(void *))
1886{
1887        return flags;
1888}
1889
1890struct kmem_cache *
1891__kmem_cache_alias(const char *name, size_t size, size_t align,
1892                   unsigned long flags, void (*ctor)(void *))
1893{
1894        struct kmem_cache *cachep;
1895
1896        cachep = find_mergeable(size, align, flags, name, ctor);
1897        if (cachep) {
1898                cachep->refcount++;
1899
1900                /*
1901                 * Adjust the object sizes so that we clear
1902                 * the complete object on kzalloc.
1903                 */
1904                cachep->object_size = max_t(int, cachep->object_size, size);
1905        }
1906        return cachep;
1907}
1908
1909static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910                        size_t size, unsigned long flags)
1911{
1912        size_t left;
1913
1914        cachep->num = 0;
1915
1916        if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1917                return false;
1918
1919        left = calculate_slab_order(cachep, size,
1920                        flags | CFLGS_OBJFREELIST_SLAB);
1921        if (!cachep->num)
1922                return false;
1923
1924        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925                return false;
1926
1927        cachep->colour = left / cachep->colour_off;
1928
1929        return true;
1930}
1931
1932static bool set_off_slab_cache(struct kmem_cache *cachep,
1933                        size_t size, unsigned long flags)
1934{
1935        size_t left;
1936
1937        cachep->num = 0;
1938
1939        /*
1940         * Always use on-slab management when SLAB_NOLEAKTRACE
1941         * to avoid recursive calls into kmemleak.
1942         */
1943        if (flags & SLAB_NOLEAKTRACE)
1944                return false;
1945
1946        /*
1947         * Size is large, assume best to place the slab management obj
1948         * off-slab (should allow better packing of objs).
1949         */
1950        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951        if (!cachep->num)
1952                return false;
1953
1954        /*
1955         * If the slab has been placed off-slab, and we have enough space then
1956         * move it on-slab. This is at the expense of any extra colouring.
1957         */
1958        if (left >= cachep->num * sizeof(freelist_idx_t))
1959                return false;
1960
1961        cachep->colour = left / cachep->colour_off;
1962
1963        return true;
1964}
1965
1966static bool set_on_slab_cache(struct kmem_cache *cachep,
1967                        size_t size, unsigned long flags)
1968{
1969        size_t left;
1970
1971        cachep->num = 0;
1972
1973        left = calculate_slab_order(cachep, size, flags);
1974        if (!cachep->num)
1975                return false;
1976
1977        cachep->colour = left / cachep->colour_off;
1978
1979        return true;
1980}
1981
1982/**
1983 * __kmem_cache_create - Create a cache.
1984 * @cachep: cache management descriptor
1985 * @flags: SLAB flags
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
1989 * The @ctor is run when new pages are allocated by the cache.
1990 *
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline.  This can be beneficial if you're counting cycles as closely
2001 * as davem.
2002 */
2003int
2004__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2005{
2006        size_t ralign = BYTES_PER_WORD;
2007        gfp_t gfp;
2008        int err;
2009        size_t size = cachep->size;
2010
2011#if DEBUG
2012#if FORCED_DEBUG
2013        /*
2014         * Enable redzoning and last user accounting, except for caches with
2015         * large objects, if the increased size would increase the object size
2016         * above the next power of two: caches with object sizes just above a
2017         * power of two have a significant amount of internal fragmentation.
2018         */
2019        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020                                                2 * sizeof(unsigned long long)))
2021                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2022        if (!(flags & SLAB_DESTROY_BY_RCU))
2023                flags |= SLAB_POISON;
2024#endif
2025#endif
2026
2027        /*
2028         * Check that size is in terms of words.  This is needed to avoid
2029         * unaligned accesses for some archs when redzoning is used, and makes
2030         * sure any on-slab bufctl's are also correctly aligned.
2031         */
2032        if (size & (BYTES_PER_WORD - 1)) {
2033                size += (BYTES_PER_WORD - 1);
2034                size &= ~(BYTES_PER_WORD - 1);
2035        }
2036
2037        if (flags & SLAB_RED_ZONE) {
2038                ralign = REDZONE_ALIGN;
2039                /* If redzoning, ensure that the second redzone is suitably
2040                 * aligned, by adjusting the object size accordingly. */
2041                size += REDZONE_ALIGN - 1;
2042                size &= ~(REDZONE_ALIGN - 1);
2043        }
2044
2045        /* 3) caller mandated alignment */
2046        if (ralign < cachep->align) {
2047                ralign = cachep->align;
2048        }
2049        /* disable debug if necessary */
2050        if (ralign > __alignof__(unsigned long long))
2051                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2052        /*
2053         * 4) Store it.
2054         */
2055        cachep->align = ralign;
2056        cachep->colour_off = cache_line_size();
2057        /* Offset must be a multiple of the alignment. */
2058        if (cachep->colour_off < cachep->align)
2059                cachep->colour_off = cachep->align;
2060
2061        if (slab_is_available())
2062                gfp = GFP_KERNEL;
2063        else
2064                gfp = GFP_NOWAIT;
2065
2066#if DEBUG
2067
2068        /*
2069         * Both debugging options require word-alignment which is calculated
2070         * into align above.
2071         */
2072        if (flags & SLAB_RED_ZONE) {
2073                /* add space for red zone words */
2074                cachep->obj_offset += sizeof(unsigned long long);
2075                size += 2 * sizeof(unsigned long long);
2076        }
2077        if (flags & SLAB_STORE_USER) {
2078                /* user store requires one word storage behind the end of
2079                 * the real object. But if the second red zone needs to be
2080                 * aligned to 64 bits, we must allow that much space.
2081                 */
2082                if (flags & SLAB_RED_ZONE)
2083                        size += REDZONE_ALIGN;
2084                else
2085                        size += BYTES_PER_WORD;
2086        }
2087#endif
2088
2089        kasan_cache_create(cachep, &size, &flags);
2090
2091        size = ALIGN(size, cachep->align);
2092        /*
2093         * We should restrict the number of objects in a slab to implement
2094         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095         */
2096        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099#if DEBUG
2100        /*
2101         * To activate debug pagealloc, off-slab management is necessary
2102         * requirement. In early phase of initialization, small sized slab
2103         * doesn't get initialized so it would not be possible. So, we need
2104         * to check size >= 256. It guarantees that all necessary small
2105         * sized slab is initialized in current slab initialization sequence.
2106         */
2107        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108                size >= 256 && cachep->object_size > cache_line_size()) {
2109                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113                                flags |= CFLGS_OFF_SLAB;
2114                                cachep->obj_offset += tmp_size - size;
2115                                size = tmp_size;
2116                                goto done;
2117                        }
2118                }
2119        }
2120#endif
2121
2122        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123                flags |= CFLGS_OBJFREELIST_SLAB;
2124                goto done;
2125        }
2126
2127        if (set_off_slab_cache(cachep, size, flags)) {
2128                flags |= CFLGS_OFF_SLAB;
2129                goto done;
2130        }
2131
2132        if (set_on_slab_cache(cachep, size, flags))
2133                goto done;
2134
2135        return -E2BIG;
2136
2137done:
2138        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139        cachep->flags = flags;
2140        cachep->allocflags = __GFP_COMP;
2141        if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142                cachep->allocflags |= GFP_DMA;
2143        cachep->size = size;
2144        cachep->reciprocal_buffer_size = reciprocal_value(size);
2145
2146#if DEBUG
2147        /*
2148         * If we're going to use the generic kernel_map_pages()
2149         * poisoning, then it's going to smash the contents of
2150         * the redzone and userword anyhow, so switch them off.
2151         */
2152        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153                (cachep->flags & SLAB_POISON) &&
2154                is_debug_pagealloc_cache(cachep))
2155                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156#endif
2157
2158        if (OFF_SLAB(cachep)) {
2159                cachep->freelist_cache =
2160                        kmalloc_slab(cachep->freelist_size, 0u);
2161        }
2162
2163        err = setup_cpu_cache(cachep, gfp);
2164        if (err) {
2165                __kmem_cache_release(cachep);
2166                return err;
2167        }
2168
2169        return 0;
2170}
2171
2172#if DEBUG
2173static void check_irq_off(void)
2174{
2175        BUG_ON(!irqs_disabled());
2176}
2177
2178static void check_irq_on(void)
2179{
2180        BUG_ON(irqs_disabled());
2181}
2182
2183static void check_spinlock_acquired(struct kmem_cache *cachep)
2184{
2185#ifdef CONFIG_SMP
2186        check_irq_off();
2187        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2188#endif
2189}
2190
2191static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192{
2193#ifdef CONFIG_SMP
2194        check_irq_off();
2195        assert_spin_locked(&get_node(cachep, node)->list_lock);
2196#endif
2197}
2198
2199#else
2200#define check_irq_off() do { } while(0)
2201#define check_irq_on()  do { } while(0)
2202#define check_spinlock_acquired(x) do { } while(0)
2203#define check_spinlock_acquired_node(x, y) do { } while(0)
2204#endif
2205
2206static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207                        struct array_cache *ac,
2208                        int force, int node);
2209
2210static void do_drain(void *arg)
2211{
2212        struct kmem_cache *cachep = arg;
2213        struct array_cache *ac;
2214        int node = numa_mem_id();
2215        struct kmem_cache_node *n;
2216        LIST_HEAD(list);
2217
2218        check_irq_off();
2219        ac = cpu_cache_get(cachep);
2220        n = get_node(cachep, node);
2221        spin_lock(&n->list_lock);
2222        free_block(cachep, ac->entry, ac->avail, node, &list);
2223        spin_unlock(&n->list_lock);
2224        slabs_destroy(cachep, &list);
2225        ac->avail = 0;
2226}
2227
2228static void drain_cpu_caches(struct kmem_cache *cachep)
2229{
2230        struct kmem_cache_node *n;
2231        int node;
2232
2233        on_each_cpu(do_drain, cachep, 1);
2234        check_irq_on();
2235        for_each_kmem_cache_node(cachep, node, n)
2236                if (n->alien)
2237                        drain_alien_cache(cachep, n->alien);
2238
2239        for_each_kmem_cache_node(cachep, node, n)
2240                drain_array(cachep, n, n->shared, 1, node);
2241}
2242
2243/*
2244 * Remove slabs from the list of free slabs.
2245 * Specify the number of slabs to drain in tofree.
2246 *
2247 * Returns the actual number of slabs released.
2248 */
2249static int drain_freelist(struct kmem_cache *cache,
2250                        struct kmem_cache_node *n, int tofree)
2251{
2252        struct list_head *p;
2253        int nr_freed;
2254        struct page *page;
2255
2256        nr_freed = 0;
2257        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2258
2259                spin_lock_irq(&n->list_lock);
2260                p = n->slabs_free.prev;
2261                if (p == &n->slabs_free) {
2262                        spin_unlock_irq(&n->list_lock);
2263                        goto out;
2264                }
2265
2266                page = list_entry(p, struct page, lru);
2267                list_del(&page->lru);
2268                /*
2269                 * Safe to drop the lock. The slab is no longer linked
2270                 * to the cache.
2271                 */
2272                n->free_objects -= cache->num;
2273                spin_unlock_irq(&n->list_lock);
2274                slab_destroy(cache, page);
2275                nr_freed++;
2276        }
2277out:
2278        return nr_freed;
2279}
2280
2281int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2282{
2283        int ret = 0;
2284        int node;
2285        struct kmem_cache_node *n;
2286
2287        drain_cpu_caches(cachep);
2288
2289        check_irq_on();
2290        for_each_kmem_cache_node(cachep, node, n) {
2291                drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292
2293                ret += !list_empty(&n->slabs_full) ||
2294                        !list_empty(&n->slabs_partial);
2295        }
2296        return (ret ? 1 : 0);
2297}
2298
2299int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300{
2301        return __kmem_cache_shrink(cachep, false);
2302}
2303
2304void __kmem_cache_release(struct kmem_cache *cachep)
2305{
2306        int i;
2307        struct kmem_cache_node *n;
2308
2309        free_percpu(cachep->cpu_cache);
2310
2311        /* NUMA: free the node structures */
2312        for_each_kmem_cache_node(cachep, i, n) {
2313                kfree(n->shared);
2314                free_alien_cache(n->alien);
2315                kfree(n);
2316                cachep->node[i] = NULL;
2317        }
2318}
2319
2320/*
2321 * Get the memory for a slab management obj.
2322 *
2323 * For a slab cache when the slab descriptor is off-slab, the
2324 * slab descriptor can't come from the same cache which is being created,
2325 * Because if it is the case, that means we defer the creation of
2326 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327 * And we eventually call down to __kmem_cache_create(), which
2328 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329 * This is a "chicken-and-egg" problem.
2330 *
2331 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332 * which are all initialized during kmem_cache_init().
2333 */
2334static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335                                   struct page *page, int colour_off,
2336                                   gfp_t local_flags, int nodeid)
2337{
2338        void *freelist;
2339        void *addr = page_address(page);
2340
2341        page->s_mem = addr + colour_off;
2342        page->active = 0;
2343
2344        if (OBJFREELIST_SLAB(cachep))
2345                freelist = NULL;
2346        else if (OFF_SLAB(cachep)) {
2347                /* Slab management obj is off-slab. */
2348                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349                                              local_flags, nodeid);
2350                if (!freelist)
2351                        return NULL;
2352        } else {
2353                /* We will use last bytes at the slab for freelist */
2354                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355                                cachep->freelist_size;
2356        }
2357
2358        return freelist;
2359}
2360
2361static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2362{
2363        return ((freelist_idx_t *)page->freelist)[idx];
2364}
2365
2366static inline void set_free_obj(struct page *page,
2367                                        unsigned int idx, freelist_idx_t val)
2368{
2369        ((freelist_idx_t *)(page->freelist))[idx] = val;
2370}
2371
2372static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2373{
2374#if DEBUG
2375        int i;
2376
2377        for (i = 0; i < cachep->num; i++) {
2378                void *objp = index_to_obj(cachep, page, i);
2379
2380                if (cachep->flags & SLAB_STORE_USER)
2381                        *dbg_userword(cachep, objp) = NULL;
2382
2383                if (cachep->flags & SLAB_RED_ZONE) {
2384                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386                }
2387                /*
2388                 * Constructors are not allowed to allocate memory from the same
2389                 * cache which they are a constructor for.  Otherwise, deadlock.
2390                 * They must also be threaded.
2391                 */
2392                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2393                        kasan_unpoison_object_data(cachep,
2394                                                   objp + obj_offset(cachep));
2395                        cachep->ctor(objp + obj_offset(cachep));
2396                        kasan_poison_object_data(
2397                                cachep, objp + obj_offset(cachep));
2398                }
2399
2400                if (cachep->flags & SLAB_RED_ZONE) {
2401                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2402                                slab_error(cachep, "constructor overwrote the end of an object");
2403                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2404                                slab_error(cachep, "constructor overwrote the start of an object");
2405                }
2406                /* need to poison the objs? */
2407                if (cachep->flags & SLAB_POISON) {
2408                        poison_obj(cachep, objp, POISON_FREE);
2409                        slab_kernel_map(cachep, objp, 0, 0);
2410                }
2411        }
2412#endif
2413}
2414
2415static void cache_init_objs(struct kmem_cache *cachep,
2416                            struct page *page)
2417{
2418        int i;
2419        void *objp;
2420
2421        cache_init_objs_debug(cachep, page);
2422
2423        if (OBJFREELIST_SLAB(cachep)) {
2424                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2425                                                obj_offset(cachep);
2426        }
2427
2428        for (i = 0; i < cachep->num; i++) {
2429                /* constructor could break poison info */
2430                if (DEBUG == 0 && cachep->ctor) {
2431                        objp = index_to_obj(cachep, page, i);
2432                        kasan_unpoison_object_data(cachep, objp);
2433                        cachep->ctor(objp);
2434                        kasan_poison_object_data(cachep, objp);
2435                }
2436
2437                set_free_obj(page, i, i);
2438        }
2439}
2440
2441static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2442{
2443        if (CONFIG_ZONE_DMA_FLAG) {
2444                if (flags & GFP_DMA)
2445                        BUG_ON(!(cachep->allocflags & GFP_DMA));
2446                else
2447                        BUG_ON(cachep->allocflags & GFP_DMA);
2448        }
2449}
2450
2451static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2452{
2453        void *objp;
2454
2455        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2456        page->active++;
2457
2458#if DEBUG
2459        if (cachep->flags & SLAB_STORE_USER)
2460                set_store_user_dirty(cachep);
2461#endif
2462
2463        return objp;
2464}
2465
2466static void slab_put_obj(struct kmem_cache *cachep,
2467                        struct page *page, void *objp)
2468{
2469        unsigned int objnr = obj_to_index(cachep, page, objp);
2470#if DEBUG
2471        unsigned int i;
2472
2473        /* Verify double free bug */
2474        for (i = page->active; i < cachep->num; i++) {
2475                if (get_free_obj(page, i) == objnr) {
2476                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2477                               cachep->name, objp);
2478                        BUG();
2479                }
2480        }
2481#endif
2482        page->active--;
2483        if (!page->freelist)
2484                page->freelist = objp + obj_offset(cachep);
2485
2486        set_free_obj(page, page->active, objnr);
2487}
2488
2489/*
2490 * Map pages beginning at addr to the given cache and slab. This is required
2491 * for the slab allocator to be able to lookup the cache and slab of a
2492 * virtual address for kfree, ksize, and slab debugging.
2493 */
2494static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2495                           void *freelist)
2496{
2497        page->slab_cache = cache;
2498        page->freelist = freelist;
2499}
2500
2501/*
2502 * Grow (by 1) the number of slabs within a cache.  This is called by
2503 * kmem_cache_alloc() when there are no active objs left in a cache.
2504 */
2505static int cache_grow(struct kmem_cache *cachep,
2506                gfp_t flags, int nodeid, struct page *page)
2507{
2508        void *freelist;
2509        size_t offset;
2510        gfp_t local_flags;
2511        struct kmem_cache_node *n;
2512
2513        /*
2514         * Be lazy and only check for valid flags here,  keeping it out of the
2515         * critical path in kmem_cache_alloc().
2516         */
2517        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2518                pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2519                BUG();
2520        }
2521        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2522
2523        /* Take the node list lock to change the colour_next on this node */
2524        check_irq_off();
2525        n = get_node(cachep, nodeid);
2526        spin_lock(&n->list_lock);
2527
2528        /* Get colour for the slab, and cal the next value. */
2529        offset = n->colour_next;
2530        n->colour_next++;
2531        if (n->colour_next >= cachep->colour)
2532                n->colour_next = 0;
2533        spin_unlock(&n->list_lock);
2534
2535        offset *= cachep->colour_off;
2536
2537        if (gfpflags_allow_blocking(local_flags))
2538                local_irq_enable();
2539
2540        /*
2541         * The test for missing atomic flag is performed here, rather than
2542         * the more obvious place, simply to reduce the critical path length
2543         * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2544         * will eventually be caught here (where it matters).
2545         */
2546        kmem_flagcheck(cachep, flags);
2547
2548        /*
2549         * Get mem for the objs.  Attempt to allocate a physical page from
2550         * 'nodeid'.
2551         */
2552        if (!page)
2553                page = kmem_getpages(cachep, local_flags, nodeid);
2554        if (!page)
2555                goto failed;
2556
2557        /* Get slab management. */
2558        freelist = alloc_slabmgmt(cachep, page, offset,
2559                        local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2560        if (OFF_SLAB(cachep) && !freelist)
2561                goto opps1;
2562
2563        slab_map_pages(cachep, page, freelist);
2564
2565        kasan_poison_slab(page);
2566        cache_init_objs(cachep, page);
2567
2568        if (gfpflags_allow_blocking(local_flags))
2569                local_irq_disable();
2570        check_irq_off();
2571        spin_lock(&n->list_lock);
2572
2573        /* Make slab active. */
2574        list_add_tail(&page->lru, &(n->slabs_free));
2575        STATS_INC_GROWN(cachep);
2576        n->free_objects += cachep->num;
2577        spin_unlock(&n->list_lock);
2578        return 1;
2579opps1:
2580        kmem_freepages(cachep, page);
2581failed:
2582        if (gfpflags_allow_blocking(local_flags))
2583                local_irq_disable();
2584        return 0;
2585}
2586
2587#if DEBUG
2588
2589/*
2590 * Perform extra freeing checks:
2591 * - detect bad pointers.
2592 * - POISON/RED_ZONE checking
2593 */
2594static void kfree_debugcheck(const void *objp)
2595{
2596        if (!virt_addr_valid(objp)) {
2597                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2598                       (unsigned long)objp);
2599                BUG();
2600        }
2601}
2602
2603static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2604{
2605        unsigned long long redzone1, redzone2;
2606
2607        redzone1 = *dbg_redzone1(cache, obj);
2608        redzone2 = *dbg_redzone2(cache, obj);
2609
2610        /*
2611         * Redzone is ok.
2612         */
2613        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2614                return;
2615
2616        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2617                slab_error(cache, "double free detected");
2618        else
2619                slab_error(cache, "memory outside object was overwritten");
2620
2621        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2622               obj, redzone1, redzone2);
2623}
2624
2625static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2626                                   unsigned long caller)
2627{
2628        unsigned int objnr;
2629        struct page *page;
2630
2631        BUG_ON(virt_to_cache(objp) != cachep);
2632
2633        objp -= obj_offset(cachep);
2634        kfree_debugcheck(objp);
2635        page = virt_to_head_page(objp);
2636
2637        if (cachep->flags & SLAB_RED_ZONE) {
2638                verify_redzone_free(cachep, objp);
2639                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2640                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2641        }
2642        if (cachep->flags & SLAB_STORE_USER) {
2643                set_store_user_dirty(cachep);
2644                *dbg_userword(cachep, objp) = (void *)caller;
2645        }
2646
2647        objnr = obj_to_index(cachep, page, objp);
2648
2649        BUG_ON(objnr >= cachep->num);
2650        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2651
2652        if (cachep->flags & SLAB_POISON) {
2653                poison_obj(cachep, objp, POISON_FREE);
2654                slab_kernel_map(cachep, objp, 0, caller);
2655        }
2656        return objp;
2657}
2658
2659#else
2660#define kfree_debugcheck(x) do { } while(0)
2661#define cache_free_debugcheck(x,objp,z) (objp)
2662#endif
2663
2664static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2665                                                void **list)
2666{
2667#if DEBUG
2668        void *next = *list;
2669        void *objp;
2670
2671        while (next) {
2672                objp = next - obj_offset(cachep);
2673                next = *(void **)next;
2674                poison_obj(cachep, objp, POISON_FREE);
2675        }
2676#endif
2677}
2678
2679static inline void fixup_slab_list(struct kmem_cache *cachep,
2680                                struct kmem_cache_node *n, struct page *page,
2681                                void **list)
2682{
2683        /* move slabp to correct slabp list: */
2684        list_del(&page->lru);
2685        if (page->active == cachep->num) {
2686                list_add(&page->lru, &n->slabs_full);
2687                if (OBJFREELIST_SLAB(cachep)) {
2688#if DEBUG
2689                        /* Poisoning will be done without holding the lock */
2690                        if (cachep->flags & SLAB_POISON) {
2691                                void **objp = page->freelist;
2692
2693                                *objp = *list;
2694                                *list = objp;
2695                        }
2696#endif
2697                        page->freelist = NULL;
2698                }
2699        } else
2700                list_add(&page->lru, &n->slabs_partial);
2701}
2702
2703/* Try to find non-pfmemalloc slab if needed */
2704static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2705                                        struct page *page, bool pfmemalloc)
2706{
2707        if (!page)
2708                return NULL;
2709
2710        if (pfmemalloc)
2711                return page;
2712
2713        if (!PageSlabPfmemalloc(page))
2714                return page;
2715
2716        /* No need to keep pfmemalloc slab if we have enough free objects */
2717        if (n->free_objects > n->free_limit) {
2718                ClearPageSlabPfmemalloc(page);
2719                return page;
2720        }
2721
2722        /* Move pfmemalloc slab to the end of list to speed up next search */
2723        list_del(&page->lru);
2724        if (!page->active)
2725                list_add_tail(&page->lru, &n->slabs_free);
2726        else
2727                list_add_tail(&page->lru, &n->slabs_partial);
2728
2729        list_for_each_entry(page, &n->slabs_partial, lru) {
2730                if (!PageSlabPfmemalloc(page))
2731                        return page;
2732        }
2733
2734        list_for_each_entry(page, &n->slabs_free, lru) {
2735                if (!PageSlabPfmemalloc(page))
2736                        return page;
2737        }
2738
2739        return NULL;
2740}
2741
2742static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2743{
2744        struct page *page;
2745
2746        page = list_first_entry_or_null(&n->slabs_partial,
2747                        struct page, lru);
2748        if (!page) {
2749                n->free_touched = 1;
2750                page = list_first_entry_or_null(&n->slabs_free,
2751                                struct page, lru);
2752        }
2753
2754        if (sk_memalloc_socks())
2755                return get_valid_first_slab(n, page, pfmemalloc);
2756
2757        return page;
2758}
2759
2760static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2761                                struct kmem_cache_node *n, gfp_t flags)
2762{
2763        struct page *page;
2764        void *obj;
2765        void *list = NULL;
2766
2767        if (!gfp_pfmemalloc_allowed(flags))
2768                return NULL;
2769
2770        spin_lock(&n->list_lock);
2771        page = get_first_slab(n, true);
2772        if (!page) {
2773                spin_unlock(&n->list_lock);
2774                return NULL;
2775        }
2776
2777        obj = slab_get_obj(cachep, page);
2778        n->free_objects--;
2779
2780        fixup_slab_list(cachep, n, page, &list);
2781
2782        spin_unlock(&n->list_lock);
2783        fixup_objfreelist_debug(cachep, &list);
2784
2785        return obj;
2786}
2787
2788static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2789{
2790        int batchcount;
2791        struct kmem_cache_node *n;
2792        struct array_cache *ac;
2793        int node;
2794        void *list = NULL;
2795
2796        check_irq_off();
2797        node = numa_mem_id();
2798
2799retry:
2800        ac = cpu_cache_get(cachep);
2801        batchcount = ac->batchcount;
2802        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2803                /*
2804                 * If there was little recent activity on this cache, then
2805                 * perform only a partial refill.  Otherwise we could generate
2806                 * refill bouncing.
2807                 */
2808                batchcount = BATCHREFILL_LIMIT;
2809        }
2810        n = get_node(cachep, node);
2811
2812        BUG_ON(ac->avail > 0 || !n);
2813        spin_lock(&n->list_lock);
2814
2815        /* See if we can refill from the shared array */
2816        if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2817                n->shared->touched = 1;
2818                goto alloc_done;
2819        }
2820
2821        while (batchcount > 0) {
2822                struct page *page;
2823                /* Get slab alloc is to come from. */
2824                page = get_first_slab(n, false);
2825                if (!page)
2826                        goto must_grow;
2827
2828                check_spinlock_acquired(cachep);
2829
2830                /*
2831                 * The slab was either on partial or free list so
2832                 * there must be at least one object available for
2833                 * allocation.
2834                 */
2835                BUG_ON(page->active >= cachep->num);
2836
2837                while (page->active < cachep->num && batchcount--) {
2838                        STATS_INC_ALLOCED(cachep);
2839                        STATS_INC_ACTIVE(cachep);
2840                        STATS_SET_HIGH(cachep);
2841
2842                        ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2843                }
2844
2845                fixup_slab_list(cachep, n, page, &list);
2846        }
2847
2848must_grow:
2849        n->free_objects -= ac->avail;
2850alloc_done:
2851        spin_unlock(&n->list_lock);
2852        fixup_objfreelist_debug(cachep, &list);
2853
2854        if (unlikely(!ac->avail)) {
2855                int x;
2856
2857                /* Check if we can use obj in pfmemalloc slab */
2858                if (sk_memalloc_socks()) {
2859                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2860
2861                        if (obj)
2862                                return obj;
2863                }
2864
2865                x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2866
2867                /* cache_grow can reenable interrupts, then ac could change. */
2868                ac = cpu_cache_get(cachep);
2869                node = numa_mem_id();
2870
2871                /* no objects in sight? abort */
2872                if (!x && ac->avail == 0)
2873                        return NULL;
2874
2875                if (!ac->avail)         /* objects refilled by interrupt? */
2876                        goto retry;
2877        }
2878        ac->touched = 1;
2879
2880        return ac->entry[--ac->avail];
2881}
2882
2883static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2884                                                gfp_t flags)
2885{
2886        might_sleep_if(gfpflags_allow_blocking(flags));
2887#if DEBUG
2888        kmem_flagcheck(cachep, flags);
2889#endif
2890}
2891
2892#if DEBUG
2893static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2894                                gfp_t flags, void *objp, unsigned long caller)
2895{
2896        if (!objp)
2897                return objp;
2898        if (cachep->flags & SLAB_POISON) {
2899                check_poison_obj(cachep, objp);
2900                slab_kernel_map(cachep, objp, 1, 0);
2901                poison_obj(cachep, objp, POISON_INUSE);
2902        }
2903        if (cachep->flags & SLAB_STORE_USER)
2904                *dbg_userword(cachep, objp) = (void *)caller;
2905
2906        if (cachep->flags & SLAB_RED_ZONE) {
2907                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2908                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2909                        slab_error(cachep, "double free, or memory outside object was overwritten");
2910                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2911                               objp, *dbg_redzone1(cachep, objp),
2912                               *dbg_redzone2(cachep, objp));
2913                }
2914                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2915                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2916        }
2917
2918        objp += obj_offset(cachep);
2919        if (cachep->ctor && cachep->flags & SLAB_POISON)
2920                cachep->ctor(objp);
2921        if (ARCH_SLAB_MINALIGN &&
2922            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2923                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2924                       objp, (int)ARCH_SLAB_MINALIGN);
2925        }
2926        return objp;
2927}
2928#else
2929#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2930#endif
2931
2932static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2933{
2934        void *objp;
2935        struct array_cache *ac;
2936
2937        check_irq_off();
2938
2939        ac = cpu_cache_get(cachep);
2940        if (likely(ac->avail)) {
2941                ac->touched = 1;
2942                objp = ac->entry[--ac->avail];
2943
2944                STATS_INC_ALLOCHIT(cachep);
2945                goto out;
2946        }
2947
2948        STATS_INC_ALLOCMISS(cachep);
2949        objp = cache_alloc_refill(cachep, flags);
2950        /*
2951         * the 'ac' may be updated by cache_alloc_refill(),
2952         * and kmemleak_erase() requires its correct value.
2953         */
2954        ac = cpu_cache_get(cachep);
2955
2956out:
2957        /*
2958         * To avoid a false negative, if an object that is in one of the
2959         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2960         * treat the array pointers as a reference to the object.
2961         */
2962        if (objp)
2963                kmemleak_erase(&ac->entry[ac->avail]);
2964        return objp;
2965}
2966
2967#ifdef CONFIG_NUMA
2968/*
2969 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2970 *
2971 * If we are in_interrupt, then process context, including cpusets and
2972 * mempolicy, may not apply and should not be used for allocation policy.
2973 */
2974static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2975{
2976        int nid_alloc, nid_here;
2977
2978        if (in_interrupt() || (flags & __GFP_THISNODE))
2979                return NULL;
2980        nid_alloc = nid_here = numa_mem_id();
2981        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2982                nid_alloc = cpuset_slab_spread_node();
2983        else if (current->mempolicy)
2984                nid_alloc = mempolicy_slab_node();
2985        if (nid_alloc != nid_here)
2986                return ____cache_alloc_node(cachep, flags, nid_alloc);
2987        return NULL;
2988}
2989
2990/*
2991 * Fallback function if there was no memory available and no objects on a
2992 * certain node and fall back is permitted. First we scan all the
2993 * available node for available objects. If that fails then we
2994 * perform an allocation without specifying a node. This allows the page
2995 * allocator to do its reclaim / fallback magic. We then insert the
2996 * slab into the proper nodelist and then allocate from it.
2997 */
2998static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2999{
3000        struct zonelist *zonelist;
3001        gfp_t local_flags;
3002        struct zoneref *z;
3003        struct zone *zone;
3004        enum zone_type high_zoneidx = gfp_zone(flags);
3005        void *obj = NULL;
3006        int nid;
3007        unsigned int cpuset_mems_cookie;
3008
3009        if (flags & __GFP_THISNODE)
3010                return NULL;
3011
3012        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3013
3014retry_cpuset:
3015        cpuset_mems_cookie = read_mems_allowed_begin();
3016        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3017
3018retry:
3019        /*
3020         * Look through allowed nodes for objects available
3021         * from existing per node queues.
3022         */
3023        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3024                nid = zone_to_nid(zone);
3025
3026                if (cpuset_zone_allowed(zone, flags) &&
3027                        get_node(cache, nid) &&
3028                        get_node(cache, nid)->free_objects) {
3029                                obj = ____cache_alloc_node(cache,
3030                                        gfp_exact_node(flags), nid);
3031                                if (obj)
3032                                        break;
3033                }
3034        }
3035
3036        if (!obj) {
3037                /*
3038                 * This allocation will be performed within the constraints
3039                 * of the current cpuset / memory policy requirements.
3040                 * We may trigger various forms of reclaim on the allowed
3041                 * set and go into memory reserves if necessary.
3042                 */
3043                struct page *page;
3044
3045                if (gfpflags_allow_blocking(local_flags))
3046                        local_irq_enable();
3047                kmem_flagcheck(cache, flags);
3048                page = kmem_getpages(cache, local_flags, numa_mem_id());
3049                if (gfpflags_allow_blocking(local_flags))
3050                        local_irq_disable();
3051                if (page) {
3052                        /*
3053                         * Insert into the appropriate per node queues
3054                         */
3055                        nid = page_to_nid(page);
3056                        if (cache_grow(cache, flags, nid, page)) {
3057                                obj = ____cache_alloc_node(cache,
3058                                        gfp_exact_node(flags), nid);
3059                                if (!obj)
3060                                        /*
3061                                         * Another processor may allocate the
3062                                         * objects in the slab since we are
3063                                         * not holding any locks.
3064                                         */
3065                                        goto retry;
3066                        } else {
3067                                /* cache_grow already freed obj */
3068                                obj = NULL;
3069                        }
3070                }
3071        }
3072
3073        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3074                goto retry_cpuset;
3075        return obj;
3076}
3077
3078/*
3079 * A interface to enable slab creation on nodeid
3080 */
3081static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3082                                int nodeid)
3083{
3084        struct page *page;
3085        struct kmem_cache_node *n;
3086        void *obj;
3087        void *list = NULL;
3088        int x;
3089
3090        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3091        n = get_node(cachep, nodeid);
3092        BUG_ON(!n);
3093
3094retry:
3095        check_irq_off();
3096        spin_lock(&n->list_lock);
3097        page = get_first_slab(n, false);
3098        if (!page)
3099                goto must_grow;
3100
3101        check_spinlock_acquired_node(cachep, nodeid);
3102
3103        STATS_INC_NODEALLOCS(cachep);
3104        STATS_INC_ACTIVE(cachep);
3105        STATS_SET_HIGH(cachep);
3106
3107        BUG_ON(page->active == cachep->num);
3108
3109        obj = slab_get_obj(cachep, page);
3110        n->free_objects--;
3111
3112        fixup_slab_list(cachep, n, page, &list);
3113
3114        spin_unlock(&n->list_lock);
3115        fixup_objfreelist_debug(cachep, &list);
3116        goto done;
3117
3118must_grow:
3119        spin_unlock(&n->list_lock);
3120        x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3121        if (x)
3122                goto retry;
3123
3124        return fallback_alloc(cachep, flags);
3125
3126done:
3127        return obj;
3128}
3129
3130static __always_inline void *
3131slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3132                   unsigned long caller)
3133{
3134        unsigned long save_flags;
3135        void *ptr;
3136        int slab_node = numa_mem_id();
3137
3138        flags &= gfp_allowed_mask;
3139        cachep = slab_pre_alloc_hook(cachep, flags);
3140        if (unlikely(!cachep))
3141                return NULL;
3142
3143        cache_alloc_debugcheck_before(cachep, flags);
3144        local_irq_save(save_flags);
3145
3146        if (nodeid == NUMA_NO_NODE)
3147                nodeid = slab_node;
3148
3149        if (unlikely(!get_node(cachep, nodeid))) {
3150                /* Node not bootstrapped yet */
3151                ptr = fallback_alloc(cachep, flags);
3152                goto out;
3153        }
3154
3155        if (nodeid == slab_node) {
3156                /*
3157                 * Use the locally cached objects if possible.
3158                 * However ____cache_alloc does not allow fallback
3159                 * to other nodes. It may fail while we still have
3160                 * objects on other nodes available.
3161                 */
3162                ptr = ____cache_alloc(cachep, flags);
3163                if (ptr)
3164                        goto out;
3165        }
3166        /* ___cache_alloc_node can fall back to other nodes */
3167        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3168  out:
3169        local_irq_restore(save_flags);
3170        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3171
3172        if (unlikely(flags & __GFP_ZERO) && ptr)
3173                memset(ptr, 0, cachep->object_size);
3174
3175        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3176        return ptr;
3177}
3178
3179static __always_inline void *
3180__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182        void *objp;
3183
3184        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3185                objp = alternate_node_alloc(cache, flags);
3186                if (objp)
3187                        goto out;
3188        }
3189        objp = ____cache_alloc(cache, flags);
3190
3191        /*
3192         * We may just have run out of memory on the local node.
3193         * ____cache_alloc_node() knows how to locate memory on other nodes
3194         */
3195        if (!objp)
3196                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3197
3198  out:
3199        return objp;
3200}
3201#else
3202
3203static __always_inline void *
3204__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3205{
3206        return ____cache_alloc(cachep, flags);
3207}
3208
3209#endif /* CONFIG_NUMA */
3210
3211static __always_inline void *
3212slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3213{
3214        unsigned long save_flags;
3215        void *objp;
3216
3217        flags &= gfp_allowed_mask;
3218        cachep = slab_pre_alloc_hook(cachep, flags);
3219        if (unlikely(!cachep))
3220                return NULL;
3221
3222        cache_alloc_debugcheck_before(cachep, flags);
3223        local_irq_save(save_flags);
3224        objp = __do_cache_alloc(cachep, flags);
3225        local_irq_restore(save_flags);
3226        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3227        prefetchw(objp);
3228
3229        if (unlikely(flags & __GFP_ZERO) && objp)
3230                memset(objp, 0, cachep->object_size);
3231
3232        slab_post_alloc_hook(cachep, flags, 1, &objp);
3233        return objp;
3234}
3235
3236/*
3237 * Caller needs to acquire correct kmem_cache_node's list_lock
3238 * @list: List of detached free slabs should be freed by caller
3239 */
3240static void free_block(struct kmem_cache *cachep, void **objpp,
3241                        int nr_objects, int node, struct list_head *list)
3242{
3243        int i;
3244        struct kmem_cache_node *n = get_node(cachep, node);
3245
3246        for (i = 0; i < nr_objects; i++) {
3247                void *objp;
3248                struct page *page;
3249
3250                objp = objpp[i];
3251
3252                page = virt_to_head_page(objp);
3253                list_del(&page->lru);
3254                check_spinlock_acquired_node(cachep, node);
3255                slab_put_obj(cachep, page, objp);
3256                STATS_DEC_ACTIVE(cachep);
3257                n->free_objects++;
3258
3259                /* fixup slab chains */
3260                if (page->active == 0) {
3261                        if (n->free_objects > n->free_limit) {
3262                                n->free_objects -= cachep->num;
3263                                list_add_tail(&page->lru, list);
3264                        } else {
3265                                list_add(&page->lru, &n->slabs_free);
3266                        }
3267                } else {
3268                        /* Unconditionally move a slab to the end of the
3269                         * partial list on free - maximum time for the
3270                         * other objects to be freed, too.
3271                         */
3272                        list_add_tail(&page->lru, &n->slabs_partial);
3273                }
3274        }
3275}
3276
3277static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3278{
3279        int batchcount;
3280        struct kmem_cache_node *n;
3281        int node = numa_mem_id();
3282        LIST_HEAD(list);
3283
3284        batchcount = ac->batchcount;
3285
3286        check_irq_off();
3287        n = get_node(cachep, node);
3288        spin_lock(&n->list_lock);
3289        if (n->shared) {
3290                struct array_cache *shared_array = n->shared;
3291                int max = shared_array->limit - shared_array->avail;
3292                if (max) {
3293                        if (batchcount > max)
3294                                batchcount = max;
3295                        memcpy(&(shared_array->entry[shared_array->avail]),
3296                               ac->entry, sizeof(void *) * batchcount);
3297                        shared_array->avail += batchcount;
3298                        goto free_done;
3299                }
3300        }
3301
3302        free_block(cachep, ac->entry, batchcount, node, &list);
3303free_done:
3304#if STATS
3305        {
3306                int i = 0;
3307                struct page *page;
3308
3309                list_for_each_entry(page, &n->slabs_free, lru) {
3310                        BUG_ON(page->active);
3311
3312                        i++;
3313                }
3314                STATS_SET_FREEABLE(cachep, i);
3315        }
3316#endif
3317        spin_unlock(&n->list_lock);
3318        slabs_destroy(cachep, &list);
3319        ac->avail -= batchcount;
3320        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3321}
3322
3323/*
3324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released.  Called with disabled ints.
3326 */
3327static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3328                                unsigned long caller)
3329{
3330        struct array_cache *ac = cpu_cache_get(cachep);
3331
3332        kasan_slab_free(cachep, objp);
3333
3334        check_irq_off();
3335        kmemleak_free_recursive(objp, cachep->flags);
3336        objp = cache_free_debugcheck(cachep, objp, caller);
3337
3338        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3339
3340        /*
3341         * Skip calling cache_free_alien() when the platform is not numa.
3342         * This will avoid cache misses that happen while accessing slabp (which
3343         * is per page memory  reference) to get nodeid. Instead use a global
3344         * variable to skip the call, which is mostly likely to be present in
3345         * the cache.
3346         */
3347        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3348                return;
3349
3350        if (ac->avail < ac->limit) {
3351                STATS_INC_FREEHIT(cachep);
3352        } else {
3353                STATS_INC_FREEMISS(cachep);
3354                cache_flusharray(cachep, ac);
3355        }
3356
3357        if (sk_memalloc_socks()) {
3358                struct page *page = virt_to_head_page(objp);
3359
3360                if (unlikely(PageSlabPfmemalloc(page))) {
3361                        cache_free_pfmemalloc(cachep, page, objp);
3362                        return;
3363                }
3364        }
3365
3366        ac->entry[ac->avail++] = objp;
3367}
3368
3369/**
3370 * kmem_cache_alloc - Allocate an object
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 *
3374 * Allocate an object from this cache.  The flags are only relevant
3375 * if the cache has no available objects.
3376 */
3377void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378{
3379        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3380
3381        kasan_slab_alloc(cachep, ret, flags);
3382        trace_kmem_cache_alloc(_RET_IP_, ret,
3383                               cachep->object_size, cachep->size, flags);
3384
3385        return ret;
3386}
3387EXPORT_SYMBOL(kmem_cache_alloc);
3388
3389static __always_inline void
3390cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3391                                  size_t size, void **p, unsigned long caller)
3392{
3393        size_t i;
3394
3395        for (i = 0; i < size; i++)
3396                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3397}
3398
3399int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3400                          void **p)
3401{
3402        size_t i;
3403
3404        s = slab_pre_alloc_hook(s, flags);
3405        if (!s)
3406                return 0;
3407
3408        cache_alloc_debugcheck_before(s, flags);
3409
3410        local_irq_disable();
3411        for (i = 0; i < size; i++) {
3412                void *objp = __do_cache_alloc(s, flags);
3413
3414                if (unlikely(!objp))
3415                        goto error;
3416                p[i] = objp;
3417        }
3418        local_irq_enable();
3419
3420        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3421
3422        /* Clear memory outside IRQ disabled section */
3423        if (unlikely(flags & __GFP_ZERO))
3424                for (i = 0; i < size; i++)
3425                        memset(p[i], 0, s->object_size);
3426
3427        slab_post_alloc_hook(s, flags, size, p);
3428        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3429        return size;
3430error:
3431        local_irq_enable();
3432        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3433        slab_post_alloc_hook(s, flags, i, p);
3434        __kmem_cache_free_bulk(s, i, p);
3435        return 0;
3436}
3437EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3438
3439#ifdef CONFIG_TRACING
3440void *
3441kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3442{
3443        void *ret;
3444
3445        ret = slab_alloc(cachep, flags, _RET_IP_);
3446
3447        kasan_kmalloc(cachep, ret, size, flags);
3448        trace_kmalloc(_RET_IP_, ret,
3449                      size, cachep->size, flags);
3450        return ret;
3451}
3452EXPORT_SYMBOL(kmem_cache_alloc_trace);
3453#endif
3454
3455#ifdef CONFIG_NUMA
3456/**
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3461 *
3462 * Identical to kmem_cache_alloc but it will allocate memory on the given
3463 * node, which can improve the performance for cpu bound structures.
3464 *
3465 * Fallback to other node is possible if __GFP_THISNODE is not set.
3466 */
3467void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3468{
3469        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3470
3471        kasan_slab_alloc(cachep, ret, flags);
3472        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3473                                    cachep->object_size, cachep->size,
3474                                    flags, nodeid);
3475
3476        return ret;
3477}
3478EXPORT_SYMBOL(kmem_cache_alloc_node);
3479
3480#ifdef CONFIG_TRACING
3481void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3482                                  gfp_t flags,
3483                                  int nodeid,
3484                                  size_t size)
3485{
3486        void *ret;
3487
3488        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3489
3490        kasan_kmalloc(cachep, ret, size, flags);
3491        trace_kmalloc_node(_RET_IP_, ret,
3492                           size, cachep->size,
3493                           flags, nodeid);
3494        return ret;
3495}
3496EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3497#endif
3498
3499static __always_inline void *
3500__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3501{
3502        struct kmem_cache *cachep;
3503        void *ret;
3504
3505        cachep = kmalloc_slab(size, flags);
3506        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3507                return cachep;
3508        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3509        kasan_kmalloc(cachep, ret, size, flags);
3510
3511        return ret;
3512}
3513
3514void *__kmalloc_node(size_t size, gfp_t flags, int node)
3515{
3516        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3517}
3518EXPORT_SYMBOL(__kmalloc_node);
3519
3520void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3521                int node, unsigned long caller)
3522{
3523        return __do_kmalloc_node(size, flags, node, caller);
3524}
3525EXPORT_SYMBOL(__kmalloc_node_track_caller);
3526#endif /* CONFIG_NUMA */
3527
3528/**
3529 * __do_kmalloc - allocate memory
3530 * @size: how many bytes of memory are required.
3531 * @flags: the type of memory to allocate (see kmalloc).
3532 * @caller: function caller for debug tracking of the caller
3533 */
3534static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3535                                          unsigned long caller)
3536{
3537        struct kmem_cache *cachep;
3538        void *ret;
3539
3540        cachep = kmalloc_slab(size, flags);
3541        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3542                return cachep;
3543        ret = slab_alloc(cachep, flags, caller);
3544
3545        kasan_kmalloc(cachep, ret, size, flags);
3546        trace_kmalloc(caller, ret,
3547                      size, cachep->size, flags);
3548
3549        return ret;
3550}
3551
3552void *__kmalloc(size_t size, gfp_t flags)
3553{
3554        return __do_kmalloc(size, flags, _RET_IP_);
3555}
3556EXPORT_SYMBOL(__kmalloc);
3557
3558void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3559{
3560        return __do_kmalloc(size, flags, caller);
3561}
3562EXPORT_SYMBOL(__kmalloc_track_caller);
3563
3564/**
3565 * kmem_cache_free - Deallocate an object
3566 * @cachep: The cache the allocation was from.
3567 * @objp: The previously allocated object.
3568 *
3569 * Free an object which was previously allocated from this
3570 * cache.
3571 */
3572void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3573{
3574        unsigned long flags;
3575        cachep = cache_from_obj(cachep, objp);
3576        if (!cachep)
3577                return;
3578
3579        local_irq_save(flags);
3580        debug_check_no_locks_freed(objp, cachep->object_size);
3581        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3582                debug_check_no_obj_freed(objp, cachep->object_size);
3583        __cache_free(cachep, objp, _RET_IP_);
3584        local_irq_restore(flags);
3585
3586        trace_kmem_cache_free(_RET_IP_, objp);
3587}
3588EXPORT_SYMBOL(kmem_cache_free);
3589
3590void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3591{
3592        struct kmem_cache *s;
3593        size_t i;
3594
3595        local_irq_disable();
3596        for (i = 0; i < size; i++) {
3597                void *objp = p[i];
3598
3599                if (!orig_s) /* called via kfree_bulk */
3600                        s = virt_to_cache(objp);
3601                else
3602                        s = cache_from_obj(orig_s, objp);
3603
3604                debug_check_no_locks_freed(objp, s->object_size);
3605                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3606                        debug_check_no_obj_freed(objp, s->object_size);
3607
3608                __cache_free(s, objp, _RET_IP_);
3609        }
3610        local_irq_enable();
3611
3612        /* FIXME: add tracing */
3613}
3614EXPORT_SYMBOL(kmem_cache_free_bulk);
3615
3616/**
3617 * kfree - free previously allocated memory
3618 * @objp: pointer returned by kmalloc.
3619 *
3620 * If @objp is NULL, no operation is performed.
3621 *
3622 * Don't free memory not originally allocated by kmalloc()
3623 * or you will run into trouble.
3624 */
3625void kfree(const void *objp)
3626{
3627        struct kmem_cache *c;
3628        unsigned long flags;
3629
3630        trace_kfree(_RET_IP_, objp);
3631
3632        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3633                return;
3634        local_irq_save(flags);
3635        kfree_debugcheck(objp);
3636        c = virt_to_cache(objp);
3637        debug_check_no_locks_freed(objp, c->object_size);
3638
3639        debug_check_no_obj_freed(objp, c->object_size);
3640        __cache_free(c, (void *)objp, _RET_IP_);
3641        local_irq_restore(flags);
3642}
3643EXPORT_SYMBOL(kfree);
3644
3645/*
3646 * This initializes kmem_cache_node or resizes various caches for all nodes.
3647 */
3648static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3649{
3650        int node;
3651        struct kmem_cache_node *n;
3652        struct array_cache *new_shared;
3653        struct alien_cache **new_alien = NULL;
3654
3655        for_each_online_node(node) {
3656
3657                if (use_alien_caches) {
3658                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3659                        if (!new_alien)
3660                                goto fail;
3661                }
3662
3663                new_shared = NULL;
3664                if (cachep->shared) {
3665                        new_shared = alloc_arraycache(node,
3666                                cachep->shared*cachep->batchcount,
3667                                        0xbaadf00d, gfp);
3668                        if (!new_shared) {
3669                                free_alien_cache(new_alien);
3670                                goto fail;
3671                        }
3672                }
3673
3674                n = get_node(cachep, node);
3675                if (n) {
3676                        struct array_cache *shared = n->shared;
3677                        LIST_HEAD(list);
3678
3679                        spin_lock_irq(&n->list_lock);
3680
3681                        if (shared)
3682                                free_block(cachep, shared->entry,
3683                                                shared->avail, node, &list);
3684
3685                        n->shared = new_shared;
3686                        if (!n->alien) {
3687                                n->alien = new_alien;
3688                                new_alien = NULL;
3689                        }
3690                        n->free_limit = (1 + nr_cpus_node(node)) *
3691                                        cachep->batchcount + cachep->num;
3692                        spin_unlock_irq(&n->list_lock);
3693                        slabs_destroy(cachep, &list);
3694                        kfree(shared);
3695                        free_alien_cache(new_alien);
3696                        continue;
3697                }
3698                n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3699                if (!n) {
3700                        free_alien_cache(new_alien);
3701                        kfree(new_shared);
3702                        goto fail;
3703                }
3704
3705                kmem_cache_node_init(n);
3706                n->next_reap = jiffies + REAPTIMEOUT_NODE +
3707                                ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3708                n->shared = new_shared;
3709                n->alien = new_alien;
3710                n->free_limit = (1 + nr_cpus_node(node)) *
3711                                        cachep->batchcount + cachep->num;
3712                cachep->node[node] = n;
3713        }
3714        return 0;
3715
3716fail:
3717        if (!cachep->list.next) {
3718                /* Cache is not active yet. Roll back what we did */
3719                node--;
3720                while (node >= 0) {
3721                        n = get_node(cachep, node);
3722                        if (n) {
3723                                kfree(n->shared);
3724                                free_alien_cache(n->alien);
3725                                kfree(n);
3726                                cachep->node[node] = NULL;
3727                        }
3728                        node--;
3729                }
3730        }
3731        return -ENOMEM;
3732}
3733
3734/* Always called with the slab_mutex held */
3735static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3736                                int batchcount, int shared, gfp_t gfp)
3737{
3738        struct array_cache __percpu *cpu_cache, *prev;
3739        int cpu;
3740
3741        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3742        if (!cpu_cache)
3743                return -ENOMEM;
3744
3745        prev = cachep->cpu_cache;
3746        cachep->cpu_cache = cpu_cache;
3747        kick_all_cpus_sync();
3748
3749        check_irq_on();
3750        cachep->batchcount = batchcount;
3751        cachep->limit = limit;
3752        cachep->shared = shared;
3753
3754        if (!prev)
3755                goto alloc_node;
3756
3757        for_each_online_cpu(cpu) {
3758                LIST_HEAD(list);
3759                int node;
3760                struct kmem_cache_node *n;
3761                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3762
3763                node = cpu_to_mem(cpu);
3764                n = get_node(cachep, node);
3765                spin_lock_irq(&n->list_lock);
3766                free_block(cachep, ac->entry, ac->avail, node, &list);
3767                spin_unlock_irq(&n->list_lock);
3768                slabs_destroy(cachep, &list);
3769        }
3770        free_percpu(prev);
3771
3772alloc_node:
3773        return alloc_kmem_cache_node(cachep, gfp);
3774}
3775
3776static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3777                                int batchcount, int shared, gfp_t gfp)
3778{
3779        int ret;
3780        struct kmem_cache *c;
3781
3782        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3783
3784        if (slab_state < FULL)
3785                return ret;
3786
3787        if ((ret < 0) || !is_root_cache(cachep))
3788                return ret;
3789
3790        lockdep_assert_held(&slab_mutex);
3791        for_each_memcg_cache(c, cachep) {
3792                /* return value determined by the root cache only */
3793                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3794        }
3795
3796        return ret;
3797}
3798
3799/* Called with slab_mutex held always */
3800static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3801{
3802        int err;
3803        int limit = 0;
3804        int shared = 0;
3805        int batchcount = 0;
3806
3807        if (!is_root_cache(cachep)) {
3808                struct kmem_cache *root = memcg_root_cache(cachep);
3809                limit = root->limit;
3810                shared = root->shared;
3811                batchcount = root->batchcount;
3812        }
3813
3814        if (limit && shared && batchcount)
3815                goto skip_setup;
3816        /*
3817         * The head array serves three purposes:
3818         * - create a LIFO ordering, i.e. return objects that are cache-warm
3819         * - reduce the number of spinlock operations.
3820         * - reduce the number of linked list operations on the slab and
3821         *   bufctl chains: array operations are cheaper.
3822         * The numbers are guessed, we should auto-tune as described by
3823         * Bonwick.
3824         */
3825        if (cachep->size > 131072)
3826                limit = 1;
3827        else if (cachep->size > PAGE_SIZE)
3828                limit = 8;
3829        else if (cachep->size > 1024)
3830                limit = 24;
3831        else if (cachep->size > 256)
3832                limit = 54;
3833        else
3834                limit = 120;
3835
3836        /*
3837         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3838         * allocation behaviour: Most allocs on one cpu, most free operations
3839         * on another cpu. For these cases, an efficient object passing between
3840         * cpus is necessary. This is provided by a shared array. The array
3841         * replaces Bonwick's magazine layer.
3842         * On uniprocessor, it's functionally equivalent (but less efficient)
3843         * to a larger limit. Thus disabled by default.
3844         */
3845        shared = 0;
3846        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3847                shared = 8;
3848
3849#if DEBUG
3850        /*
3851         * With debugging enabled, large batchcount lead to excessively long
3852         * periods with disabled local interrupts. Limit the batchcount
3853         */
3854        if (limit > 32)
3855                limit = 32;
3856#endif
3857        batchcount = (limit + 1) / 2;
3858skip_setup:
3859        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3860        if (err)
3861                pr_err("enable_cpucache failed for %s, error %d\n",
3862                       cachep->name, -err);
3863        return err;
3864}
3865
3866/*
3867 * Drain an array if it contains any elements taking the node lock only if
3868 * necessary. Note that the node listlock also protects the array_cache
3869 * if drain_array() is used on the shared array.
3870 */
3871static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3872                         struct array_cache *ac, int force, int node)
3873{
3874        LIST_HEAD(list);
3875        int tofree;
3876
3877        if (!ac || !ac->avail)
3878                return;
3879        if (ac->touched && !force) {
3880                ac->touched = 0;
3881        } else {
3882                spin_lock_irq(&n->list_lock);
3883                if (ac->avail) {
3884                        tofree = force ? ac->avail : (ac->limit + 4) / 5;
3885                        if (tofree > ac->avail)
3886                                tofree = (ac->avail + 1) / 2;
3887                        free_block(cachep, ac->entry, tofree, node, &list);
3888                        ac->avail -= tofree;
3889                        memmove(ac->entry, &(ac->entry[tofree]),
3890                                sizeof(void *) * ac->avail);
3891                }
3892                spin_unlock_irq(&n->list_lock);
3893                slabs_destroy(cachep, &list);
3894        }
3895}
3896
3897/**
3898 * cache_reap - Reclaim memory from caches.
3899 * @w: work descriptor
3900 *
3901 * Called from workqueue/eventd every few seconds.
3902 * Purpose:
3903 * - clear the per-cpu caches for this CPU.
3904 * - return freeable pages to the main free memory pool.
3905 *
3906 * If we cannot acquire the cache chain mutex then just give up - we'll try
3907 * again on the next iteration.
3908 */
3909static void cache_reap(struct work_struct *w)
3910{
3911        struct kmem_cache *searchp;
3912        struct kmem_cache_node *n;
3913        int node = numa_mem_id();
3914        struct delayed_work *work = to_delayed_work(w);
3915
3916        if (!mutex_trylock(&slab_mutex))
3917                /* Give up. Setup the next iteration. */
3918                goto out;
3919
3920        list_for_each_entry(searchp, &slab_caches, list) {
3921                check_irq_on();
3922
3923                /*
3924                 * We only take the node lock if absolutely necessary and we
3925                 * have established with reasonable certainty that
3926                 * we can do some work if the lock was obtained.
3927                 */
3928                n = get_node(searchp, node);
3929
3930                reap_alien(searchp, n);
3931
3932                drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3933
3934                /*
3935                 * These are racy checks but it does not matter
3936                 * if we skip one check or scan twice.
3937                 */
3938                if (time_after(n->next_reap, jiffies))
3939                        goto next;
3940
3941                n->next_reap = jiffies + REAPTIMEOUT_NODE;
3942
3943                drain_array(searchp, n, n->shared, 0, node);
3944
3945                if (n->free_touched)
3946                        n->free_touched = 0;
3947                else {
3948                        int freed;
3949
3950                        freed = drain_freelist(searchp, n, (n->free_limit +
3951                                5 * searchp->num - 1) / (5 * searchp->num));
3952                        STATS_ADD_REAPED(searchp, freed);
3953                }
3954next:
3955                cond_resched();
3956        }
3957        check_irq_on();
3958        mutex_unlock(&slab_mutex);
3959        next_reap_node();
3960out:
3961        /* Set up the next iteration */
3962        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3963}
3964
3965#ifdef CONFIG_SLABINFO
3966void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3967{
3968        struct page *page;
3969        unsigned long active_objs;
3970        unsigned long num_objs;
3971        unsigned long active_slabs = 0;
3972        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3973        const char *name;
3974        char *error = NULL;
3975        int node;
3976        struct kmem_cache_node *n;
3977
3978        active_objs = 0;
3979        num_slabs = 0;
3980        for_each_kmem_cache_node(cachep, node, n) {
3981
3982                check_irq_on();
3983                spin_lock_irq(&n->list_lock);
3984
3985                list_for_each_entry(page, &n->slabs_full, lru) {
3986                        if (page->active != cachep->num && !error)
3987                                error = "slabs_full accounting error";
3988                        active_objs += cachep->num;
3989                        active_slabs++;
3990                }
3991                list_for_each_entry(page, &n->slabs_partial, lru) {
3992                        if (page->active == cachep->num && !error)
3993                                error = "slabs_partial accounting error";
3994                        if (!page->active && !error)
3995                                error = "slabs_partial accounting error";
3996                        active_objs += page->active;
3997                        active_slabs++;
3998                }
3999                list_for_each_entry(page, &n->slabs_free, lru) {
4000                        if (page->active && !error)
4001                                error = "slabs_free accounting error";
4002                        num_slabs++;
4003                }
4004                free_objects += n->free_objects;
4005                if (n->shared)
4006                        shared_avail += n->shared->avail;
4007
4008                spin_unlock_irq(&n->list_lock);
4009        }
4010        num_slabs += active_slabs;
4011        num_objs = num_slabs * cachep->num;
4012        if (num_objs - active_objs != free_objects && !error)
4013                error = "free_objects accounting error";
4014
4015        name = cachep->name;
4016        if (error)
4017                pr_err("slab: cache %s error: %s\n", name, error);
4018
4019        sinfo->active_objs = active_objs;
4020        sinfo->num_objs = num_objs;
4021        sinfo->active_slabs = active_slabs;
4022        sinfo->num_slabs = num_slabs;
4023        sinfo->shared_avail = shared_avail;
4024        sinfo->limit = cachep->limit;
4025        sinfo->batchcount = cachep->batchcount;
4026        sinfo->shared = cachep->shared;
4027        sinfo->objects_per_slab = cachep->num;
4028        sinfo->cache_order = cachep->gfporder;
4029}
4030
4031void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4032{
4033#if STATS
4034        {                       /* node stats */
4035                unsigned long high = cachep->high_mark;
4036                unsigned long allocs = cachep->num_allocations;
4037                unsigned long grown = cachep->grown;
4038                unsigned long reaped = cachep->reaped;
4039                unsigned long errors = cachep->errors;
4040                unsigned long max_freeable = cachep->max_freeable;
4041                unsigned long node_allocs = cachep->node_allocs;
4042                unsigned long node_frees = cachep->node_frees;
4043                unsigned long overflows = cachep->node_overflow;
4044
4045                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4046                           allocs, high, grown,
4047                           reaped, errors, max_freeable, node_allocs,
4048                           node_frees, overflows);
4049        }
4050        /* cpu stats */
4051        {
4052                unsigned long allochit = atomic_read(&cachep->allochit);
4053                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4054                unsigned long freehit = atomic_read(&cachep->freehit);
4055                unsigned long freemiss = atomic_read(&cachep->freemiss);
4056
4057                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4058                           allochit, allocmiss, freehit, freemiss);
4059        }
4060#endif
4061}
4062
4063#define MAX_SLABINFO_WRITE 128
4064/**
4065 * slabinfo_write - Tuning for the slab allocator
4066 * @file: unused
4067 * @buffer: user buffer
4068 * @count: data length
4069 * @ppos: unused
4070 */
4071ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4072                       size_t count, loff_t *ppos)
4073{
4074        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4075        int limit, batchcount, shared, res;
4076        struct kmem_cache *cachep;
4077
4078        if (count > MAX_SLABINFO_WRITE)
4079                return -EINVAL;
4080        if (copy_from_user(&kbuf, buffer, count))
4081                return -EFAULT;
4082        kbuf[MAX_SLABINFO_WRITE] = '\0';
4083
4084        tmp = strchr(kbuf, ' ');
4085        if (!tmp)
4086                return -EINVAL;
4087        *tmp = '\0';
4088        tmp++;
4089        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4090                return -EINVAL;
4091
4092        /* Find the cache in the chain of caches. */
4093        mutex_lock(&slab_mutex);
4094        res = -EINVAL;
4095        list_for_each_entry(cachep, &slab_caches, list) {
4096                if (!strcmp(cachep->name, kbuf)) {
4097                        if (limit < 1 || batchcount < 1 ||
4098                                        batchcount > limit || shared < 0) {
4099                                res = 0;
4100                        } else {
4101                                res = do_tune_cpucache(cachep, limit,
4102                                                       batchcount, shared,
4103                                                       GFP_KERNEL);
4104                        }
4105                        break;
4106                }
4107        }
4108        mutex_unlock(&slab_mutex);
4109        if (res >= 0)
4110                res = count;
4111        return res;
4112}
4113
4114#ifdef CONFIG_DEBUG_SLAB_LEAK
4115
4116static inline int add_caller(unsigned long *n, unsigned long v)
4117{
4118        unsigned long *p;
4119        int l;
4120        if (!v)
4121                return 1;
4122        l = n[1];
4123        p = n + 2;
4124        while (l) {
4125                int i = l/2;
4126                unsigned long *q = p + 2 * i;
4127                if (*q == v) {
4128                        q[1]++;
4129                        return 1;
4130                }
4131                if (*q > v) {
4132                        l = i;
4133                } else {
4134                        p = q + 2;
4135                        l -= i + 1;
4136                }
4137        }
4138        if (++n[1] == n[0])
4139                return 0;
4140        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4141        p[0] = v;
4142        p[1] = 1;
4143        return 1;
4144}
4145
4146static void handle_slab(unsigned long *n, struct kmem_cache *c,
4147                                                struct page *page)
4148{
4149        void *p;
4150        int i, j;
4151        unsigned long v;
4152
4153        if (n[0] == n[1])
4154                return;
4155        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4156                bool active = true;
4157
4158                for (j = page->active; j < c->num; j++) {
4159                        if (get_free_obj(page, j) == i) {
4160                                active = false;
4161                                break;
4162                        }
4163                }
4164
4165                if (!active)
4166                        continue;
4167
4168                /*
4169                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4170                 * mapping is established when actual object allocation and
4171                 * we could mistakenly access the unmapped object in the cpu
4172                 * cache.
4173                 */
4174                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4175                        continue;
4176
4177                if (!add_caller(n, v))
4178                        return;
4179        }
4180}
4181
4182static void show_symbol(struct seq_file *m, unsigned long address)
4183{
4184#ifdef CONFIG_KALLSYMS
4185        unsigned long offset, size;
4186        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4187
4188        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4189                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4190                if (modname[0])
4191                        seq_printf(m, " [%s]", modname);
4192                return;
4193        }
4194#endif
4195        seq_printf(m, "%p", (void *)address);
4196}
4197
4198static int leaks_show(struct seq_file *m, void *p)
4199{
4200        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4201        struct page *page;
4202        struct kmem_cache_node *n;
4203        const char *name;
4204        unsigned long *x = m->private;
4205        int node;
4206        int i;
4207
4208        if (!(cachep->flags & SLAB_STORE_USER))
4209                return 0;
4210        if (!(cachep->flags & SLAB_RED_ZONE))
4211                return 0;
4212
4213        /*
4214         * Set store_user_clean and start to grab stored user information
4215         * for all objects on this cache. If some alloc/free requests comes
4216         * during the processing, information would be wrong so restart
4217         * whole processing.
4218         */
4219        do {
4220                set_store_user_clean(cachep);
4221                drain_cpu_caches(cachep);
4222
4223                x[1] = 0;
4224
4225                for_each_kmem_cache_node(cachep, node, n) {
4226
4227                        check_irq_on();
4228                        spin_lock_irq(&n->list_lock);
4229
4230                        list_for_each_entry(page, &n->slabs_full, lru)
4231                                handle_slab(x, cachep, page);
4232                        list_for_each_entry(page, &n->slabs_partial, lru)
4233                                handle_slab(x, cachep, page);
4234                        spin_unlock_irq(&n->list_lock);
4235                }
4236        } while (!is_store_user_clean(cachep));
4237
4238        name = cachep->name;
4239        if (x[0] == x[1]) {
4240                /* Increase the buffer size */
4241                mutex_unlock(&slab_mutex);
4242                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4243                if (!m->private) {
4244                        /* Too bad, we are really out */
4245                        m->private = x;
4246                        mutex_lock(&slab_mutex);
4247                        return -ENOMEM;
4248                }
4249                *(unsigned long *)m->private = x[0] * 2;
4250                kfree(x);
4251                mutex_lock(&slab_mutex);
4252                /* Now make sure this entry will be retried */
4253                m->count = m->size;
4254                return 0;
4255        }
4256        for (i = 0; i < x[1]; i++) {
4257                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4258                show_symbol(m, x[2*i+2]);
4259                seq_putc(m, '\n');
4260        }
4261
4262        return 0;
4263}
4264
4265static const struct seq_operations slabstats_op = {
4266        .start = slab_start,
4267        .next = slab_next,
4268        .stop = slab_stop,
4269        .show = leaks_show,
4270};
4271
4272static int slabstats_open(struct inode *inode, struct file *file)
4273{
4274        unsigned long *n;
4275
4276        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4277        if (!n)
4278                return -ENOMEM;
4279
4280        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4281
4282        return 0;
4283}
4284
4285static const struct file_operations proc_slabstats_operations = {
4286        .open           = slabstats_open,
4287        .read           = seq_read,
4288        .llseek         = seq_lseek,
4289        .release        = seq_release_private,
4290};
4291#endif
4292
4293static int __init slab_proc_init(void)
4294{
4295#ifdef CONFIG_DEBUG_SLAB_LEAK
4296        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4297#endif
4298        return 0;
4299}
4300module_init(slab_proc_init);
4301#endif
4302
4303/**
4304 * ksize - get the actual amount of memory allocated for a given object
4305 * @objp: Pointer to the object
4306 *
4307 * kmalloc may internally round up allocations and return more memory
4308 * than requested. ksize() can be used to determine the actual amount of
4309 * memory allocated. The caller may use this additional memory, even though
4310 * a smaller amount of memory was initially specified with the kmalloc call.
4311 * The caller must guarantee that objp points to a valid object previously
4312 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4313 * must not be freed during the duration of the call.
4314 */
4315size_t ksize(const void *objp)
4316{
4317        size_t size;
4318
4319        BUG_ON(!objp);
4320        if (unlikely(objp == ZERO_SIZE_PTR))
4321                return 0;
4322
4323        size = virt_to_cache(objp)->object_size;
4324        /* We assume that ksize callers could use the whole allocated area,
4325         * so we need to unpoison this area.
4326         */
4327        kasan_krealloc(objp, size, GFP_NOWAIT);
4328
4329        return size;
4330}
4331EXPORT_SYMBOL(ksize);
4332