linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to the first component (0-order) page
  20 *      page->index (union with page->freelist): offset of the first object
  21 *              starting in this page. For the first page, this is
  22 *              always 0, so we use this field (aka freelist) to point
  23 *              to the first free object in zspage.
  24 *      page->lru: links together all component pages (except the first page)
  25 *              of a zspage
  26 *
  27 *      For _first_ page only:
  28 *
  29 *      page->private: refers to the component page after the first page
  30 *              If the page is first_page for huge object, it stores handle.
  31 *              Look at size_class->huge.
  32 *      page->freelist: points to the first free object in zspage.
  33 *              Free objects are linked together using in-place
  34 *              metadata.
  35 *      page->objects: maximum number of objects we can store in this
  36 *              zspage (class->zspage_order * PAGE_SIZE / class->size)
  37 *      page->lru: links together first pages of various zspages.
  38 *              Basically forming list of zspages in a fullness group.
  39 *      page->mapping: class index and fullness group of the zspage
  40 *      page->inuse: the number of objects that are used in this zspage
  41 *
  42 * Usage of struct page flags:
  43 *      PG_private: identifies the first component page
  44 *      PG_private2: identifies the last component page
  45 *
  46 */
  47
  48#include <linux/module.h>
  49#include <linux/kernel.h>
  50#include <linux/sched.h>
  51#include <linux/bitops.h>
  52#include <linux/errno.h>
  53#include <linux/highmem.h>
  54#include <linux/string.h>
  55#include <linux/slab.h>
  56#include <asm/tlbflush.h>
  57#include <asm/pgtable.h>
  58#include <linux/cpumask.h>
  59#include <linux/cpu.h>
  60#include <linux/vmalloc.h>
  61#include <linux/preempt.h>
  62#include <linux/spinlock.h>
  63#include <linux/types.h>
  64#include <linux/debugfs.h>
  65#include <linux/zsmalloc.h>
  66#include <linux/zpool.h>
  67
  68/*
  69 * This must be power of 2 and greater than of equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN                8
  75
  76/*
  77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  79 */
  80#define ZS_MAX_ZSPAGE_ORDER 2
  81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  82
  83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  84
  85/*
  86 * Object location (<PFN>, <obj_idx>) is encoded as
  87 * as single (unsigned long) handle value.
  88 *
  89 * Note that object index <obj_idx> is relative to system
  90 * page <PFN> it is stored in, so for each sub-page belonging
  91 * to a zspage, obj_idx starts with 0.
  92 *
  93 * This is made more complicated by various memory models and PAE.
  94 */
  95
  96#ifndef MAX_PHYSMEM_BITS
  97#ifdef CONFIG_HIGHMEM64G
  98#define MAX_PHYSMEM_BITS 36
  99#else /* !CONFIG_HIGHMEM64G */
 100/*
 101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 102 * be PAGE_SHIFT
 103 */
 104#define MAX_PHYSMEM_BITS BITS_PER_LONG
 105#endif
 106#endif
 107#define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
 108
 109/*
 110 * Memory for allocating for handle keeps object position by
 111 * encoding <page, obj_idx> and the encoded value has a room
 112 * in least bit(ie, look at obj_to_location).
 113 * We use the bit to synchronize between object access by
 114 * user and migration.
 115 */
 116#define HANDLE_PIN_BIT  0
 117
 118/*
 119 * Head in allocated object should have OBJ_ALLOCATED_TAG
 120 * to identify the object was allocated or not.
 121 * It's okay to add the status bit in the least bit because
 122 * header keeps handle which is 4byte-aligned address so we
 123 * have room for two bit at least.
 124 */
 125#define OBJ_ALLOCATED_TAG 1
 126#define OBJ_TAG_BITS 1
 127#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 128#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 129
 130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 132#define ZS_MIN_ALLOC_SIZE \
 133        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 134/* each chunk includes extra space to keep handle */
 135#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 136
 137/*
 138 * On systems with 4K page size, this gives 255 size classes! There is a
 139 * trader-off here:
 140 *  - Large number of size classes is potentially wasteful as free page are
 141 *    spread across these classes
 142 *  - Small number of size classes causes large internal fragmentation
 143 *  - Probably its better to use specific size classes (empirically
 144 *    determined). NOTE: all those class sizes must be set as multiple of
 145 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 146 *
 147 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 148 *  (reason above)
 149 */
 150#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> 8)
 151
 152/*
 153 * We do not maintain any list for completely empty or full pages
 154 */
 155enum fullness_group {
 156        ZS_ALMOST_FULL,
 157        ZS_ALMOST_EMPTY,
 158        _ZS_NR_FULLNESS_GROUPS,
 159
 160        ZS_EMPTY,
 161        ZS_FULL
 162};
 163
 164enum zs_stat_type {
 165        OBJ_ALLOCATED,
 166        OBJ_USED,
 167        CLASS_ALMOST_FULL,
 168        CLASS_ALMOST_EMPTY,
 169};
 170
 171#ifdef CONFIG_ZSMALLOC_STAT
 172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
 173#else
 174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
 175#endif
 176
 177struct zs_size_stat {
 178        unsigned long objs[NR_ZS_STAT_TYPE];
 179};
 180
 181#ifdef CONFIG_ZSMALLOC_STAT
 182static struct dentry *zs_stat_root;
 183#endif
 184
 185/*
 186 * number of size_classes
 187 */
 188static int zs_size_classes;
 189
 190/*
 191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 192 *      n <= N / f, where
 193 * n = number of allocated objects
 194 * N = total number of objects zspage can store
 195 * f = fullness_threshold_frac
 196 *
 197 * Similarly, we assign zspage to:
 198 *      ZS_ALMOST_FULL  when n > N / f
 199 *      ZS_EMPTY        when n == 0
 200 *      ZS_FULL         when n == N
 201 *
 202 * (see: fix_fullness_group())
 203 */
 204static const int fullness_threshold_frac = 4;
 205
 206struct size_class {
 207        spinlock_t lock;
 208        struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 209        /*
 210         * Size of objects stored in this class. Must be multiple
 211         * of ZS_ALIGN.
 212         */
 213        int size;
 214        unsigned int index;
 215
 216        struct zs_size_stat stats;
 217
 218        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 219        int pages_per_zspage;
 220        /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 221        bool huge;
 222};
 223
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, first_page->freelist gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231        union {
 232                /*
 233                 * Position of next free chunk (encodes <PFN, obj_idx>)
 234                 * It's valid for non-allocated object
 235                 */
 236                void *next;
 237                /*
 238                 * Handle of allocated object.
 239                 */
 240                unsigned long handle;
 241        };
 242};
 243
 244struct zs_pool {
 245        const char *name;
 246
 247        struct size_class **size_class;
 248        struct kmem_cache *handle_cachep;
 249
 250        gfp_t flags;    /* allocation flags used when growing pool */
 251        atomic_long_t pages_allocated;
 252
 253        struct zs_pool_stats stats;
 254
 255        /* Compact classes */
 256        struct shrinker shrinker;
 257        /*
 258         * To signify that register_shrinker() was successful
 259         * and unregister_shrinker() will not Oops.
 260         */
 261        bool shrinker_enabled;
 262#ifdef CONFIG_ZSMALLOC_STAT
 263        struct dentry *stat_dentry;
 264#endif
 265};
 266
 267/*
 268 * A zspage's class index and fullness group
 269 * are encoded in its (first)page->mapping
 270 */
 271#define CLASS_IDX_BITS  28
 272#define FULLNESS_BITS   4
 273#define CLASS_IDX_MASK  ((1 << CLASS_IDX_BITS) - 1)
 274#define FULLNESS_MASK   ((1 << FULLNESS_BITS) - 1)
 275
 276struct mapping_area {
 277#ifdef CONFIG_PGTABLE_MAPPING
 278        struct vm_struct *vm; /* vm area for mapping object that span pages */
 279#else
 280        char *vm_buf; /* copy buffer for objects that span pages */
 281#endif
 282        char *vm_addr; /* address of kmap_atomic()'ed pages */
 283        enum zs_mapmode vm_mm; /* mapping mode */
 284};
 285
 286static int create_handle_cache(struct zs_pool *pool)
 287{
 288        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 289                                        0, 0, NULL);
 290        return pool->handle_cachep ? 0 : 1;
 291}
 292
 293static void destroy_handle_cache(struct zs_pool *pool)
 294{
 295        kmem_cache_destroy(pool->handle_cachep);
 296}
 297
 298static unsigned long alloc_handle(struct zs_pool *pool)
 299{
 300        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 301                pool->flags & ~__GFP_HIGHMEM);
 302}
 303
 304static void free_handle(struct zs_pool *pool, unsigned long handle)
 305{
 306        kmem_cache_free(pool->handle_cachep, (void *)handle);
 307}
 308
 309static void record_obj(unsigned long handle, unsigned long obj)
 310{
 311        /*
 312         * lsb of @obj represents handle lock while other bits
 313         * represent object value the handle is pointing so
 314         * updating shouldn't do store tearing.
 315         */
 316        WRITE_ONCE(*(unsigned long *)handle, obj);
 317}
 318
 319/* zpool driver */
 320
 321#ifdef CONFIG_ZPOOL
 322
 323static void *zs_zpool_create(const char *name, gfp_t gfp,
 324                             const struct zpool_ops *zpool_ops,
 325                             struct zpool *zpool)
 326{
 327        return zs_create_pool(name, gfp);
 328}
 329
 330static void zs_zpool_destroy(void *pool)
 331{
 332        zs_destroy_pool(pool);
 333}
 334
 335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 336                        unsigned long *handle)
 337{
 338        *handle = zs_malloc(pool, size);
 339        return *handle ? 0 : -1;
 340}
 341static void zs_zpool_free(void *pool, unsigned long handle)
 342{
 343        zs_free(pool, handle);
 344}
 345
 346static int zs_zpool_shrink(void *pool, unsigned int pages,
 347                        unsigned int *reclaimed)
 348{
 349        return -EINVAL;
 350}
 351
 352static void *zs_zpool_map(void *pool, unsigned long handle,
 353                        enum zpool_mapmode mm)
 354{
 355        enum zs_mapmode zs_mm;
 356
 357        switch (mm) {
 358        case ZPOOL_MM_RO:
 359                zs_mm = ZS_MM_RO;
 360                break;
 361        case ZPOOL_MM_WO:
 362                zs_mm = ZS_MM_WO;
 363                break;
 364        case ZPOOL_MM_RW: /* fallthru */
 365        default:
 366                zs_mm = ZS_MM_RW;
 367                break;
 368        }
 369
 370        return zs_map_object(pool, handle, zs_mm);
 371}
 372static void zs_zpool_unmap(void *pool, unsigned long handle)
 373{
 374        zs_unmap_object(pool, handle);
 375}
 376
 377static u64 zs_zpool_total_size(void *pool)
 378{
 379        return zs_get_total_pages(pool) << PAGE_SHIFT;
 380}
 381
 382static struct zpool_driver zs_zpool_driver = {
 383        .type =         "zsmalloc",
 384        .owner =        THIS_MODULE,
 385        .create =       zs_zpool_create,
 386        .destroy =      zs_zpool_destroy,
 387        .malloc =       zs_zpool_malloc,
 388        .free =         zs_zpool_free,
 389        .shrink =       zs_zpool_shrink,
 390        .map =          zs_zpool_map,
 391        .unmap =        zs_zpool_unmap,
 392        .total_size =   zs_zpool_total_size,
 393};
 394
 395MODULE_ALIAS("zpool-zsmalloc");
 396#endif /* CONFIG_ZPOOL */
 397
 398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 399{
 400        return pages_per_zspage * PAGE_SIZE / size;
 401}
 402
 403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 405
 406static int is_first_page(struct page *page)
 407{
 408        return PagePrivate(page);
 409}
 410
 411static int is_last_page(struct page *page)
 412{
 413        return PagePrivate2(page);
 414}
 415
 416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 417                                enum fullness_group *fullness)
 418{
 419        unsigned long m;
 420        BUG_ON(!is_first_page(page));
 421
 422        m = (unsigned long)page->mapping;
 423        *fullness = m & FULLNESS_MASK;
 424        *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 425}
 426
 427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 428                                enum fullness_group fullness)
 429{
 430        unsigned long m;
 431        BUG_ON(!is_first_page(page));
 432
 433        m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 434                        (fullness & FULLNESS_MASK);
 435        page->mapping = (struct address_space *)m;
 436}
 437
 438/*
 439 * zsmalloc divides the pool into various size classes where each
 440 * class maintains a list of zspages where each zspage is divided
 441 * into equal sized chunks. Each allocation falls into one of these
 442 * classes depending on its size. This function returns index of the
 443 * size class which has chunk size big enough to hold the give size.
 444 */
 445static int get_size_class_index(int size)
 446{
 447        int idx = 0;
 448
 449        if (likely(size > ZS_MIN_ALLOC_SIZE))
 450                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 451                                ZS_SIZE_CLASS_DELTA);
 452
 453        return min(zs_size_classes - 1, idx);
 454}
 455
 456static inline void zs_stat_inc(struct size_class *class,
 457                                enum zs_stat_type type, unsigned long cnt)
 458{
 459        if (type < NR_ZS_STAT_TYPE)
 460                class->stats.objs[type] += cnt;
 461}
 462
 463static inline void zs_stat_dec(struct size_class *class,
 464                                enum zs_stat_type type, unsigned long cnt)
 465{
 466        if (type < NR_ZS_STAT_TYPE)
 467                class->stats.objs[type] -= cnt;
 468}
 469
 470static inline unsigned long zs_stat_get(struct size_class *class,
 471                                enum zs_stat_type type)
 472{
 473        if (type < NR_ZS_STAT_TYPE)
 474                return class->stats.objs[type];
 475        return 0;
 476}
 477
 478#ifdef CONFIG_ZSMALLOC_STAT
 479
 480static int __init zs_stat_init(void)
 481{
 482        if (!debugfs_initialized())
 483                return -ENODEV;
 484
 485        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 486        if (!zs_stat_root)
 487                return -ENOMEM;
 488
 489        return 0;
 490}
 491
 492static void __exit zs_stat_exit(void)
 493{
 494        debugfs_remove_recursive(zs_stat_root);
 495}
 496
 497static unsigned long zs_can_compact(struct size_class *class);
 498
 499static int zs_stats_size_show(struct seq_file *s, void *v)
 500{
 501        int i;
 502        struct zs_pool *pool = s->private;
 503        struct size_class *class;
 504        int objs_per_zspage;
 505        unsigned long class_almost_full, class_almost_empty;
 506        unsigned long obj_allocated, obj_used, pages_used, freeable;
 507        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 508        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 509        unsigned long total_freeable = 0;
 510
 511        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 512                        "class", "size", "almost_full", "almost_empty",
 513                        "obj_allocated", "obj_used", "pages_used",
 514                        "pages_per_zspage", "freeable");
 515
 516        for (i = 0; i < zs_size_classes; i++) {
 517                class = pool->size_class[i];
 518
 519                if (class->index != i)
 520                        continue;
 521
 522                spin_lock(&class->lock);
 523                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 524                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 525                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 526                obj_used = zs_stat_get(class, OBJ_USED);
 527                freeable = zs_can_compact(class);
 528                spin_unlock(&class->lock);
 529
 530                objs_per_zspage = get_maxobj_per_zspage(class->size,
 531                                class->pages_per_zspage);
 532                pages_used = obj_allocated / objs_per_zspage *
 533                                class->pages_per_zspage;
 534
 535                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 536                                " %10lu %10lu %16d %8lu\n",
 537                        i, class->size, class_almost_full, class_almost_empty,
 538                        obj_allocated, obj_used, pages_used,
 539                        class->pages_per_zspage, freeable);
 540
 541                total_class_almost_full += class_almost_full;
 542                total_class_almost_empty += class_almost_empty;
 543                total_objs += obj_allocated;
 544                total_used_objs += obj_used;
 545                total_pages += pages_used;
 546                total_freeable += freeable;
 547        }
 548
 549        seq_puts(s, "\n");
 550        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 551                        "Total", "", total_class_almost_full,
 552                        total_class_almost_empty, total_objs,
 553                        total_used_objs, total_pages, "", total_freeable);
 554
 555        return 0;
 556}
 557
 558static int zs_stats_size_open(struct inode *inode, struct file *file)
 559{
 560        return single_open(file, zs_stats_size_show, inode->i_private);
 561}
 562
 563static const struct file_operations zs_stat_size_ops = {
 564        .open           = zs_stats_size_open,
 565        .read           = seq_read,
 566        .llseek         = seq_lseek,
 567        .release        = single_release,
 568};
 569
 570static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 571{
 572        struct dentry *entry;
 573
 574        if (!zs_stat_root)
 575                return -ENODEV;
 576
 577        entry = debugfs_create_dir(name, zs_stat_root);
 578        if (!entry) {
 579                pr_warn("debugfs dir <%s> creation failed\n", name);
 580                return -ENOMEM;
 581        }
 582        pool->stat_dentry = entry;
 583
 584        entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 585                        pool->stat_dentry, pool, &zs_stat_size_ops);
 586        if (!entry) {
 587                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 588                                name, "classes");
 589                return -ENOMEM;
 590        }
 591
 592        return 0;
 593}
 594
 595static void zs_pool_stat_destroy(struct zs_pool *pool)
 596{
 597        debugfs_remove_recursive(pool->stat_dentry);
 598}
 599
 600#else /* CONFIG_ZSMALLOC_STAT */
 601static int __init zs_stat_init(void)
 602{
 603        return 0;
 604}
 605
 606static void __exit zs_stat_exit(void)
 607{
 608}
 609
 610static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 611{
 612        return 0;
 613}
 614
 615static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 616{
 617}
 618#endif
 619
 620
 621/*
 622 * For each size class, zspages are divided into different groups
 623 * depending on how "full" they are. This was done so that we could
 624 * easily find empty or nearly empty zspages when we try to shrink
 625 * the pool (not yet implemented). This function returns fullness
 626 * status of the given page.
 627 */
 628static enum fullness_group get_fullness_group(struct page *page)
 629{
 630        int inuse, max_objects;
 631        enum fullness_group fg;
 632        BUG_ON(!is_first_page(page));
 633
 634        inuse = page->inuse;
 635        max_objects = page->objects;
 636
 637        if (inuse == 0)
 638                fg = ZS_EMPTY;
 639        else if (inuse == max_objects)
 640                fg = ZS_FULL;
 641        else if (inuse <= 3 * max_objects / fullness_threshold_frac)
 642                fg = ZS_ALMOST_EMPTY;
 643        else
 644                fg = ZS_ALMOST_FULL;
 645
 646        return fg;
 647}
 648
 649/*
 650 * Each size class maintains various freelists and zspages are assigned
 651 * to one of these freelists based on the number of live objects they
 652 * have. This functions inserts the given zspage into the freelist
 653 * identified by <class, fullness_group>.
 654 */
 655static void insert_zspage(struct page *page, struct size_class *class,
 656                                enum fullness_group fullness)
 657{
 658        struct page **head;
 659
 660        BUG_ON(!is_first_page(page));
 661
 662        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 663                return;
 664
 665        zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
 666                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 667
 668        head = &class->fullness_list[fullness];
 669        if (!*head) {
 670                *head = page;
 671                return;
 672        }
 673
 674        /*
 675         * We want to see more ZS_FULL pages and less almost
 676         * empty/full. Put pages with higher ->inuse first.
 677         */
 678        list_add_tail(&page->lru, &(*head)->lru);
 679        if (page->inuse >= (*head)->inuse)
 680                *head = page;
 681}
 682
 683/*
 684 * This function removes the given zspage from the freelist identified
 685 * by <class, fullness_group>.
 686 */
 687static void remove_zspage(struct page *page, struct size_class *class,
 688                                enum fullness_group fullness)
 689{
 690        struct page **head;
 691
 692        BUG_ON(!is_first_page(page));
 693
 694        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 695                return;
 696
 697        head = &class->fullness_list[fullness];
 698        BUG_ON(!*head);
 699        if (list_empty(&(*head)->lru))
 700                *head = NULL;
 701        else if (*head == page)
 702                *head = (struct page *)list_entry((*head)->lru.next,
 703                                        struct page, lru);
 704
 705        list_del_init(&page->lru);
 706        zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
 707                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 708}
 709
 710/*
 711 * Each size class maintains zspages in different fullness groups depending
 712 * on the number of live objects they contain. When allocating or freeing
 713 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 714 * to ALMOST_EMPTY when freeing an object. This function checks if such
 715 * a status change has occurred for the given page and accordingly moves the
 716 * page from the freelist of the old fullness group to that of the new
 717 * fullness group.
 718 */
 719static enum fullness_group fix_fullness_group(struct size_class *class,
 720                                                struct page *page)
 721{
 722        int class_idx;
 723        enum fullness_group currfg, newfg;
 724
 725        BUG_ON(!is_first_page(page));
 726
 727        get_zspage_mapping(page, &class_idx, &currfg);
 728        newfg = get_fullness_group(page);
 729        if (newfg == currfg)
 730                goto out;
 731
 732        remove_zspage(page, class, currfg);
 733        insert_zspage(page, class, newfg);
 734        set_zspage_mapping(page, class_idx, newfg);
 735
 736out:
 737        return newfg;
 738}
 739
 740/*
 741 * We have to decide on how many pages to link together
 742 * to form a zspage for each size class. This is important
 743 * to reduce wastage due to unusable space left at end of
 744 * each zspage which is given as:
 745 *     wastage = Zp % class_size
 746 *     usage = Zp - wastage
 747 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 748 *
 749 * For example, for size class of 3/8 * PAGE_SIZE, we should
 750 * link together 3 PAGE_SIZE sized pages to form a zspage
 751 * since then we can perfectly fit in 8 such objects.
 752 */
 753static int get_pages_per_zspage(int class_size)
 754{
 755        int i, max_usedpc = 0;
 756        /* zspage order which gives maximum used size per KB */
 757        int max_usedpc_order = 1;
 758
 759        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 760                int zspage_size;
 761                int waste, usedpc;
 762
 763                zspage_size = i * PAGE_SIZE;
 764                waste = zspage_size % class_size;
 765                usedpc = (zspage_size - waste) * 100 / zspage_size;
 766
 767                if (usedpc > max_usedpc) {
 768                        max_usedpc = usedpc;
 769                        max_usedpc_order = i;
 770                }
 771        }
 772
 773        return max_usedpc_order;
 774}
 775
 776/*
 777 * A single 'zspage' is composed of many system pages which are
 778 * linked together using fields in struct page. This function finds
 779 * the first/head page, given any component page of a zspage.
 780 */
 781static struct page *get_first_page(struct page *page)
 782{
 783        if (is_first_page(page))
 784                return page;
 785        else
 786                return (struct page *)page_private(page);
 787}
 788
 789static struct page *get_next_page(struct page *page)
 790{
 791        struct page *next;
 792
 793        if (is_last_page(page))
 794                next = NULL;
 795        else if (is_first_page(page))
 796                next = (struct page *)page_private(page);
 797        else
 798                next = list_entry(page->lru.next, struct page, lru);
 799
 800        return next;
 801}
 802
 803/*
 804 * Encode <page, obj_idx> as a single handle value.
 805 * We use the least bit of handle for tagging.
 806 */
 807static void *location_to_obj(struct page *page, unsigned long obj_idx)
 808{
 809        unsigned long obj;
 810
 811        if (!page) {
 812                BUG_ON(obj_idx);
 813                return NULL;
 814        }
 815
 816        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 817        obj |= ((obj_idx) & OBJ_INDEX_MASK);
 818        obj <<= OBJ_TAG_BITS;
 819
 820        return (void *)obj;
 821}
 822
 823/*
 824 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 825 * decoded obj_idx back to its original value since it was adjusted in
 826 * location_to_obj().
 827 */
 828static void obj_to_location(unsigned long obj, struct page **page,
 829                                unsigned long *obj_idx)
 830{
 831        obj >>= OBJ_TAG_BITS;
 832        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 833        *obj_idx = (obj & OBJ_INDEX_MASK);
 834}
 835
 836static unsigned long handle_to_obj(unsigned long handle)
 837{
 838        return *(unsigned long *)handle;
 839}
 840
 841static unsigned long obj_to_head(struct size_class *class, struct page *page,
 842                        void *obj)
 843{
 844        if (class->huge) {
 845                VM_BUG_ON(!is_first_page(page));
 846                return page_private(page);
 847        } else
 848                return *(unsigned long *)obj;
 849}
 850
 851static unsigned long obj_idx_to_offset(struct page *page,
 852                                unsigned long obj_idx, int class_size)
 853{
 854        unsigned long off = 0;
 855
 856        if (!is_first_page(page))
 857                off = page->index;
 858
 859        return off + obj_idx * class_size;
 860}
 861
 862static inline int trypin_tag(unsigned long handle)
 863{
 864        unsigned long *ptr = (unsigned long *)handle;
 865
 866        return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
 867}
 868
 869static void pin_tag(unsigned long handle)
 870{
 871        while (!trypin_tag(handle));
 872}
 873
 874static void unpin_tag(unsigned long handle)
 875{
 876        unsigned long *ptr = (unsigned long *)handle;
 877
 878        clear_bit_unlock(HANDLE_PIN_BIT, ptr);
 879}
 880
 881static void reset_page(struct page *page)
 882{
 883        clear_bit(PG_private, &page->flags);
 884        clear_bit(PG_private_2, &page->flags);
 885        set_page_private(page, 0);
 886        page->mapping = NULL;
 887        page->freelist = NULL;
 888        page_mapcount_reset(page);
 889}
 890
 891static void free_zspage(struct page *first_page)
 892{
 893        struct page *nextp, *tmp, *head_extra;
 894
 895        BUG_ON(!is_first_page(first_page));
 896        BUG_ON(first_page->inuse);
 897
 898        head_extra = (struct page *)page_private(first_page);
 899
 900        reset_page(first_page);
 901        __free_page(first_page);
 902
 903        /* zspage with only 1 system page */
 904        if (!head_extra)
 905                return;
 906
 907        list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 908                list_del(&nextp->lru);
 909                reset_page(nextp);
 910                __free_page(nextp);
 911        }
 912        reset_page(head_extra);
 913        __free_page(head_extra);
 914}
 915
 916/* Initialize a newly allocated zspage */
 917static void init_zspage(struct page *first_page, struct size_class *class)
 918{
 919        unsigned long off = 0;
 920        struct page *page = first_page;
 921
 922        BUG_ON(!is_first_page(first_page));
 923        while (page) {
 924                struct page *next_page;
 925                struct link_free *link;
 926                unsigned int i = 1;
 927                void *vaddr;
 928
 929                /*
 930                 * page->index stores offset of first object starting
 931                 * in the page. For the first page, this is always 0,
 932                 * so we use first_page->index (aka ->freelist) to store
 933                 * head of corresponding zspage's freelist.
 934                 */
 935                if (page != first_page)
 936                        page->index = off;
 937
 938                vaddr = kmap_atomic(page);
 939                link = (struct link_free *)vaddr + off / sizeof(*link);
 940
 941                while ((off += class->size) < PAGE_SIZE) {
 942                        link->next = location_to_obj(page, i++);
 943                        link += class->size / sizeof(*link);
 944                }
 945
 946                /*
 947                 * We now come to the last (full or partial) object on this
 948                 * page, which must point to the first object on the next
 949                 * page (if present)
 950                 */
 951                next_page = get_next_page(page);
 952                link->next = location_to_obj(next_page, 0);
 953                kunmap_atomic(vaddr);
 954                page = next_page;
 955                off %= PAGE_SIZE;
 956        }
 957}
 958
 959/*
 960 * Allocate a zspage for the given size class
 961 */
 962static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 963{
 964        int i, error;
 965        struct page *first_page = NULL, *uninitialized_var(prev_page);
 966
 967        /*
 968         * Allocate individual pages and link them together as:
 969         * 1. first page->private = first sub-page
 970         * 2. all sub-pages are linked together using page->lru
 971         * 3. each sub-page is linked to the first page using page->private
 972         *
 973         * For each size class, First/Head pages are linked together using
 974         * page->lru. Also, we set PG_private to identify the first page
 975         * (i.e. no other sub-page has this flag set) and PG_private_2 to
 976         * identify the last page.
 977         */
 978        error = -ENOMEM;
 979        for (i = 0; i < class->pages_per_zspage; i++) {
 980                struct page *page;
 981
 982                page = alloc_page(flags);
 983                if (!page)
 984                        goto cleanup;
 985
 986                INIT_LIST_HEAD(&page->lru);
 987                if (i == 0) {   /* first page */
 988                        SetPagePrivate(page);
 989                        set_page_private(page, 0);
 990                        first_page = page;
 991                        first_page->inuse = 0;
 992                }
 993                if (i == 1)
 994                        set_page_private(first_page, (unsigned long)page);
 995                if (i >= 1)
 996                        set_page_private(page, (unsigned long)first_page);
 997                if (i >= 2)
 998                        list_add(&page->lru, &prev_page->lru);
 999                if (i == class->pages_per_zspage - 1)   /* last page */
1000                        SetPagePrivate2(page);
1001                prev_page = page;
1002        }
1003
1004        init_zspage(first_page, class);
1005
1006        first_page->freelist = location_to_obj(first_page, 0);
1007        /* Maximum number of objects we can store in this zspage */
1008        first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009
1010        error = 0; /* Success */
1011
1012cleanup:
1013        if (unlikely(error) && first_page) {
1014                free_zspage(first_page);
1015                first_page = NULL;
1016        }
1017
1018        return first_page;
1019}
1020
1021static struct page *find_get_zspage(struct size_class *class)
1022{
1023        int i;
1024        struct page *page;
1025
1026        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027                page = class->fullness_list[i];
1028                if (page)
1029                        break;
1030        }
1031
1032        return page;
1033}
1034
1035#ifdef CONFIG_PGTABLE_MAPPING
1036static inline int __zs_cpu_up(struct mapping_area *area)
1037{
1038        /*
1039         * Make sure we don't leak memory if a cpu UP notification
1040         * and zs_init() race and both call zs_cpu_up() on the same cpu
1041         */
1042        if (area->vm)
1043                return 0;
1044        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045        if (!area->vm)
1046                return -ENOMEM;
1047        return 0;
1048}
1049
1050static inline void __zs_cpu_down(struct mapping_area *area)
1051{
1052        if (area->vm)
1053                free_vm_area(area->vm);
1054        area->vm = NULL;
1055}
1056
1057static inline void *__zs_map_object(struct mapping_area *area,
1058                                struct page *pages[2], int off, int size)
1059{
1060        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061        area->vm_addr = area->vm->addr;
1062        return area->vm_addr + off;
1063}
1064
1065static inline void __zs_unmap_object(struct mapping_area *area,
1066                                struct page *pages[2], int off, int size)
1067{
1068        unsigned long addr = (unsigned long)area->vm_addr;
1069
1070        unmap_kernel_range(addr, PAGE_SIZE * 2);
1071}
1072
1073#else /* CONFIG_PGTABLE_MAPPING */
1074
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077        /*
1078         * Make sure we don't leak memory if a cpu UP notification
1079         * and zs_init() race and both call zs_cpu_up() on the same cpu
1080         */
1081        if (area->vm_buf)
1082                return 0;
1083        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084        if (!area->vm_buf)
1085                return -ENOMEM;
1086        return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091        kfree(area->vm_buf);
1092        area->vm_buf = NULL;
1093}
1094
1095static void *__zs_map_object(struct mapping_area *area,
1096                        struct page *pages[2], int off, int size)
1097{
1098        int sizes[2];
1099        void *addr;
1100        char *buf = area->vm_buf;
1101
1102        /* disable page faults to match kmap_atomic() return conditions */
1103        pagefault_disable();
1104
1105        /* no read fastpath */
1106        if (area->vm_mm == ZS_MM_WO)
1107                goto out;
1108
1109        sizes[0] = PAGE_SIZE - off;
1110        sizes[1] = size - sizes[0];
1111
1112        /* copy object to per-cpu buffer */
1113        addr = kmap_atomic(pages[0]);
1114        memcpy(buf, addr + off, sizes[0]);
1115        kunmap_atomic(addr);
1116        addr = kmap_atomic(pages[1]);
1117        memcpy(buf + sizes[0], addr, sizes[1]);
1118        kunmap_atomic(addr);
1119out:
1120        return area->vm_buf;
1121}
1122
1123static void __zs_unmap_object(struct mapping_area *area,
1124                        struct page *pages[2], int off, int size)
1125{
1126        int sizes[2];
1127        void *addr;
1128        char *buf;
1129
1130        /* no write fastpath */
1131        if (area->vm_mm == ZS_MM_RO)
1132                goto out;
1133
1134        buf = area->vm_buf;
1135        buf = buf + ZS_HANDLE_SIZE;
1136        size -= ZS_HANDLE_SIZE;
1137        off += ZS_HANDLE_SIZE;
1138
1139        sizes[0] = PAGE_SIZE - off;
1140        sizes[1] = size - sizes[0];
1141
1142        /* copy per-cpu buffer to object */
1143        addr = kmap_atomic(pages[0]);
1144        memcpy(addr + off, buf, sizes[0]);
1145        kunmap_atomic(addr);
1146        addr = kmap_atomic(pages[1]);
1147        memcpy(addr, buf + sizes[0], sizes[1]);
1148        kunmap_atomic(addr);
1149
1150out:
1151        /* enable page faults to match kunmap_atomic() return conditions */
1152        pagefault_enable();
1153}
1154
1155#endif /* CONFIG_PGTABLE_MAPPING */
1156
1157static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158                                void *pcpu)
1159{
1160        int ret, cpu = (long)pcpu;
1161        struct mapping_area *area;
1162
1163        switch (action) {
1164        case CPU_UP_PREPARE:
1165                area = &per_cpu(zs_map_area, cpu);
1166                ret = __zs_cpu_up(area);
1167                if (ret)
1168                        return notifier_from_errno(ret);
1169                break;
1170        case CPU_DEAD:
1171        case CPU_UP_CANCELED:
1172                area = &per_cpu(zs_map_area, cpu);
1173                __zs_cpu_down(area);
1174                break;
1175        }
1176
1177        return NOTIFY_OK;
1178}
1179
1180static struct notifier_block zs_cpu_nb = {
1181        .notifier_call = zs_cpu_notifier
1182};
1183
1184static int zs_register_cpu_notifier(void)
1185{
1186        int cpu, uninitialized_var(ret);
1187
1188        cpu_notifier_register_begin();
1189
1190        __register_cpu_notifier(&zs_cpu_nb);
1191        for_each_online_cpu(cpu) {
1192                ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193                if (notifier_to_errno(ret))
1194                        break;
1195        }
1196
1197        cpu_notifier_register_done();
1198        return notifier_to_errno(ret);
1199}
1200
1201static void zs_unregister_cpu_notifier(void)
1202{
1203        int cpu;
1204
1205        cpu_notifier_register_begin();
1206
1207        for_each_online_cpu(cpu)
1208                zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209        __unregister_cpu_notifier(&zs_cpu_nb);
1210
1211        cpu_notifier_register_done();
1212}
1213
1214static void init_zs_size_classes(void)
1215{
1216        int nr;
1217
1218        nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219        if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220                nr += 1;
1221
1222        zs_size_classes = nr;
1223}
1224
1225static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226{
1227        if (prev->pages_per_zspage != pages_per_zspage)
1228                return false;
1229
1230        if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231                != get_maxobj_per_zspage(size, pages_per_zspage))
1232                return false;
1233
1234        return true;
1235}
1236
1237static bool zspage_full(struct page *page)
1238{
1239        BUG_ON(!is_first_page(page));
1240
1241        return page->inuse == page->objects;
1242}
1243
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246        return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250/**
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
1254 *
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
1258 *
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
1263 */
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265                        enum zs_mapmode mm)
1266{
1267        struct page *page;
1268        unsigned long obj, obj_idx, off;
1269
1270        unsigned int class_idx;
1271        enum fullness_group fg;
1272        struct size_class *class;
1273        struct mapping_area *area;
1274        struct page *pages[2];
1275        void *ret;
1276
1277        BUG_ON(!handle);
1278
1279        /*
1280         * Because we use per-cpu mapping areas shared among the
1281         * pools/users, we can't allow mapping in interrupt context
1282         * because it can corrupt another users mappings.
1283         */
1284        BUG_ON(in_interrupt());
1285
1286        /* From now on, migration cannot move the object */
1287        pin_tag(handle);
1288
1289        obj = handle_to_obj(handle);
1290        obj_to_location(obj, &page, &obj_idx);
1291        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292        class = pool->size_class[class_idx];
1293        off = obj_idx_to_offset(page, obj_idx, class->size);
1294
1295        area = &get_cpu_var(zs_map_area);
1296        area->vm_mm = mm;
1297        if (off + class->size <= PAGE_SIZE) {
1298                /* this object is contained entirely within a page */
1299                area->vm_addr = kmap_atomic(page);
1300                ret = area->vm_addr + off;
1301                goto out;
1302        }
1303
1304        /* this object spans two pages */
1305        pages[0] = page;
1306        pages[1] = get_next_page(page);
1307        BUG_ON(!pages[1]);
1308
1309        ret = __zs_map_object(area, pages, off, class->size);
1310out:
1311        if (!class->huge)
1312                ret += ZS_HANDLE_SIZE;
1313
1314        return ret;
1315}
1316EXPORT_SYMBOL_GPL(zs_map_object);
1317
1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319{
1320        struct page *page;
1321        unsigned long obj, obj_idx, off;
1322
1323        unsigned int class_idx;
1324        enum fullness_group fg;
1325        struct size_class *class;
1326        struct mapping_area *area;
1327
1328        BUG_ON(!handle);
1329
1330        obj = handle_to_obj(handle);
1331        obj_to_location(obj, &page, &obj_idx);
1332        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333        class = pool->size_class[class_idx];
1334        off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336        area = this_cpu_ptr(&zs_map_area);
1337        if (off + class->size <= PAGE_SIZE)
1338                kunmap_atomic(area->vm_addr);
1339        else {
1340                struct page *pages[2];
1341
1342                pages[0] = page;
1343                pages[1] = get_next_page(page);
1344                BUG_ON(!pages[1]);
1345
1346                __zs_unmap_object(area, pages, off, class->size);
1347        }
1348        put_cpu_var(zs_map_area);
1349        unpin_tag(handle);
1350}
1351EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353static unsigned long obj_malloc(struct page *first_page,
1354                struct size_class *class, unsigned long handle)
1355{
1356        unsigned long obj;
1357        struct link_free *link;
1358
1359        struct page *m_page;
1360        unsigned long m_objidx, m_offset;
1361        void *vaddr;
1362
1363        handle |= OBJ_ALLOCATED_TAG;
1364        obj = (unsigned long)first_page->freelist;
1365        obj_to_location(obj, &m_page, &m_objidx);
1366        m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368        vaddr = kmap_atomic(m_page);
1369        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370        first_page->freelist = link->next;
1371        if (!class->huge)
1372                /* record handle in the header of allocated chunk */
1373                link->handle = handle;
1374        else
1375                /* record handle in first_page->private */
1376                set_page_private(first_page, handle);
1377        kunmap_atomic(vaddr);
1378        first_page->inuse++;
1379        zs_stat_inc(class, OBJ_USED, 1);
1380
1381        return obj;
1382}
1383
1384
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395{
1396        unsigned long handle, obj;
1397        struct size_class *class;
1398        struct page *first_page;
1399
1400        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401                return 0;
1402
1403        handle = alloc_handle(pool);
1404        if (!handle)
1405                return 0;
1406
1407        /* extra space in chunk to keep the handle */
1408        size += ZS_HANDLE_SIZE;
1409        class = pool->size_class[get_size_class_index(size)];
1410
1411        spin_lock(&class->lock);
1412        first_page = find_get_zspage(class);
1413
1414        if (!first_page) {
1415                spin_unlock(&class->lock);
1416                first_page = alloc_zspage(class, pool->flags);
1417                if (unlikely(!first_page)) {
1418                        free_handle(pool, handle);
1419                        return 0;
1420                }
1421
1422                set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423                atomic_long_add(class->pages_per_zspage,
1424                                        &pool->pages_allocated);
1425
1426                spin_lock(&class->lock);
1427                zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428                                class->size, class->pages_per_zspage));
1429        }
1430
1431        obj = obj_malloc(first_page, class, handle);
1432        /* Now move the zspage to another fullness group, if required */
1433        fix_fullness_group(class, first_page);
1434        record_obj(handle, obj);
1435        spin_unlock(&class->lock);
1436
1437        return handle;
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442                        unsigned long obj)
1443{
1444        struct link_free *link;
1445        struct page *first_page, *f_page;
1446        unsigned long f_objidx, f_offset;
1447        void *vaddr;
1448
1449        BUG_ON(!obj);
1450
1451        obj &= ~OBJ_ALLOCATED_TAG;
1452        obj_to_location(obj, &f_page, &f_objidx);
1453        first_page = get_first_page(f_page);
1454
1455        f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456
1457        vaddr = kmap_atomic(f_page);
1458
1459        /* Insert this object in containing zspage's freelist */
1460        link = (struct link_free *)(vaddr + f_offset);
1461        link->next = first_page->freelist;
1462        if (class->huge)
1463                set_page_private(first_page, 0);
1464        kunmap_atomic(vaddr);
1465        first_page->freelist = (void *)obj;
1466        first_page->inuse--;
1467        zs_stat_dec(class, OBJ_USED, 1);
1468}
1469
1470void zs_free(struct zs_pool *pool, unsigned long handle)
1471{
1472        struct page *first_page, *f_page;
1473        unsigned long obj, f_objidx;
1474        int class_idx;
1475        struct size_class *class;
1476        enum fullness_group fullness;
1477
1478        if (unlikely(!handle))
1479                return;
1480
1481        pin_tag(handle);
1482        obj = handle_to_obj(handle);
1483        obj_to_location(obj, &f_page, &f_objidx);
1484        first_page = get_first_page(f_page);
1485
1486        get_zspage_mapping(first_page, &class_idx, &fullness);
1487        class = pool->size_class[class_idx];
1488
1489        spin_lock(&class->lock);
1490        obj_free(pool, class, obj);
1491        fullness = fix_fullness_group(class, first_page);
1492        if (fullness == ZS_EMPTY) {
1493                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494                                class->size, class->pages_per_zspage));
1495                atomic_long_sub(class->pages_per_zspage,
1496                                &pool->pages_allocated);
1497                free_zspage(first_page);
1498        }
1499        spin_unlock(&class->lock);
1500        unpin_tag(handle);
1501
1502        free_handle(pool, handle);
1503}
1504EXPORT_SYMBOL_GPL(zs_free);
1505
1506static void zs_object_copy(unsigned long dst, unsigned long src,
1507                                struct size_class *class)
1508{
1509        struct page *s_page, *d_page;
1510        unsigned long s_objidx, d_objidx;
1511        unsigned long s_off, d_off;
1512        void *s_addr, *d_addr;
1513        int s_size, d_size, size;
1514        int written = 0;
1515
1516        s_size = d_size = class->size;
1517
1518        obj_to_location(src, &s_page, &s_objidx);
1519        obj_to_location(dst, &d_page, &d_objidx);
1520
1521        s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522        d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523
1524        if (s_off + class->size > PAGE_SIZE)
1525                s_size = PAGE_SIZE - s_off;
1526
1527        if (d_off + class->size > PAGE_SIZE)
1528                d_size = PAGE_SIZE - d_off;
1529
1530        s_addr = kmap_atomic(s_page);
1531        d_addr = kmap_atomic(d_page);
1532
1533        while (1) {
1534                size = min(s_size, d_size);
1535                memcpy(d_addr + d_off, s_addr + s_off, size);
1536                written += size;
1537
1538                if (written == class->size)
1539                        break;
1540
1541                s_off += size;
1542                s_size -= size;
1543                d_off += size;
1544                d_size -= size;
1545
1546                if (s_off >= PAGE_SIZE) {
1547                        kunmap_atomic(d_addr);
1548                        kunmap_atomic(s_addr);
1549                        s_page = get_next_page(s_page);
1550                        BUG_ON(!s_page);
1551                        s_addr = kmap_atomic(s_page);
1552                        d_addr = kmap_atomic(d_page);
1553                        s_size = class->size - written;
1554                        s_off = 0;
1555                }
1556
1557                if (d_off >= PAGE_SIZE) {
1558                        kunmap_atomic(d_addr);
1559                        d_page = get_next_page(d_page);
1560                        BUG_ON(!d_page);
1561                        d_addr = kmap_atomic(d_page);
1562                        d_size = class->size - written;
1563                        d_off = 0;
1564                }
1565        }
1566
1567        kunmap_atomic(d_addr);
1568        kunmap_atomic(s_addr);
1569}
1570
1571/*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575static unsigned long find_alloced_obj(struct page *page, int index,
1576                                        struct size_class *class)
1577{
1578        unsigned long head;
1579        int offset = 0;
1580        unsigned long handle = 0;
1581        void *addr = kmap_atomic(page);
1582
1583        if (!is_first_page(page))
1584                offset = page->index;
1585        offset += class->size * index;
1586
1587        while (offset < PAGE_SIZE) {
1588                head = obj_to_head(class, page, addr + offset);
1589                if (head & OBJ_ALLOCATED_TAG) {
1590                        handle = head & ~OBJ_ALLOCATED_TAG;
1591                        if (trypin_tag(handle))
1592                                break;
1593                        handle = 0;
1594                }
1595
1596                offset += class->size;
1597                index++;
1598        }
1599
1600        kunmap_atomic(addr);
1601        return handle;
1602}
1603
1604struct zs_compact_control {
1605        /* Source page for migration which could be a subpage of zspage. */
1606        struct page *s_page;
1607        /* Destination page for migration which should be a first page
1608         * of zspage. */
1609        struct page *d_page;
1610         /* Starting object index within @s_page which used for live object
1611          * in the subpage. */
1612        int index;
1613};
1614
1615static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616                                struct zs_compact_control *cc)
1617{
1618        unsigned long used_obj, free_obj;
1619        unsigned long handle;
1620        struct page *s_page = cc->s_page;
1621        struct page *d_page = cc->d_page;
1622        unsigned long index = cc->index;
1623        int ret = 0;
1624
1625        while (1) {
1626                handle = find_alloced_obj(s_page, index, class);
1627                if (!handle) {
1628                        s_page = get_next_page(s_page);
1629                        if (!s_page)
1630                                break;
1631                        index = 0;
1632                        continue;
1633                }
1634
1635                /* Stop if there is no more space */
1636                if (zspage_full(d_page)) {
1637                        unpin_tag(handle);
1638                        ret = -ENOMEM;
1639                        break;
1640                }
1641
1642                used_obj = handle_to_obj(handle);
1643                free_obj = obj_malloc(d_page, class, handle);
1644                zs_object_copy(free_obj, used_obj, class);
1645                index++;
1646                /*
1647                 * record_obj updates handle's value to free_obj and it will
1648                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649                 * breaks synchronization using pin_tag(e,g, zs_free) so
1650                 * let's keep the lock bit.
1651                 */
1652                free_obj |= BIT(HANDLE_PIN_BIT);
1653                record_obj(handle, free_obj);
1654                unpin_tag(handle);
1655                obj_free(pool, class, used_obj);
1656        }
1657
1658        /* Remember last position in this iteration */
1659        cc->s_page = s_page;
1660        cc->index = index;
1661
1662        return ret;
1663}
1664
1665static struct page *isolate_target_page(struct size_class *class)
1666{
1667        int i;
1668        struct page *page;
1669
1670        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671                page = class->fullness_list[i];
1672                if (page) {
1673                        remove_zspage(page, class, i);
1674                        break;
1675                }
1676        }
1677
1678        return page;
1679}
1680
1681/*
1682 * putback_zspage - add @first_page into right class's fullness list
1683 * @pool: target pool
1684 * @class: destination class
1685 * @first_page: target page
1686 *
1687 * Return @fist_page's fullness_group
1688 */
1689static enum fullness_group putback_zspage(struct zs_pool *pool,
1690                        struct size_class *class,
1691                        struct page *first_page)
1692{
1693        enum fullness_group fullness;
1694
1695        BUG_ON(!is_first_page(first_page));
1696
1697        fullness = get_fullness_group(first_page);
1698        insert_zspage(first_page, class, fullness);
1699        set_zspage_mapping(first_page, class->index, fullness);
1700
1701        if (fullness == ZS_EMPTY) {
1702                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703                        class->size, class->pages_per_zspage));
1704                atomic_long_sub(class->pages_per_zspage,
1705                                &pool->pages_allocated);
1706
1707                free_zspage(first_page);
1708        }
1709
1710        return fullness;
1711}
1712
1713static struct page *isolate_source_page(struct size_class *class)
1714{
1715        int i;
1716        struct page *page = NULL;
1717
1718        for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719                page = class->fullness_list[i];
1720                if (!page)
1721                        continue;
1722
1723                remove_zspage(page, class, i);
1724                break;
1725        }
1726
1727        return page;
1728}
1729
1730/*
1731 *
1732 * Based on the number of unused allocated objects calculate
1733 * and return the number of pages that we can free.
1734 */
1735static unsigned long zs_can_compact(struct size_class *class)
1736{
1737        unsigned long obj_wasted;
1738        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1739        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1740
1741        if (obj_allocated <= obj_used)
1742                return 0;
1743
1744        obj_wasted = obj_allocated - obj_used;
1745        obj_wasted /= get_maxobj_per_zspage(class->size,
1746                        class->pages_per_zspage);
1747
1748        return obj_wasted * class->pages_per_zspage;
1749}
1750
1751static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1752{
1753        struct zs_compact_control cc;
1754        struct page *src_page;
1755        struct page *dst_page = NULL;
1756
1757        spin_lock(&class->lock);
1758        while ((src_page = isolate_source_page(class))) {
1759
1760                BUG_ON(!is_first_page(src_page));
1761
1762                if (!zs_can_compact(class))
1763                        break;
1764
1765                cc.index = 0;
1766                cc.s_page = src_page;
1767
1768                while ((dst_page = isolate_target_page(class))) {
1769                        cc.d_page = dst_page;
1770                        /*
1771                         * If there is no more space in dst_page, resched
1772                         * and see if anyone had allocated another zspage.
1773                         */
1774                        if (!migrate_zspage(pool, class, &cc))
1775                                break;
1776
1777                        putback_zspage(pool, class, dst_page);
1778                }
1779
1780                /* Stop if we couldn't find slot */
1781                if (dst_page == NULL)
1782                        break;
1783
1784                putback_zspage(pool, class, dst_page);
1785                if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1786                        pool->stats.pages_compacted += class->pages_per_zspage;
1787                spin_unlock(&class->lock);
1788                cond_resched();
1789                spin_lock(&class->lock);
1790        }
1791
1792        if (src_page)
1793                putback_zspage(pool, class, src_page);
1794
1795        spin_unlock(&class->lock);
1796}
1797
1798unsigned long zs_compact(struct zs_pool *pool)
1799{
1800        int i;
1801        struct size_class *class;
1802
1803        for (i = zs_size_classes - 1; i >= 0; i--) {
1804                class = pool->size_class[i];
1805                if (!class)
1806                        continue;
1807                if (class->index != i)
1808                        continue;
1809                __zs_compact(pool, class);
1810        }
1811
1812        return pool->stats.pages_compacted;
1813}
1814EXPORT_SYMBOL_GPL(zs_compact);
1815
1816void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1817{
1818        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1819}
1820EXPORT_SYMBOL_GPL(zs_pool_stats);
1821
1822static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1823                struct shrink_control *sc)
1824{
1825        unsigned long pages_freed;
1826        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1827                        shrinker);
1828
1829        pages_freed = pool->stats.pages_compacted;
1830        /*
1831         * Compact classes and calculate compaction delta.
1832         * Can run concurrently with a manually triggered
1833         * (by user) compaction.
1834         */
1835        pages_freed = zs_compact(pool) - pages_freed;
1836
1837        return pages_freed ? pages_freed : SHRINK_STOP;
1838}
1839
1840static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1841                struct shrink_control *sc)
1842{
1843        int i;
1844        struct size_class *class;
1845        unsigned long pages_to_free = 0;
1846        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1847                        shrinker);
1848
1849        for (i = zs_size_classes - 1; i >= 0; i--) {
1850                class = pool->size_class[i];
1851                if (!class)
1852                        continue;
1853                if (class->index != i)
1854                        continue;
1855
1856                pages_to_free += zs_can_compact(class);
1857        }
1858
1859        return pages_to_free;
1860}
1861
1862static void zs_unregister_shrinker(struct zs_pool *pool)
1863{
1864        if (pool->shrinker_enabled) {
1865                unregister_shrinker(&pool->shrinker);
1866                pool->shrinker_enabled = false;
1867        }
1868}
1869
1870static int zs_register_shrinker(struct zs_pool *pool)
1871{
1872        pool->shrinker.scan_objects = zs_shrinker_scan;
1873        pool->shrinker.count_objects = zs_shrinker_count;
1874        pool->shrinker.batch = 0;
1875        pool->shrinker.seeks = DEFAULT_SEEKS;
1876
1877        return register_shrinker(&pool->shrinker);
1878}
1879
1880/**
1881 * zs_create_pool - Creates an allocation pool to work from.
1882 * @flags: allocation flags used to allocate pool metadata
1883 *
1884 * This function must be called before anything when using
1885 * the zsmalloc allocator.
1886 *
1887 * On success, a pointer to the newly created pool is returned,
1888 * otherwise NULL.
1889 */
1890struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1891{
1892        int i;
1893        struct zs_pool *pool;
1894        struct size_class *prev_class = NULL;
1895
1896        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1897        if (!pool)
1898                return NULL;
1899
1900        pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1901                        GFP_KERNEL);
1902        if (!pool->size_class) {
1903                kfree(pool);
1904                return NULL;
1905        }
1906
1907        pool->name = kstrdup(name, GFP_KERNEL);
1908        if (!pool->name)
1909                goto err;
1910
1911        if (create_handle_cache(pool))
1912                goto err;
1913
1914        /*
1915         * Iterate reversly, because, size of size_class that we want to use
1916         * for merging should be larger or equal to current size.
1917         */
1918        for (i = zs_size_classes - 1; i >= 0; i--) {
1919                int size;
1920                int pages_per_zspage;
1921                struct size_class *class;
1922
1923                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1924                if (size > ZS_MAX_ALLOC_SIZE)
1925                        size = ZS_MAX_ALLOC_SIZE;
1926                pages_per_zspage = get_pages_per_zspage(size);
1927
1928                /*
1929                 * size_class is used for normal zsmalloc operation such
1930                 * as alloc/free for that size. Although it is natural that we
1931                 * have one size_class for each size, there is a chance that we
1932                 * can get more memory utilization if we use one size_class for
1933                 * many different sizes whose size_class have same
1934                 * characteristics. So, we makes size_class point to
1935                 * previous size_class if possible.
1936                 */
1937                if (prev_class) {
1938                        if (can_merge(prev_class, size, pages_per_zspage)) {
1939                                pool->size_class[i] = prev_class;
1940                                continue;
1941                        }
1942                }
1943
1944                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1945                if (!class)
1946                        goto err;
1947
1948                class->size = size;
1949                class->index = i;
1950                class->pages_per_zspage = pages_per_zspage;
1951                if (pages_per_zspage == 1 &&
1952                        get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1953                        class->huge = true;
1954                spin_lock_init(&class->lock);
1955                pool->size_class[i] = class;
1956
1957                prev_class = class;
1958        }
1959
1960        pool->flags = flags;
1961
1962        if (zs_pool_stat_create(name, pool))
1963                goto err;
1964
1965        /*
1966         * Not critical, we still can use the pool
1967         * and user can trigger compaction manually.
1968         */
1969        if (zs_register_shrinker(pool) == 0)
1970                pool->shrinker_enabled = true;
1971        return pool;
1972
1973err:
1974        zs_destroy_pool(pool);
1975        return NULL;
1976}
1977EXPORT_SYMBOL_GPL(zs_create_pool);
1978
1979void zs_destroy_pool(struct zs_pool *pool)
1980{
1981        int i;
1982
1983        zs_unregister_shrinker(pool);
1984        zs_pool_stat_destroy(pool);
1985
1986        for (i = 0; i < zs_size_classes; i++) {
1987                int fg;
1988                struct size_class *class = pool->size_class[i];
1989
1990                if (!class)
1991                        continue;
1992
1993                if (class->index != i)
1994                        continue;
1995
1996                for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1997                        if (class->fullness_list[fg]) {
1998                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1999                                        class->size, fg);
2000                        }
2001                }
2002                kfree(class);
2003        }
2004
2005        destroy_handle_cache(pool);
2006        kfree(pool->size_class);
2007        kfree(pool->name);
2008        kfree(pool);
2009}
2010EXPORT_SYMBOL_GPL(zs_destroy_pool);
2011
2012static int __init zs_init(void)
2013{
2014        int ret = zs_register_cpu_notifier();
2015
2016        if (ret)
2017                goto notifier_fail;
2018
2019        init_zs_size_classes();
2020
2021#ifdef CONFIG_ZPOOL
2022        zpool_register_driver(&zs_zpool_driver);
2023#endif
2024
2025        ret = zs_stat_init();
2026        if (ret) {
2027                pr_err("zs stat initialization failed\n");
2028                goto stat_fail;
2029        }
2030        return 0;
2031
2032stat_fail:
2033#ifdef CONFIG_ZPOOL
2034        zpool_unregister_driver(&zs_zpool_driver);
2035#endif
2036notifier_fail:
2037        zs_unregister_cpu_notifier();
2038
2039        return ret;
2040}
2041
2042static void __exit zs_exit(void)
2043{
2044#ifdef CONFIG_ZPOOL
2045        zpool_unregister_driver(&zs_zpool_driver);
2046#endif
2047        zs_unregister_cpu_notifier();
2048
2049        zs_stat_exit();
2050}
2051
2052module_init(zs_init);
2053module_exit(zs_exit);
2054
2055MODULE_LICENSE("Dual BSD/GPL");
2056MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2057