linux/mm/slab.h
<<
>>
Prefs
   1#ifndef MM_SLAB_H
   2#define MM_SLAB_H
   3/*
   4 * Internal slab definitions
   5 */
   6
   7#ifdef CONFIG_SLOB
   8/*
   9 * Common fields provided in kmem_cache by all slab allocators
  10 * This struct is either used directly by the allocator (SLOB)
  11 * or the allocator must include definitions for all fields
  12 * provided in kmem_cache_common in their definition of kmem_cache.
  13 *
  14 * Once we can do anonymous structs (C11 standard) we could put a
  15 * anonymous struct definition in these allocators so that the
  16 * separate allocations in the kmem_cache structure of SLAB and
  17 * SLUB is no longer needed.
  18 */
  19struct kmem_cache {
  20        unsigned int object_size;/* The original size of the object */
  21        unsigned int size;      /* The aligned/padded/added on size  */
  22        unsigned int align;     /* Alignment as calculated */
  23        unsigned long flags;    /* Active flags on the slab */
  24        const char *name;       /* Slab name for sysfs */
  25        int refcount;           /* Use counter */
  26        void (*ctor)(void *);   /* Called on object slot creation */
  27        struct list_head list;  /* List of all slab caches on the system */
  28};
  29
  30#endif /* CONFIG_SLOB */
  31
  32#ifdef CONFIG_SLAB
  33#include <linux/slab_def.h>
  34#endif
  35
  36#ifdef CONFIG_SLUB
  37#include <linux/slub_def.h>
  38#endif
  39
  40#include <linux/memcontrol.h>
  41#include <linux/fault-inject.h>
  42#include <linux/kmemcheck.h>
  43#include <linux/kasan.h>
  44#include <linux/kmemleak.h>
  45
  46/*
  47 * State of the slab allocator.
  48 *
  49 * This is used to describe the states of the allocator during bootup.
  50 * Allocators use this to gradually bootstrap themselves. Most allocators
  51 * have the problem that the structures used for managing slab caches are
  52 * allocated from slab caches themselves.
  53 */
  54enum slab_state {
  55        DOWN,                   /* No slab functionality yet */
  56        PARTIAL,                /* SLUB: kmem_cache_node available */
  57        PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
  58        UP,                     /* Slab caches usable but not all extras yet */
  59        FULL                    /* Everything is working */
  60};
  61
  62extern enum slab_state slab_state;
  63
  64/* The slab cache mutex protects the management structures during changes */
  65extern struct mutex slab_mutex;
  66
  67/* The list of all slab caches on the system */
  68extern struct list_head slab_caches;
  69
  70/* The slab cache that manages slab cache information */
  71extern struct kmem_cache *kmem_cache;
  72
  73unsigned long calculate_alignment(unsigned long flags,
  74                unsigned long align, unsigned long size);
  75
  76#ifndef CONFIG_SLOB
  77/* Kmalloc array related functions */
  78void setup_kmalloc_cache_index_table(void);
  79void create_kmalloc_caches(unsigned long);
  80
  81/* Find the kmalloc slab corresponding for a certain size */
  82struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  83#endif
  84
  85
  86/* Functions provided by the slab allocators */
  87extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  88
  89extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  90                        unsigned long flags);
  91extern void create_boot_cache(struct kmem_cache *, const char *name,
  92                        size_t size, unsigned long flags);
  93
  94int slab_unmergeable(struct kmem_cache *s);
  95struct kmem_cache *find_mergeable(size_t size, size_t align,
  96                unsigned long flags, const char *name, void (*ctor)(void *));
  97#ifndef CONFIG_SLOB
  98struct kmem_cache *
  99__kmem_cache_alias(const char *name, size_t size, size_t align,
 100                   unsigned long flags, void (*ctor)(void *));
 101
 102unsigned long kmem_cache_flags(unsigned long object_size,
 103        unsigned long flags, const char *name,
 104        void (*ctor)(void *));
 105#else
 106static inline struct kmem_cache *
 107__kmem_cache_alias(const char *name, size_t size, size_t align,
 108                   unsigned long flags, void (*ctor)(void *))
 109{ return NULL; }
 110
 111static inline unsigned long kmem_cache_flags(unsigned long object_size,
 112        unsigned long flags, const char *name,
 113        void (*ctor)(void *))
 114{
 115        return flags;
 116}
 117#endif
 118
 119
 120/* Legal flag mask for kmem_cache_create(), for various configurations */
 121#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
 122                         SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
 123
 124#if defined(CONFIG_DEBUG_SLAB)
 125#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 126#elif defined(CONFIG_SLUB_DEBUG)
 127#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 128                          SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
 129#else
 130#define SLAB_DEBUG_FLAGS (0)
 131#endif
 132
 133#if defined(CONFIG_SLAB)
 134#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 135                          SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
 136                          SLAB_NOTRACK | SLAB_ACCOUNT)
 137#elif defined(CONFIG_SLUB)
 138#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 139                          SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
 140#else
 141#define SLAB_CACHE_FLAGS (0)
 142#endif
 143
 144#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 145
 146int __kmem_cache_shutdown(struct kmem_cache *);
 147void __kmem_cache_release(struct kmem_cache *);
 148int __kmem_cache_shrink(struct kmem_cache *, bool);
 149void slab_kmem_cache_release(struct kmem_cache *);
 150
 151struct seq_file;
 152struct file;
 153
 154struct slabinfo {
 155        unsigned long active_objs;
 156        unsigned long num_objs;
 157        unsigned long active_slabs;
 158        unsigned long num_slabs;
 159        unsigned long shared_avail;
 160        unsigned int limit;
 161        unsigned int batchcount;
 162        unsigned int shared;
 163        unsigned int objects_per_slab;
 164        unsigned int cache_order;
 165};
 166
 167void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
 168void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
 169ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 170                       size_t count, loff_t *ppos);
 171
 172/*
 173 * Generic implementation of bulk operations
 174 * These are useful for situations in which the allocator cannot
 175 * perform optimizations. In that case segments of the object listed
 176 * may be allocated or freed using these operations.
 177 */
 178void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 179int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 180
 181#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 182/*
 183 * Iterate over all memcg caches of the given root cache. The caller must hold
 184 * slab_mutex.
 185 */
 186#define for_each_memcg_cache(iter, root) \
 187        list_for_each_entry(iter, &(root)->memcg_params.list, \
 188                            memcg_params.list)
 189
 190static inline bool is_root_cache(struct kmem_cache *s)
 191{
 192        return s->memcg_params.is_root_cache;
 193}
 194
 195static inline bool slab_equal_or_root(struct kmem_cache *s,
 196                                      struct kmem_cache *p)
 197{
 198        return p == s || p == s->memcg_params.root_cache;
 199}
 200
 201/*
 202 * We use suffixes to the name in memcg because we can't have caches
 203 * created in the system with the same name. But when we print them
 204 * locally, better refer to them with the base name
 205 */
 206static inline const char *cache_name(struct kmem_cache *s)
 207{
 208        if (!is_root_cache(s))
 209                s = s->memcg_params.root_cache;
 210        return s->name;
 211}
 212
 213/*
 214 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 215 * That said the caller must assure the memcg's cache won't go away by either
 216 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 217 */
 218static inline struct kmem_cache *
 219cache_from_memcg_idx(struct kmem_cache *s, int idx)
 220{
 221        struct kmem_cache *cachep;
 222        struct memcg_cache_array *arr;
 223
 224        rcu_read_lock();
 225        arr = rcu_dereference(s->memcg_params.memcg_caches);
 226
 227        /*
 228         * Make sure we will access the up-to-date value. The code updating
 229         * memcg_caches issues a write barrier to match this (see
 230         * memcg_create_kmem_cache()).
 231         */
 232        cachep = lockless_dereference(arr->entries[idx]);
 233        rcu_read_unlock();
 234
 235        return cachep;
 236}
 237
 238static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 239{
 240        if (is_root_cache(s))
 241                return s;
 242        return s->memcg_params.root_cache;
 243}
 244
 245static __always_inline int memcg_charge_slab(struct page *page,
 246                                             gfp_t gfp, int order,
 247                                             struct kmem_cache *s)
 248{
 249        int ret;
 250
 251        if (!memcg_kmem_enabled())
 252                return 0;
 253        if (is_root_cache(s))
 254                return 0;
 255
 256        ret = __memcg_kmem_charge_memcg(page, gfp, order,
 257                                        s->memcg_params.memcg);
 258        if (ret)
 259                return ret;
 260
 261        memcg_kmem_update_page_stat(page,
 262                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 263                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 264                        1 << order);
 265        return 0;
 266}
 267
 268static __always_inline void memcg_uncharge_slab(struct page *page, int order,
 269                                                struct kmem_cache *s)
 270{
 271        memcg_kmem_update_page_stat(page,
 272                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 273                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 274                        -(1 << order));
 275        memcg_kmem_uncharge(page, order);
 276}
 277
 278extern void slab_init_memcg_params(struct kmem_cache *);
 279
 280#else /* CONFIG_MEMCG && !CONFIG_SLOB */
 281
 282#define for_each_memcg_cache(iter, root) \
 283        for ((void)(iter), (void)(root); 0; )
 284
 285static inline bool is_root_cache(struct kmem_cache *s)
 286{
 287        return true;
 288}
 289
 290static inline bool slab_equal_or_root(struct kmem_cache *s,
 291                                      struct kmem_cache *p)
 292{
 293        return true;
 294}
 295
 296static inline const char *cache_name(struct kmem_cache *s)
 297{
 298        return s->name;
 299}
 300
 301static inline struct kmem_cache *
 302cache_from_memcg_idx(struct kmem_cache *s, int idx)
 303{
 304        return NULL;
 305}
 306
 307static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 308{
 309        return s;
 310}
 311
 312static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
 313                                    struct kmem_cache *s)
 314{
 315        return 0;
 316}
 317
 318static inline void memcg_uncharge_slab(struct page *page, int order,
 319                                       struct kmem_cache *s)
 320{
 321}
 322
 323static inline void slab_init_memcg_params(struct kmem_cache *s)
 324{
 325}
 326#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 327
 328static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 329{
 330        struct kmem_cache *cachep;
 331        struct page *page;
 332
 333        /*
 334         * When kmemcg is not being used, both assignments should return the
 335         * same value. but we don't want to pay the assignment price in that
 336         * case. If it is not compiled in, the compiler should be smart enough
 337         * to not do even the assignment. In that case, slab_equal_or_root
 338         * will also be a constant.
 339         */
 340        if (!memcg_kmem_enabled() &&
 341            !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
 342                return s;
 343
 344        page = virt_to_head_page(x);
 345        cachep = page->slab_cache;
 346        if (slab_equal_or_root(cachep, s))
 347                return cachep;
 348
 349        pr_err("%s: Wrong slab cache. %s but object is from %s\n",
 350               __func__, s->name, cachep->name);
 351        WARN_ON_ONCE(1);
 352        return s;
 353}
 354
 355static inline size_t slab_ksize(const struct kmem_cache *s)
 356{
 357#ifndef CONFIG_SLUB
 358        return s->object_size;
 359
 360#else /* CONFIG_SLUB */
 361# ifdef CONFIG_SLUB_DEBUG
 362        /*
 363         * Debugging requires use of the padding between object
 364         * and whatever may come after it.
 365         */
 366        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 367                return s->object_size;
 368# endif
 369        /*
 370         * If we have the need to store the freelist pointer
 371         * back there or track user information then we can
 372         * only use the space before that information.
 373         */
 374        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 375                return s->inuse;
 376        /*
 377         * Else we can use all the padding etc for the allocation
 378         */
 379        return s->size;
 380#endif
 381}
 382
 383static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 384                                                     gfp_t flags)
 385{
 386        flags &= gfp_allowed_mask;
 387        lockdep_trace_alloc(flags);
 388        might_sleep_if(gfpflags_allow_blocking(flags));
 389
 390        if (should_failslab(s, flags))
 391                return NULL;
 392
 393        return memcg_kmem_get_cache(s, flags);
 394}
 395
 396static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
 397                                        size_t size, void **p)
 398{
 399        size_t i;
 400
 401        flags &= gfp_allowed_mask;
 402        for (i = 0; i < size; i++) {
 403                void *object = p[i];
 404
 405                kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 406                kmemleak_alloc_recursive(object, s->object_size, 1,
 407                                         s->flags, flags);
 408                kasan_slab_alloc(s, object, flags);
 409        }
 410        memcg_kmem_put_cache(s);
 411}
 412
 413#ifndef CONFIG_SLOB
 414/*
 415 * The slab lists for all objects.
 416 */
 417struct kmem_cache_node {
 418        spinlock_t list_lock;
 419
 420#ifdef CONFIG_SLAB
 421        struct list_head slabs_partial; /* partial list first, better asm code */
 422        struct list_head slabs_full;
 423        struct list_head slabs_free;
 424        unsigned long free_objects;
 425        unsigned int free_limit;
 426        unsigned int colour_next;       /* Per-node cache coloring */
 427        struct array_cache *shared;     /* shared per node */
 428        struct alien_cache **alien;     /* on other nodes */
 429        unsigned long next_reap;        /* updated without locking */
 430        int free_touched;               /* updated without locking */
 431#endif
 432
 433#ifdef CONFIG_SLUB
 434        unsigned long nr_partial;
 435        struct list_head partial;
 436#ifdef CONFIG_SLUB_DEBUG
 437        atomic_long_t nr_slabs;
 438        atomic_long_t total_objects;
 439        struct list_head full;
 440#endif
 441#endif
 442
 443};
 444
 445static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 446{
 447        return s->node[node];
 448}
 449
 450/*
 451 * Iterator over all nodes. The body will be executed for each node that has
 452 * a kmem_cache_node structure allocated (which is true for all online nodes)
 453 */
 454#define for_each_kmem_cache_node(__s, __node, __n) \
 455        for (__node = 0; __node < nr_node_ids; __node++) \
 456                 if ((__n = get_node(__s, __node)))
 457
 458#endif
 459
 460void *slab_start(struct seq_file *m, loff_t *pos);
 461void *slab_next(struct seq_file *m, void *p, loff_t *pos);
 462void slab_stop(struct seq_file *m, void *p);
 463int memcg_slab_show(struct seq_file *m, void *p);
 464
 465#endif /* MM_SLAB_H */
 466