linux/net/ipv4/ipmr.c
<<
>>
Prefs
   1/*
   2 *      IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *        Linux Consultancy and Custom Driver Development
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 *
  12 *      Fixes:
  13 *      Michael Chastain        :       Incorrect size of copying.
  14 *      Alan Cox                :       Added the cache manager code
  15 *      Alan Cox                :       Fixed the clone/copy bug and device race.
  16 *      Mike McLagan            :       Routing by source
  17 *      Malcolm Beattie         :       Buffer handling fixes.
  18 *      Alexey Kuznetsov        :       Double buffer free and other fixes.
  19 *      SVR Anand               :       Fixed several multicast bugs and problems.
  20 *      Alexey Kuznetsov        :       Status, optimisations and more.
  21 *      Brad Parker             :       Better behaviour on mrouted upcall
  22 *                                      overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
  25 *                                      Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69#include <net/nexthop.h>
  70
  71struct ipmr_rule {
  72        struct fib_rule         common;
  73};
  74
  75struct ipmr_result {
  76        struct mr_table         *mrt;
  77};
  78
  79/* Big lock, protecting vif table, mrt cache and mroute socket state.
  80 * Note that the changes are semaphored via rtnl_lock.
  81 */
  82
  83static DEFINE_RWLOCK(mrt_lock);
  84
  85/* Multicast router control variables */
  86
  87/* Special spinlock for queue of unresolved entries */
  88static DEFINE_SPINLOCK(mfc_unres_lock);
  89
  90/* We return to original Alan's scheme. Hash table of resolved
  91 * entries is changed only in process context and protected
  92 * with weak lock mrt_lock. Queue of unresolved entries is protected
  93 * with strong spinlock mfc_unres_lock.
  94 *
  95 * In this case data path is free of exclusive locks at all.
  96 */
  97
  98static struct kmem_cache *mrt_cachep __read_mostly;
  99
 100static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 101static void ipmr_free_table(struct mr_table *mrt);
 102
 103static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 104                          struct sk_buff *skb, struct mfc_cache *cache,
 105                          int local);
 106static int ipmr_cache_report(struct mr_table *mrt,
 107                             struct sk_buff *pkt, vifi_t vifi, int assert);
 108static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 109                              struct mfc_cache *c, struct rtmsg *rtm);
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111                                 int cmd);
 112static void mroute_clean_tables(struct mr_table *mrt, bool all);
 113static void ipmr_expire_process(unsigned long arg);
 114
 115#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 116#define ipmr_for_each_table(mrt, net) \
 117        list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 118
 119static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 120{
 121        struct mr_table *mrt;
 122
 123        ipmr_for_each_table(mrt, net) {
 124                if (mrt->id == id)
 125                        return mrt;
 126        }
 127        return NULL;
 128}
 129
 130static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 131                           struct mr_table **mrt)
 132{
 133        int err;
 134        struct ipmr_result res;
 135        struct fib_lookup_arg arg = {
 136                .result = &res,
 137                .flags = FIB_LOOKUP_NOREF,
 138        };
 139
 140        err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 141                               flowi4_to_flowi(flp4), 0, &arg);
 142        if (err < 0)
 143                return err;
 144        *mrt = res.mrt;
 145        return 0;
 146}
 147
 148static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 149                            int flags, struct fib_lookup_arg *arg)
 150{
 151        struct ipmr_result *res = arg->result;
 152        struct mr_table *mrt;
 153
 154        switch (rule->action) {
 155        case FR_ACT_TO_TBL:
 156                break;
 157        case FR_ACT_UNREACHABLE:
 158                return -ENETUNREACH;
 159        case FR_ACT_PROHIBIT:
 160                return -EACCES;
 161        case FR_ACT_BLACKHOLE:
 162        default:
 163                return -EINVAL;
 164        }
 165
 166        mrt = ipmr_get_table(rule->fr_net, rule->table);
 167        if (!mrt)
 168                return -EAGAIN;
 169        res->mrt = mrt;
 170        return 0;
 171}
 172
 173static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 174{
 175        return 1;
 176}
 177
 178static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 179        FRA_GENERIC_POLICY,
 180};
 181
 182static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 183                               struct fib_rule_hdr *frh, struct nlattr **tb)
 184{
 185        return 0;
 186}
 187
 188static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 189                             struct nlattr **tb)
 190{
 191        return 1;
 192}
 193
 194static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 195                          struct fib_rule_hdr *frh)
 196{
 197        frh->dst_len = 0;
 198        frh->src_len = 0;
 199        frh->tos     = 0;
 200        return 0;
 201}
 202
 203static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 204        .family         = RTNL_FAMILY_IPMR,
 205        .rule_size      = sizeof(struct ipmr_rule),
 206        .addr_size      = sizeof(u32),
 207        .action         = ipmr_rule_action,
 208        .match          = ipmr_rule_match,
 209        .configure      = ipmr_rule_configure,
 210        .compare        = ipmr_rule_compare,
 211        .fill           = ipmr_rule_fill,
 212        .nlgroup        = RTNLGRP_IPV4_RULE,
 213        .policy         = ipmr_rule_policy,
 214        .owner          = THIS_MODULE,
 215};
 216
 217static int __net_init ipmr_rules_init(struct net *net)
 218{
 219        struct fib_rules_ops *ops;
 220        struct mr_table *mrt;
 221        int err;
 222
 223        ops = fib_rules_register(&ipmr_rules_ops_template, net);
 224        if (IS_ERR(ops))
 225                return PTR_ERR(ops);
 226
 227        INIT_LIST_HEAD(&net->ipv4.mr_tables);
 228
 229        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 230        if (IS_ERR(mrt)) {
 231                err = PTR_ERR(mrt);
 232                goto err1;
 233        }
 234
 235        err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 236        if (err < 0)
 237                goto err2;
 238
 239        net->ipv4.mr_rules_ops = ops;
 240        return 0;
 241
 242err2:
 243        ipmr_free_table(mrt);
 244err1:
 245        fib_rules_unregister(ops);
 246        return err;
 247}
 248
 249static void __net_exit ipmr_rules_exit(struct net *net)
 250{
 251        struct mr_table *mrt, *next;
 252
 253        rtnl_lock();
 254        list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 255                list_del(&mrt->list);
 256                ipmr_free_table(mrt);
 257        }
 258        fib_rules_unregister(net->ipv4.mr_rules_ops);
 259        rtnl_unlock();
 260}
 261#else
 262#define ipmr_for_each_table(mrt, net) \
 263        for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 264
 265static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 266{
 267        return net->ipv4.mrt;
 268}
 269
 270static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 271                           struct mr_table **mrt)
 272{
 273        *mrt = net->ipv4.mrt;
 274        return 0;
 275}
 276
 277static int __net_init ipmr_rules_init(struct net *net)
 278{
 279        struct mr_table *mrt;
 280
 281        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 282        if (IS_ERR(mrt))
 283                return PTR_ERR(mrt);
 284        net->ipv4.mrt = mrt;
 285        return 0;
 286}
 287
 288static void __net_exit ipmr_rules_exit(struct net *net)
 289{
 290        rtnl_lock();
 291        ipmr_free_table(net->ipv4.mrt);
 292        net->ipv4.mrt = NULL;
 293        rtnl_unlock();
 294}
 295#endif
 296
 297static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 298{
 299        struct mr_table *mrt;
 300        unsigned int i;
 301
 302        /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 303        if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 304                return ERR_PTR(-EINVAL);
 305
 306        mrt = ipmr_get_table(net, id);
 307        if (mrt)
 308                return mrt;
 309
 310        mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 311        if (!mrt)
 312                return ERR_PTR(-ENOMEM);
 313        write_pnet(&mrt->net, net);
 314        mrt->id = id;
 315
 316        /* Forwarding cache */
 317        for (i = 0; i < MFC_LINES; i++)
 318                INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 319
 320        INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 321
 322        setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 323                    (unsigned long)mrt);
 324
 325        mrt->mroute_reg_vif_num = -1;
 326#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 327        list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 328#endif
 329        return mrt;
 330}
 331
 332static void ipmr_free_table(struct mr_table *mrt)
 333{
 334        del_timer_sync(&mrt->ipmr_expire_timer);
 335        mroute_clean_tables(mrt, true);
 336        kfree(mrt);
 337}
 338
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343        struct net *net = dev_net(dev);
 344
 345        dev_close(dev);
 346
 347        dev = __dev_get_by_name(net, "tunl0");
 348        if (dev) {
 349                const struct net_device_ops *ops = dev->netdev_ops;
 350                struct ifreq ifr;
 351                struct ip_tunnel_parm p;
 352
 353                memset(&p, 0, sizeof(p));
 354                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356                p.iph.version = 4;
 357                p.iph.ihl = 5;
 358                p.iph.protocol = IPPROTO_IPIP;
 359                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362                if (ops->ndo_do_ioctl) {
 363                        mm_segment_t oldfs = get_fs();
 364
 365                        set_fs(KERNEL_DS);
 366                        ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367                        set_fs(oldfs);
 368                }
 369        }
 370}
 371
 372/* Initialize ipmr pimreg/tunnel in_device */
 373static bool ipmr_init_vif_indev(const struct net_device *dev)
 374{
 375        struct in_device *in_dev;
 376
 377        ASSERT_RTNL();
 378
 379        in_dev = __in_dev_get_rtnl(dev);
 380        if (!in_dev)
 381                return false;
 382        ipv4_devconf_setall(in_dev);
 383        neigh_parms_data_state_setall(in_dev->arp_parms);
 384        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 385
 386        return true;
 387}
 388
 389static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391        struct net_device  *dev;
 392
 393        dev = __dev_get_by_name(net, "tunl0");
 394
 395        if (dev) {
 396                const struct net_device_ops *ops = dev->netdev_ops;
 397                int err;
 398                struct ifreq ifr;
 399                struct ip_tunnel_parm p;
 400
 401                memset(&p, 0, sizeof(p));
 402                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 403                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 404                p.iph.version = 4;
 405                p.iph.ihl = 5;
 406                p.iph.protocol = IPPROTO_IPIP;
 407                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 408                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 409
 410                if (ops->ndo_do_ioctl) {
 411                        mm_segment_t oldfs = get_fs();
 412
 413                        set_fs(KERNEL_DS);
 414                        err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 415                        set_fs(oldfs);
 416                } else {
 417                        err = -EOPNOTSUPP;
 418                }
 419                dev = NULL;
 420
 421                if (err == 0 &&
 422                    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 423                        dev->flags |= IFF_MULTICAST;
 424                        if (!ipmr_init_vif_indev(dev))
 425                                goto failure;
 426                        if (dev_open(dev))
 427                                goto failure;
 428                        dev_hold(dev);
 429                }
 430        }
 431        return dev;
 432
 433failure:
 434        unregister_netdevice(dev);
 435        return NULL;
 436}
 437
 438#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 439static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 440{
 441        struct net *net = dev_net(dev);
 442        struct mr_table *mrt;
 443        struct flowi4 fl4 = {
 444                .flowi4_oif     = dev->ifindex,
 445                .flowi4_iif     = skb->skb_iif ? : LOOPBACK_IFINDEX,
 446                .flowi4_mark    = skb->mark,
 447        };
 448        int err;
 449
 450        err = ipmr_fib_lookup(net, &fl4, &mrt);
 451        if (err < 0) {
 452                kfree_skb(skb);
 453                return err;
 454        }
 455
 456        read_lock(&mrt_lock);
 457        dev->stats.tx_bytes += skb->len;
 458        dev->stats.tx_packets++;
 459        ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 460        read_unlock(&mrt_lock);
 461        kfree_skb(skb);
 462        return NETDEV_TX_OK;
 463}
 464
 465static int reg_vif_get_iflink(const struct net_device *dev)
 466{
 467        return 0;
 468}
 469
 470static const struct net_device_ops reg_vif_netdev_ops = {
 471        .ndo_start_xmit = reg_vif_xmit,
 472        .ndo_get_iflink = reg_vif_get_iflink,
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477        dev->type               = ARPHRD_PIMREG;
 478        dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479        dev->flags              = IFF_NOARP;
 480        dev->netdev_ops         = &reg_vif_netdev_ops;
 481        dev->destructor         = free_netdev;
 482        dev->features           |= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487        struct net_device *dev;
 488        char name[IFNAMSIZ];
 489
 490        if (mrt->id == RT_TABLE_DEFAULT)
 491                sprintf(name, "pimreg");
 492        else
 493                sprintf(name, "pimreg%u", mrt->id);
 494
 495        dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 496
 497        if (!dev)
 498                return NULL;
 499
 500        dev_net_set(dev, net);
 501
 502        if (register_netdevice(dev)) {
 503                free_netdev(dev);
 504                return NULL;
 505        }
 506
 507        if (!ipmr_init_vif_indev(dev))
 508                goto failure;
 509        if (dev_open(dev))
 510                goto failure;
 511
 512        dev_hold(dev);
 513
 514        return dev;
 515
 516failure:
 517        unregister_netdevice(dev);
 518        return NULL;
 519}
 520
 521/* called with rcu_read_lock() */
 522static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 523                     unsigned int pimlen)
 524{
 525        struct net_device *reg_dev = NULL;
 526        struct iphdr *encap;
 527
 528        encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 529        /* Check that:
 530         * a. packet is really sent to a multicast group
 531         * b. packet is not a NULL-REGISTER
 532         * c. packet is not truncated
 533         */
 534        if (!ipv4_is_multicast(encap->daddr) ||
 535            encap->tot_len == 0 ||
 536            ntohs(encap->tot_len) + pimlen > skb->len)
 537                return 1;
 538
 539        read_lock(&mrt_lock);
 540        if (mrt->mroute_reg_vif_num >= 0)
 541                reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
 542        read_unlock(&mrt_lock);
 543
 544        if (!reg_dev)
 545                return 1;
 546
 547        skb->mac_header = skb->network_header;
 548        skb_pull(skb, (u8 *)encap - skb->data);
 549        skb_reset_network_header(skb);
 550        skb->protocol = htons(ETH_P_IP);
 551        skb->ip_summed = CHECKSUM_NONE;
 552
 553        skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 554
 555        netif_rx(skb);
 556
 557        return NET_RX_SUCCESS;
 558}
 559#else
 560static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 561{
 562        return NULL;
 563}
 564#endif
 565
 566/**
 567 *      vif_delete - Delete a VIF entry
 568 *      @notify: Set to 1, if the caller is a notifier_call
 569 */
 570static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 571                      struct list_head *head)
 572{
 573        struct vif_device *v;
 574        struct net_device *dev;
 575        struct in_device *in_dev;
 576
 577        if (vifi < 0 || vifi >= mrt->maxvif)
 578                return -EADDRNOTAVAIL;
 579
 580        v = &mrt->vif_table[vifi];
 581
 582        write_lock_bh(&mrt_lock);
 583        dev = v->dev;
 584        v->dev = NULL;
 585
 586        if (!dev) {
 587                write_unlock_bh(&mrt_lock);
 588                return -EADDRNOTAVAIL;
 589        }
 590
 591        if (vifi == mrt->mroute_reg_vif_num)
 592                mrt->mroute_reg_vif_num = -1;
 593
 594        if (vifi + 1 == mrt->maxvif) {
 595                int tmp;
 596
 597                for (tmp = vifi - 1; tmp >= 0; tmp--) {
 598                        if (VIF_EXISTS(mrt, tmp))
 599                                break;
 600                }
 601                mrt->maxvif = tmp+1;
 602        }
 603
 604        write_unlock_bh(&mrt_lock);
 605
 606        dev_set_allmulti(dev, -1);
 607
 608        in_dev = __in_dev_get_rtnl(dev);
 609        if (in_dev) {
 610                IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 611                inet_netconf_notify_devconf(dev_net(dev),
 612                                            NETCONFA_MC_FORWARDING,
 613                                            dev->ifindex, &in_dev->cnf);
 614                ip_rt_multicast_event(in_dev);
 615        }
 616
 617        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 618                unregister_netdevice_queue(dev, head);
 619
 620        dev_put(dev);
 621        return 0;
 622}
 623
 624static void ipmr_cache_free_rcu(struct rcu_head *head)
 625{
 626        struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 627
 628        kmem_cache_free(mrt_cachep, c);
 629}
 630
 631static inline void ipmr_cache_free(struct mfc_cache *c)
 632{
 633        call_rcu(&c->rcu, ipmr_cache_free_rcu);
 634}
 635
 636/* Destroy an unresolved cache entry, killing queued skbs
 637 * and reporting error to netlink readers.
 638 */
 639static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 640{
 641        struct net *net = read_pnet(&mrt->net);
 642        struct sk_buff *skb;
 643        struct nlmsgerr *e;
 644
 645        atomic_dec(&mrt->cache_resolve_queue_len);
 646
 647        while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 648                if (ip_hdr(skb)->version == 0) {
 649                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 650                        nlh->nlmsg_type = NLMSG_ERROR;
 651                        nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 652                        skb_trim(skb, nlh->nlmsg_len);
 653                        e = nlmsg_data(nlh);
 654                        e->error = -ETIMEDOUT;
 655                        memset(&e->msg, 0, sizeof(e->msg));
 656
 657                        rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 658                } else {
 659                        kfree_skb(skb);
 660                }
 661        }
 662
 663        ipmr_cache_free(c);
 664}
 665
 666/* Timer process for the unresolved queue. */
 667static void ipmr_expire_process(unsigned long arg)
 668{
 669        struct mr_table *mrt = (struct mr_table *)arg;
 670        unsigned long now;
 671        unsigned long expires;
 672        struct mfc_cache *c, *next;
 673
 674        if (!spin_trylock(&mfc_unres_lock)) {
 675                mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 676                return;
 677        }
 678
 679        if (list_empty(&mrt->mfc_unres_queue))
 680                goto out;
 681
 682        now = jiffies;
 683        expires = 10*HZ;
 684
 685        list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 686                if (time_after(c->mfc_un.unres.expires, now)) {
 687                        unsigned long interval = c->mfc_un.unres.expires - now;
 688                        if (interval < expires)
 689                                expires = interval;
 690                        continue;
 691                }
 692
 693                list_del(&c->list);
 694                mroute_netlink_event(mrt, c, RTM_DELROUTE);
 695                ipmr_destroy_unres(mrt, c);
 696        }
 697
 698        if (!list_empty(&mrt->mfc_unres_queue))
 699                mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 700
 701out:
 702        spin_unlock(&mfc_unres_lock);
 703}
 704
 705/* Fill oifs list. It is called under write locked mrt_lock. */
 706static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 707                                   unsigned char *ttls)
 708{
 709        int vifi;
 710
 711        cache->mfc_un.res.minvif = MAXVIFS;
 712        cache->mfc_un.res.maxvif = 0;
 713        memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 714
 715        for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 716                if (VIF_EXISTS(mrt, vifi) &&
 717                    ttls[vifi] && ttls[vifi] < 255) {
 718                        cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 719                        if (cache->mfc_un.res.minvif > vifi)
 720                                cache->mfc_un.res.minvif = vifi;
 721                        if (cache->mfc_un.res.maxvif <= vifi)
 722                                cache->mfc_un.res.maxvif = vifi + 1;
 723                }
 724        }
 725}
 726
 727static int vif_add(struct net *net, struct mr_table *mrt,
 728                   struct vifctl *vifc, int mrtsock)
 729{
 730        int vifi = vifc->vifc_vifi;
 731        struct vif_device *v = &mrt->vif_table[vifi];
 732        struct net_device *dev;
 733        struct in_device *in_dev;
 734        int err;
 735
 736        /* Is vif busy ? */
 737        if (VIF_EXISTS(mrt, vifi))
 738                return -EADDRINUSE;
 739
 740        switch (vifc->vifc_flags) {
 741        case VIFF_REGISTER:
 742                if (!ipmr_pimsm_enabled())
 743                        return -EINVAL;
 744                /* Special Purpose VIF in PIM
 745                 * All the packets will be sent to the daemon
 746                 */
 747                if (mrt->mroute_reg_vif_num >= 0)
 748                        return -EADDRINUSE;
 749                dev = ipmr_reg_vif(net, mrt);
 750                if (!dev)
 751                        return -ENOBUFS;
 752                err = dev_set_allmulti(dev, 1);
 753                if (err) {
 754                        unregister_netdevice(dev);
 755                        dev_put(dev);
 756                        return err;
 757                }
 758                break;
 759        case VIFF_TUNNEL:
 760                dev = ipmr_new_tunnel(net, vifc);
 761                if (!dev)
 762                        return -ENOBUFS;
 763                err = dev_set_allmulti(dev, 1);
 764                if (err) {
 765                        ipmr_del_tunnel(dev, vifc);
 766                        dev_put(dev);
 767                        return err;
 768                }
 769                break;
 770        case VIFF_USE_IFINDEX:
 771        case 0:
 772                if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 773                        dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 774                        if (dev && !__in_dev_get_rtnl(dev)) {
 775                                dev_put(dev);
 776                                return -EADDRNOTAVAIL;
 777                        }
 778                } else {
 779                        dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 780                }
 781                if (!dev)
 782                        return -EADDRNOTAVAIL;
 783                err = dev_set_allmulti(dev, 1);
 784                if (err) {
 785                        dev_put(dev);
 786                        return err;
 787                }
 788                break;
 789        default:
 790                return -EINVAL;
 791        }
 792
 793        in_dev = __in_dev_get_rtnl(dev);
 794        if (!in_dev) {
 795                dev_put(dev);
 796                return -EADDRNOTAVAIL;
 797        }
 798        IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 799        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 800                                    &in_dev->cnf);
 801        ip_rt_multicast_event(in_dev);
 802
 803        /* Fill in the VIF structures */
 804
 805        v->rate_limit = vifc->vifc_rate_limit;
 806        v->local = vifc->vifc_lcl_addr.s_addr;
 807        v->remote = vifc->vifc_rmt_addr.s_addr;
 808        v->flags = vifc->vifc_flags;
 809        if (!mrtsock)
 810                v->flags |= VIFF_STATIC;
 811        v->threshold = vifc->vifc_threshold;
 812        v->bytes_in = 0;
 813        v->bytes_out = 0;
 814        v->pkt_in = 0;
 815        v->pkt_out = 0;
 816        v->link = dev->ifindex;
 817        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 818                v->link = dev_get_iflink(dev);
 819
 820        /* And finish update writing critical data */
 821        write_lock_bh(&mrt_lock);
 822        v->dev = dev;
 823        if (v->flags & VIFF_REGISTER)
 824                mrt->mroute_reg_vif_num = vifi;
 825        if (vifi+1 > mrt->maxvif)
 826                mrt->maxvif = vifi+1;
 827        write_unlock_bh(&mrt_lock);
 828        return 0;
 829}
 830
 831/* called with rcu_read_lock() */
 832static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 833                                         __be32 origin,
 834                                         __be32 mcastgrp)
 835{
 836        int line = MFC_HASH(mcastgrp, origin);
 837        struct mfc_cache *c;
 838
 839        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 840                if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 841                        return c;
 842        }
 843        return NULL;
 844}
 845
 846/* Look for a (*,*,oif) entry */
 847static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 848                                                    int vifi)
 849{
 850        int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 851        struct mfc_cache *c;
 852
 853        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 854                if (c->mfc_origin == htonl(INADDR_ANY) &&
 855                    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 856                    c->mfc_un.res.ttls[vifi] < 255)
 857                        return c;
 858
 859        return NULL;
 860}
 861
 862/* Look for a (*,G) entry */
 863static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 864                                             __be32 mcastgrp, int vifi)
 865{
 866        int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 867        struct mfc_cache *c, *proxy;
 868
 869        if (mcastgrp == htonl(INADDR_ANY))
 870                goto skip;
 871
 872        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 873                if (c->mfc_origin == htonl(INADDR_ANY) &&
 874                    c->mfc_mcastgrp == mcastgrp) {
 875                        if (c->mfc_un.res.ttls[vifi] < 255)
 876                                return c;
 877
 878                        /* It's ok if the vifi is part of the static tree */
 879                        proxy = ipmr_cache_find_any_parent(mrt,
 880                                                           c->mfc_parent);
 881                        if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 882                                return c;
 883                }
 884
 885skip:
 886        return ipmr_cache_find_any_parent(mrt, vifi);
 887}
 888
 889/* Allocate a multicast cache entry */
 890static struct mfc_cache *ipmr_cache_alloc(void)
 891{
 892        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 893
 894        if (c)
 895                c->mfc_un.res.minvif = MAXVIFS;
 896        return c;
 897}
 898
 899static struct mfc_cache *ipmr_cache_alloc_unres(void)
 900{
 901        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 902
 903        if (c) {
 904                skb_queue_head_init(&c->mfc_un.unres.unresolved);
 905                c->mfc_un.unres.expires = jiffies + 10*HZ;
 906        }
 907        return c;
 908}
 909
 910/* A cache entry has gone into a resolved state from queued */
 911static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 912                               struct mfc_cache *uc, struct mfc_cache *c)
 913{
 914        struct sk_buff *skb;
 915        struct nlmsgerr *e;
 916
 917        /* Play the pending entries through our router */
 918        while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 919                if (ip_hdr(skb)->version == 0) {
 920                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 921
 922                        if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 923                                nlh->nlmsg_len = skb_tail_pointer(skb) -
 924                                                 (u8 *)nlh;
 925                        } else {
 926                                nlh->nlmsg_type = NLMSG_ERROR;
 927                                nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 928                                skb_trim(skb, nlh->nlmsg_len);
 929                                e = nlmsg_data(nlh);
 930                                e->error = -EMSGSIZE;
 931                                memset(&e->msg, 0, sizeof(e->msg));
 932                        }
 933
 934                        rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 935                } else {
 936                        ip_mr_forward(net, mrt, skb, c, 0);
 937                }
 938        }
 939}
 940
 941/* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 942 * expects the following bizarre scheme.
 943 *
 944 * Called under mrt_lock.
 945 */
 946static int ipmr_cache_report(struct mr_table *mrt,
 947                             struct sk_buff *pkt, vifi_t vifi, int assert)
 948{
 949        const int ihl = ip_hdrlen(pkt);
 950        struct sock *mroute_sk;
 951        struct igmphdr *igmp;
 952        struct igmpmsg *msg;
 953        struct sk_buff *skb;
 954        int ret;
 955
 956        if (assert == IGMPMSG_WHOLEPKT)
 957                skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 958        else
 959                skb = alloc_skb(128, GFP_ATOMIC);
 960
 961        if (!skb)
 962                return -ENOBUFS;
 963
 964        if (assert == IGMPMSG_WHOLEPKT) {
 965                /* Ugly, but we have no choice with this interface.
 966                 * Duplicate old header, fix ihl, length etc.
 967                 * And all this only to mangle msg->im_msgtype and
 968                 * to set msg->im_mbz to "mbz" :-)
 969                 */
 970                skb_push(skb, sizeof(struct iphdr));
 971                skb_reset_network_header(skb);
 972                skb_reset_transport_header(skb);
 973                msg = (struct igmpmsg *)skb_network_header(skb);
 974                memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 975                msg->im_msgtype = IGMPMSG_WHOLEPKT;
 976                msg->im_mbz = 0;
 977                msg->im_vif = mrt->mroute_reg_vif_num;
 978                ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 979                ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 980                                             sizeof(struct iphdr));
 981        } else {
 982                /* Copy the IP header */
 983                skb_set_network_header(skb, skb->len);
 984                skb_put(skb, ihl);
 985                skb_copy_to_linear_data(skb, pkt->data, ihl);
 986                /* Flag to the kernel this is a route add */
 987                ip_hdr(skb)->protocol = 0;
 988                msg = (struct igmpmsg *)skb_network_header(skb);
 989                msg->im_vif = vifi;
 990                skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 991                /* Add our header */
 992                igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 993                igmp->type = assert;
 994                msg->im_msgtype = assert;
 995                igmp->code = 0;
 996                ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
 997                skb->transport_header = skb->network_header;
 998        }
 999
1000        rcu_read_lock();
1001        mroute_sk = rcu_dereference(mrt->mroute_sk);
1002        if (!mroute_sk) {
1003                rcu_read_unlock();
1004                kfree_skb(skb);
1005                return -EINVAL;
1006        }
1007
1008        /* Deliver to mrouted */
1009        ret = sock_queue_rcv_skb(mroute_sk, skb);
1010        rcu_read_unlock();
1011        if (ret < 0) {
1012                net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1013                kfree_skb(skb);
1014        }
1015
1016        return ret;
1017}
1018
1019/* Queue a packet for resolution. It gets locked cache entry! */
1020static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1021                                 struct sk_buff *skb)
1022{
1023        bool found = false;
1024        int err;
1025        struct mfc_cache *c;
1026        const struct iphdr *iph = ip_hdr(skb);
1027
1028        spin_lock_bh(&mfc_unres_lock);
1029        list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1030                if (c->mfc_mcastgrp == iph->daddr &&
1031                    c->mfc_origin == iph->saddr) {
1032                        found = true;
1033                        break;
1034                }
1035        }
1036
1037        if (!found) {
1038                /* Create a new entry if allowable */
1039                if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1040                    (c = ipmr_cache_alloc_unres()) == NULL) {
1041                        spin_unlock_bh(&mfc_unres_lock);
1042
1043                        kfree_skb(skb);
1044                        return -ENOBUFS;
1045                }
1046
1047                /* Fill in the new cache entry */
1048                c->mfc_parent   = -1;
1049                c->mfc_origin   = iph->saddr;
1050                c->mfc_mcastgrp = iph->daddr;
1051
1052                /* Reflect first query at mrouted. */
1053                err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1054                if (err < 0) {
1055                        /* If the report failed throw the cache entry
1056                           out - Brad Parker
1057                         */
1058                        spin_unlock_bh(&mfc_unres_lock);
1059
1060                        ipmr_cache_free(c);
1061                        kfree_skb(skb);
1062                        return err;
1063                }
1064
1065                atomic_inc(&mrt->cache_resolve_queue_len);
1066                list_add(&c->list, &mrt->mfc_unres_queue);
1067                mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1068
1069                if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1070                        mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1071        }
1072
1073        /* See if we can append the packet */
1074        if (c->mfc_un.unres.unresolved.qlen > 3) {
1075                kfree_skb(skb);
1076                err = -ENOBUFS;
1077        } else {
1078                skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1079                err = 0;
1080        }
1081
1082        spin_unlock_bh(&mfc_unres_lock);
1083        return err;
1084}
1085
1086/* MFC cache manipulation by user space mroute daemon */
1087
1088static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1089{
1090        int line;
1091        struct mfc_cache *c, *next;
1092
1093        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1094
1095        list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1096                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1097                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1098                    (parent == -1 || parent == c->mfc_parent)) {
1099                        list_del_rcu(&c->list);
1100                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1101                        ipmr_cache_free(c);
1102                        return 0;
1103                }
1104        }
1105        return -ENOENT;
1106}
1107
1108static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1109                        struct mfcctl *mfc, int mrtsock, int parent)
1110{
1111        bool found = false;
1112        int line;
1113        struct mfc_cache *uc, *c;
1114
1115        if (mfc->mfcc_parent >= MAXVIFS)
1116                return -ENFILE;
1117
1118        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1119
1120        list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1121                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1122                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1123                    (parent == -1 || parent == c->mfc_parent)) {
1124                        found = true;
1125                        break;
1126                }
1127        }
1128
1129        if (found) {
1130                write_lock_bh(&mrt_lock);
1131                c->mfc_parent = mfc->mfcc_parent;
1132                ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1133                if (!mrtsock)
1134                        c->mfc_flags |= MFC_STATIC;
1135                write_unlock_bh(&mrt_lock);
1136                mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1137                return 0;
1138        }
1139
1140        if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1141            !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1142                return -EINVAL;
1143
1144        c = ipmr_cache_alloc();
1145        if (!c)
1146                return -ENOMEM;
1147
1148        c->mfc_origin = mfc->mfcc_origin.s_addr;
1149        c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1150        c->mfc_parent = mfc->mfcc_parent;
1151        ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1152        if (!mrtsock)
1153                c->mfc_flags |= MFC_STATIC;
1154
1155        list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1156
1157        /* Check to see if we resolved a queued list. If so we
1158         * need to send on the frames and tidy up.
1159         */
1160        found = false;
1161        spin_lock_bh(&mfc_unres_lock);
1162        list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1163                if (uc->mfc_origin == c->mfc_origin &&
1164                    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1165                        list_del(&uc->list);
1166                        atomic_dec(&mrt->cache_resolve_queue_len);
1167                        found = true;
1168                        break;
1169                }
1170        }
1171        if (list_empty(&mrt->mfc_unres_queue))
1172                del_timer(&mrt->ipmr_expire_timer);
1173        spin_unlock_bh(&mfc_unres_lock);
1174
1175        if (found) {
1176                ipmr_cache_resolve(net, mrt, uc, c);
1177                ipmr_cache_free(uc);
1178        }
1179        mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1180        return 0;
1181}
1182
1183/* Close the multicast socket, and clear the vif tables etc */
1184static void mroute_clean_tables(struct mr_table *mrt, bool all)
1185{
1186        int i;
1187        LIST_HEAD(list);
1188        struct mfc_cache *c, *next;
1189
1190        /* Shut down all active vif entries */
1191        for (i = 0; i < mrt->maxvif; i++) {
1192                if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1193                        continue;
1194                vif_delete(mrt, i, 0, &list);
1195        }
1196        unregister_netdevice_many(&list);
1197
1198        /* Wipe the cache */
1199        for (i = 0; i < MFC_LINES; i++) {
1200                list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1201                        if (!all && (c->mfc_flags & MFC_STATIC))
1202                                continue;
1203                        list_del_rcu(&c->list);
1204                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1205                        ipmr_cache_free(c);
1206                }
1207        }
1208
1209        if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1210                spin_lock_bh(&mfc_unres_lock);
1211                list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1212                        list_del(&c->list);
1213                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1214                        ipmr_destroy_unres(mrt, c);
1215                }
1216                spin_unlock_bh(&mfc_unres_lock);
1217        }
1218}
1219
1220/* called from ip_ra_control(), before an RCU grace period,
1221 * we dont need to call synchronize_rcu() here
1222 */
1223static void mrtsock_destruct(struct sock *sk)
1224{
1225        struct net *net = sock_net(sk);
1226        struct mr_table *mrt;
1227
1228        rtnl_lock();
1229        ipmr_for_each_table(mrt, net) {
1230                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1231                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1232                        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1233                                                    NETCONFA_IFINDEX_ALL,
1234                                                    net->ipv4.devconf_all);
1235                        RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1236                        mroute_clean_tables(mrt, false);
1237                }
1238        }
1239        rtnl_unlock();
1240}
1241
1242/* Socket options and virtual interface manipulation. The whole
1243 * virtual interface system is a complete heap, but unfortunately
1244 * that's how BSD mrouted happens to think. Maybe one day with a proper
1245 * MOSPF/PIM router set up we can clean this up.
1246 */
1247
1248int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1249                         unsigned int optlen)
1250{
1251        struct net *net = sock_net(sk);
1252        int val, ret = 0, parent = 0;
1253        struct mr_table *mrt;
1254        struct vifctl vif;
1255        struct mfcctl mfc;
1256        u32 uval;
1257
1258        /* There's one exception to the lock - MRT_DONE which needs to unlock */
1259        rtnl_lock();
1260        if (sk->sk_type != SOCK_RAW ||
1261            inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1262                ret = -EOPNOTSUPP;
1263                goto out_unlock;
1264        }
1265
1266        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1267        if (!mrt) {
1268                ret = -ENOENT;
1269                goto out_unlock;
1270        }
1271        if (optname != MRT_INIT) {
1272                if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1273                    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1274                        ret = -EACCES;
1275                        goto out_unlock;
1276                }
1277        }
1278
1279        switch (optname) {
1280        case MRT_INIT:
1281                if (optlen != sizeof(int)) {
1282                        ret = -EINVAL;
1283                        break;
1284                }
1285                if (rtnl_dereference(mrt->mroute_sk)) {
1286                        ret = -EADDRINUSE;
1287                        break;
1288                }
1289
1290                ret = ip_ra_control(sk, 1, mrtsock_destruct);
1291                if (ret == 0) {
1292                        rcu_assign_pointer(mrt->mroute_sk, sk);
1293                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1294                        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1295                                                    NETCONFA_IFINDEX_ALL,
1296                                                    net->ipv4.devconf_all);
1297                }
1298                break;
1299        case MRT_DONE:
1300                if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1301                        ret = -EACCES;
1302                } else {
1303                        /* We need to unlock here because mrtsock_destruct takes
1304                         * care of rtnl itself and we can't change that due to
1305                         * the IP_ROUTER_ALERT setsockopt which runs without it.
1306                         */
1307                        rtnl_unlock();
1308                        ret = ip_ra_control(sk, 0, NULL);
1309                        goto out;
1310                }
1311                break;
1312        case MRT_ADD_VIF:
1313        case MRT_DEL_VIF:
1314                if (optlen != sizeof(vif)) {
1315                        ret = -EINVAL;
1316                        break;
1317                }
1318                if (copy_from_user(&vif, optval, sizeof(vif))) {
1319                        ret = -EFAULT;
1320                        break;
1321                }
1322                if (vif.vifc_vifi >= MAXVIFS) {
1323                        ret = -ENFILE;
1324                        break;
1325                }
1326                if (optname == MRT_ADD_VIF) {
1327                        ret = vif_add(net, mrt, &vif,
1328                                      sk == rtnl_dereference(mrt->mroute_sk));
1329                } else {
1330                        ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331                }
1332                break;
1333        /* Manipulate the forwarding caches. These live
1334         * in a sort of kernel/user symbiosis.
1335         */
1336        case MRT_ADD_MFC:
1337        case MRT_DEL_MFC:
1338                parent = -1;
1339        case MRT_ADD_MFC_PROXY:
1340        case MRT_DEL_MFC_PROXY:
1341                if (optlen != sizeof(mfc)) {
1342                        ret = -EINVAL;
1343                        break;
1344                }
1345                if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1346                        ret = -EFAULT;
1347                        break;
1348                }
1349                if (parent == 0)
1350                        parent = mfc.mfcc_parent;
1351                if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352                        ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353                else
1354                        ret = ipmr_mfc_add(net, mrt, &mfc,
1355                                           sk == rtnl_dereference(mrt->mroute_sk),
1356                                           parent);
1357                break;
1358        /* Control PIM assert. */
1359        case MRT_ASSERT:
1360                if (optlen != sizeof(val)) {
1361                        ret = -EINVAL;
1362                        break;
1363                }
1364                if (get_user(val, (int __user *)optval)) {
1365                        ret = -EFAULT;
1366                        break;
1367                }
1368                mrt->mroute_do_assert = val;
1369                break;
1370        case MRT_PIM:
1371                if (!ipmr_pimsm_enabled()) {
1372                        ret = -ENOPROTOOPT;
1373                        break;
1374                }
1375                if (optlen != sizeof(val)) {
1376                        ret = -EINVAL;
1377                        break;
1378                }
1379                if (get_user(val, (int __user *)optval)) {
1380                        ret = -EFAULT;
1381                        break;
1382                }
1383
1384                val = !!val;
1385                if (val != mrt->mroute_do_pim) {
1386                        mrt->mroute_do_pim = val;
1387                        mrt->mroute_do_assert = val;
1388                }
1389                break;
1390        case MRT_TABLE:
1391                if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1392                        ret = -ENOPROTOOPT;
1393                        break;
1394                }
1395                if (optlen != sizeof(uval)) {
1396                        ret = -EINVAL;
1397                        break;
1398                }
1399                if (get_user(uval, (u32 __user *)optval)) {
1400                        ret = -EFAULT;
1401                        break;
1402                }
1403
1404                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1405                        ret = -EBUSY;
1406                } else {
1407                        mrt = ipmr_new_table(net, uval);
1408                        if (IS_ERR(mrt))
1409                                ret = PTR_ERR(mrt);
1410                        else
1411                                raw_sk(sk)->ipmr_table = uval;
1412                }
1413                break;
1414        /* Spurious command, or MRT_VERSION which you cannot set. */
1415        default:
1416                ret = -ENOPROTOOPT;
1417        }
1418out_unlock:
1419        rtnl_unlock();
1420out:
1421        return ret;
1422}
1423
1424/* Getsock opt support for the multicast routing system. */
1425int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1426{
1427        int olr;
1428        int val;
1429        struct net *net = sock_net(sk);
1430        struct mr_table *mrt;
1431
1432        if (sk->sk_type != SOCK_RAW ||
1433            inet_sk(sk)->inet_num != IPPROTO_IGMP)
1434                return -EOPNOTSUPP;
1435
1436        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1437        if (!mrt)
1438                return -ENOENT;
1439
1440        switch (optname) {
1441        case MRT_VERSION:
1442                val = 0x0305;
1443                break;
1444        case MRT_PIM:
1445                if (!ipmr_pimsm_enabled())
1446                        return -ENOPROTOOPT;
1447                val = mrt->mroute_do_pim;
1448                break;
1449        case MRT_ASSERT:
1450                val = mrt->mroute_do_assert;
1451                break;
1452        default:
1453                return -ENOPROTOOPT;
1454        }
1455
1456        if (get_user(olr, optlen))
1457                return -EFAULT;
1458        olr = min_t(unsigned int, olr, sizeof(int));
1459        if (olr < 0)
1460                return -EINVAL;
1461        if (put_user(olr, optlen))
1462                return -EFAULT;
1463        if (copy_to_user(optval, &val, olr))
1464                return -EFAULT;
1465        return 0;
1466}
1467
1468/* The IP multicast ioctl support routines. */
1469int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1470{
1471        struct sioc_sg_req sr;
1472        struct sioc_vif_req vr;
1473        struct vif_device *vif;
1474        struct mfc_cache *c;
1475        struct net *net = sock_net(sk);
1476        struct mr_table *mrt;
1477
1478        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1479        if (!mrt)
1480                return -ENOENT;
1481
1482        switch (cmd) {
1483        case SIOCGETVIFCNT:
1484                if (copy_from_user(&vr, arg, sizeof(vr)))
1485                        return -EFAULT;
1486                if (vr.vifi >= mrt->maxvif)
1487                        return -EINVAL;
1488                read_lock(&mrt_lock);
1489                vif = &mrt->vif_table[vr.vifi];
1490                if (VIF_EXISTS(mrt, vr.vifi)) {
1491                        vr.icount = vif->pkt_in;
1492                        vr.ocount = vif->pkt_out;
1493                        vr.ibytes = vif->bytes_in;
1494                        vr.obytes = vif->bytes_out;
1495                        read_unlock(&mrt_lock);
1496
1497                        if (copy_to_user(arg, &vr, sizeof(vr)))
1498                                return -EFAULT;
1499                        return 0;
1500                }
1501                read_unlock(&mrt_lock);
1502                return -EADDRNOTAVAIL;
1503        case SIOCGETSGCNT:
1504                if (copy_from_user(&sr, arg, sizeof(sr)))
1505                        return -EFAULT;
1506
1507                rcu_read_lock();
1508                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1509                if (c) {
1510                        sr.pktcnt = c->mfc_un.res.pkt;
1511                        sr.bytecnt = c->mfc_un.res.bytes;
1512                        sr.wrong_if = c->mfc_un.res.wrong_if;
1513                        rcu_read_unlock();
1514
1515                        if (copy_to_user(arg, &sr, sizeof(sr)))
1516                                return -EFAULT;
1517                        return 0;
1518                }
1519                rcu_read_unlock();
1520                return -EADDRNOTAVAIL;
1521        default:
1522                return -ENOIOCTLCMD;
1523        }
1524}
1525
1526#ifdef CONFIG_COMPAT
1527struct compat_sioc_sg_req {
1528        struct in_addr src;
1529        struct in_addr grp;
1530        compat_ulong_t pktcnt;
1531        compat_ulong_t bytecnt;
1532        compat_ulong_t wrong_if;
1533};
1534
1535struct compat_sioc_vif_req {
1536        vifi_t  vifi;           /* Which iface */
1537        compat_ulong_t icount;
1538        compat_ulong_t ocount;
1539        compat_ulong_t ibytes;
1540        compat_ulong_t obytes;
1541};
1542
1543int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1544{
1545        struct compat_sioc_sg_req sr;
1546        struct compat_sioc_vif_req vr;
1547        struct vif_device *vif;
1548        struct mfc_cache *c;
1549        struct net *net = sock_net(sk);
1550        struct mr_table *mrt;
1551
1552        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1553        if (!mrt)
1554                return -ENOENT;
1555
1556        switch (cmd) {
1557        case SIOCGETVIFCNT:
1558                if (copy_from_user(&vr, arg, sizeof(vr)))
1559                        return -EFAULT;
1560                if (vr.vifi >= mrt->maxvif)
1561                        return -EINVAL;
1562                read_lock(&mrt_lock);
1563                vif = &mrt->vif_table[vr.vifi];
1564                if (VIF_EXISTS(mrt, vr.vifi)) {
1565                        vr.icount = vif->pkt_in;
1566                        vr.ocount = vif->pkt_out;
1567                        vr.ibytes = vif->bytes_in;
1568                        vr.obytes = vif->bytes_out;
1569                        read_unlock(&mrt_lock);
1570
1571                        if (copy_to_user(arg, &vr, sizeof(vr)))
1572                                return -EFAULT;
1573                        return 0;
1574                }
1575                read_unlock(&mrt_lock);
1576                return -EADDRNOTAVAIL;
1577        case SIOCGETSGCNT:
1578                if (copy_from_user(&sr, arg, sizeof(sr)))
1579                        return -EFAULT;
1580
1581                rcu_read_lock();
1582                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1583                if (c) {
1584                        sr.pktcnt = c->mfc_un.res.pkt;
1585                        sr.bytecnt = c->mfc_un.res.bytes;
1586                        sr.wrong_if = c->mfc_un.res.wrong_if;
1587                        rcu_read_unlock();
1588
1589                        if (copy_to_user(arg, &sr, sizeof(sr)))
1590                                return -EFAULT;
1591                        return 0;
1592                }
1593                rcu_read_unlock();
1594                return -EADDRNOTAVAIL;
1595        default:
1596                return -ENOIOCTLCMD;
1597        }
1598}
1599#endif
1600
1601static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1602{
1603        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1604        struct net *net = dev_net(dev);
1605        struct mr_table *mrt;
1606        struct vif_device *v;
1607        int ct;
1608
1609        if (event != NETDEV_UNREGISTER)
1610                return NOTIFY_DONE;
1611
1612        ipmr_for_each_table(mrt, net) {
1613                v = &mrt->vif_table[0];
1614                for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1615                        if (v->dev == dev)
1616                                vif_delete(mrt, ct, 1, NULL);
1617                }
1618        }
1619        return NOTIFY_DONE;
1620}
1621
1622static struct notifier_block ip_mr_notifier = {
1623        .notifier_call = ipmr_device_event,
1624};
1625
1626/* Encapsulate a packet by attaching a valid IPIP header to it.
1627 * This avoids tunnel drivers and other mess and gives us the speed so
1628 * important for multicast video.
1629 */
1630static void ip_encap(struct net *net, struct sk_buff *skb,
1631                     __be32 saddr, __be32 daddr)
1632{
1633        struct iphdr *iph;
1634        const struct iphdr *old_iph = ip_hdr(skb);
1635
1636        skb_push(skb, sizeof(struct iphdr));
1637        skb->transport_header = skb->network_header;
1638        skb_reset_network_header(skb);
1639        iph = ip_hdr(skb);
1640
1641        iph->version    =       4;
1642        iph->tos        =       old_iph->tos;
1643        iph->ttl        =       old_iph->ttl;
1644        iph->frag_off   =       0;
1645        iph->daddr      =       daddr;
1646        iph->saddr      =       saddr;
1647        iph->protocol   =       IPPROTO_IPIP;
1648        iph->ihl        =       5;
1649        iph->tot_len    =       htons(skb->len);
1650        ip_select_ident(net, skb, NULL);
1651        ip_send_check(iph);
1652
1653        memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1654        nf_reset(skb);
1655}
1656
1657static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1658                                      struct sk_buff *skb)
1659{
1660        struct ip_options *opt = &(IPCB(skb)->opt);
1661
1662        IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1663        IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1664
1665        if (unlikely(opt->optlen))
1666                ip_forward_options(skb);
1667
1668        return dst_output(net, sk, skb);
1669}
1670
1671/* Processing handlers for ipmr_forward */
1672
1673static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1674                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
1675{
1676        const struct iphdr *iph = ip_hdr(skb);
1677        struct vif_device *vif = &mrt->vif_table[vifi];
1678        struct net_device *dev;
1679        struct rtable *rt;
1680        struct flowi4 fl4;
1681        int    encap = 0;
1682
1683        if (!vif->dev)
1684                goto out_free;
1685
1686        if (vif->flags & VIFF_REGISTER) {
1687                vif->pkt_out++;
1688                vif->bytes_out += skb->len;
1689                vif->dev->stats.tx_bytes += skb->len;
1690                vif->dev->stats.tx_packets++;
1691                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1692                goto out_free;
1693        }
1694
1695        if (vif->flags & VIFF_TUNNEL) {
1696                rt = ip_route_output_ports(net, &fl4, NULL,
1697                                           vif->remote, vif->local,
1698                                           0, 0,
1699                                           IPPROTO_IPIP,
1700                                           RT_TOS(iph->tos), vif->link);
1701                if (IS_ERR(rt))
1702                        goto out_free;
1703                encap = sizeof(struct iphdr);
1704        } else {
1705                rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1706                                           0, 0,
1707                                           IPPROTO_IPIP,
1708                                           RT_TOS(iph->tos), vif->link);
1709                if (IS_ERR(rt))
1710                        goto out_free;
1711        }
1712
1713        dev = rt->dst.dev;
1714
1715        if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1716                /* Do not fragment multicasts. Alas, IPv4 does not
1717                 * allow to send ICMP, so that packets will disappear
1718                 * to blackhole.
1719                 */
1720                IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1721                ip_rt_put(rt);
1722                goto out_free;
1723        }
1724
1725        encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1726
1727        if (skb_cow(skb, encap)) {
1728                ip_rt_put(rt);
1729                goto out_free;
1730        }
1731
1732        vif->pkt_out++;
1733        vif->bytes_out += skb->len;
1734
1735        skb_dst_drop(skb);
1736        skb_dst_set(skb, &rt->dst);
1737        ip_decrease_ttl(ip_hdr(skb));
1738
1739        /* FIXME: forward and output firewalls used to be called here.
1740         * What do we do with netfilter? -- RR
1741         */
1742        if (vif->flags & VIFF_TUNNEL) {
1743                ip_encap(net, skb, vif->local, vif->remote);
1744                /* FIXME: extra output firewall step used to be here. --RR */
1745                vif->dev->stats.tx_packets++;
1746                vif->dev->stats.tx_bytes += skb->len;
1747        }
1748
1749        IPCB(skb)->flags |= IPSKB_FORWARDED;
1750
1751        /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1752         * not only before forwarding, but after forwarding on all output
1753         * interfaces. It is clear, if mrouter runs a multicasting
1754         * program, it should receive packets not depending to what interface
1755         * program is joined.
1756         * If we will not make it, the program will have to join on all
1757         * interfaces. On the other hand, multihoming host (or router, but
1758         * not mrouter) cannot join to more than one interface - it will
1759         * result in receiving multiple packets.
1760         */
1761        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1762                net, NULL, skb, skb->dev, dev,
1763                ipmr_forward_finish);
1764        return;
1765
1766out_free:
1767        kfree_skb(skb);
1768}
1769
1770static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1771{
1772        int ct;
1773
1774        for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1775                if (mrt->vif_table[ct].dev == dev)
1776                        break;
1777        }
1778        return ct;
1779}
1780
1781/* "local" means that we should preserve one skb (for local delivery) */
1782static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1783                          struct sk_buff *skb, struct mfc_cache *cache,
1784                          int local)
1785{
1786        int psend = -1;
1787        int vif, ct;
1788        int true_vifi = ipmr_find_vif(mrt, skb->dev);
1789
1790        vif = cache->mfc_parent;
1791        cache->mfc_un.res.pkt++;
1792        cache->mfc_un.res.bytes += skb->len;
1793
1794        if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1795                struct mfc_cache *cache_proxy;
1796
1797                /* For an (*,G) entry, we only check that the incomming
1798                 * interface is part of the static tree.
1799                 */
1800                cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1801                if (cache_proxy &&
1802                    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1803                        goto forward;
1804        }
1805
1806        /* Wrong interface: drop packet and (maybe) send PIM assert. */
1807        if (mrt->vif_table[vif].dev != skb->dev) {
1808                if (rt_is_output_route(skb_rtable(skb))) {
1809                        /* It is our own packet, looped back.
1810                         * Very complicated situation...
1811                         *
1812                         * The best workaround until routing daemons will be
1813                         * fixed is not to redistribute packet, if it was
1814                         * send through wrong interface. It means, that
1815                         * multicast applications WILL NOT work for
1816                         * (S,G), which have default multicast route pointing
1817                         * to wrong oif. In any case, it is not a good
1818                         * idea to use multicasting applications on router.
1819                         */
1820                        goto dont_forward;
1821                }
1822
1823                cache->mfc_un.res.wrong_if++;
1824
1825                if (true_vifi >= 0 && mrt->mroute_do_assert &&
1826                    /* pimsm uses asserts, when switching from RPT to SPT,
1827                     * so that we cannot check that packet arrived on an oif.
1828                     * It is bad, but otherwise we would need to move pretty
1829                     * large chunk of pimd to kernel. Ough... --ANK
1830                     */
1831                    (mrt->mroute_do_pim ||
1832                     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1833                    time_after(jiffies,
1834                               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1835                        cache->mfc_un.res.last_assert = jiffies;
1836                        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1837                }
1838                goto dont_forward;
1839        }
1840
1841forward:
1842        mrt->vif_table[vif].pkt_in++;
1843        mrt->vif_table[vif].bytes_in += skb->len;
1844
1845        /* Forward the frame */
1846        if (cache->mfc_origin == htonl(INADDR_ANY) &&
1847            cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1848                if (true_vifi >= 0 &&
1849                    true_vifi != cache->mfc_parent &&
1850                    ip_hdr(skb)->ttl >
1851                                cache->mfc_un.res.ttls[cache->mfc_parent]) {
1852                        /* It's an (*,*) entry and the packet is not coming from
1853                         * the upstream: forward the packet to the upstream
1854                         * only.
1855                         */
1856                        psend = cache->mfc_parent;
1857                        goto last_forward;
1858                }
1859                goto dont_forward;
1860        }
1861        for (ct = cache->mfc_un.res.maxvif - 1;
1862             ct >= cache->mfc_un.res.minvif; ct--) {
1863                /* For (*,G) entry, don't forward to the incoming interface */
1864                if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1865                     ct != true_vifi) &&
1866                    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1867                        if (psend != -1) {
1868                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869
1870                                if (skb2)
1871                                        ipmr_queue_xmit(net, mrt, skb2, cache,
1872                                                        psend);
1873                        }
1874                        psend = ct;
1875                }
1876        }
1877last_forward:
1878        if (psend != -1) {
1879                if (local) {
1880                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1881
1882                        if (skb2)
1883                                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1884                } else {
1885                        ipmr_queue_xmit(net, mrt, skb, cache, psend);
1886                        return;
1887                }
1888        }
1889
1890dont_forward:
1891        if (!local)
1892                kfree_skb(skb);
1893}
1894
1895static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1896{
1897        struct rtable *rt = skb_rtable(skb);
1898        struct iphdr *iph = ip_hdr(skb);
1899        struct flowi4 fl4 = {
1900                .daddr = iph->daddr,
1901                .saddr = iph->saddr,
1902                .flowi4_tos = RT_TOS(iph->tos),
1903                .flowi4_oif = (rt_is_output_route(rt) ?
1904                               skb->dev->ifindex : 0),
1905                .flowi4_iif = (rt_is_output_route(rt) ?
1906                               LOOPBACK_IFINDEX :
1907                               skb->dev->ifindex),
1908                .flowi4_mark = skb->mark,
1909        };
1910        struct mr_table *mrt;
1911        int err;
1912
1913        err = ipmr_fib_lookup(net, &fl4, &mrt);
1914        if (err)
1915                return ERR_PTR(err);
1916        return mrt;
1917}
1918
1919/* Multicast packets for forwarding arrive here
1920 * Called with rcu_read_lock();
1921 */
1922int ip_mr_input(struct sk_buff *skb)
1923{
1924        struct mfc_cache *cache;
1925        struct net *net = dev_net(skb->dev);
1926        int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1927        struct mr_table *mrt;
1928
1929        /* Packet is looped back after forward, it should not be
1930         * forwarded second time, but still can be delivered locally.
1931         */
1932        if (IPCB(skb)->flags & IPSKB_FORWARDED)
1933                goto dont_forward;
1934
1935        mrt = ipmr_rt_fib_lookup(net, skb);
1936        if (IS_ERR(mrt)) {
1937                kfree_skb(skb);
1938                return PTR_ERR(mrt);
1939        }
1940        if (!local) {
1941                if (IPCB(skb)->opt.router_alert) {
1942                        if (ip_call_ra_chain(skb))
1943                                return 0;
1944                } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1945                        /* IGMPv1 (and broken IGMPv2 implementations sort of
1946                         * Cisco IOS <= 11.2(8)) do not put router alert
1947                         * option to IGMP packets destined to routable
1948                         * groups. It is very bad, because it means
1949                         * that we can forward NO IGMP messages.
1950                         */
1951                        struct sock *mroute_sk;
1952
1953                        mroute_sk = rcu_dereference(mrt->mroute_sk);
1954                        if (mroute_sk) {
1955                                nf_reset(skb);
1956                                raw_rcv(mroute_sk, skb);
1957                                return 0;
1958                        }
1959                    }
1960        }
1961
1962        /* already under rcu_read_lock() */
1963        cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1964        if (!cache) {
1965                int vif = ipmr_find_vif(mrt, skb->dev);
1966
1967                if (vif >= 0)
1968                        cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1969                                                    vif);
1970        }
1971
1972        /* No usable cache entry */
1973        if (!cache) {
1974                int vif;
1975
1976                if (local) {
1977                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1978                        ip_local_deliver(skb);
1979                        if (!skb2)
1980                                return -ENOBUFS;
1981                        skb = skb2;
1982                }
1983
1984                read_lock(&mrt_lock);
1985                vif = ipmr_find_vif(mrt, skb->dev);
1986                if (vif >= 0) {
1987                        int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1988                        read_unlock(&mrt_lock);
1989
1990                        return err2;
1991                }
1992                read_unlock(&mrt_lock);
1993                kfree_skb(skb);
1994                return -ENODEV;
1995        }
1996
1997        read_lock(&mrt_lock);
1998        ip_mr_forward(net, mrt, skb, cache, local);
1999        read_unlock(&mrt_lock);
2000
2001        if (local)
2002                return ip_local_deliver(skb);
2003
2004        return 0;
2005
2006dont_forward:
2007        if (local)
2008                return ip_local_deliver(skb);
2009        kfree_skb(skb);
2010        return 0;
2011}
2012
2013#ifdef CONFIG_IP_PIMSM_V1
2014/* Handle IGMP messages of PIMv1 */
2015int pim_rcv_v1(struct sk_buff *skb)
2016{
2017        struct igmphdr *pim;
2018        struct net *net = dev_net(skb->dev);
2019        struct mr_table *mrt;
2020
2021        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2022                goto drop;
2023
2024        pim = igmp_hdr(skb);
2025
2026        mrt = ipmr_rt_fib_lookup(net, skb);
2027        if (IS_ERR(mrt))
2028                goto drop;
2029        if (!mrt->mroute_do_pim ||
2030            pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2031                goto drop;
2032
2033        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2034drop:
2035                kfree_skb(skb);
2036        }
2037        return 0;
2038}
2039#endif
2040
2041#ifdef CONFIG_IP_PIMSM_V2
2042static int pim_rcv(struct sk_buff *skb)
2043{
2044        struct pimreghdr *pim;
2045        struct net *net = dev_net(skb->dev);
2046        struct mr_table *mrt;
2047
2048        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2049                goto drop;
2050
2051        pim = (struct pimreghdr *)skb_transport_header(skb);
2052        if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2053            (pim->flags & PIM_NULL_REGISTER) ||
2054            (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2055             csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2056                goto drop;
2057
2058        mrt = ipmr_rt_fib_lookup(net, skb);
2059        if (IS_ERR(mrt))
2060                goto drop;
2061        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2062drop:
2063                kfree_skb(skb);
2064        }
2065        return 0;
2066}
2067#endif
2068
2069static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2070                              struct mfc_cache *c, struct rtmsg *rtm)
2071{
2072        int ct;
2073        struct rtnexthop *nhp;
2074        struct nlattr *mp_attr;
2075        struct rta_mfc_stats mfcs;
2076
2077        /* If cache is unresolved, don't try to parse IIF and OIF */
2078        if (c->mfc_parent >= MAXVIFS)
2079                return -ENOENT;
2080
2081        if (VIF_EXISTS(mrt, c->mfc_parent) &&
2082            nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2083                return -EMSGSIZE;
2084
2085        if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2086                return -EMSGSIZE;
2087
2088        for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2089                if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2090                        if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2091                                nla_nest_cancel(skb, mp_attr);
2092                                return -EMSGSIZE;
2093                        }
2094
2095                        nhp->rtnh_flags = 0;
2096                        nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2097                        nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2098                        nhp->rtnh_len = sizeof(*nhp);
2099                }
2100        }
2101
2102        nla_nest_end(skb, mp_attr);
2103
2104        mfcs.mfcs_packets = c->mfc_un.res.pkt;
2105        mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2106        mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2107        if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2108                return -EMSGSIZE;
2109
2110        rtm->rtm_type = RTN_MULTICAST;
2111        return 1;
2112}
2113
2114int ipmr_get_route(struct net *net, struct sk_buff *skb,
2115                   __be32 saddr, __be32 daddr,
2116                   struct rtmsg *rtm, int nowait)
2117{
2118        struct mfc_cache *cache;
2119        struct mr_table *mrt;
2120        int err;
2121
2122        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2123        if (!mrt)
2124                return -ENOENT;
2125
2126        rcu_read_lock();
2127        cache = ipmr_cache_find(mrt, saddr, daddr);
2128        if (!cache && skb->dev) {
2129                int vif = ipmr_find_vif(mrt, skb->dev);
2130
2131                if (vif >= 0)
2132                        cache = ipmr_cache_find_any(mrt, daddr, vif);
2133        }
2134        if (!cache) {
2135                struct sk_buff *skb2;
2136                struct iphdr *iph;
2137                struct net_device *dev;
2138                int vif = -1;
2139
2140                if (nowait) {
2141                        rcu_read_unlock();
2142                        return -EAGAIN;
2143                }
2144
2145                dev = skb->dev;
2146                read_lock(&mrt_lock);
2147                if (dev)
2148                        vif = ipmr_find_vif(mrt, dev);
2149                if (vif < 0) {
2150                        read_unlock(&mrt_lock);
2151                        rcu_read_unlock();
2152                        return -ENODEV;
2153                }
2154                skb2 = skb_clone(skb, GFP_ATOMIC);
2155                if (!skb2) {
2156                        read_unlock(&mrt_lock);
2157                        rcu_read_unlock();
2158                        return -ENOMEM;
2159                }
2160
2161                skb_push(skb2, sizeof(struct iphdr));
2162                skb_reset_network_header(skb2);
2163                iph = ip_hdr(skb2);
2164                iph->ihl = sizeof(struct iphdr) >> 2;
2165                iph->saddr = saddr;
2166                iph->daddr = daddr;
2167                iph->version = 0;
2168                err = ipmr_cache_unresolved(mrt, vif, skb2);
2169                read_unlock(&mrt_lock);
2170                rcu_read_unlock();
2171                return err;
2172        }
2173
2174        read_lock(&mrt_lock);
2175        err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2176        read_unlock(&mrt_lock);
2177        rcu_read_unlock();
2178        return err;
2179}
2180
2181static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2182                            u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2183                            int flags)
2184{
2185        struct nlmsghdr *nlh;
2186        struct rtmsg *rtm;
2187        int err;
2188
2189        nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2190        if (!nlh)
2191                return -EMSGSIZE;
2192
2193        rtm = nlmsg_data(nlh);
2194        rtm->rtm_family   = RTNL_FAMILY_IPMR;
2195        rtm->rtm_dst_len  = 32;
2196        rtm->rtm_src_len  = 32;
2197        rtm->rtm_tos      = 0;
2198        rtm->rtm_table    = mrt->id;
2199        if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2200                goto nla_put_failure;
2201        rtm->rtm_type     = RTN_MULTICAST;
2202        rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2203        if (c->mfc_flags & MFC_STATIC)
2204                rtm->rtm_protocol = RTPROT_STATIC;
2205        else
2206                rtm->rtm_protocol = RTPROT_MROUTED;
2207        rtm->rtm_flags    = 0;
2208
2209        if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2210            nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2211                goto nla_put_failure;
2212        err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2213        /* do not break the dump if cache is unresolved */
2214        if (err < 0 && err != -ENOENT)
2215                goto nla_put_failure;
2216
2217        nlmsg_end(skb, nlh);
2218        return 0;
2219
2220nla_put_failure:
2221        nlmsg_cancel(skb, nlh);
2222        return -EMSGSIZE;
2223}
2224
2225static size_t mroute_msgsize(bool unresolved, int maxvif)
2226{
2227        size_t len =
2228                NLMSG_ALIGN(sizeof(struct rtmsg))
2229                + nla_total_size(4)     /* RTA_TABLE */
2230                + nla_total_size(4)     /* RTA_SRC */
2231                + nla_total_size(4)     /* RTA_DST */
2232                ;
2233
2234        if (!unresolved)
2235                len = len
2236                      + nla_total_size(4)       /* RTA_IIF */
2237                      + nla_total_size(0)       /* RTA_MULTIPATH */
2238                      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2239                                                /* RTA_MFC_STATS */
2240                      + nla_total_size(sizeof(struct rta_mfc_stats))
2241                ;
2242
2243        return len;
2244}
2245
2246static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2247                                 int cmd)
2248{
2249        struct net *net = read_pnet(&mrt->net);
2250        struct sk_buff *skb;
2251        int err = -ENOBUFS;
2252
2253        skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2254                        GFP_ATOMIC);
2255        if (!skb)
2256                goto errout;
2257
2258        err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2259        if (err < 0)
2260                goto errout;
2261
2262        rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2263        return;
2264
2265errout:
2266        kfree_skb(skb);
2267        if (err < 0)
2268                rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2269}
2270
2271static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2272{
2273        struct net *net = sock_net(skb->sk);
2274        struct mr_table *mrt;
2275        struct mfc_cache *mfc;
2276        unsigned int t = 0, s_t;
2277        unsigned int h = 0, s_h;
2278        unsigned int e = 0, s_e;
2279
2280        s_t = cb->args[0];
2281        s_h = cb->args[1];
2282        s_e = cb->args[2];
2283
2284        rcu_read_lock();
2285        ipmr_for_each_table(mrt, net) {
2286                if (t < s_t)
2287                        goto next_table;
2288                if (t > s_t)
2289                        s_h = 0;
2290                for (h = s_h; h < MFC_LINES; h++) {
2291                        list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2292                                if (e < s_e)
2293                                        goto next_entry;
2294                                if (ipmr_fill_mroute(mrt, skb,
2295                                                     NETLINK_CB(cb->skb).portid,
2296                                                     cb->nlh->nlmsg_seq,
2297                                                     mfc, RTM_NEWROUTE,
2298                                                     NLM_F_MULTI) < 0)
2299                                        goto done;
2300next_entry:
2301                                e++;
2302                        }
2303                        e = s_e = 0;
2304                }
2305                spin_lock_bh(&mfc_unres_lock);
2306                list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2307                        if (e < s_e)
2308                                goto next_entry2;
2309                        if (ipmr_fill_mroute(mrt, skb,
2310                                             NETLINK_CB(cb->skb).portid,
2311                                             cb->nlh->nlmsg_seq,
2312                                             mfc, RTM_NEWROUTE,
2313                                             NLM_F_MULTI) < 0) {
2314                                spin_unlock_bh(&mfc_unres_lock);
2315                                goto done;
2316                        }
2317next_entry2:
2318                        e++;
2319                }
2320                spin_unlock_bh(&mfc_unres_lock);
2321                e = s_e = 0;
2322                s_h = 0;
2323next_table:
2324                t++;
2325        }
2326done:
2327        rcu_read_unlock();
2328
2329        cb->args[2] = e;
2330        cb->args[1] = h;
2331        cb->args[0] = t;
2332
2333        return skb->len;
2334}
2335
2336static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2337        [RTA_SRC]       = { .type = NLA_U32 },
2338        [RTA_DST]       = { .type = NLA_U32 },
2339        [RTA_IIF]       = { .type = NLA_U32 },
2340        [RTA_TABLE]     = { .type = NLA_U32 },
2341        [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2342};
2343
2344static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2345{
2346        switch (rtm_protocol) {
2347        case RTPROT_STATIC:
2348        case RTPROT_MROUTED:
2349                return true;
2350        }
2351        return false;
2352}
2353
2354static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2355{
2356        struct rtnexthop *rtnh = nla_data(nla);
2357        int remaining = nla_len(nla), vifi = 0;
2358
2359        while (rtnh_ok(rtnh, remaining)) {
2360                mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2361                if (++vifi == MAXVIFS)
2362                        break;
2363                rtnh = rtnh_next(rtnh, &remaining);
2364        }
2365
2366        return remaining > 0 ? -EINVAL : vifi;
2367}
2368
2369/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2370static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2371                            struct mfcctl *mfcc, int *mrtsock,
2372                            struct mr_table **mrtret)
2373{
2374        struct net_device *dev = NULL;
2375        u32 tblid = RT_TABLE_DEFAULT;
2376        struct mr_table *mrt;
2377        struct nlattr *attr;
2378        struct rtmsg *rtm;
2379        int ret, rem;
2380
2381        ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2382        if (ret < 0)
2383                goto out;
2384        rtm = nlmsg_data(nlh);
2385
2386        ret = -EINVAL;
2387        if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2388            rtm->rtm_type != RTN_MULTICAST ||
2389            rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2390            !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2391                goto out;
2392
2393        memset(mfcc, 0, sizeof(*mfcc));
2394        mfcc->mfcc_parent = -1;
2395        ret = 0;
2396        nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2397                switch (nla_type(attr)) {
2398                case RTA_SRC:
2399                        mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2400                        break;
2401                case RTA_DST:
2402                        mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2403                        break;
2404                case RTA_IIF:
2405                        dev = __dev_get_by_index(net, nla_get_u32(attr));
2406                        if (!dev) {
2407                                ret = -ENODEV;
2408                                goto out;
2409                        }
2410                        break;
2411                case RTA_MULTIPATH:
2412                        if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2413                                ret = -EINVAL;
2414                                goto out;
2415                        }
2416                        break;
2417                case RTA_PREFSRC:
2418                        ret = 1;
2419                        break;
2420                case RTA_TABLE:
2421                        tblid = nla_get_u32(attr);
2422                        break;
2423                }
2424        }
2425        mrt = ipmr_get_table(net, tblid);
2426        if (!mrt) {
2427                ret = -ENOENT;
2428                goto out;
2429        }
2430        *mrtret = mrt;
2431        *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2432        if (dev)
2433                mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2434
2435out:
2436        return ret;
2437}
2438
2439/* takes care of both newroute and delroute */
2440static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2441{
2442        struct net *net = sock_net(skb->sk);
2443        int ret, mrtsock, parent;
2444        struct mr_table *tbl;
2445        struct mfcctl mfcc;
2446
2447        mrtsock = 0;
2448        tbl = NULL;
2449        ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2450        if (ret < 0)
2451                return ret;
2452
2453        parent = ret ? mfcc.mfcc_parent : -1;
2454        if (nlh->nlmsg_type == RTM_NEWROUTE)
2455                return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2456        else
2457                return ipmr_mfc_delete(tbl, &mfcc, parent);
2458}
2459
2460#ifdef CONFIG_PROC_FS
2461/* The /proc interfaces to multicast routing :
2462 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2463 */
2464struct ipmr_vif_iter {
2465        struct seq_net_private p;
2466        struct mr_table *mrt;
2467        int ct;
2468};
2469
2470static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2471                                           struct ipmr_vif_iter *iter,
2472                                           loff_t pos)
2473{
2474        struct mr_table *mrt = iter->mrt;
2475
2476        for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2477                if (!VIF_EXISTS(mrt, iter->ct))
2478                        continue;
2479                if (pos-- == 0)
2480                        return &mrt->vif_table[iter->ct];
2481        }
2482        return NULL;
2483}
2484
2485static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2486        __acquires(mrt_lock)
2487{
2488        struct ipmr_vif_iter *iter = seq->private;
2489        struct net *net = seq_file_net(seq);
2490        struct mr_table *mrt;
2491
2492        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2493        if (!mrt)
2494                return ERR_PTR(-ENOENT);
2495
2496        iter->mrt = mrt;
2497
2498        read_lock(&mrt_lock);
2499        return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2500                : SEQ_START_TOKEN;
2501}
2502
2503static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2504{
2505        struct ipmr_vif_iter *iter = seq->private;
2506        struct net *net = seq_file_net(seq);
2507        struct mr_table *mrt = iter->mrt;
2508
2509        ++*pos;
2510        if (v == SEQ_START_TOKEN)
2511                return ipmr_vif_seq_idx(net, iter, 0);
2512
2513        while (++iter->ct < mrt->maxvif) {
2514                if (!VIF_EXISTS(mrt, iter->ct))
2515                        continue;
2516                return &mrt->vif_table[iter->ct];
2517        }
2518        return NULL;
2519}
2520
2521static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2522        __releases(mrt_lock)
2523{
2524        read_unlock(&mrt_lock);
2525}
2526
2527static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2528{
2529        struct ipmr_vif_iter *iter = seq->private;
2530        struct mr_table *mrt = iter->mrt;
2531
2532        if (v == SEQ_START_TOKEN) {
2533                seq_puts(seq,
2534                         "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2535        } else {
2536                const struct vif_device *vif = v;
2537                const char *name =  vif->dev ? vif->dev->name : "none";
2538
2539                seq_printf(seq,
2540                           "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2541                           vif - mrt->vif_table,
2542                           name, vif->bytes_in, vif->pkt_in,
2543                           vif->bytes_out, vif->pkt_out,
2544                           vif->flags, vif->local, vif->remote);
2545        }
2546        return 0;
2547}
2548
2549static const struct seq_operations ipmr_vif_seq_ops = {
2550        .start = ipmr_vif_seq_start,
2551        .next  = ipmr_vif_seq_next,
2552        .stop  = ipmr_vif_seq_stop,
2553        .show  = ipmr_vif_seq_show,
2554};
2555
2556static int ipmr_vif_open(struct inode *inode, struct file *file)
2557{
2558        return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2559                            sizeof(struct ipmr_vif_iter));
2560}
2561
2562static const struct file_operations ipmr_vif_fops = {
2563        .owner   = THIS_MODULE,
2564        .open    = ipmr_vif_open,
2565        .read    = seq_read,
2566        .llseek  = seq_lseek,
2567        .release = seq_release_net,
2568};
2569
2570struct ipmr_mfc_iter {
2571        struct seq_net_private p;
2572        struct mr_table *mrt;
2573        struct list_head *cache;
2574        int ct;
2575};
2576
2577
2578static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2579                                          struct ipmr_mfc_iter *it, loff_t pos)
2580{
2581        struct mr_table *mrt = it->mrt;
2582        struct mfc_cache *mfc;
2583
2584        rcu_read_lock();
2585        for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2586                it->cache = &mrt->mfc_cache_array[it->ct];
2587                list_for_each_entry_rcu(mfc, it->cache, list)
2588                        if (pos-- == 0)
2589                                return mfc;
2590        }
2591        rcu_read_unlock();
2592
2593        spin_lock_bh(&mfc_unres_lock);
2594        it->cache = &mrt->mfc_unres_queue;
2595        list_for_each_entry(mfc, it->cache, list)
2596                if (pos-- == 0)
2597                        return mfc;
2598        spin_unlock_bh(&mfc_unres_lock);
2599
2600        it->cache = NULL;
2601        return NULL;
2602}
2603
2604
2605static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2606{
2607        struct ipmr_mfc_iter *it = seq->private;
2608        struct net *net = seq_file_net(seq);
2609        struct mr_table *mrt;
2610
2611        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2612        if (!mrt)
2613                return ERR_PTR(-ENOENT);
2614
2615        it->mrt = mrt;
2616        it->cache = NULL;
2617        it->ct = 0;
2618        return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2619                : SEQ_START_TOKEN;
2620}
2621
2622static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2623{
2624        struct mfc_cache *mfc = v;
2625        struct ipmr_mfc_iter *it = seq->private;
2626        struct net *net = seq_file_net(seq);
2627        struct mr_table *mrt = it->mrt;
2628
2629        ++*pos;
2630
2631        if (v == SEQ_START_TOKEN)
2632                return ipmr_mfc_seq_idx(net, seq->private, 0);
2633
2634        if (mfc->list.next != it->cache)
2635                return list_entry(mfc->list.next, struct mfc_cache, list);
2636
2637        if (it->cache == &mrt->mfc_unres_queue)
2638                goto end_of_list;
2639
2640        BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2641
2642        while (++it->ct < MFC_LINES) {
2643                it->cache = &mrt->mfc_cache_array[it->ct];
2644                if (list_empty(it->cache))
2645                        continue;
2646                return list_first_entry(it->cache, struct mfc_cache, list);
2647        }
2648
2649        /* exhausted cache_array, show unresolved */
2650        rcu_read_unlock();
2651        it->cache = &mrt->mfc_unres_queue;
2652        it->ct = 0;
2653
2654        spin_lock_bh(&mfc_unres_lock);
2655        if (!list_empty(it->cache))
2656                return list_first_entry(it->cache, struct mfc_cache, list);
2657
2658end_of_list:
2659        spin_unlock_bh(&mfc_unres_lock);
2660        it->cache = NULL;
2661
2662        return NULL;
2663}
2664
2665static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2666{
2667        struct ipmr_mfc_iter *it = seq->private;
2668        struct mr_table *mrt = it->mrt;
2669
2670        if (it->cache == &mrt->mfc_unres_queue)
2671                spin_unlock_bh(&mfc_unres_lock);
2672        else if (it->cache == &mrt->mfc_cache_array[it->ct])
2673                rcu_read_unlock();
2674}
2675
2676static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2677{
2678        int n;
2679
2680        if (v == SEQ_START_TOKEN) {
2681                seq_puts(seq,
2682                 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2683        } else {
2684                const struct mfc_cache *mfc = v;
2685                const struct ipmr_mfc_iter *it = seq->private;
2686                const struct mr_table *mrt = it->mrt;
2687
2688                seq_printf(seq, "%08X %08X %-3hd",
2689                           (__force u32) mfc->mfc_mcastgrp,
2690                           (__force u32) mfc->mfc_origin,
2691                           mfc->mfc_parent);
2692
2693                if (it->cache != &mrt->mfc_unres_queue) {
2694                        seq_printf(seq, " %8lu %8lu %8lu",
2695                                   mfc->mfc_un.res.pkt,
2696                                   mfc->mfc_un.res.bytes,
2697                                   mfc->mfc_un.res.wrong_if);
2698                        for (n = mfc->mfc_un.res.minvif;
2699                             n < mfc->mfc_un.res.maxvif; n++) {
2700                                if (VIF_EXISTS(mrt, n) &&
2701                                    mfc->mfc_un.res.ttls[n] < 255)
2702                                        seq_printf(seq,
2703                                           " %2d:%-3d",
2704                                           n, mfc->mfc_un.res.ttls[n]);
2705                        }
2706                } else {
2707                        /* unresolved mfc_caches don't contain
2708                         * pkt, bytes and wrong_if values
2709                         */
2710                        seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2711                }
2712                seq_putc(seq, '\n');
2713        }
2714        return 0;
2715}
2716
2717static const struct seq_operations ipmr_mfc_seq_ops = {
2718        .start = ipmr_mfc_seq_start,
2719        .next  = ipmr_mfc_seq_next,
2720        .stop  = ipmr_mfc_seq_stop,
2721        .show  = ipmr_mfc_seq_show,
2722};
2723
2724static int ipmr_mfc_open(struct inode *inode, struct file *file)
2725{
2726        return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2727                            sizeof(struct ipmr_mfc_iter));
2728}
2729
2730static const struct file_operations ipmr_mfc_fops = {
2731        .owner   = THIS_MODULE,
2732        .open    = ipmr_mfc_open,
2733        .read    = seq_read,
2734        .llseek  = seq_lseek,
2735        .release = seq_release_net,
2736};
2737#endif
2738
2739#ifdef CONFIG_IP_PIMSM_V2
2740static const struct net_protocol pim_protocol = {
2741        .handler        =       pim_rcv,
2742        .netns_ok       =       1,
2743};
2744#endif
2745
2746/* Setup for IP multicast routing */
2747static int __net_init ipmr_net_init(struct net *net)
2748{
2749        int err;
2750
2751        err = ipmr_rules_init(net);
2752        if (err < 0)
2753                goto fail;
2754
2755#ifdef CONFIG_PROC_FS
2756        err = -ENOMEM;
2757        if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2758                goto proc_vif_fail;
2759        if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2760                goto proc_cache_fail;
2761#endif
2762        return 0;
2763
2764#ifdef CONFIG_PROC_FS
2765proc_cache_fail:
2766        remove_proc_entry("ip_mr_vif", net->proc_net);
2767proc_vif_fail:
2768        ipmr_rules_exit(net);
2769#endif
2770fail:
2771        return err;
2772}
2773
2774static void __net_exit ipmr_net_exit(struct net *net)
2775{
2776#ifdef CONFIG_PROC_FS
2777        remove_proc_entry("ip_mr_cache", net->proc_net);
2778        remove_proc_entry("ip_mr_vif", net->proc_net);
2779#endif
2780        ipmr_rules_exit(net);
2781}
2782
2783static struct pernet_operations ipmr_net_ops = {
2784        .init = ipmr_net_init,
2785        .exit = ipmr_net_exit,
2786};
2787
2788int __init ip_mr_init(void)
2789{
2790        int err;
2791
2792        mrt_cachep = kmem_cache_create("ip_mrt_cache",
2793                                       sizeof(struct mfc_cache),
2794                                       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2795                                       NULL);
2796
2797        err = register_pernet_subsys(&ipmr_net_ops);
2798        if (err)
2799                goto reg_pernet_fail;
2800
2801        err = register_netdevice_notifier(&ip_mr_notifier);
2802        if (err)
2803                goto reg_notif_fail;
2804#ifdef CONFIG_IP_PIMSM_V2
2805        if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2806                pr_err("%s: can't add PIM protocol\n", __func__);
2807                err = -EAGAIN;
2808                goto add_proto_fail;
2809        }
2810#endif
2811        rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2812                      NULL, ipmr_rtm_dumproute, NULL);
2813        rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2814                      ipmr_rtm_route, NULL, NULL);
2815        rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2816                      ipmr_rtm_route, NULL, NULL);
2817        return 0;
2818
2819#ifdef CONFIG_IP_PIMSM_V2
2820add_proto_fail:
2821        unregister_netdevice_notifier(&ip_mr_notifier);
2822#endif
2823reg_notif_fail:
2824        unregister_pernet_subsys(&ipmr_net_ops);
2825reg_pernet_fail:
2826        kmem_cache_destroy(mrt_cachep);
2827        return err;
2828}
2829