linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/compiler.h>
  31#include <linux/llist.h>
  32#include <linux/bitops.h>
  33
  34#include <asm/uaccess.h>
  35#include <asm/tlbflush.h>
  36#include <asm/shmparam.h>
  37
  38#include "internal.h"
  39
  40struct vfree_deferred {
  41        struct llist_head list;
  42        struct work_struct wq;
  43};
  44static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  45
  46static void __vunmap(const void *, int);
  47
  48static void free_work(struct work_struct *w)
  49{
  50        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  51        struct llist_node *llnode = llist_del_all(&p->list);
  52        while (llnode) {
  53                void *p = llnode;
  54                llnode = llist_next(llnode);
  55                __vunmap(p, 1);
  56        }
  57}
  58
  59/*** Page table manipulation functions ***/
  60
  61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  62{
  63        pte_t *pte;
  64
  65        pte = pte_offset_kernel(pmd, addr);
  66        do {
  67                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  68                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  69        } while (pte++, addr += PAGE_SIZE, addr != end);
  70}
  71
  72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  73{
  74        pmd_t *pmd;
  75        unsigned long next;
  76
  77        pmd = pmd_offset(pud, addr);
  78        do {
  79                next = pmd_addr_end(addr, end);
  80                if (pmd_clear_huge(pmd))
  81                        continue;
  82                if (pmd_none_or_clear_bad(pmd))
  83                        continue;
  84                vunmap_pte_range(pmd, addr, next);
  85        } while (pmd++, addr = next, addr != end);
  86}
  87
  88static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  89{
  90        pud_t *pud;
  91        unsigned long next;
  92
  93        pud = pud_offset(pgd, addr);
  94        do {
  95                next = pud_addr_end(addr, end);
  96                if (pud_clear_huge(pud))
  97                        continue;
  98                if (pud_none_or_clear_bad(pud))
  99                        continue;
 100                vunmap_pmd_range(pud, addr, next);
 101        } while (pud++, addr = next, addr != end);
 102}
 103
 104static void vunmap_page_range(unsigned long addr, unsigned long end)
 105{
 106        pgd_t *pgd;
 107        unsigned long next;
 108
 109        BUG_ON(addr >= end);
 110        pgd = pgd_offset_k(addr);
 111        do {
 112                next = pgd_addr_end(addr, end);
 113                if (pgd_none_or_clear_bad(pgd))
 114                        continue;
 115                vunmap_pud_range(pgd, addr, next);
 116        } while (pgd++, addr = next, addr != end);
 117}
 118
 119static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 120                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 121{
 122        pte_t *pte;
 123
 124        /*
 125         * nr is a running index into the array which helps higher level
 126         * callers keep track of where we're up to.
 127         */
 128
 129        pte = pte_alloc_kernel(pmd, addr);
 130        if (!pte)
 131                return -ENOMEM;
 132        do {
 133                struct page *page = pages[*nr];
 134
 135                if (WARN_ON(!pte_none(*pte)))
 136                        return -EBUSY;
 137                if (WARN_ON(!page))
 138                        return -ENOMEM;
 139                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 140                (*nr)++;
 141        } while (pte++, addr += PAGE_SIZE, addr != end);
 142        return 0;
 143}
 144
 145static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 146                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 147{
 148        pmd_t *pmd;
 149        unsigned long next;
 150
 151        pmd = pmd_alloc(&init_mm, pud, addr);
 152        if (!pmd)
 153                return -ENOMEM;
 154        do {
 155                next = pmd_addr_end(addr, end);
 156                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 157                        return -ENOMEM;
 158        } while (pmd++, addr = next, addr != end);
 159        return 0;
 160}
 161
 162static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 163                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 164{
 165        pud_t *pud;
 166        unsigned long next;
 167
 168        pud = pud_alloc(&init_mm, pgd, addr);
 169        if (!pud)
 170                return -ENOMEM;
 171        do {
 172                next = pud_addr_end(addr, end);
 173                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 174                        return -ENOMEM;
 175        } while (pud++, addr = next, addr != end);
 176        return 0;
 177}
 178
 179/*
 180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 181 * will have pfns corresponding to the "pages" array.
 182 *
 183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 184 */
 185static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 186                                   pgprot_t prot, struct page **pages)
 187{
 188        pgd_t *pgd;
 189        unsigned long next;
 190        unsigned long addr = start;
 191        int err = 0;
 192        int nr = 0;
 193
 194        BUG_ON(addr >= end);
 195        pgd = pgd_offset_k(addr);
 196        do {
 197                next = pgd_addr_end(addr, end);
 198                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 199                if (err)
 200                        return err;
 201        } while (pgd++, addr = next, addr != end);
 202
 203        return nr;
 204}
 205
 206static int vmap_page_range(unsigned long start, unsigned long end,
 207                           pgprot_t prot, struct page **pages)
 208{
 209        int ret;
 210
 211        ret = vmap_page_range_noflush(start, end, prot, pages);
 212        flush_cache_vmap(start, end);
 213        return ret;
 214}
 215
 216int is_vmalloc_or_module_addr(const void *x)
 217{
 218        /*
 219         * ARM, x86-64 and sparc64 put modules in a special place,
 220         * and fall back on vmalloc() if that fails. Others
 221         * just put it in the vmalloc space.
 222         */
 223#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 224        unsigned long addr = (unsigned long)x;
 225        if (addr >= MODULES_VADDR && addr < MODULES_END)
 226                return 1;
 227#endif
 228        return is_vmalloc_addr(x);
 229}
 230
 231/*
 232 * Walk a vmap address to the struct page it maps.
 233 */
 234struct page *vmalloc_to_page(const void *vmalloc_addr)
 235{
 236        unsigned long addr = (unsigned long) vmalloc_addr;
 237        struct page *page = NULL;
 238        pgd_t *pgd = pgd_offset_k(addr);
 239
 240        /*
 241         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 242         * architectures that do not vmalloc module space
 243         */
 244        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 245
 246        if (!pgd_none(*pgd)) {
 247                pud_t *pud = pud_offset(pgd, addr);
 248                if (!pud_none(*pud)) {
 249                        pmd_t *pmd = pmd_offset(pud, addr);
 250                        if (!pmd_none(*pmd)) {
 251                                pte_t *ptep, pte;
 252
 253                                ptep = pte_offset_map(pmd, addr);
 254                                pte = *ptep;
 255                                if (pte_present(pte))
 256                                        page = pte_page(pte);
 257                                pte_unmap(ptep);
 258                        }
 259                }
 260        }
 261        return page;
 262}
 263EXPORT_SYMBOL(vmalloc_to_page);
 264
 265/*
 266 * Map a vmalloc()-space virtual address to the physical page frame number.
 267 */
 268unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 269{
 270        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 271}
 272EXPORT_SYMBOL(vmalloc_to_pfn);
 273
 274
 275/*** Global kva allocator ***/
 276
 277#define VM_LAZY_FREE    0x01
 278#define VM_LAZY_FREEING 0x02
 279#define VM_VM_AREA      0x04
 280
 281static DEFINE_SPINLOCK(vmap_area_lock);
 282/* Export for kexec only */
 283LIST_HEAD(vmap_area_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296        struct rb_node *n = vmap_area_root.rb_node;
 297
 298        while (n) {
 299                struct vmap_area *va;
 300
 301                va = rb_entry(n, struct vmap_area, rb_node);
 302                if (addr < va->va_start)
 303                        n = n->rb_left;
 304                else if (addr >= va->va_end)
 305                        n = n->rb_right;
 306                else
 307                        return va;
 308        }
 309
 310        return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315        struct rb_node **p = &vmap_area_root.rb_node;
 316        struct rb_node *parent = NULL;
 317        struct rb_node *tmp;
 318
 319        while (*p) {
 320                struct vmap_area *tmp_va;
 321
 322                parent = *p;
 323                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324                if (va->va_start < tmp_va->va_end)
 325                        p = &(*p)->rb_left;
 326                else if (va->va_end > tmp_va->va_start)
 327                        p = &(*p)->rb_right;
 328                else
 329                        BUG();
 330        }
 331
 332        rb_link_node(&va->rb_node, parent, p);
 333        rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335        /* address-sort this list */
 336        tmp = rb_prev(&va->rb_node);
 337        if (tmp) {
 338                struct vmap_area *prev;
 339                prev = rb_entry(tmp, struct vmap_area, rb_node);
 340                list_add_rcu(&va->list, &prev->list);
 341        } else
 342                list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347/*
 348 * Allocate a region of KVA of the specified size and alignment, within the
 349 * vstart and vend.
 350 */
 351static struct vmap_area *alloc_vmap_area(unsigned long size,
 352                                unsigned long align,
 353                                unsigned long vstart, unsigned long vend,
 354                                int node, gfp_t gfp_mask)
 355{
 356        struct vmap_area *va;
 357        struct rb_node *n;
 358        unsigned long addr;
 359        int purged = 0;
 360        struct vmap_area *first;
 361
 362        BUG_ON(!size);
 363        BUG_ON(offset_in_page(size));
 364        BUG_ON(!is_power_of_2(align));
 365
 366        va = kmalloc_node(sizeof(struct vmap_area),
 367                        gfp_mask & GFP_RECLAIM_MASK, node);
 368        if (unlikely(!va))
 369                return ERR_PTR(-ENOMEM);
 370
 371        /*
 372         * Only scan the relevant parts containing pointers to other objects
 373         * to avoid false negatives.
 374         */
 375        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 376
 377retry:
 378        spin_lock(&vmap_area_lock);
 379        /*
 380         * Invalidate cache if we have more permissive parameters.
 381         * cached_hole_size notes the largest hole noticed _below_
 382         * the vmap_area cached in free_vmap_cache: if size fits
 383         * into that hole, we want to scan from vstart to reuse
 384         * the hole instead of allocating above free_vmap_cache.
 385         * Note that __free_vmap_area may update free_vmap_cache
 386         * without updating cached_hole_size or cached_align.
 387         */
 388        if (!free_vmap_cache ||
 389                        size < cached_hole_size ||
 390                        vstart < cached_vstart ||
 391                        align < cached_align) {
 392nocache:
 393                cached_hole_size = 0;
 394                free_vmap_cache = NULL;
 395        }
 396        /* record if we encounter less permissive parameters */
 397        cached_vstart = vstart;
 398        cached_align = align;
 399
 400        /* find starting point for our search */
 401        if (free_vmap_cache) {
 402                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 403                addr = ALIGN(first->va_end, align);
 404                if (addr < vstart)
 405                        goto nocache;
 406                if (addr + size < addr)
 407                        goto overflow;
 408
 409        } else {
 410                addr = ALIGN(vstart, align);
 411                if (addr + size < addr)
 412                        goto overflow;
 413
 414                n = vmap_area_root.rb_node;
 415                first = NULL;
 416
 417                while (n) {
 418                        struct vmap_area *tmp;
 419                        tmp = rb_entry(n, struct vmap_area, rb_node);
 420                        if (tmp->va_end >= addr) {
 421                                first = tmp;
 422                                if (tmp->va_start <= addr)
 423                                        break;
 424                                n = n->rb_left;
 425                        } else
 426                                n = n->rb_right;
 427                }
 428
 429                if (!first)
 430                        goto found;
 431        }
 432
 433        /* from the starting point, walk areas until a suitable hole is found */
 434        while (addr + size > first->va_start && addr + size <= vend) {
 435                if (addr + cached_hole_size < first->va_start)
 436                        cached_hole_size = first->va_start - addr;
 437                addr = ALIGN(first->va_end, align);
 438                if (addr + size < addr)
 439                        goto overflow;
 440
 441                if (list_is_last(&first->list, &vmap_area_list))
 442                        goto found;
 443
 444                first = list_next_entry(first, list);
 445        }
 446
 447found:
 448        if (addr + size > vend)
 449                goto overflow;
 450
 451        va->va_start = addr;
 452        va->va_end = addr + size;
 453        va->flags = 0;
 454        __insert_vmap_area(va);
 455        free_vmap_cache = &va->rb_node;
 456        spin_unlock(&vmap_area_lock);
 457
 458        BUG_ON(!IS_ALIGNED(va->va_start, align));
 459        BUG_ON(va->va_start < vstart);
 460        BUG_ON(va->va_end > vend);
 461
 462        return va;
 463
 464overflow:
 465        spin_unlock(&vmap_area_lock);
 466        if (!purged) {
 467                purge_vmap_area_lazy();
 468                purged = 1;
 469                goto retry;
 470        }
 471        if (printk_ratelimit())
 472                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 473                        size);
 474        kfree(va);
 475        return ERR_PTR(-EBUSY);
 476}
 477
 478static void __free_vmap_area(struct vmap_area *va)
 479{
 480        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 481
 482        if (free_vmap_cache) {
 483                if (va->va_end < cached_vstart) {
 484                        free_vmap_cache = NULL;
 485                } else {
 486                        struct vmap_area *cache;
 487                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 488                        if (va->va_start <= cache->va_start) {
 489                                free_vmap_cache = rb_prev(&va->rb_node);
 490                                /*
 491                                 * We don't try to update cached_hole_size or
 492                                 * cached_align, but it won't go very wrong.
 493                                 */
 494                        }
 495                }
 496        }
 497        rb_erase(&va->rb_node, &vmap_area_root);
 498        RB_CLEAR_NODE(&va->rb_node);
 499        list_del_rcu(&va->list);
 500
 501        /*
 502         * Track the highest possible candidate for pcpu area
 503         * allocation.  Areas outside of vmalloc area can be returned
 504         * here too, consider only end addresses which fall inside
 505         * vmalloc area proper.
 506         */
 507        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 508                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 509
 510        kfree_rcu(va, rcu_head);
 511}
 512
 513/*
 514 * Free a region of KVA allocated by alloc_vmap_area
 515 */
 516static void free_vmap_area(struct vmap_area *va)
 517{
 518        spin_lock(&vmap_area_lock);
 519        __free_vmap_area(va);
 520        spin_unlock(&vmap_area_lock);
 521}
 522
 523/*
 524 * Clear the pagetable entries of a given vmap_area
 525 */
 526static void unmap_vmap_area(struct vmap_area *va)
 527{
 528        vunmap_page_range(va->va_start, va->va_end);
 529}
 530
 531static void vmap_debug_free_range(unsigned long start, unsigned long end)
 532{
 533        /*
 534         * Unmap page tables and force a TLB flush immediately if pagealloc
 535         * debugging is enabled.  This catches use after free bugs similarly to
 536         * those in linear kernel virtual address space after a page has been
 537         * freed.
 538         *
 539         * All the lazy freeing logic is still retained, in order to minimise
 540         * intrusiveness of this debugging feature.
 541         *
 542         * This is going to be *slow* (linear kernel virtual address debugging
 543         * doesn't do a broadcast TLB flush so it is a lot faster).
 544         */
 545        if (debug_pagealloc_enabled()) {
 546                vunmap_page_range(start, end);
 547                flush_tlb_kernel_range(start, end);
 548        }
 549}
 550
 551/*
 552 * lazy_max_pages is the maximum amount of virtual address space we gather up
 553 * before attempting to purge with a TLB flush.
 554 *
 555 * There is a tradeoff here: a larger number will cover more kernel page tables
 556 * and take slightly longer to purge, but it will linearly reduce the number of
 557 * global TLB flushes that must be performed. It would seem natural to scale
 558 * this number up linearly with the number of CPUs (because vmapping activity
 559 * could also scale linearly with the number of CPUs), however it is likely
 560 * that in practice, workloads might be constrained in other ways that mean
 561 * vmap activity will not scale linearly with CPUs. Also, I want to be
 562 * conservative and not introduce a big latency on huge systems, so go with
 563 * a less aggressive log scale. It will still be an improvement over the old
 564 * code, and it will be simple to change the scale factor if we find that it
 565 * becomes a problem on bigger systems.
 566 */
 567static unsigned long lazy_max_pages(void)
 568{
 569        unsigned int log;
 570
 571        log = fls(num_online_cpus());
 572
 573        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 574}
 575
 576static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 577
 578/* for per-CPU blocks */
 579static void purge_fragmented_blocks_allcpus(void);
 580
 581/*
 582 * called before a call to iounmap() if the caller wants vm_area_struct's
 583 * immediately freed.
 584 */
 585void set_iounmap_nonlazy(void)
 586{
 587        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 588}
 589
 590/*
 591 * Purges all lazily-freed vmap areas.
 592 *
 593 * If sync is 0 then don't purge if there is already a purge in progress.
 594 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 595 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 596 * their own TLB flushing).
 597 * Returns with *start = min(*start, lowest purged address)
 598 *              *end = max(*end, highest purged address)
 599 */
 600static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 601                                        int sync, int force_flush)
 602{
 603        static DEFINE_SPINLOCK(purge_lock);
 604        LIST_HEAD(valist);
 605        struct vmap_area *va;
 606        struct vmap_area *n_va;
 607        int nr = 0;
 608
 609        /*
 610         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 611         * should not expect such behaviour. This just simplifies locking for
 612         * the case that isn't actually used at the moment anyway.
 613         */
 614        if (!sync && !force_flush) {
 615                if (!spin_trylock(&purge_lock))
 616                        return;
 617        } else
 618                spin_lock(&purge_lock);
 619
 620        if (sync)
 621                purge_fragmented_blocks_allcpus();
 622
 623        rcu_read_lock();
 624        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 625                if (va->flags & VM_LAZY_FREE) {
 626                        if (va->va_start < *start)
 627                                *start = va->va_start;
 628                        if (va->va_end > *end)
 629                                *end = va->va_end;
 630                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 631                        list_add_tail(&va->purge_list, &valist);
 632                        va->flags |= VM_LAZY_FREEING;
 633                        va->flags &= ~VM_LAZY_FREE;
 634                }
 635        }
 636        rcu_read_unlock();
 637
 638        if (nr)
 639                atomic_sub(nr, &vmap_lazy_nr);
 640
 641        if (nr || force_flush)
 642                flush_tlb_kernel_range(*start, *end);
 643
 644        if (nr) {
 645                spin_lock(&vmap_area_lock);
 646                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 647                        __free_vmap_area(va);
 648                spin_unlock(&vmap_area_lock);
 649        }
 650        spin_unlock(&purge_lock);
 651}
 652
 653/*
 654 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 655 * is already purging.
 656 */
 657static void try_purge_vmap_area_lazy(void)
 658{
 659        unsigned long start = ULONG_MAX, end = 0;
 660
 661        __purge_vmap_area_lazy(&start, &end, 0, 0);
 662}
 663
 664/*
 665 * Kick off a purge of the outstanding lazy areas.
 666 */
 667static void purge_vmap_area_lazy(void)
 668{
 669        unsigned long start = ULONG_MAX, end = 0;
 670
 671        __purge_vmap_area_lazy(&start, &end, 1, 0);
 672}
 673
 674/*
 675 * Free a vmap area, caller ensuring that the area has been unmapped
 676 * and flush_cache_vunmap had been called for the correct range
 677 * previously.
 678 */
 679static void free_vmap_area_noflush(struct vmap_area *va)
 680{
 681        va->flags |= VM_LAZY_FREE;
 682        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 683        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 684                try_purge_vmap_area_lazy();
 685}
 686
 687/*
 688 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 689 * called for the correct range previously.
 690 */
 691static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 692{
 693        unmap_vmap_area(va);
 694        free_vmap_area_noflush(va);
 695}
 696
 697/*
 698 * Free and unmap a vmap area
 699 */
 700static void free_unmap_vmap_area(struct vmap_area *va)
 701{
 702        flush_cache_vunmap(va->va_start, va->va_end);
 703        free_unmap_vmap_area_noflush(va);
 704}
 705
 706static struct vmap_area *find_vmap_area(unsigned long addr)
 707{
 708        struct vmap_area *va;
 709
 710        spin_lock(&vmap_area_lock);
 711        va = __find_vmap_area(addr);
 712        spin_unlock(&vmap_area_lock);
 713
 714        return va;
 715}
 716
 717static void free_unmap_vmap_area_addr(unsigned long addr)
 718{
 719        struct vmap_area *va;
 720
 721        va = find_vmap_area(addr);
 722        BUG_ON(!va);
 723        free_unmap_vmap_area(va);
 724}
 725
 726
 727/*** Per cpu kva allocator ***/
 728
 729/*
 730 * vmap space is limited especially on 32 bit architectures. Ensure there is
 731 * room for at least 16 percpu vmap blocks per CPU.
 732 */
 733/*
 734 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 735 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 736 * instead (we just need a rough idea)
 737 */
 738#if BITS_PER_LONG == 32
 739#define VMALLOC_SPACE           (128UL*1024*1024)
 740#else
 741#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 742#endif
 743
 744#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 745#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 746#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 747#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 748#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 749#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 750#define VMAP_BBMAP_BITS         \
 751                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 752                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 753                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 754
 755#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 756
 757static bool vmap_initialized __read_mostly = false;
 758
 759struct vmap_block_queue {
 760        spinlock_t lock;
 761        struct list_head free;
 762};
 763
 764struct vmap_block {
 765        spinlock_t lock;
 766        struct vmap_area *va;
 767        unsigned long free, dirty;
 768        unsigned long dirty_min, dirty_max; /*< dirty range */
 769        struct list_head free_list;
 770        struct rcu_head rcu_head;
 771        struct list_head purge;
 772};
 773
 774/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 775static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 776
 777/*
 778 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 779 * in the free path. Could get rid of this if we change the API to return a
 780 * "cookie" from alloc, to be passed to free. But no big deal yet.
 781 */
 782static DEFINE_SPINLOCK(vmap_block_tree_lock);
 783static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 784
 785/*
 786 * We should probably have a fallback mechanism to allocate virtual memory
 787 * out of partially filled vmap blocks. However vmap block sizing should be
 788 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 789 * big problem.
 790 */
 791
 792static unsigned long addr_to_vb_idx(unsigned long addr)
 793{
 794        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 795        addr /= VMAP_BLOCK_SIZE;
 796        return addr;
 797}
 798
 799static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 800{
 801        unsigned long addr;
 802
 803        addr = va_start + (pages_off << PAGE_SHIFT);
 804        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 805        return (void *)addr;
 806}
 807
 808/**
 809 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 810 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 811 * @order:    how many 2^order pages should be occupied in newly allocated block
 812 * @gfp_mask: flags for the page level allocator
 813 *
 814 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 815 */
 816static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 817{
 818        struct vmap_block_queue *vbq;
 819        struct vmap_block *vb;
 820        struct vmap_area *va;
 821        unsigned long vb_idx;
 822        int node, err;
 823        void *vaddr;
 824
 825        node = numa_node_id();
 826
 827        vb = kmalloc_node(sizeof(struct vmap_block),
 828                        gfp_mask & GFP_RECLAIM_MASK, node);
 829        if (unlikely(!vb))
 830                return ERR_PTR(-ENOMEM);
 831
 832        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 833                                        VMALLOC_START, VMALLOC_END,
 834                                        node, gfp_mask);
 835        if (IS_ERR(va)) {
 836                kfree(vb);
 837                return ERR_CAST(va);
 838        }
 839
 840        err = radix_tree_preload(gfp_mask);
 841        if (unlikely(err)) {
 842                kfree(vb);
 843                free_vmap_area(va);
 844                return ERR_PTR(err);
 845        }
 846
 847        vaddr = vmap_block_vaddr(va->va_start, 0);
 848        spin_lock_init(&vb->lock);
 849        vb->va = va;
 850        /* At least something should be left free */
 851        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 852        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 853        vb->dirty = 0;
 854        vb->dirty_min = VMAP_BBMAP_BITS;
 855        vb->dirty_max = 0;
 856        INIT_LIST_HEAD(&vb->free_list);
 857
 858        vb_idx = addr_to_vb_idx(va->va_start);
 859        spin_lock(&vmap_block_tree_lock);
 860        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 861        spin_unlock(&vmap_block_tree_lock);
 862        BUG_ON(err);
 863        radix_tree_preload_end();
 864
 865        vbq = &get_cpu_var(vmap_block_queue);
 866        spin_lock(&vbq->lock);
 867        list_add_tail_rcu(&vb->free_list, &vbq->free);
 868        spin_unlock(&vbq->lock);
 869        put_cpu_var(vmap_block_queue);
 870
 871        return vaddr;
 872}
 873
 874static void free_vmap_block(struct vmap_block *vb)
 875{
 876        struct vmap_block *tmp;
 877        unsigned long vb_idx;
 878
 879        vb_idx = addr_to_vb_idx(vb->va->va_start);
 880        spin_lock(&vmap_block_tree_lock);
 881        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 882        spin_unlock(&vmap_block_tree_lock);
 883        BUG_ON(tmp != vb);
 884
 885        free_vmap_area_noflush(vb->va);
 886        kfree_rcu(vb, rcu_head);
 887}
 888
 889static void purge_fragmented_blocks(int cpu)
 890{
 891        LIST_HEAD(purge);
 892        struct vmap_block *vb;
 893        struct vmap_block *n_vb;
 894        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 895
 896        rcu_read_lock();
 897        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 898
 899                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 900                        continue;
 901
 902                spin_lock(&vb->lock);
 903                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 904                        vb->free = 0; /* prevent further allocs after releasing lock */
 905                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 906                        vb->dirty_min = 0;
 907                        vb->dirty_max = VMAP_BBMAP_BITS;
 908                        spin_lock(&vbq->lock);
 909                        list_del_rcu(&vb->free_list);
 910                        spin_unlock(&vbq->lock);
 911                        spin_unlock(&vb->lock);
 912                        list_add_tail(&vb->purge, &purge);
 913                } else
 914                        spin_unlock(&vb->lock);
 915        }
 916        rcu_read_unlock();
 917
 918        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 919                list_del(&vb->purge);
 920                free_vmap_block(vb);
 921        }
 922}
 923
 924static void purge_fragmented_blocks_allcpus(void)
 925{
 926        int cpu;
 927
 928        for_each_possible_cpu(cpu)
 929                purge_fragmented_blocks(cpu);
 930}
 931
 932static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 933{
 934        struct vmap_block_queue *vbq;
 935        struct vmap_block *vb;
 936        void *vaddr = NULL;
 937        unsigned int order;
 938
 939        BUG_ON(offset_in_page(size));
 940        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 941        if (WARN_ON(size == 0)) {
 942                /*
 943                 * Allocating 0 bytes isn't what caller wants since
 944                 * get_order(0) returns funny result. Just warn and terminate
 945                 * early.
 946                 */
 947                return NULL;
 948        }
 949        order = get_order(size);
 950
 951        rcu_read_lock();
 952        vbq = &get_cpu_var(vmap_block_queue);
 953        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 954                unsigned long pages_off;
 955
 956                spin_lock(&vb->lock);
 957                if (vb->free < (1UL << order)) {
 958                        spin_unlock(&vb->lock);
 959                        continue;
 960                }
 961
 962                pages_off = VMAP_BBMAP_BITS - vb->free;
 963                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 964                vb->free -= 1UL << order;
 965                if (vb->free == 0) {
 966                        spin_lock(&vbq->lock);
 967                        list_del_rcu(&vb->free_list);
 968                        spin_unlock(&vbq->lock);
 969                }
 970
 971                spin_unlock(&vb->lock);
 972                break;
 973        }
 974
 975        put_cpu_var(vmap_block_queue);
 976        rcu_read_unlock();
 977
 978        /* Allocate new block if nothing was found */
 979        if (!vaddr)
 980                vaddr = new_vmap_block(order, gfp_mask);
 981
 982        return vaddr;
 983}
 984
 985static void vb_free(const void *addr, unsigned long size)
 986{
 987        unsigned long offset;
 988        unsigned long vb_idx;
 989        unsigned int order;
 990        struct vmap_block *vb;
 991
 992        BUG_ON(offset_in_page(size));
 993        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 994
 995        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 996
 997        order = get_order(size);
 998
 999        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1000        offset >>= PAGE_SHIFT;
1001
1002        vb_idx = addr_to_vb_idx((unsigned long)addr);
1003        rcu_read_lock();
1004        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1005        rcu_read_unlock();
1006        BUG_ON(!vb);
1007
1008        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1009
1010        spin_lock(&vb->lock);
1011
1012        /* Expand dirty range */
1013        vb->dirty_min = min(vb->dirty_min, offset);
1014        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1015
1016        vb->dirty += 1UL << order;
1017        if (vb->dirty == VMAP_BBMAP_BITS) {
1018                BUG_ON(vb->free);
1019                spin_unlock(&vb->lock);
1020                free_vmap_block(vb);
1021        } else
1022                spin_unlock(&vb->lock);
1023}
1024
1025/**
1026 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1027 *
1028 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1029 * to amortize TLB flushing overheads. What this means is that any page you
1030 * have now, may, in a former life, have been mapped into kernel virtual
1031 * address by the vmap layer and so there might be some CPUs with TLB entries
1032 * still referencing that page (additional to the regular 1:1 kernel mapping).
1033 *
1034 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1035 * be sure that none of the pages we have control over will have any aliases
1036 * from the vmap layer.
1037 */
1038void vm_unmap_aliases(void)
1039{
1040        unsigned long start = ULONG_MAX, end = 0;
1041        int cpu;
1042        int flush = 0;
1043
1044        if (unlikely(!vmap_initialized))
1045                return;
1046
1047        for_each_possible_cpu(cpu) {
1048                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1049                struct vmap_block *vb;
1050
1051                rcu_read_lock();
1052                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1053                        spin_lock(&vb->lock);
1054                        if (vb->dirty) {
1055                                unsigned long va_start = vb->va->va_start;
1056                                unsigned long s, e;
1057
1058                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1059                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1060
1061                                start = min(s, start);
1062                                end   = max(e, end);
1063
1064                                flush = 1;
1065                        }
1066                        spin_unlock(&vb->lock);
1067                }
1068                rcu_read_unlock();
1069        }
1070
1071        __purge_vmap_area_lazy(&start, &end, 1, flush);
1072}
1073EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1074
1075/**
1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1077 * @mem: the pointer returned by vm_map_ram
1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1079 */
1080void vm_unmap_ram(const void *mem, unsigned int count)
1081{
1082        unsigned long size = count << PAGE_SHIFT;
1083        unsigned long addr = (unsigned long)mem;
1084
1085        BUG_ON(!addr);
1086        BUG_ON(addr < VMALLOC_START);
1087        BUG_ON(addr > VMALLOC_END);
1088        BUG_ON(!PAGE_ALIGNED(addr));
1089
1090        debug_check_no_locks_freed(mem, size);
1091        vmap_debug_free_range(addr, addr+size);
1092
1093        if (likely(count <= VMAP_MAX_ALLOC))
1094                vb_free(mem, size);
1095        else
1096                free_unmap_vmap_area_addr(addr);
1097}
1098EXPORT_SYMBOL(vm_unmap_ram);
1099
1100/**
1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1102 * @pages: an array of pointers to the pages to be mapped
1103 * @count: number of pages
1104 * @node: prefer to allocate data structures on this node
1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1106 *
1107 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1108 * faster than vmap so it's good.  But if you mix long-life and short-life
1109 * objects with vm_map_ram(), it could consume lots of address space through
1110 * fragmentation (especially on a 32bit machine).  You could see failures in
1111 * the end.  Please use this function for short-lived objects.
1112 *
1113 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1114 */
1115void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1116{
1117        unsigned long size = count << PAGE_SHIFT;
1118        unsigned long addr;
1119        void *mem;
1120
1121        if (likely(count <= VMAP_MAX_ALLOC)) {
1122                mem = vb_alloc(size, GFP_KERNEL);
1123                if (IS_ERR(mem))
1124                        return NULL;
1125                addr = (unsigned long)mem;
1126        } else {
1127                struct vmap_area *va;
1128                va = alloc_vmap_area(size, PAGE_SIZE,
1129                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1130                if (IS_ERR(va))
1131                        return NULL;
1132
1133                addr = va->va_start;
1134                mem = (void *)addr;
1135        }
1136        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1137                vm_unmap_ram(mem, count);
1138                return NULL;
1139        }
1140        return mem;
1141}
1142EXPORT_SYMBOL(vm_map_ram);
1143
1144static struct vm_struct *vmlist __initdata;
1145/**
1146 * vm_area_add_early - add vmap area early during boot
1147 * @vm: vm_struct to add
1148 *
1149 * This function is used to add fixed kernel vm area to vmlist before
1150 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1151 * should contain proper values and the other fields should be zero.
1152 *
1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1154 */
1155void __init vm_area_add_early(struct vm_struct *vm)
1156{
1157        struct vm_struct *tmp, **p;
1158
1159        BUG_ON(vmap_initialized);
1160        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1161                if (tmp->addr >= vm->addr) {
1162                        BUG_ON(tmp->addr < vm->addr + vm->size);
1163                        break;
1164                } else
1165                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1166        }
1167        vm->next = *p;
1168        *p = vm;
1169}
1170
1171/**
1172 * vm_area_register_early - register vmap area early during boot
1173 * @vm: vm_struct to register
1174 * @align: requested alignment
1175 *
1176 * This function is used to register kernel vm area before
1177 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1178 * proper values on entry and other fields should be zero.  On return,
1179 * vm->addr contains the allocated address.
1180 *
1181 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1182 */
1183void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1184{
1185        static size_t vm_init_off __initdata;
1186        unsigned long addr;
1187
1188        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1189        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1190
1191        vm->addr = (void *)addr;
1192
1193        vm_area_add_early(vm);
1194}
1195
1196void __init vmalloc_init(void)
1197{
1198        struct vmap_area *va;
1199        struct vm_struct *tmp;
1200        int i;
1201
1202        for_each_possible_cpu(i) {
1203                struct vmap_block_queue *vbq;
1204                struct vfree_deferred *p;
1205
1206                vbq = &per_cpu(vmap_block_queue, i);
1207                spin_lock_init(&vbq->lock);
1208                INIT_LIST_HEAD(&vbq->free);
1209                p = &per_cpu(vfree_deferred, i);
1210                init_llist_head(&p->list);
1211                INIT_WORK(&p->wq, free_work);
1212        }
1213
1214        /* Import existing vmlist entries. */
1215        for (tmp = vmlist; tmp; tmp = tmp->next) {
1216                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1217                va->flags = VM_VM_AREA;
1218                va->va_start = (unsigned long)tmp->addr;
1219                va->va_end = va->va_start + tmp->size;
1220                va->vm = tmp;
1221                __insert_vmap_area(va);
1222        }
1223
1224        vmap_area_pcpu_hole = VMALLOC_END;
1225
1226        vmap_initialized = true;
1227}
1228
1229/**
1230 * map_kernel_range_noflush - map kernel VM area with the specified pages
1231 * @addr: start of the VM area to map
1232 * @size: size of the VM area to map
1233 * @prot: page protection flags to use
1234 * @pages: pages to map
1235 *
1236 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1237 * specify should have been allocated using get_vm_area() and its
1238 * friends.
1239 *
1240 * NOTE:
1241 * This function does NOT do any cache flushing.  The caller is
1242 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1243 * before calling this function.
1244 *
1245 * RETURNS:
1246 * The number of pages mapped on success, -errno on failure.
1247 */
1248int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1249                             pgprot_t prot, struct page **pages)
1250{
1251        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1252}
1253
1254/**
1255 * unmap_kernel_range_noflush - unmap kernel VM area
1256 * @addr: start of the VM area to unmap
1257 * @size: size of the VM area to unmap
1258 *
1259 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1260 * specify should have been allocated using get_vm_area() and its
1261 * friends.
1262 *
1263 * NOTE:
1264 * This function does NOT do any cache flushing.  The caller is
1265 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1266 * before calling this function and flush_tlb_kernel_range() after.
1267 */
1268void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1269{
1270        vunmap_page_range(addr, addr + size);
1271}
1272EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1273
1274/**
1275 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1276 * @addr: start of the VM area to unmap
1277 * @size: size of the VM area to unmap
1278 *
1279 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1280 * the unmapping and tlb after.
1281 */
1282void unmap_kernel_range(unsigned long addr, unsigned long size)
1283{
1284        unsigned long end = addr + size;
1285
1286        flush_cache_vunmap(addr, end);
1287        vunmap_page_range(addr, end);
1288        flush_tlb_kernel_range(addr, end);
1289}
1290EXPORT_SYMBOL_GPL(unmap_kernel_range);
1291
1292int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1293{
1294        unsigned long addr = (unsigned long)area->addr;
1295        unsigned long end = addr + get_vm_area_size(area);
1296        int err;
1297
1298        err = vmap_page_range(addr, end, prot, pages);
1299
1300        return err > 0 ? 0 : err;
1301}
1302EXPORT_SYMBOL_GPL(map_vm_area);
1303
1304static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1305                              unsigned long flags, const void *caller)
1306{
1307        spin_lock(&vmap_area_lock);
1308        vm->flags = flags;
1309        vm->addr = (void *)va->va_start;
1310        vm->size = va->va_end - va->va_start;
1311        vm->caller = caller;
1312        va->vm = vm;
1313        va->flags |= VM_VM_AREA;
1314        spin_unlock(&vmap_area_lock);
1315}
1316
1317static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1318{
1319        /*
1320         * Before removing VM_UNINITIALIZED,
1321         * we should make sure that vm has proper values.
1322         * Pair with smp_rmb() in show_numa_info().
1323         */
1324        smp_wmb();
1325        vm->flags &= ~VM_UNINITIALIZED;
1326}
1327
1328static struct vm_struct *__get_vm_area_node(unsigned long size,
1329                unsigned long align, unsigned long flags, unsigned long start,
1330                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1331{
1332        struct vmap_area *va;
1333        struct vm_struct *area;
1334
1335        BUG_ON(in_interrupt());
1336        if (flags & VM_IOREMAP)
1337                align = 1ul << clamp_t(int, fls_long(size),
1338                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1339
1340        size = PAGE_ALIGN(size);
1341        if (unlikely(!size))
1342                return NULL;
1343
1344        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1345        if (unlikely(!area))
1346                return NULL;
1347
1348        if (!(flags & VM_NO_GUARD))
1349                size += PAGE_SIZE;
1350
1351        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1352        if (IS_ERR(va)) {
1353                kfree(area);
1354                return NULL;
1355        }
1356
1357        setup_vmalloc_vm(area, va, flags, caller);
1358
1359        return area;
1360}
1361
1362struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1363                                unsigned long start, unsigned long end)
1364{
1365        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1366                                  GFP_KERNEL, __builtin_return_address(0));
1367}
1368EXPORT_SYMBOL_GPL(__get_vm_area);
1369
1370struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1371                                       unsigned long start, unsigned long end,
1372                                       const void *caller)
1373{
1374        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375                                  GFP_KERNEL, caller);
1376}
1377
1378/**
1379 *      get_vm_area  -  reserve a contiguous kernel virtual area
1380 *      @size:          size of the area
1381 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1382 *
1383 *      Search an area of @size in the kernel virtual mapping area,
1384 *      and reserved it for out purposes.  Returns the area descriptor
1385 *      on success or %NULL on failure.
1386 */
1387struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1388{
1389        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1390                                  NUMA_NO_NODE, GFP_KERNEL,
1391                                  __builtin_return_address(0));
1392}
1393
1394struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1395                                const void *caller)
1396{
1397        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1398                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1399}
1400
1401/**
1402 *      find_vm_area  -  find a continuous kernel virtual area
1403 *      @addr:          base address
1404 *
1405 *      Search for the kernel VM area starting at @addr, and return it.
1406 *      It is up to the caller to do all required locking to keep the returned
1407 *      pointer valid.
1408 */
1409struct vm_struct *find_vm_area(const void *addr)
1410{
1411        struct vmap_area *va;
1412
1413        va = find_vmap_area((unsigned long)addr);
1414        if (va && va->flags & VM_VM_AREA)
1415                return va->vm;
1416
1417        return NULL;
1418}
1419
1420/**
1421 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1422 *      @addr:          base address
1423 *
1424 *      Search for the kernel VM area starting at @addr, and remove it.
1425 *      This function returns the found VM area, but using it is NOT safe
1426 *      on SMP machines, except for its size or flags.
1427 */
1428struct vm_struct *remove_vm_area(const void *addr)
1429{
1430        struct vmap_area *va;
1431
1432        va = find_vmap_area((unsigned long)addr);
1433        if (va && va->flags & VM_VM_AREA) {
1434                struct vm_struct *vm = va->vm;
1435
1436                spin_lock(&vmap_area_lock);
1437                va->vm = NULL;
1438                va->flags &= ~VM_VM_AREA;
1439                spin_unlock(&vmap_area_lock);
1440
1441                vmap_debug_free_range(va->va_start, va->va_end);
1442                kasan_free_shadow(vm);
1443                free_unmap_vmap_area(va);
1444
1445                return vm;
1446        }
1447        return NULL;
1448}
1449
1450static void __vunmap(const void *addr, int deallocate_pages)
1451{
1452        struct vm_struct *area;
1453
1454        if (!addr)
1455                return;
1456
1457        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1458                        addr))
1459                return;
1460
1461        area = remove_vm_area(addr);
1462        if (unlikely(!area)) {
1463                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1464                                addr);
1465                return;
1466        }
1467
1468        debug_check_no_locks_freed(addr, get_vm_area_size(area));
1469        debug_check_no_obj_freed(addr, get_vm_area_size(area));
1470
1471        if (deallocate_pages) {
1472                int i;
1473
1474                for (i = 0; i < area->nr_pages; i++) {
1475                        struct page *page = area->pages[i];
1476
1477                        BUG_ON(!page);
1478                        __free_kmem_pages(page, 0);
1479                }
1480
1481                kvfree(area->pages);
1482        }
1483
1484        kfree(area);
1485        return;
1486}
1487 
1488/**
1489 *      vfree  -  release memory allocated by vmalloc()
1490 *      @addr:          memory base address
1491 *
1492 *      Free the virtually continuous memory area starting at @addr, as
1493 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1494 *      NULL, no operation is performed.
1495 *
1496 *      Must not be called in NMI context (strictly speaking, only if we don't
1497 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1498 *      conventions for vfree() arch-depenedent would be a really bad idea)
1499 *
1500 *      NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1501 */
1502void vfree(const void *addr)
1503{
1504        BUG_ON(in_nmi());
1505
1506        kmemleak_free(addr);
1507
1508        if (!addr)
1509                return;
1510        if (unlikely(in_interrupt())) {
1511                struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1512                if (llist_add((struct llist_node *)addr, &p->list))
1513                        schedule_work(&p->wq);
1514        } else
1515                __vunmap(addr, 1);
1516}
1517EXPORT_SYMBOL(vfree);
1518
1519/**
1520 *      vunmap  -  release virtual mapping obtained by vmap()
1521 *      @addr:          memory base address
1522 *
1523 *      Free the virtually contiguous memory area starting at @addr,
1524 *      which was created from the page array passed to vmap().
1525 *
1526 *      Must not be called in interrupt context.
1527 */
1528void vunmap(const void *addr)
1529{
1530        BUG_ON(in_interrupt());
1531        might_sleep();
1532        if (addr)
1533                __vunmap(addr, 0);
1534}
1535EXPORT_SYMBOL(vunmap);
1536
1537/**
1538 *      vmap  -  map an array of pages into virtually contiguous space
1539 *      @pages:         array of page pointers
1540 *      @count:         number of pages to map
1541 *      @flags:         vm_area->flags
1542 *      @prot:          page protection for the mapping
1543 *
1544 *      Maps @count pages from @pages into contiguous kernel virtual
1545 *      space.
1546 */
1547void *vmap(struct page **pages, unsigned int count,
1548                unsigned long flags, pgprot_t prot)
1549{
1550        struct vm_struct *area;
1551
1552        might_sleep();
1553
1554        if (count > totalram_pages)
1555                return NULL;
1556
1557        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1558                                        __builtin_return_address(0));
1559        if (!area)
1560                return NULL;
1561
1562        if (map_vm_area(area, prot, pages)) {
1563                vunmap(area->addr);
1564                return NULL;
1565        }
1566
1567        return area->addr;
1568}
1569EXPORT_SYMBOL(vmap);
1570
1571static void *__vmalloc_node(unsigned long size, unsigned long align,
1572                            gfp_t gfp_mask, pgprot_t prot,
1573                            int node, const void *caller);
1574static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1575                                 pgprot_t prot, int node)
1576{
1577        const int order = 0;
1578        struct page **pages;
1579        unsigned int nr_pages, array_size, i;
1580        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1581        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1582
1583        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1584        array_size = (nr_pages * sizeof(struct page *));
1585
1586        area->nr_pages = nr_pages;
1587        /* Please note that the recursion is strictly bounded. */
1588        if (array_size > PAGE_SIZE) {
1589                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1590                                PAGE_KERNEL, node, area->caller);
1591        } else {
1592                pages = kmalloc_node(array_size, nested_gfp, node);
1593        }
1594        area->pages = pages;
1595        if (!area->pages) {
1596                remove_vm_area(area->addr);
1597                kfree(area);
1598                return NULL;
1599        }
1600
1601        for (i = 0; i < area->nr_pages; i++) {
1602                struct page *page;
1603
1604                if (node == NUMA_NO_NODE)
1605                        page = alloc_kmem_pages(alloc_mask, order);
1606                else
1607                        page = alloc_kmem_pages_node(node, alloc_mask, order);
1608
1609                if (unlikely(!page)) {
1610                        /* Successfully allocated i pages, free them in __vunmap() */
1611                        area->nr_pages = i;
1612                        goto fail;
1613                }
1614                area->pages[i] = page;
1615                if (gfpflags_allow_blocking(gfp_mask))
1616                        cond_resched();
1617        }
1618
1619        if (map_vm_area(area, prot, pages))
1620                goto fail;
1621        return area->addr;
1622
1623fail:
1624        warn_alloc_failed(gfp_mask, order,
1625                          "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1626                          (area->nr_pages*PAGE_SIZE), area->size);
1627        vfree(area->addr);
1628        return NULL;
1629}
1630
1631/**
1632 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1633 *      @size:          allocation size
1634 *      @align:         desired alignment
1635 *      @start:         vm area range start
1636 *      @end:           vm area range end
1637 *      @gfp_mask:      flags for the page level allocator
1638 *      @prot:          protection mask for the allocated pages
1639 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1640 *      @node:          node to use for allocation or NUMA_NO_NODE
1641 *      @caller:        caller's return address
1642 *
1643 *      Allocate enough pages to cover @size from the page level
1644 *      allocator with @gfp_mask flags.  Map them into contiguous
1645 *      kernel virtual space, using a pagetable protection of @prot.
1646 */
1647void *__vmalloc_node_range(unsigned long size, unsigned long align,
1648                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1649                        pgprot_t prot, unsigned long vm_flags, int node,
1650                        const void *caller)
1651{
1652        struct vm_struct *area;
1653        void *addr;
1654        unsigned long real_size = size;
1655
1656        size = PAGE_ALIGN(size);
1657        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1658                goto fail;
1659
1660        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1661                                vm_flags, start, end, node, gfp_mask, caller);
1662        if (!area)
1663                goto fail;
1664
1665        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1666        if (!addr)
1667                return NULL;
1668
1669        /*
1670         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1671         * flag. It means that vm_struct is not fully initialized.
1672         * Now, it is fully initialized, so remove this flag here.
1673         */
1674        clear_vm_uninitialized_flag(area);
1675
1676        /*
1677         * A ref_count = 2 is needed because vm_struct allocated in
1678         * __get_vm_area_node() contains a reference to the virtual address of
1679         * the vmalloc'ed block.
1680         */
1681        kmemleak_alloc(addr, real_size, 2, gfp_mask);
1682
1683        return addr;
1684
1685fail:
1686        warn_alloc_failed(gfp_mask, 0,
1687                          "vmalloc: allocation failure: %lu bytes\n",
1688                          real_size);
1689        return NULL;
1690}
1691
1692/**
1693 *      __vmalloc_node  -  allocate virtually contiguous memory
1694 *      @size:          allocation size
1695 *      @align:         desired alignment
1696 *      @gfp_mask:      flags for the page level allocator
1697 *      @prot:          protection mask for the allocated pages
1698 *      @node:          node to use for allocation or NUMA_NO_NODE
1699 *      @caller:        caller's return address
1700 *
1701 *      Allocate enough pages to cover @size from the page level
1702 *      allocator with @gfp_mask flags.  Map them into contiguous
1703 *      kernel virtual space, using a pagetable protection of @prot.
1704 */
1705static void *__vmalloc_node(unsigned long size, unsigned long align,
1706                            gfp_t gfp_mask, pgprot_t prot,
1707                            int node, const void *caller)
1708{
1709        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1710                                gfp_mask, prot, 0, node, caller);
1711}
1712
1713void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1714{
1715        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1716                                __builtin_return_address(0));
1717}
1718EXPORT_SYMBOL(__vmalloc);
1719
1720static inline void *__vmalloc_node_flags(unsigned long size,
1721                                        int node, gfp_t flags)
1722{
1723        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1724                                        node, __builtin_return_address(0));
1725}
1726
1727/**
1728 *      vmalloc  -  allocate virtually contiguous memory
1729 *      @size:          allocation size
1730 *      Allocate enough pages to cover @size from the page level
1731 *      allocator and map them into contiguous kernel virtual space.
1732 *
1733 *      For tight control over page level allocator and protection flags
1734 *      use __vmalloc() instead.
1735 */
1736void *vmalloc(unsigned long size)
1737{
1738        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1739                                    GFP_KERNEL | __GFP_HIGHMEM);
1740}
1741EXPORT_SYMBOL(vmalloc);
1742
1743/**
1744 *      vzalloc - allocate virtually contiguous memory with zero fill
1745 *      @size:  allocation size
1746 *      Allocate enough pages to cover @size from the page level
1747 *      allocator and map them into contiguous kernel virtual space.
1748 *      The memory allocated is set to zero.
1749 *
1750 *      For tight control over page level allocator and protection flags
1751 *      use __vmalloc() instead.
1752 */
1753void *vzalloc(unsigned long size)
1754{
1755        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1756                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1757}
1758EXPORT_SYMBOL(vzalloc);
1759
1760/**
1761 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1762 * @size: allocation size
1763 *
1764 * The resulting memory area is zeroed so it can be mapped to userspace
1765 * without leaking data.
1766 */
1767void *vmalloc_user(unsigned long size)
1768{
1769        struct vm_struct *area;
1770        void *ret;
1771
1772        ret = __vmalloc_node(size, SHMLBA,
1773                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1774                             PAGE_KERNEL, NUMA_NO_NODE,
1775                             __builtin_return_address(0));
1776        if (ret) {
1777                area = find_vm_area(ret);
1778                area->flags |= VM_USERMAP;
1779        }
1780        return ret;
1781}
1782EXPORT_SYMBOL(vmalloc_user);
1783
1784/**
1785 *      vmalloc_node  -  allocate memory on a specific node
1786 *      @size:          allocation size
1787 *      @node:          numa node
1788 *
1789 *      Allocate enough pages to cover @size from the page level
1790 *      allocator and map them into contiguous kernel virtual space.
1791 *
1792 *      For tight control over page level allocator and protection flags
1793 *      use __vmalloc() instead.
1794 */
1795void *vmalloc_node(unsigned long size, int node)
1796{
1797        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1798                                        node, __builtin_return_address(0));
1799}
1800EXPORT_SYMBOL(vmalloc_node);
1801
1802/**
1803 * vzalloc_node - allocate memory on a specific node with zero fill
1804 * @size:       allocation size
1805 * @node:       numa node
1806 *
1807 * Allocate enough pages to cover @size from the page level
1808 * allocator and map them into contiguous kernel virtual space.
1809 * The memory allocated is set to zero.
1810 *
1811 * For tight control over page level allocator and protection flags
1812 * use __vmalloc_node() instead.
1813 */
1814void *vzalloc_node(unsigned long size, int node)
1815{
1816        return __vmalloc_node_flags(size, node,
1817                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1818}
1819EXPORT_SYMBOL(vzalloc_node);
1820
1821#ifndef PAGE_KERNEL_EXEC
1822# define PAGE_KERNEL_EXEC PAGE_KERNEL
1823#endif
1824
1825/**
1826 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1827 *      @size:          allocation size
1828 *
1829 *      Kernel-internal function to allocate enough pages to cover @size
1830 *      the page level allocator and map them into contiguous and
1831 *      executable kernel virtual space.
1832 *
1833 *      For tight control over page level allocator and protection flags
1834 *      use __vmalloc() instead.
1835 */
1836
1837void *vmalloc_exec(unsigned long size)
1838{
1839        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1840                              NUMA_NO_NODE, __builtin_return_address(0));
1841}
1842
1843#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1844#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1845#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1846#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1847#else
1848#define GFP_VMALLOC32 GFP_KERNEL
1849#endif
1850
1851/**
1852 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1853 *      @size:          allocation size
1854 *
1855 *      Allocate enough 32bit PA addressable pages to cover @size from the
1856 *      page level allocator and map them into contiguous kernel virtual space.
1857 */
1858void *vmalloc_32(unsigned long size)
1859{
1860        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1861                              NUMA_NO_NODE, __builtin_return_address(0));
1862}
1863EXPORT_SYMBOL(vmalloc_32);
1864
1865/**
1866 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1867 *      @size:          allocation size
1868 *
1869 * The resulting memory area is 32bit addressable and zeroed so it can be
1870 * mapped to userspace without leaking data.
1871 */
1872void *vmalloc_32_user(unsigned long size)
1873{
1874        struct vm_struct *area;
1875        void *ret;
1876
1877        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1878                             NUMA_NO_NODE, __builtin_return_address(0));
1879        if (ret) {
1880                area = find_vm_area(ret);
1881                area->flags |= VM_USERMAP;
1882        }
1883        return ret;
1884}
1885EXPORT_SYMBOL(vmalloc_32_user);
1886
1887/*
1888 * small helper routine , copy contents to buf from addr.
1889 * If the page is not present, fill zero.
1890 */
1891
1892static int aligned_vread(char *buf, char *addr, unsigned long count)
1893{
1894        struct page *p;
1895        int copied = 0;
1896
1897        while (count) {
1898                unsigned long offset, length;
1899
1900                offset = offset_in_page(addr);
1901                length = PAGE_SIZE - offset;
1902                if (length > count)
1903                        length = count;
1904                p = vmalloc_to_page(addr);
1905                /*
1906                 * To do safe access to this _mapped_ area, we need
1907                 * lock. But adding lock here means that we need to add
1908                 * overhead of vmalloc()/vfree() calles for this _debug_
1909                 * interface, rarely used. Instead of that, we'll use
1910                 * kmap() and get small overhead in this access function.
1911                 */
1912                if (p) {
1913                        /*
1914                         * we can expect USER0 is not used (see vread/vwrite's
1915                         * function description)
1916                         */
1917                        void *map = kmap_atomic(p);
1918                        memcpy(buf, map + offset, length);
1919                        kunmap_atomic(map);
1920                } else
1921                        memset(buf, 0, length);
1922
1923                addr += length;
1924                buf += length;
1925                copied += length;
1926                count -= length;
1927        }
1928        return copied;
1929}
1930
1931static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1932{
1933        struct page *p;
1934        int copied = 0;
1935
1936        while (count) {
1937                unsigned long offset, length;
1938
1939                offset = offset_in_page(addr);
1940                length = PAGE_SIZE - offset;
1941                if (length > count)
1942                        length = count;
1943                p = vmalloc_to_page(addr);
1944                /*
1945                 * To do safe access to this _mapped_ area, we need
1946                 * lock. But adding lock here means that we need to add
1947                 * overhead of vmalloc()/vfree() calles for this _debug_
1948                 * interface, rarely used. Instead of that, we'll use
1949                 * kmap() and get small overhead in this access function.
1950                 */
1951                if (p) {
1952                        /*
1953                         * we can expect USER0 is not used (see vread/vwrite's
1954                         * function description)
1955                         */
1956                        void *map = kmap_atomic(p);
1957                        memcpy(map + offset, buf, length);
1958                        kunmap_atomic(map);
1959                }
1960                addr += length;
1961                buf += length;
1962                copied += length;
1963                count -= length;
1964        }
1965        return copied;
1966}
1967
1968/**
1969 *      vread() -  read vmalloc area in a safe way.
1970 *      @buf:           buffer for reading data
1971 *      @addr:          vm address.
1972 *      @count:         number of bytes to be read.
1973 *
1974 *      Returns # of bytes which addr and buf should be increased.
1975 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1976 *      includes any intersect with alive vmalloc area.
1977 *
1978 *      This function checks that addr is a valid vmalloc'ed area, and
1979 *      copy data from that area to a given buffer. If the given memory range
1980 *      of [addr...addr+count) includes some valid address, data is copied to
1981 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1982 *      IOREMAP area is treated as memory hole and no copy is done.
1983 *
1984 *      If [addr...addr+count) doesn't includes any intersects with alive
1985 *      vm_struct area, returns 0. @buf should be kernel's buffer.
1986 *
1987 *      Note: In usual ops, vread() is never necessary because the caller
1988 *      should know vmalloc() area is valid and can use memcpy().
1989 *      This is for routines which have to access vmalloc area without
1990 *      any informaion, as /dev/kmem.
1991 *
1992 */
1993
1994long vread(char *buf, char *addr, unsigned long count)
1995{
1996        struct vmap_area *va;
1997        struct vm_struct *vm;
1998        char *vaddr, *buf_start = buf;
1999        unsigned long buflen = count;
2000        unsigned long n;
2001
2002        /* Don't allow overflow */
2003        if ((unsigned long) addr + count < count)
2004                count = -(unsigned long) addr;
2005
2006        spin_lock(&vmap_area_lock);
2007        list_for_each_entry(va, &vmap_area_list, list) {
2008                if (!count)
2009                        break;
2010
2011                if (!(va->flags & VM_VM_AREA))
2012                        continue;
2013
2014                vm = va->vm;
2015                vaddr = (char *) vm->addr;
2016                if (addr >= vaddr + get_vm_area_size(vm))
2017                        continue;
2018                while (addr < vaddr) {
2019                        if (count == 0)
2020                                goto finished;
2021                        *buf = '\0';
2022                        buf++;
2023                        addr++;
2024                        count--;
2025                }
2026                n = vaddr + get_vm_area_size(vm) - addr;
2027                if (n > count)
2028                        n = count;
2029                if (!(vm->flags & VM_IOREMAP))
2030                        aligned_vread(buf, addr, n);
2031                else /* IOREMAP area is treated as memory hole */
2032                        memset(buf, 0, n);
2033                buf += n;
2034                addr += n;
2035                count -= n;
2036        }
2037finished:
2038        spin_unlock(&vmap_area_lock);
2039
2040        if (buf == buf_start)
2041                return 0;
2042        /* zero-fill memory holes */
2043        if (buf != buf_start + buflen)
2044                memset(buf, 0, buflen - (buf - buf_start));
2045
2046        return buflen;
2047}
2048
2049/**
2050 *      vwrite() -  write vmalloc area in a safe way.
2051 *      @buf:           buffer for source data
2052 *      @addr:          vm address.
2053 *      @count:         number of bytes to be read.
2054 *
2055 *      Returns # of bytes which addr and buf should be incresed.
2056 *      (same number to @count).
2057 *      If [addr...addr+count) doesn't includes any intersect with valid
2058 *      vmalloc area, returns 0.
2059 *
2060 *      This function checks that addr is a valid vmalloc'ed area, and
2061 *      copy data from a buffer to the given addr. If specified range of
2062 *      [addr...addr+count) includes some valid address, data is copied from
2063 *      proper area of @buf. If there are memory holes, no copy to hole.
2064 *      IOREMAP area is treated as memory hole and no copy is done.
2065 *
2066 *      If [addr...addr+count) doesn't includes any intersects with alive
2067 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2068 *
2069 *      Note: In usual ops, vwrite() is never necessary because the caller
2070 *      should know vmalloc() area is valid and can use memcpy().
2071 *      This is for routines which have to access vmalloc area without
2072 *      any informaion, as /dev/kmem.
2073 */
2074
2075long vwrite(char *buf, char *addr, unsigned long count)
2076{
2077        struct vmap_area *va;
2078        struct vm_struct *vm;
2079        char *vaddr;
2080        unsigned long n, buflen;
2081        int copied = 0;
2082
2083        /* Don't allow overflow */
2084        if ((unsigned long) addr + count < count)
2085                count = -(unsigned long) addr;
2086        buflen = count;
2087
2088        spin_lock(&vmap_area_lock);
2089        list_for_each_entry(va, &vmap_area_list, list) {
2090                if (!count)
2091                        break;
2092
2093                if (!(va->flags & VM_VM_AREA))
2094                        continue;
2095
2096                vm = va->vm;
2097                vaddr = (char *) vm->addr;
2098                if (addr >= vaddr + get_vm_area_size(vm))
2099                        continue;
2100                while (addr < vaddr) {
2101                        if (count == 0)
2102                                goto finished;
2103                        buf++;
2104                        addr++;
2105                        count--;
2106                }
2107                n = vaddr + get_vm_area_size(vm) - addr;
2108                if (n > count)
2109                        n = count;
2110                if (!(vm->flags & VM_IOREMAP)) {
2111                        aligned_vwrite(buf, addr, n);
2112                        copied++;
2113                }
2114                buf += n;
2115                addr += n;
2116                count -= n;
2117        }
2118finished:
2119        spin_unlock(&vmap_area_lock);
2120        if (!copied)
2121                return 0;
2122        return buflen;
2123}
2124
2125/**
2126 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2127 *      @vma:           vma to cover
2128 *      @uaddr:         target user address to start at
2129 *      @kaddr:         virtual address of vmalloc kernel memory
2130 *      @size:          size of map area
2131 *
2132 *      Returns:        0 for success, -Exxx on failure
2133 *
2134 *      This function checks that @kaddr is a valid vmalloc'ed area,
2135 *      and that it is big enough to cover the range starting at
2136 *      @uaddr in @vma. Will return failure if that criteria isn't
2137 *      met.
2138 *
2139 *      Similar to remap_pfn_range() (see mm/memory.c)
2140 */
2141int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2142                                void *kaddr, unsigned long size)
2143{
2144        struct vm_struct *area;
2145
2146        size = PAGE_ALIGN(size);
2147
2148        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2149                return -EINVAL;
2150
2151        area = find_vm_area(kaddr);
2152        if (!area)
2153                return -EINVAL;
2154
2155        if (!(area->flags & VM_USERMAP))
2156                return -EINVAL;
2157
2158        if (kaddr + size > area->addr + area->size)
2159                return -EINVAL;
2160
2161        do {
2162                struct page *page = vmalloc_to_page(kaddr);
2163                int ret;
2164
2165                ret = vm_insert_page(vma, uaddr, page);
2166                if (ret)
2167                        return ret;
2168
2169                uaddr += PAGE_SIZE;
2170                kaddr += PAGE_SIZE;
2171                size -= PAGE_SIZE;
2172        } while (size > 0);
2173
2174        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2175
2176        return 0;
2177}
2178EXPORT_SYMBOL(remap_vmalloc_range_partial);
2179
2180/**
2181 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2182 *      @vma:           vma to cover (map full range of vma)
2183 *      @addr:          vmalloc memory
2184 *      @pgoff:         number of pages into addr before first page to map
2185 *
2186 *      Returns:        0 for success, -Exxx on failure
2187 *
2188 *      This function checks that addr is a valid vmalloc'ed area, and
2189 *      that it is big enough to cover the vma. Will return failure if
2190 *      that criteria isn't met.
2191 *
2192 *      Similar to remap_pfn_range() (see mm/memory.c)
2193 */
2194int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2195                                                unsigned long pgoff)
2196{
2197        return remap_vmalloc_range_partial(vma, vma->vm_start,
2198                                           addr + (pgoff << PAGE_SHIFT),
2199                                           vma->vm_end - vma->vm_start);
2200}
2201EXPORT_SYMBOL(remap_vmalloc_range);
2202
2203/*
2204 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2205 * have one.
2206 */
2207void __weak vmalloc_sync_all(void)
2208{
2209}
2210
2211
2212static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2213{
2214        pte_t ***p = data;
2215
2216        if (p) {
2217                *(*p) = pte;
2218                (*p)++;
2219        }
2220        return 0;
2221}
2222
2223/**
2224 *      alloc_vm_area - allocate a range of kernel address space
2225 *      @size:          size of the area
2226 *      @ptes:          returns the PTEs for the address space
2227 *
2228 *      Returns:        NULL on failure, vm_struct on success
2229 *
2230 *      This function reserves a range of kernel address space, and
2231 *      allocates pagetables to map that range.  No actual mappings
2232 *      are created.
2233 *
2234 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2235 *      allocated for the VM area are returned.
2236 */
2237struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2238{
2239        struct vm_struct *area;
2240
2241        area = get_vm_area_caller(size, VM_IOREMAP,
2242                                __builtin_return_address(0));
2243        if (area == NULL)
2244                return NULL;
2245
2246        /*
2247         * This ensures that page tables are constructed for this region
2248         * of kernel virtual address space and mapped into init_mm.
2249         */
2250        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2251                                size, f, ptes ? &ptes : NULL)) {
2252                free_vm_area(area);
2253                return NULL;
2254        }
2255
2256        return area;
2257}
2258EXPORT_SYMBOL_GPL(alloc_vm_area);
2259
2260void free_vm_area(struct vm_struct *area)
2261{
2262        struct vm_struct *ret;
2263        ret = remove_vm_area(area->addr);
2264        BUG_ON(ret != area);
2265        kfree(area);
2266}
2267EXPORT_SYMBOL_GPL(free_vm_area);
2268
2269#ifdef CONFIG_SMP
2270static struct vmap_area *node_to_va(struct rb_node *n)
2271{
2272        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2273}
2274
2275/**
2276 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2277 * @end: target address
2278 * @pnext: out arg for the next vmap_area
2279 * @pprev: out arg for the previous vmap_area
2280 *
2281 * Returns: %true if either or both of next and prev are found,
2282 *          %false if no vmap_area exists
2283 *
2284 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2285 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2286 */
2287static bool pvm_find_next_prev(unsigned long end,
2288                               struct vmap_area **pnext,
2289                               struct vmap_area **pprev)
2290{
2291        struct rb_node *n = vmap_area_root.rb_node;
2292        struct vmap_area *va = NULL;
2293
2294        while (n) {
2295                va = rb_entry(n, struct vmap_area, rb_node);
2296                if (end < va->va_end)
2297                        n = n->rb_left;
2298                else if (end > va->va_end)
2299                        n = n->rb_right;
2300                else
2301                        break;
2302        }
2303
2304        if (!va)
2305                return false;
2306
2307        if (va->va_end > end) {
2308                *pnext = va;
2309                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2310        } else {
2311                *pprev = va;
2312                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2313        }
2314        return true;
2315}
2316
2317/**
2318 * pvm_determine_end - find the highest aligned address between two vmap_areas
2319 * @pnext: in/out arg for the next vmap_area
2320 * @pprev: in/out arg for the previous vmap_area
2321 * @align: alignment
2322 *
2323 * Returns: determined end address
2324 *
2325 * Find the highest aligned address between *@pnext and *@pprev below
2326 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2327 * down address is between the end addresses of the two vmap_areas.
2328 *
2329 * Please note that the address returned by this function may fall
2330 * inside *@pnext vmap_area.  The caller is responsible for checking
2331 * that.
2332 */
2333static unsigned long pvm_determine_end(struct vmap_area **pnext,
2334                                       struct vmap_area **pprev,
2335                                       unsigned long align)
2336{
2337        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2338        unsigned long addr;
2339
2340        if (*pnext)
2341                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2342        else
2343                addr = vmalloc_end;
2344
2345        while (*pprev && (*pprev)->va_end > addr) {
2346                *pnext = *pprev;
2347                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2348        }
2349
2350        return addr;
2351}
2352
2353/**
2354 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2355 * @offsets: array containing offset of each area
2356 * @sizes: array containing size of each area
2357 * @nr_vms: the number of areas to allocate
2358 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2359 *
2360 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2361 *          vm_structs on success, %NULL on failure
2362 *
2363 * Percpu allocator wants to use congruent vm areas so that it can
2364 * maintain the offsets among percpu areas.  This function allocates
2365 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2366 * be scattered pretty far, distance between two areas easily going up
2367 * to gigabytes.  To avoid interacting with regular vmallocs, these
2368 * areas are allocated from top.
2369 *
2370 * Despite its complicated look, this allocator is rather simple.  It
2371 * does everything top-down and scans areas from the end looking for
2372 * matching slot.  While scanning, if any of the areas overlaps with
2373 * existing vmap_area, the base address is pulled down to fit the
2374 * area.  Scanning is repeated till all the areas fit and then all
2375 * necessary data structres are inserted and the result is returned.
2376 */
2377struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2378                                     const size_t *sizes, int nr_vms,
2379                                     size_t align)
2380{
2381        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2382        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2383        struct vmap_area **vas, *prev, *next;
2384        struct vm_struct **vms;
2385        int area, area2, last_area, term_area;
2386        unsigned long base, start, end, last_end;
2387        bool purged = false;
2388
2389        /* verify parameters and allocate data structures */
2390        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2391        for (last_area = 0, area = 0; area < nr_vms; area++) {
2392                start = offsets[area];
2393                end = start + sizes[area];
2394
2395                /* is everything aligned properly? */
2396                BUG_ON(!IS_ALIGNED(offsets[area], align));
2397                BUG_ON(!IS_ALIGNED(sizes[area], align));
2398
2399                /* detect the area with the highest address */
2400                if (start > offsets[last_area])
2401                        last_area = area;
2402
2403                for (area2 = 0; area2 < nr_vms; area2++) {
2404                        unsigned long start2 = offsets[area2];
2405                        unsigned long end2 = start2 + sizes[area2];
2406
2407                        if (area2 == area)
2408                                continue;
2409
2410                        BUG_ON(start2 >= start && start2 < end);
2411                        BUG_ON(end2 <= end && end2 > start);
2412                }
2413        }
2414        last_end = offsets[last_area] + sizes[last_area];
2415
2416        if (vmalloc_end - vmalloc_start < last_end) {
2417                WARN_ON(true);
2418                return NULL;
2419        }
2420
2421        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2422        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2423        if (!vas || !vms)
2424                goto err_free2;
2425
2426        for (area = 0; area < nr_vms; area++) {
2427                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2428                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2429                if (!vas[area] || !vms[area])
2430                        goto err_free;
2431        }
2432retry:
2433        spin_lock(&vmap_area_lock);
2434
2435        /* start scanning - we scan from the top, begin with the last area */
2436        area = term_area = last_area;
2437        start = offsets[area];
2438        end = start + sizes[area];
2439
2440        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2441                base = vmalloc_end - last_end;
2442                goto found;
2443        }
2444        base = pvm_determine_end(&next, &prev, align) - end;
2445
2446        while (true) {
2447                BUG_ON(next && next->va_end <= base + end);
2448                BUG_ON(prev && prev->va_end > base + end);
2449
2450                /*
2451                 * base might have underflowed, add last_end before
2452                 * comparing.
2453                 */
2454                if (base + last_end < vmalloc_start + last_end) {
2455                        spin_unlock(&vmap_area_lock);
2456                        if (!purged) {
2457                                purge_vmap_area_lazy();
2458                                purged = true;
2459                                goto retry;
2460                        }
2461                        goto err_free;
2462                }
2463
2464                /*
2465                 * If next overlaps, move base downwards so that it's
2466                 * right below next and then recheck.
2467                 */
2468                if (next && next->va_start < base + end) {
2469                        base = pvm_determine_end(&next, &prev, align) - end;
2470                        term_area = area;
2471                        continue;
2472                }
2473
2474                /*
2475                 * If prev overlaps, shift down next and prev and move
2476                 * base so that it's right below new next and then
2477                 * recheck.
2478                 */
2479                if (prev && prev->va_end > base + start)  {
2480                        next = prev;
2481                        prev = node_to_va(rb_prev(&next->rb_node));
2482                        base = pvm_determine_end(&next, &prev, align) - end;
2483                        term_area = area;
2484                        continue;
2485                }
2486
2487                /*
2488                 * This area fits, move on to the previous one.  If
2489                 * the previous one is the terminal one, we're done.
2490                 */
2491                area = (area + nr_vms - 1) % nr_vms;
2492                if (area == term_area)
2493                        break;
2494                start = offsets[area];
2495                end = start + sizes[area];
2496                pvm_find_next_prev(base + end, &next, &prev);
2497        }
2498found:
2499        /* we've found a fitting base, insert all va's */
2500        for (area = 0; area < nr_vms; area++) {
2501                struct vmap_area *va = vas[area];
2502
2503                va->va_start = base + offsets[area];
2504                va->va_end = va->va_start + sizes[area];
2505                __insert_vmap_area(va);
2506        }
2507
2508        vmap_area_pcpu_hole = base + offsets[last_area];
2509
2510        spin_unlock(&vmap_area_lock);
2511
2512        /* insert all vm's */
2513        for (area = 0; area < nr_vms; area++)
2514                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2515                                 pcpu_get_vm_areas);
2516
2517        kfree(vas);
2518        return vms;
2519
2520err_free:
2521        for (area = 0; area < nr_vms; area++) {
2522                kfree(vas[area]);
2523                kfree(vms[area]);
2524        }
2525err_free2:
2526        kfree(vas);
2527        kfree(vms);
2528        return NULL;
2529}
2530
2531/**
2532 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2533 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2534 * @nr_vms: the number of allocated areas
2535 *
2536 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2537 */
2538void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2539{
2540        int i;
2541
2542        for (i = 0; i < nr_vms; i++)
2543                free_vm_area(vms[i]);
2544        kfree(vms);
2545}
2546#endif  /* CONFIG_SMP */
2547
2548#ifdef CONFIG_PROC_FS
2549static void *s_start(struct seq_file *m, loff_t *pos)
2550        __acquires(&vmap_area_lock)
2551{
2552        loff_t n = *pos;
2553        struct vmap_area *va;
2554
2555        spin_lock(&vmap_area_lock);
2556        va = list_first_entry(&vmap_area_list, typeof(*va), list);
2557        while (n > 0 && &va->list != &vmap_area_list) {
2558                n--;
2559                va = list_next_entry(va, list);
2560        }
2561        if (!n && &va->list != &vmap_area_list)
2562                return va;
2563
2564        return NULL;
2565
2566}
2567
2568static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2569{
2570        struct vmap_area *va = p, *next;
2571
2572        ++*pos;
2573        next = list_next_entry(va, list);
2574        if (&next->list != &vmap_area_list)
2575                return next;
2576
2577        return NULL;
2578}
2579
2580static void s_stop(struct seq_file *m, void *p)
2581        __releases(&vmap_area_lock)
2582{
2583        spin_unlock(&vmap_area_lock);
2584}
2585
2586static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2587{
2588        if (IS_ENABLED(CONFIG_NUMA)) {
2589                unsigned int nr, *counters = m->private;
2590
2591                if (!counters)
2592                        return;
2593
2594                if (v->flags & VM_UNINITIALIZED)
2595                        return;
2596                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2597                smp_rmb();
2598
2599                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2600
2601                for (nr = 0; nr < v->nr_pages; nr++)
2602                        counters[page_to_nid(v->pages[nr])]++;
2603
2604                for_each_node_state(nr, N_HIGH_MEMORY)
2605                        if (counters[nr])
2606                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2607        }
2608}
2609
2610static int s_show(struct seq_file *m, void *p)
2611{
2612        struct vmap_area *va = p;
2613        struct vm_struct *v;
2614
2615        /*
2616         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2617         * behalf of vmap area is being tear down or vm_map_ram allocation.
2618         */
2619        if (!(va->flags & VM_VM_AREA))
2620                return 0;
2621
2622        v = va->vm;
2623
2624        seq_printf(m, "0x%pK-0x%pK %7ld",
2625                v->addr, v->addr + v->size, v->size);
2626
2627        if (v->caller)
2628                seq_printf(m, " %pS", v->caller);
2629
2630        if (v->nr_pages)
2631                seq_printf(m, " pages=%d", v->nr_pages);
2632
2633        if (v->phys_addr)
2634                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2635
2636        if (v->flags & VM_IOREMAP)
2637                seq_puts(m, " ioremap");
2638
2639        if (v->flags & VM_ALLOC)
2640                seq_puts(m, " vmalloc");
2641
2642        if (v->flags & VM_MAP)
2643                seq_puts(m, " vmap");
2644
2645        if (v->flags & VM_USERMAP)
2646                seq_puts(m, " user");
2647
2648        if (is_vmalloc_addr(v->pages))
2649                seq_puts(m, " vpages");
2650
2651        show_numa_info(m, v);
2652        seq_putc(m, '\n');
2653        return 0;
2654}
2655
2656static const struct seq_operations vmalloc_op = {
2657        .start = s_start,
2658        .next = s_next,
2659        .stop = s_stop,
2660        .show = s_show,
2661};
2662
2663static int vmalloc_open(struct inode *inode, struct file *file)
2664{
2665        if (IS_ENABLED(CONFIG_NUMA))
2666                return seq_open_private(file, &vmalloc_op,
2667                                        nr_node_ids * sizeof(unsigned int));
2668        else
2669                return seq_open(file, &vmalloc_op);
2670}
2671
2672static const struct file_operations proc_vmalloc_operations = {
2673        .open           = vmalloc_open,
2674        .read           = seq_read,
2675        .llseek         = seq_lseek,
2676        .release        = seq_release_private,
2677};
2678
2679static int __init proc_vmalloc_init(void)
2680{
2681        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2682        return 0;
2683}
2684module_init(proc_vmalloc_init);
2685
2686#endif
2687
2688