linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 103
 104#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 105#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 106#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 108#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 109#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 110#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 111#define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
 112#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 113#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 114#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 115#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 116#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 117#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 118
 119#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 120#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 121#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 122#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127#define REXMIT_NONE     0 /* no loss recovery to do */
 128#define REXMIT_LOST     1 /* retransmit packets marked lost */
 129#define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
 130
 131/* Adapt the MSS value used to make delayed ack decision to the
 132 * real world.
 133 */
 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 135{
 136        struct inet_connection_sock *icsk = inet_csk(sk);
 137        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 138        unsigned int len;
 139
 140        icsk->icsk_ack.last_seg_size = 0;
 141
 142        /* skb->len may jitter because of SACKs, even if peer
 143         * sends good full-sized frames.
 144         */
 145        len = skb_shinfo(skb)->gso_size ? : skb->len;
 146        if (len >= icsk->icsk_ack.rcv_mss) {
 147                icsk->icsk_ack.rcv_mss = len;
 148        } else {
 149                /* Otherwise, we make more careful check taking into account,
 150                 * that SACKs block is variable.
 151                 *
 152                 * "len" is invariant segment length, including TCP header.
 153                 */
 154                len += skb->data - skb_transport_header(skb);
 155                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 156                    /* If PSH is not set, packet should be
 157                     * full sized, provided peer TCP is not badly broken.
 158                     * This observation (if it is correct 8)) allows
 159                     * to handle super-low mtu links fairly.
 160                     */
 161                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 162                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 163                        /* Subtract also invariant (if peer is RFC compliant),
 164                         * tcp header plus fixed timestamp option length.
 165                         * Resulting "len" is MSS free of SACK jitter.
 166                         */
 167                        len -= tcp_sk(sk)->tcp_header_len;
 168                        icsk->icsk_ack.last_seg_size = len;
 169                        if (len == lss) {
 170                                icsk->icsk_ack.rcv_mss = len;
 171                                return;
 172                        }
 173                }
 174                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 175                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 176                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 177        }
 178}
 179
 180static void tcp_incr_quickack(struct sock *sk)
 181{
 182        struct inet_connection_sock *icsk = inet_csk(sk);
 183        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 184
 185        if (quickacks == 0)
 186                quickacks = 2;
 187        if (quickacks > icsk->icsk_ack.quick)
 188                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 189}
 190
 191static void tcp_enter_quickack_mode(struct sock *sk)
 192{
 193        struct inet_connection_sock *icsk = inet_csk(sk);
 194        tcp_incr_quickack(sk);
 195        icsk->icsk_ack.pingpong = 0;
 196        icsk->icsk_ack.ato = TCP_ATO_MIN;
 197}
 198
 199/* Send ACKs quickly, if "quick" count is not exhausted
 200 * and the session is not interactive.
 201 */
 202
 203static bool tcp_in_quickack_mode(struct sock *sk)
 204{
 205        const struct inet_connection_sock *icsk = inet_csk(sk);
 206        const struct dst_entry *dst = __sk_dst_get(sk);
 207
 208        return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 209                (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 210}
 211
 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 213{
 214        if (tp->ecn_flags & TCP_ECN_OK)
 215                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 216}
 217
 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 219{
 220        if (tcp_hdr(skb)->cwr)
 221                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 222}
 223
 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 225{
 226        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 227}
 228
 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 230{
 231        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 232        case INET_ECN_NOT_ECT:
 233                /* Funny extension: if ECT is not set on a segment,
 234                 * and we already seen ECT on a previous segment,
 235                 * it is probably a retransmit.
 236                 */
 237                if (tp->ecn_flags & TCP_ECN_SEEN)
 238                        tcp_enter_quickack_mode((struct sock *)tp);
 239                break;
 240        case INET_ECN_CE:
 241                if (tcp_ca_needs_ecn((struct sock *)tp))
 242                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 243
 244                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 245                        /* Better not delay acks, sender can have a very low cwnd */
 246                        tcp_enter_quickack_mode((struct sock *)tp);
 247                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 248                }
 249                tp->ecn_flags |= TCP_ECN_SEEN;
 250                break;
 251        default:
 252                if (tcp_ca_needs_ecn((struct sock *)tp))
 253                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 254                tp->ecn_flags |= TCP_ECN_SEEN;
 255                break;
 256        }
 257}
 258
 259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 260{
 261        if (tp->ecn_flags & TCP_ECN_OK)
 262                __tcp_ecn_check_ce(tp, skb);
 263}
 264
 265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 266{
 267        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 268                tp->ecn_flags &= ~TCP_ECN_OK;
 269}
 270
 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 272{
 273        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 274                tp->ecn_flags &= ~TCP_ECN_OK;
 275}
 276
 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 278{
 279        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 280                return true;
 281        return false;
 282}
 283
 284/* Buffer size and advertised window tuning.
 285 *
 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 287 */
 288
 289static void tcp_sndbuf_expand(struct sock *sk)
 290{
 291        const struct tcp_sock *tp = tcp_sk(sk);
 292        int sndmem, per_mss;
 293        u32 nr_segs;
 294
 295        /* Worst case is non GSO/TSO : each frame consumes one skb
 296         * and skb->head is kmalloced using power of two area of memory
 297         */
 298        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 299                  MAX_TCP_HEADER +
 300                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 301
 302        per_mss = roundup_pow_of_two(per_mss) +
 303                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 304
 305        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 306        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 307
 308        /* Fast Recovery (RFC 5681 3.2) :
 309         * Cubic needs 1.7 factor, rounded to 2 to include
 310         * extra cushion (application might react slowly to POLLOUT)
 311         */
 312        sndmem = 2 * nr_segs * per_mss;
 313
 314        if (sk->sk_sndbuf < sndmem)
 315                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 316}
 317
 318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 319 *
 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 321 * forward and advertised in receiver window (tp->rcv_wnd) and
 322 * "application buffer", required to isolate scheduling/application
 323 * latencies from network.
 324 * window_clamp is maximal advertised window. It can be less than
 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 326 * is reserved for "application" buffer. The less window_clamp is
 327 * the smoother our behaviour from viewpoint of network, but the lower
 328 * throughput and the higher sensitivity of the connection to losses. 8)
 329 *
 330 * rcv_ssthresh is more strict window_clamp used at "slow start"
 331 * phase to predict further behaviour of this connection.
 332 * It is used for two goals:
 333 * - to enforce header prediction at sender, even when application
 334 *   requires some significant "application buffer". It is check #1.
 335 * - to prevent pruning of receive queue because of misprediction
 336 *   of receiver window. Check #2.
 337 *
 338 * The scheme does not work when sender sends good segments opening
 339 * window and then starts to feed us spaghetti. But it should work
 340 * in common situations. Otherwise, we have to rely on queue collapsing.
 341 */
 342
 343/* Slow part of check#2. */
 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 345{
 346        struct tcp_sock *tp = tcp_sk(sk);
 347        /* Optimize this! */
 348        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 349        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 350
 351        while (tp->rcv_ssthresh <= window) {
 352                if (truesize <= skb->len)
 353                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 354
 355                truesize >>= 1;
 356                window >>= 1;
 357        }
 358        return 0;
 359}
 360
 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 362{
 363        struct tcp_sock *tp = tcp_sk(sk);
 364
 365        /* Check #1 */
 366        if (tp->rcv_ssthresh < tp->window_clamp &&
 367            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 368            !tcp_under_memory_pressure(sk)) {
 369                int incr;
 370
 371                /* Check #2. Increase window, if skb with such overhead
 372                 * will fit to rcvbuf in future.
 373                 */
 374                if (tcp_win_from_space(skb->truesize) <= skb->len)
 375                        incr = 2 * tp->advmss;
 376                else
 377                        incr = __tcp_grow_window(sk, skb);
 378
 379                if (incr) {
 380                        incr = max_t(int, incr, 2 * skb->len);
 381                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 382                                               tp->window_clamp);
 383                        inet_csk(sk)->icsk_ack.quick |= 1;
 384                }
 385        }
 386}
 387
 388/* 3. Tuning rcvbuf, when connection enters established state. */
 389static void tcp_fixup_rcvbuf(struct sock *sk)
 390{
 391        u32 mss = tcp_sk(sk)->advmss;
 392        int rcvmem;
 393
 394        rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 395                 tcp_default_init_rwnd(mss);
 396
 397        /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 398         * Allow enough cushion so that sender is not limited by our window
 399         */
 400        if (sysctl_tcp_moderate_rcvbuf)
 401                rcvmem <<= 2;
 402
 403        if (sk->sk_rcvbuf < rcvmem)
 404                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 405}
 406
 407/* 4. Try to fixup all. It is made immediately after connection enters
 408 *    established state.
 409 */
 410void tcp_init_buffer_space(struct sock *sk)
 411{
 412        struct tcp_sock *tp = tcp_sk(sk);
 413        int maxwin;
 414
 415        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 416                tcp_fixup_rcvbuf(sk);
 417        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 418                tcp_sndbuf_expand(sk);
 419
 420        tp->rcvq_space.space = tp->rcv_wnd;
 421        tp->rcvq_space.time = tcp_time_stamp;
 422        tp->rcvq_space.seq = tp->copied_seq;
 423
 424        maxwin = tcp_full_space(sk);
 425
 426        if (tp->window_clamp >= maxwin) {
 427                tp->window_clamp = maxwin;
 428
 429                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 430                        tp->window_clamp = max(maxwin -
 431                                               (maxwin >> sysctl_tcp_app_win),
 432                                               4 * tp->advmss);
 433        }
 434
 435        /* Force reservation of one segment. */
 436        if (sysctl_tcp_app_win &&
 437            tp->window_clamp > 2 * tp->advmss &&
 438            tp->window_clamp + tp->advmss > maxwin)
 439                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 440
 441        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 442        tp->snd_cwnd_stamp = tcp_time_stamp;
 443}
 444
 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
 446static void tcp_clamp_window(struct sock *sk)
 447{
 448        struct tcp_sock *tp = tcp_sk(sk);
 449        struct inet_connection_sock *icsk = inet_csk(sk);
 450
 451        icsk->icsk_ack.quick = 0;
 452
 453        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 454            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 455            !tcp_under_memory_pressure(sk) &&
 456            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 457                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 458                                    sysctl_tcp_rmem[2]);
 459        }
 460        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 461                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 462}
 463
 464/* Initialize RCV_MSS value.
 465 * RCV_MSS is an our guess about MSS used by the peer.
 466 * We haven't any direct information about the MSS.
 467 * It's better to underestimate the RCV_MSS rather than overestimate.
 468 * Overestimations make us ACKing less frequently than needed.
 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 470 */
 471void tcp_initialize_rcv_mss(struct sock *sk)
 472{
 473        const struct tcp_sock *tp = tcp_sk(sk);
 474        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 475
 476        hint = min(hint, tp->rcv_wnd / 2);
 477        hint = min(hint, TCP_MSS_DEFAULT);
 478        hint = max(hint, TCP_MIN_MSS);
 479
 480        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 481}
 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 483
 484/* Receiver "autotuning" code.
 485 *
 486 * The algorithm for RTT estimation w/o timestamps is based on
 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 489 *
 490 * More detail on this code can be found at
 491 * <http://staff.psc.edu/jheffner/>,
 492 * though this reference is out of date.  A new paper
 493 * is pending.
 494 */
 495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 496{
 497        u32 new_sample = tp->rcv_rtt_est.rtt;
 498        long m = sample;
 499
 500        if (m == 0)
 501                m = 1;
 502
 503        if (new_sample != 0) {
 504                /* If we sample in larger samples in the non-timestamp
 505                 * case, we could grossly overestimate the RTT especially
 506                 * with chatty applications or bulk transfer apps which
 507                 * are stalled on filesystem I/O.
 508                 *
 509                 * Also, since we are only going for a minimum in the
 510                 * non-timestamp case, we do not smooth things out
 511                 * else with timestamps disabled convergence takes too
 512                 * long.
 513                 */
 514                if (!win_dep) {
 515                        m -= (new_sample >> 3);
 516                        new_sample += m;
 517                } else {
 518                        m <<= 3;
 519                        if (m < new_sample)
 520                                new_sample = m;
 521                }
 522        } else {
 523                /* No previous measure. */
 524                new_sample = m << 3;
 525        }
 526
 527        if (tp->rcv_rtt_est.rtt != new_sample)
 528                tp->rcv_rtt_est.rtt = new_sample;
 529}
 530
 531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 532{
 533        if (tp->rcv_rtt_est.time == 0)
 534                goto new_measure;
 535        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 536                return;
 537        tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 538
 539new_measure:
 540        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 541        tp->rcv_rtt_est.time = tcp_time_stamp;
 542}
 543
 544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 545                                          const struct sk_buff *skb)
 546{
 547        struct tcp_sock *tp = tcp_sk(sk);
 548        if (tp->rx_opt.rcv_tsecr &&
 549            (TCP_SKB_CB(skb)->end_seq -
 550             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 551                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 552}
 553
 554/*
 555 * This function should be called every time data is copied to user space.
 556 * It calculates the appropriate TCP receive buffer space.
 557 */
 558void tcp_rcv_space_adjust(struct sock *sk)
 559{
 560        struct tcp_sock *tp = tcp_sk(sk);
 561        int time;
 562        int copied;
 563
 564        time = tcp_time_stamp - tp->rcvq_space.time;
 565        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 566                return;
 567
 568        /* Number of bytes copied to user in last RTT */
 569        copied = tp->copied_seq - tp->rcvq_space.seq;
 570        if (copied <= tp->rcvq_space.space)
 571                goto new_measure;
 572
 573        /* A bit of theory :
 574         * copied = bytes received in previous RTT, our base window
 575         * To cope with packet losses, we need a 2x factor
 576         * To cope with slow start, and sender growing its cwin by 100 %
 577         * every RTT, we need a 4x factor, because the ACK we are sending
 578         * now is for the next RTT, not the current one :
 579         * <prev RTT . ><current RTT .. ><next RTT .... >
 580         */
 581
 582        if (sysctl_tcp_moderate_rcvbuf &&
 583            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 584                int rcvwin, rcvmem, rcvbuf;
 585
 586                /* minimal window to cope with packet losses, assuming
 587                 * steady state. Add some cushion because of small variations.
 588                 */
 589                rcvwin = (copied << 1) + 16 * tp->advmss;
 590
 591                /* If rate increased by 25%,
 592                 *      assume slow start, rcvwin = 3 * copied
 593                 * If rate increased by 50%,
 594                 *      assume sender can use 2x growth, rcvwin = 4 * copied
 595                 */
 596                if (copied >=
 597                    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 598                        if (copied >=
 599                            tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 600                                rcvwin <<= 1;
 601                        else
 602                                rcvwin += (rcvwin >> 1);
 603                }
 604
 605                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 606                while (tcp_win_from_space(rcvmem) < tp->advmss)
 607                        rcvmem += 128;
 608
 609                rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 610                if (rcvbuf > sk->sk_rcvbuf) {
 611                        sk->sk_rcvbuf = rcvbuf;
 612
 613                        /* Make the window clamp follow along.  */
 614                        tp->window_clamp = rcvwin;
 615                }
 616        }
 617        tp->rcvq_space.space = copied;
 618
 619new_measure:
 620        tp->rcvq_space.seq = tp->copied_seq;
 621        tp->rcvq_space.time = tcp_time_stamp;
 622}
 623
 624/* There is something which you must keep in mind when you analyze the
 625 * behavior of the tp->ato delayed ack timeout interval.  When a
 626 * connection starts up, we want to ack as quickly as possible.  The
 627 * problem is that "good" TCP's do slow start at the beginning of data
 628 * transmission.  The means that until we send the first few ACK's the
 629 * sender will sit on his end and only queue most of his data, because
 630 * he can only send snd_cwnd unacked packets at any given time.  For
 631 * each ACK we send, he increments snd_cwnd and transmits more of his
 632 * queue.  -DaveM
 633 */
 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 635{
 636        struct tcp_sock *tp = tcp_sk(sk);
 637        struct inet_connection_sock *icsk = inet_csk(sk);
 638        u32 now;
 639
 640        inet_csk_schedule_ack(sk);
 641
 642        tcp_measure_rcv_mss(sk, skb);
 643
 644        tcp_rcv_rtt_measure(tp);
 645
 646        now = tcp_time_stamp;
 647
 648        if (!icsk->icsk_ack.ato) {
 649                /* The _first_ data packet received, initialize
 650                 * delayed ACK engine.
 651                 */
 652                tcp_incr_quickack(sk);
 653                icsk->icsk_ack.ato = TCP_ATO_MIN;
 654        } else {
 655                int m = now - icsk->icsk_ack.lrcvtime;
 656
 657                if (m <= TCP_ATO_MIN / 2) {
 658                        /* The fastest case is the first. */
 659                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 660                } else if (m < icsk->icsk_ack.ato) {
 661                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 662                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 663                                icsk->icsk_ack.ato = icsk->icsk_rto;
 664                } else if (m > icsk->icsk_rto) {
 665                        /* Too long gap. Apparently sender failed to
 666                         * restart window, so that we send ACKs quickly.
 667                         */
 668                        tcp_incr_quickack(sk);
 669                        sk_mem_reclaim(sk);
 670                }
 671        }
 672        icsk->icsk_ack.lrcvtime = now;
 673
 674        tcp_ecn_check_ce(tp, skb);
 675
 676        if (skb->len >= 128)
 677                tcp_grow_window(sk, skb);
 678}
 679
 680/* Called to compute a smoothed rtt estimate. The data fed to this
 681 * routine either comes from timestamps, or from segments that were
 682 * known _not_ to have been retransmitted [see Karn/Partridge
 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 684 * piece by Van Jacobson.
 685 * NOTE: the next three routines used to be one big routine.
 686 * To save cycles in the RFC 1323 implementation it was better to break
 687 * it up into three procedures. -- erics
 688 */
 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 690{
 691        struct tcp_sock *tp = tcp_sk(sk);
 692        long m = mrtt_us; /* RTT */
 693        u32 srtt = tp->srtt_us;
 694
 695        /*      The following amusing code comes from Jacobson's
 696         *      article in SIGCOMM '88.  Note that rtt and mdev
 697         *      are scaled versions of rtt and mean deviation.
 698         *      This is designed to be as fast as possible
 699         *      m stands for "measurement".
 700         *
 701         *      On a 1990 paper the rto value is changed to:
 702         *      RTO = rtt + 4 * mdev
 703         *
 704         * Funny. This algorithm seems to be very broken.
 705         * These formulae increase RTO, when it should be decreased, increase
 706         * too slowly, when it should be increased quickly, decrease too quickly
 707         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 708         * does not matter how to _calculate_ it. Seems, it was trap
 709         * that VJ failed to avoid. 8)
 710         */
 711        if (srtt != 0) {
 712                m -= (srtt >> 3);       /* m is now error in rtt est */
 713                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 714                if (m < 0) {
 715                        m = -m;         /* m is now abs(error) */
 716                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 717                        /* This is similar to one of Eifel findings.
 718                         * Eifel blocks mdev updates when rtt decreases.
 719                         * This solution is a bit different: we use finer gain
 720                         * for mdev in this case (alpha*beta).
 721                         * Like Eifel it also prevents growth of rto,
 722                         * but also it limits too fast rto decreases,
 723                         * happening in pure Eifel.
 724                         */
 725                        if (m > 0)
 726                                m >>= 3;
 727                } else {
 728                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 729                }
 730                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 731                if (tp->mdev_us > tp->mdev_max_us) {
 732                        tp->mdev_max_us = tp->mdev_us;
 733                        if (tp->mdev_max_us > tp->rttvar_us)
 734                                tp->rttvar_us = tp->mdev_max_us;
 735                }
 736                if (after(tp->snd_una, tp->rtt_seq)) {
 737                        if (tp->mdev_max_us < tp->rttvar_us)
 738                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 739                        tp->rtt_seq = tp->snd_nxt;
 740                        tp->mdev_max_us = tcp_rto_min_us(sk);
 741                }
 742        } else {
 743                /* no previous measure. */
 744                srtt = m << 3;          /* take the measured time to be rtt */
 745                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 746                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 747                tp->mdev_max_us = tp->rttvar_us;
 748                tp->rtt_seq = tp->snd_nxt;
 749        }
 750        tp->srtt_us = max(1U, srtt);
 751}
 752
 753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 754 * Note: TCP stack does not yet implement pacing.
 755 * FQ packet scheduler can be used to implement cheap but effective
 756 * TCP pacing, to smooth the burst on large writes when packets
 757 * in flight is significantly lower than cwnd (or rwin)
 758 */
 759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 761
 762static void tcp_update_pacing_rate(struct sock *sk)
 763{
 764        const struct tcp_sock *tp = tcp_sk(sk);
 765        u64 rate;
 766
 767        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 768        rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 769
 770        /* current rate is (cwnd * mss) / srtt
 771         * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 772         * In Congestion Avoidance phase, set it to 120 % the current rate.
 773         *
 774         * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 775         *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 776         *       end of slow start and should slow down.
 777         */
 778        if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 779                rate *= sysctl_tcp_pacing_ss_ratio;
 780        else
 781                rate *= sysctl_tcp_pacing_ca_ratio;
 782
 783        rate *= max(tp->snd_cwnd, tp->packets_out);
 784
 785        if (likely(tp->srtt_us))
 786                do_div(rate, tp->srtt_us);
 787
 788        /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 789         * without any lock. We want to make sure compiler wont store
 790         * intermediate values in this location.
 791         */
 792        ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 793                                                sk->sk_max_pacing_rate);
 794}
 795
 796/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 797 * routine referred to above.
 798 */
 799static void tcp_set_rto(struct sock *sk)
 800{
 801        const struct tcp_sock *tp = tcp_sk(sk);
 802        /* Old crap is replaced with new one. 8)
 803         *
 804         * More seriously:
 805         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 806         *    It cannot be less due to utterly erratic ACK generation made
 807         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 808         *    to do with delayed acks, because at cwnd>2 true delack timeout
 809         *    is invisible. Actually, Linux-2.4 also generates erratic
 810         *    ACKs in some circumstances.
 811         */
 812        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 813
 814        /* 2. Fixups made earlier cannot be right.
 815         *    If we do not estimate RTO correctly without them,
 816         *    all the algo is pure shit and should be replaced
 817         *    with correct one. It is exactly, which we pretend to do.
 818         */
 819
 820        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 821         * guarantees that rto is higher.
 822         */
 823        tcp_bound_rto(sk);
 824}
 825
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830        if (!cwnd)
 831                cwnd = TCP_INIT_CWND;
 832        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 835/*
 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 837 * disables it when reordering is detected
 838 */
 839void tcp_disable_fack(struct tcp_sock *tp)
 840{
 841        /* RFC3517 uses different metric in lost marker => reset on change */
 842        if (tcp_is_fack(tp))
 843                tp->lost_skb_hint = NULL;
 844        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 845}
 846
 847/* Take a notice that peer is sending D-SACKs */
 848static void tcp_dsack_seen(struct tcp_sock *tp)
 849{
 850        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 851}
 852
 853static void tcp_update_reordering(struct sock *sk, const int metric,
 854                                  const int ts)
 855{
 856        struct tcp_sock *tp = tcp_sk(sk);
 857        if (metric > tp->reordering) {
 858                int mib_idx;
 859
 860                tp->reordering = min(sysctl_tcp_max_reordering, metric);
 861
 862                /* This exciting event is worth to be remembered. 8) */
 863                if (ts)
 864                        mib_idx = LINUX_MIB_TCPTSREORDER;
 865                else if (tcp_is_reno(tp))
 866                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 867                else if (tcp_is_fack(tp))
 868                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 869                else
 870                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 871
 872                NET_INC_STATS_BH(sock_net(sk), mib_idx);
 873#if FASTRETRANS_DEBUG > 1
 874                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 875                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 876                         tp->reordering,
 877                         tp->fackets_out,
 878                         tp->sacked_out,
 879                         tp->undo_marker ? tp->undo_retrans : 0);
 880#endif
 881                tcp_disable_fack(tp);
 882        }
 883
 884        if (metric > 0)
 885                tcp_disable_early_retrans(tp);
 886        tp->rack.reord = 1;
 887}
 888
 889/* This must be called before lost_out is incremented */
 890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 891{
 892        if (!tp->retransmit_skb_hint ||
 893            before(TCP_SKB_CB(skb)->seq,
 894                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 895                tp->retransmit_skb_hint = skb;
 896
 897        if (!tp->lost_out ||
 898            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 899                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 900}
 901
 902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 903{
 904        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 905                tcp_verify_retransmit_hint(tp, skb);
 906
 907                tp->lost_out += tcp_skb_pcount(skb);
 908                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 909        }
 910}
 911
 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 913{
 914        tcp_verify_retransmit_hint(tp, skb);
 915
 916        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 917                tp->lost_out += tcp_skb_pcount(skb);
 918                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 919        }
 920}
 921
 922/* This procedure tags the retransmission queue when SACKs arrive.
 923 *
 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 925 * Packets in queue with these bits set are counted in variables
 926 * sacked_out, retrans_out and lost_out, correspondingly.
 927 *
 928 * Valid combinations are:
 929 * Tag  InFlight        Description
 930 * 0    1               - orig segment is in flight.
 931 * S    0               - nothing flies, orig reached receiver.
 932 * L    0               - nothing flies, orig lost by net.
 933 * R    2               - both orig and retransmit are in flight.
 934 * L|R  1               - orig is lost, retransmit is in flight.
 935 * S|R  1               - orig reached receiver, retrans is still in flight.
 936 * (L|S|R is logically valid, it could occur when L|R is sacked,
 937 *  but it is equivalent to plain S and code short-curcuits it to S.
 938 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 939 *
 940 * These 6 states form finite state machine, controlled by the following events:
 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 943 * 3. Loss detection event of two flavors:
 944 *      A. Scoreboard estimator decided the packet is lost.
 945 *         A'. Reno "three dupacks" marks head of queue lost.
 946 *         A''. Its FACK modification, head until snd.fack is lost.
 947 *      B. SACK arrives sacking SND.NXT at the moment, when the
 948 *         segment was retransmitted.
 949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 950 *
 951 * It is pleasant to note, that state diagram turns out to be commutative,
 952 * so that we are allowed not to be bothered by order of our actions,
 953 * when multiple events arrive simultaneously. (see the function below).
 954 *
 955 * Reordering detection.
 956 * --------------------
 957 * Reordering metric is maximal distance, which a packet can be displaced
 958 * in packet stream. With SACKs we can estimate it:
 959 *
 960 * 1. SACK fills old hole and the corresponding segment was not
 961 *    ever retransmitted -> reordering. Alas, we cannot use it
 962 *    when segment was retransmitted.
 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 964 *    for retransmitted and already SACKed segment -> reordering..
 965 * Both of these heuristics are not used in Loss state, when we cannot
 966 * account for retransmits accurately.
 967 *
 968 * SACK block validation.
 969 * ----------------------
 970 *
 971 * SACK block range validation checks that the received SACK block fits to
 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 973 * Note that SND.UNA is not included to the range though being valid because
 974 * it means that the receiver is rather inconsistent with itself reporting
 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 976 * perfectly valid, however, in light of RFC2018 which explicitly states
 977 * that "SACK block MUST reflect the newest segment.  Even if the newest
 978 * segment is going to be discarded ...", not that it looks very clever
 979 * in case of head skb. Due to potentional receiver driven attacks, we
 980 * choose to avoid immediate execution of a walk in write queue due to
 981 * reneging and defer head skb's loss recovery to standard loss recovery
 982 * procedure that will eventually trigger (nothing forbids us doing this).
 983 *
 984 * Implements also blockage to start_seq wrap-around. Problem lies in the
 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 986 * there's no guarantee that it will be before snd_nxt (n). The problem
 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 988 * wrap (s_w):
 989 *
 990 *         <- outs wnd ->                          <- wrapzone ->
 991 *         u     e      n                         u_w   e_w  s n_w
 992 *         |     |      |                          |     |   |  |
 993 * |<------------+------+----- TCP seqno space --------------+---------->|
 994 * ...-- <2^31 ->|                                           |<--------...
 995 * ...---- >2^31 ------>|                                    |<--------...
 996 *
 997 * Current code wouldn't be vulnerable but it's better still to discard such
 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017                                   u32 start_seq, u32 end_seq)
1018{
1019        /* Too far in future, or reversed (interpretation is ambiguous) */
1020        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021                return false;
1022
1023        /* Nasty start_seq wrap-around check (see comments above) */
1024        if (!before(start_seq, tp->snd_nxt))
1025                return false;
1026
1027        /* In outstanding window? ...This is valid exit for D-SACKs too.
1028         * start_seq == snd_una is non-sensical (see comments above)
1029         */
1030        if (after(start_seq, tp->snd_una))
1031                return true;
1032
1033        if (!is_dsack || !tp->undo_marker)
1034                return false;
1035
1036        /* ...Then it's D-SACK, and must reside below snd_una completely */
1037        if (after(end_seq, tp->snd_una))
1038                return false;
1039
1040        if (!before(start_seq, tp->undo_marker))
1041                return true;
1042
1043        /* Too old */
1044        if (!after(end_seq, tp->undo_marker))
1045                return false;
1046
1047        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048         *   start_seq < undo_marker and end_seq >= undo_marker.
1049         */
1050        return !before(start_seq, end_seq - tp->max_window);
1051}
1052
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054                            struct tcp_sack_block_wire *sp, int num_sacks,
1055                            u32 prior_snd_una)
1056{
1057        struct tcp_sock *tp = tcp_sk(sk);
1058        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060        bool dup_sack = false;
1061
1062        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063                dup_sack = true;
1064                tcp_dsack_seen(tp);
1065                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066        } else if (num_sacks > 1) {
1067                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070                if (!after(end_seq_0, end_seq_1) &&
1071                    !before(start_seq_0, start_seq_1)) {
1072                        dup_sack = true;
1073                        tcp_dsack_seen(tp);
1074                        NET_INC_STATS_BH(sock_net(sk),
1075                                        LINUX_MIB_TCPDSACKOFORECV);
1076                }
1077        }
1078
1079        /* D-SACK for already forgotten data... Do dumb counting. */
1080        if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081            !after(end_seq_0, prior_snd_una) &&
1082            after(end_seq_0, tp->undo_marker))
1083                tp->undo_retrans--;
1084
1085        return dup_sack;
1086}
1087
1088struct tcp_sacktag_state {
1089        int     reord;
1090        int     fack_count;
1091        /* Timestamps for earliest and latest never-retransmitted segment
1092         * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093         * but congestion control should still get an accurate delay signal.
1094         */
1095        struct skb_mstamp first_sackt;
1096        struct skb_mstamp last_sackt;
1097        int     flag;
1098};
1099
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109                                  u32 start_seq, u32 end_seq)
1110{
1111        int err;
1112        bool in_sack;
1113        unsigned int pkt_len;
1114        unsigned int mss;
1115
1116        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121                mss = tcp_skb_mss(skb);
1122                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124                if (!in_sack) {
1125                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126                        if (pkt_len < mss)
1127                                pkt_len = mss;
1128                } else {
1129                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130                        if (pkt_len < mss)
1131                                return -EINVAL;
1132                }
1133
1134                /* Round if necessary so that SACKs cover only full MSSes
1135                 * and/or the remaining small portion (if present)
1136                 */
1137                if (pkt_len > mss) {
1138                        unsigned int new_len = (pkt_len / mss) * mss;
1139                        if (!in_sack && new_len < pkt_len) {
1140                                new_len += mss;
1141                                if (new_len >= skb->len)
1142                                        return 0;
1143                        }
1144                        pkt_len = new_len;
1145                }
1146                err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147                if (err < 0)
1148                        return err;
1149        }
1150
1151        return in_sack;
1152}
1153
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156                          struct tcp_sacktag_state *state, u8 sacked,
1157                          u32 start_seq, u32 end_seq,
1158                          int dup_sack, int pcount,
1159                          const struct skb_mstamp *xmit_time)
1160{
1161        struct tcp_sock *tp = tcp_sk(sk);
1162        int fack_count = state->fack_count;
1163
1164        /* Account D-SACK for retransmitted packet. */
1165        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166                if (tp->undo_marker && tp->undo_retrans > 0 &&
1167                    after(end_seq, tp->undo_marker))
1168                        tp->undo_retrans--;
1169                if (sacked & TCPCB_SACKED_ACKED)
1170                        state->reord = min(fack_count, state->reord);
1171        }
1172
1173        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174        if (!after(end_seq, tp->snd_una))
1175                return sacked;
1176
1177        if (!(sacked & TCPCB_SACKED_ACKED)) {
1178                tcp_rack_advance(tp, xmit_time, sacked);
1179
1180                if (sacked & TCPCB_SACKED_RETRANS) {
1181                        /* If the segment is not tagged as lost,
1182                         * we do not clear RETRANS, believing
1183                         * that retransmission is still in flight.
1184                         */
1185                        if (sacked & TCPCB_LOST) {
1186                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187                                tp->lost_out -= pcount;
1188                                tp->retrans_out -= pcount;
1189                        }
1190                } else {
1191                        if (!(sacked & TCPCB_RETRANS)) {
1192                                /* New sack for not retransmitted frame,
1193                                 * which was in hole. It is reordering.
1194                                 */
1195                                if (before(start_seq,
1196                                           tcp_highest_sack_seq(tp)))
1197                                        state->reord = min(fack_count,
1198                                                           state->reord);
1199                                if (!after(end_seq, tp->high_seq))
1200                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1201                                if (state->first_sackt.v64 == 0)
1202                                        state->first_sackt = *xmit_time;
1203                                state->last_sackt = *xmit_time;
1204                        }
1205
1206                        if (sacked & TCPCB_LOST) {
1207                                sacked &= ~TCPCB_LOST;
1208                                tp->lost_out -= pcount;
1209                        }
1210                }
1211
1212                sacked |= TCPCB_SACKED_ACKED;
1213                state->flag |= FLAG_DATA_SACKED;
1214                tp->sacked_out += pcount;
1215                tp->delivered += pcount;  /* Out-of-order packets delivered */
1216
1217                fack_count += pcount;
1218
1219                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220                if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222                        tp->lost_cnt_hint += pcount;
1223
1224                if (fack_count > tp->fackets_out)
1225                        tp->fackets_out = fack_count;
1226        }
1227
1228        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229         * frames and clear it. undo_retrans is decreased above, L|R frames
1230         * are accounted above as well.
1231         */
1232        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233                sacked &= ~TCPCB_SACKED_RETRANS;
1234                tp->retrans_out -= pcount;
1235        }
1236
1237        return sacked;
1238}
1239
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244                            struct tcp_sacktag_state *state,
1245                            unsigned int pcount, int shifted, int mss,
1246                            bool dup_sack)
1247{
1248        struct tcp_sock *tp = tcp_sk(sk);
1249        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1251        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1252
1253        BUG_ON(!pcount);
1254
1255        /* Adjust counters and hints for the newly sacked sequence
1256         * range but discard the return value since prev is already
1257         * marked. We must tag the range first because the seq
1258         * advancement below implicitly advances
1259         * tcp_highest_sack_seq() when skb is highest_sack.
1260         */
1261        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262                        start_seq, end_seq, dup_sack, pcount,
1263                        &skb->skb_mstamp);
1264
1265        if (skb == tp->lost_skb_hint)
1266                tp->lost_cnt_hint += pcount;
1267
1268        TCP_SKB_CB(prev)->end_seq += shifted;
1269        TCP_SKB_CB(skb)->seq += shifted;
1270
1271        tcp_skb_pcount_add(prev, pcount);
1272        BUG_ON(tcp_skb_pcount(skb) < pcount);
1273        tcp_skb_pcount_add(skb, -pcount);
1274
1275        /* When we're adding to gso_segs == 1, gso_size will be zero,
1276         * in theory this shouldn't be necessary but as long as DSACK
1277         * code can come after this skb later on it's better to keep
1278         * setting gso_size to something.
1279         */
1280        if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281                TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284        if (tcp_skb_pcount(skb) <= 1)
1285                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290        if (skb->len > 0) {
1291                BUG_ON(!tcp_skb_pcount(skb));
1292                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293                return false;
1294        }
1295
1296        /* Whole SKB was eaten :-) */
1297
1298        if (skb == tp->retransmit_skb_hint)
1299                tp->retransmit_skb_hint = prev;
1300        if (skb == tp->lost_skb_hint) {
1301                tp->lost_skb_hint = prev;
1302                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303        }
1304
1305        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307                TCP_SKB_CB(prev)->end_seq++;
1308
1309        if (skb == tcp_highest_sack(sk))
1310                tcp_advance_highest_sack(sk, skb);
1311
1312        tcp_skb_collapse_tstamp(prev, skb);
1313        tcp_unlink_write_queue(skb, sk);
1314        sk_wmem_free_skb(sk, skb);
1315
1316        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1317
1318        return true;
1319}
1320
1321/* I wish gso_size would have a bit more sane initialization than
1322 * something-or-zero which complicates things
1323 */
1324static int tcp_skb_seglen(const struct sk_buff *skb)
1325{
1326        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1327}
1328
1329/* Shifting pages past head area doesn't work */
1330static int skb_can_shift(const struct sk_buff *skb)
1331{
1332        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1333}
1334
1335/* Try collapsing SACK blocks spanning across multiple skbs to a single
1336 * skb.
1337 */
1338static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339                                          struct tcp_sacktag_state *state,
1340                                          u32 start_seq, u32 end_seq,
1341                                          bool dup_sack)
1342{
1343        struct tcp_sock *tp = tcp_sk(sk);
1344        struct sk_buff *prev;
1345        int mss;
1346        int pcount = 0;
1347        int len;
1348        int in_sack;
1349
1350        if (!sk_can_gso(sk))
1351                goto fallback;
1352
1353        /* Normally R but no L won't result in plain S */
1354        if (!dup_sack &&
1355            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356                goto fallback;
1357        if (!skb_can_shift(skb))
1358                goto fallback;
1359        /* This frame is about to be dropped (was ACKed). */
1360        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361                goto fallback;
1362
1363        /* Can only happen with delayed DSACK + discard craziness */
1364        if (unlikely(skb == tcp_write_queue_head(sk)))
1365                goto fallback;
1366        prev = tcp_write_queue_prev(sk, skb);
1367
1368        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369                goto fallback;
1370
1371        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1373
1374        if (in_sack) {
1375                len = skb->len;
1376                pcount = tcp_skb_pcount(skb);
1377                mss = tcp_skb_seglen(skb);
1378
1379                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1380                 * drop this restriction as unnecessary
1381                 */
1382                if (mss != tcp_skb_seglen(prev))
1383                        goto fallback;
1384        } else {
1385                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386                        goto noop;
1387                /* CHECKME: This is non-MSS split case only?, this will
1388                 * cause skipped skbs due to advancing loop btw, original
1389                 * has that feature too
1390                 */
1391                if (tcp_skb_pcount(skb) <= 1)
1392                        goto noop;
1393
1394                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395                if (!in_sack) {
1396                        /* TODO: head merge to next could be attempted here
1397                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398                         * though it might not be worth of the additional hassle
1399                         *
1400                         * ...we can probably just fallback to what was done
1401                         * previously. We could try merging non-SACKed ones
1402                         * as well but it probably isn't going to buy off
1403                         * because later SACKs might again split them, and
1404                         * it would make skb timestamp tracking considerably
1405                         * harder problem.
1406                         */
1407                        goto fallback;
1408                }
1409
1410                len = end_seq - TCP_SKB_CB(skb)->seq;
1411                BUG_ON(len < 0);
1412                BUG_ON(len > skb->len);
1413
1414                /* MSS boundaries should be honoured or else pcount will
1415                 * severely break even though it makes things bit trickier.
1416                 * Optimize common case to avoid most of the divides
1417                 */
1418                mss = tcp_skb_mss(skb);
1419
1420                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1421                 * drop this restriction as unnecessary
1422                 */
1423                if (mss != tcp_skb_seglen(prev))
1424                        goto fallback;
1425
1426                if (len == mss) {
1427                        pcount = 1;
1428                } else if (len < mss) {
1429                        goto noop;
1430                } else {
1431                        pcount = len / mss;
1432                        len = pcount * mss;
1433                }
1434        }
1435
1436        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438                goto fallback;
1439
1440        if (!skb_shift(prev, skb, len))
1441                goto fallback;
1442        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443                goto out;
1444
1445        /* Hole filled allows collapsing with the next as well, this is very
1446         * useful when hole on every nth skb pattern happens
1447         */
1448        if (prev == tcp_write_queue_tail(sk))
1449                goto out;
1450        skb = tcp_write_queue_next(sk, prev);
1451
1452        if (!skb_can_shift(skb) ||
1453            (skb == tcp_send_head(sk)) ||
1454            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455            (mss != tcp_skb_seglen(skb)))
1456                goto out;
1457
1458        len = skb->len;
1459        if (skb_shift(prev, skb, len)) {
1460                pcount += tcp_skb_pcount(skb);
1461                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1462        }
1463
1464out:
1465        state->fack_count += pcount;
1466        return prev;
1467
1468noop:
1469        return skb;
1470
1471fallback:
1472        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473        return NULL;
1474}
1475
1476static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477                                        struct tcp_sack_block *next_dup,
1478                                        struct tcp_sacktag_state *state,
1479                                        u32 start_seq, u32 end_seq,
1480                                        bool dup_sack_in)
1481{
1482        struct tcp_sock *tp = tcp_sk(sk);
1483        struct sk_buff *tmp;
1484
1485        tcp_for_write_queue_from(skb, sk) {
1486                int in_sack = 0;
1487                bool dup_sack = dup_sack_in;
1488
1489                if (skb == tcp_send_head(sk))
1490                        break;
1491
1492                /* queue is in-order => we can short-circuit the walk early */
1493                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494                        break;
1495
1496                if (next_dup  &&
1497                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498                        in_sack = tcp_match_skb_to_sack(sk, skb,
1499                                                        next_dup->start_seq,
1500                                                        next_dup->end_seq);
1501                        if (in_sack > 0)
1502                                dup_sack = true;
1503                }
1504
1505                /* skb reference here is a bit tricky to get right, since
1506                 * shifting can eat and free both this skb and the next,
1507                 * so not even _safe variant of the loop is enough.
1508                 */
1509                if (in_sack <= 0) {
1510                        tmp = tcp_shift_skb_data(sk, skb, state,
1511                                                 start_seq, end_seq, dup_sack);
1512                        if (tmp) {
1513                                if (tmp != skb) {
1514                                        skb = tmp;
1515                                        continue;
1516                                }
1517
1518                                in_sack = 0;
1519                        } else {
1520                                in_sack = tcp_match_skb_to_sack(sk, skb,
1521                                                                start_seq,
1522                                                                end_seq);
1523                        }
1524                }
1525
1526                if (unlikely(in_sack < 0))
1527                        break;
1528
1529                if (in_sack) {
1530                        TCP_SKB_CB(skb)->sacked =
1531                                tcp_sacktag_one(sk,
1532                                                state,
1533                                                TCP_SKB_CB(skb)->sacked,
1534                                                TCP_SKB_CB(skb)->seq,
1535                                                TCP_SKB_CB(skb)->end_seq,
1536                                                dup_sack,
1537                                                tcp_skb_pcount(skb),
1538                                                &skb->skb_mstamp);
1539
1540                        if (!before(TCP_SKB_CB(skb)->seq,
1541                                    tcp_highest_sack_seq(tp)))
1542                                tcp_advance_highest_sack(sk, skb);
1543                }
1544
1545                state->fack_count += tcp_skb_pcount(skb);
1546        }
1547        return skb;
1548}
1549
1550/* Avoid all extra work that is being done by sacktag while walking in
1551 * a normal way
1552 */
1553static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554                                        struct tcp_sacktag_state *state,
1555                                        u32 skip_to_seq)
1556{
1557        tcp_for_write_queue_from(skb, sk) {
1558                if (skb == tcp_send_head(sk))
1559                        break;
1560
1561                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562                        break;
1563
1564                state->fack_count += tcp_skb_pcount(skb);
1565        }
1566        return skb;
1567}
1568
1569static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570                                                struct sock *sk,
1571                                                struct tcp_sack_block *next_dup,
1572                                                struct tcp_sacktag_state *state,
1573                                                u32 skip_to_seq)
1574{
1575        if (!next_dup)
1576                return skb;
1577
1578        if (before(next_dup->start_seq, skip_to_seq)) {
1579                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581                                       next_dup->start_seq, next_dup->end_seq,
1582                                       1);
1583        }
1584
1585        return skb;
1586}
1587
1588static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1589{
1590        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1591}
1592
1593static int
1594tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595                        u32 prior_snd_una, struct tcp_sacktag_state *state)
1596{
1597        struct tcp_sock *tp = tcp_sk(sk);
1598        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599                                    TCP_SKB_CB(ack_skb)->sacked);
1600        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601        struct tcp_sack_block sp[TCP_NUM_SACKS];
1602        struct tcp_sack_block *cache;
1603        struct sk_buff *skb;
1604        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605        int used_sacks;
1606        bool found_dup_sack = false;
1607        int i, j;
1608        int first_sack_index;
1609
1610        state->flag = 0;
1611        state->reord = tp->packets_out;
1612
1613        if (!tp->sacked_out) {
1614                if (WARN_ON(tp->fackets_out))
1615                        tp->fackets_out = 0;
1616                tcp_highest_sack_reset(sk);
1617        }
1618
1619        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620                                         num_sacks, prior_snd_una);
1621        if (found_dup_sack)
1622                state->flag |= FLAG_DSACKING_ACK;
1623
1624        /* Eliminate too old ACKs, but take into
1625         * account more or less fresh ones, they can
1626         * contain valid SACK info.
1627         */
1628        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629                return 0;
1630
1631        if (!tp->packets_out)
1632                goto out;
1633
1634        used_sacks = 0;
1635        first_sack_index = 0;
1636        for (i = 0; i < num_sacks; i++) {
1637                bool dup_sack = !i && found_dup_sack;
1638
1639                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1641
1642                if (!tcp_is_sackblock_valid(tp, dup_sack,
1643                                            sp[used_sacks].start_seq,
1644                                            sp[used_sacks].end_seq)) {
1645                        int mib_idx;
1646
1647                        if (dup_sack) {
1648                                if (!tp->undo_marker)
1649                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650                                else
1651                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652                        } else {
1653                                /* Don't count olds caused by ACK reordering */
1654                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1656                                        continue;
1657                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1658                        }
1659
1660                        NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661                        if (i == 0)
1662                                first_sack_index = -1;
1663                        continue;
1664                }
1665
1666                /* Ignore very old stuff early */
1667                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1668                        continue;
1669
1670                used_sacks++;
1671        }
1672
1673        /* order SACK blocks to allow in order walk of the retrans queue */
1674        for (i = used_sacks - 1; i > 0; i--) {
1675                for (j = 0; j < i; j++) {
1676                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677                                swap(sp[j], sp[j + 1]);
1678
1679                                /* Track where the first SACK block goes to */
1680                                if (j == first_sack_index)
1681                                        first_sack_index = j + 1;
1682                        }
1683                }
1684        }
1685
1686        skb = tcp_write_queue_head(sk);
1687        state->fack_count = 0;
1688        i = 0;
1689
1690        if (!tp->sacked_out) {
1691                /* It's already past, so skip checking against it */
1692                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693        } else {
1694                cache = tp->recv_sack_cache;
1695                /* Skip empty blocks in at head of the cache */
1696                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697                       !cache->end_seq)
1698                        cache++;
1699        }
1700
1701        while (i < used_sacks) {
1702                u32 start_seq = sp[i].start_seq;
1703                u32 end_seq = sp[i].end_seq;
1704                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705                struct tcp_sack_block *next_dup = NULL;
1706
1707                if (found_dup_sack && ((i + 1) == first_sack_index))
1708                        next_dup = &sp[i + 1];
1709
1710                /* Skip too early cached blocks */
1711                while (tcp_sack_cache_ok(tp, cache) &&
1712                       !before(start_seq, cache->end_seq))
1713                        cache++;
1714
1715                /* Can skip some work by looking recv_sack_cache? */
1716                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717                    after(end_seq, cache->start_seq)) {
1718
1719                        /* Head todo? */
1720                        if (before(start_seq, cache->start_seq)) {
1721                                skb = tcp_sacktag_skip(skb, sk, state,
1722                                                       start_seq);
1723                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1724                                                       state,
1725                                                       start_seq,
1726                                                       cache->start_seq,
1727                                                       dup_sack);
1728                        }
1729
1730                        /* Rest of the block already fully processed? */
1731                        if (!after(end_seq, cache->end_seq))
1732                                goto advance_sp;
1733
1734                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735                                                       state,
1736                                                       cache->end_seq);
1737
1738                        /* ...tail remains todo... */
1739                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740                                /* ...but better entrypoint exists! */
1741                                skb = tcp_highest_sack(sk);
1742                                if (!skb)
1743                                        break;
1744                                state->fack_count = tp->fackets_out;
1745                                cache++;
1746                                goto walk;
1747                        }
1748
1749                        skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750                        /* Check overlap against next cached too (past this one already) */
1751                        cache++;
1752                        continue;
1753                }
1754
1755                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756                        skb = tcp_highest_sack(sk);
1757                        if (!skb)
1758                                break;
1759                        state->fack_count = tp->fackets_out;
1760                }
1761                skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1762
1763walk:
1764                skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765                                       start_seq, end_seq, dup_sack);
1766
1767advance_sp:
1768                i++;
1769        }
1770
1771        /* Clear the head of the cache sack blocks so we can skip it next time */
1772        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773                tp->recv_sack_cache[i].start_seq = 0;
1774                tp->recv_sack_cache[i].end_seq = 0;
1775        }
1776        for (j = 0; j < used_sacks; j++)
1777                tp->recv_sack_cache[i++] = sp[j];
1778
1779        if ((state->reord < tp->fackets_out) &&
1780            ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781                tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1782
1783        tcp_verify_left_out(tp);
1784out:
1785
1786#if FASTRETRANS_DEBUG > 0
1787        WARN_ON((int)tp->sacked_out < 0);
1788        WARN_ON((int)tp->lost_out < 0);
1789        WARN_ON((int)tp->retrans_out < 0);
1790        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791#endif
1792        return state->flag;
1793}
1794
1795/* Limits sacked_out so that sum with lost_out isn't ever larger than
1796 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1797 */
1798static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1799{
1800        u32 holes;
1801
1802        holes = max(tp->lost_out, 1U);
1803        holes = min(holes, tp->packets_out);
1804
1805        if ((tp->sacked_out + holes) > tp->packets_out) {
1806                tp->sacked_out = tp->packets_out - holes;
1807                return true;
1808        }
1809        return false;
1810}
1811
1812/* If we receive more dupacks than we expected counting segments
1813 * in assumption of absent reordering, interpret this as reordering.
1814 * The only another reason could be bug in receiver TCP.
1815 */
1816static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1817{
1818        struct tcp_sock *tp = tcp_sk(sk);
1819        if (tcp_limit_reno_sacked(tp))
1820                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1821}
1822
1823/* Emulate SACKs for SACKless connection: account for a new dupack. */
1824
1825static void tcp_add_reno_sack(struct sock *sk)
1826{
1827        struct tcp_sock *tp = tcp_sk(sk);
1828        u32 prior_sacked = tp->sacked_out;
1829
1830        tp->sacked_out++;
1831        tcp_check_reno_reordering(sk, 0);
1832        if (tp->sacked_out > prior_sacked)
1833                tp->delivered++; /* Some out-of-order packet is delivered */
1834        tcp_verify_left_out(tp);
1835}
1836
1837/* Account for ACK, ACKing some data in Reno Recovery phase. */
1838
1839static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1840{
1841        struct tcp_sock *tp = tcp_sk(sk);
1842
1843        if (acked > 0) {
1844                /* One ACK acked hole. The rest eat duplicate ACKs. */
1845                tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1846                if (acked - 1 >= tp->sacked_out)
1847                        tp->sacked_out = 0;
1848                else
1849                        tp->sacked_out -= acked - 1;
1850        }
1851        tcp_check_reno_reordering(sk, acked);
1852        tcp_verify_left_out(tp);
1853}
1854
1855static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1856{
1857        tp->sacked_out = 0;
1858}
1859
1860void tcp_clear_retrans(struct tcp_sock *tp)
1861{
1862        tp->retrans_out = 0;
1863        tp->lost_out = 0;
1864        tp->undo_marker = 0;
1865        tp->undo_retrans = -1;
1866        tp->fackets_out = 0;
1867        tp->sacked_out = 0;
1868}
1869
1870static inline void tcp_init_undo(struct tcp_sock *tp)
1871{
1872        tp->undo_marker = tp->snd_una;
1873        /* Retransmission still in flight may cause DSACKs later. */
1874        tp->undo_retrans = tp->retrans_out ? : -1;
1875}
1876
1877/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1880 */
1881void tcp_enter_loss(struct sock *sk)
1882{
1883        const struct inet_connection_sock *icsk = inet_csk(sk);
1884        struct tcp_sock *tp = tcp_sk(sk);
1885        struct net *net = sock_net(sk);
1886        struct sk_buff *skb;
1887        bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888        bool is_reneg;                  /* is receiver reneging on SACKs? */
1889
1890        /* Reduce ssthresh if it has not yet been made inside this window. */
1891        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892            !after(tp->high_seq, tp->snd_una) ||
1893            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896                tcp_ca_event(sk, CA_EVENT_LOSS);
1897                tcp_init_undo(tp);
1898        }
1899        tp->snd_cwnd       = 1;
1900        tp->snd_cwnd_cnt   = 0;
1901        tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903        tp->retrans_out = 0;
1904        tp->lost_out = 0;
1905
1906        if (tcp_is_reno(tp))
1907                tcp_reset_reno_sack(tp);
1908
1909        skb = tcp_write_queue_head(sk);
1910        is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911        if (is_reneg) {
1912                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1913                tp->sacked_out = 0;
1914                tp->fackets_out = 0;
1915        }
1916        tcp_clear_all_retrans_hints(tp);
1917
1918        tcp_for_write_queue(skb, sk) {
1919                if (skb == tcp_send_head(sk))
1920                        break;
1921
1922                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926                        tp->lost_out += tcp_skb_pcount(skb);
1927                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1928                }
1929        }
1930        tcp_verify_left_out(tp);
1931
1932        /* Timeout in disordered state after receiving substantial DUPACKs
1933         * suggests that the degree of reordering is over-estimated.
1934         */
1935        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936            tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937                tp->reordering = min_t(unsigned int, tp->reordering,
1938                                       net->ipv4.sysctl_tcp_reordering);
1939        tcp_set_ca_state(sk, TCP_CA_Loss);
1940        tp->high_seq = tp->snd_nxt;
1941        tcp_ecn_queue_cwr(tp);
1942
1943        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944         * loss recovery is underway except recurring timeout(s) on
1945         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946         */
1947        tp->frto = sysctl_tcp_frto &&
1948                   (new_recovery || icsk->icsk_retransmits) &&
1949                   !inet_csk(sk)->icsk_mtup.probe_size;
1950}
1951
1952/* If ACK arrived pointing to a remembered SACK, it means that our
1953 * remembered SACKs do not reflect real state of receiver i.e.
1954 * receiver _host_ is heavily congested (or buggy).
1955 *
1956 * To avoid big spurious retransmission bursts due to transient SACK
1957 * scoreboard oddities that look like reneging, we give the receiver a
1958 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959 * restore sanity to the SACK scoreboard. If the apparent reneging
1960 * persists until this RTO then we'll clear the SACK scoreboard.
1961 */
1962static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963{
1964        if (flag & FLAG_SACK_RENEGING) {
1965                struct tcp_sock *tp = tcp_sk(sk);
1966                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967                                          msecs_to_jiffies(10));
1968
1969                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970                                          delay, TCP_RTO_MAX);
1971                return true;
1972        }
1973        return false;
1974}
1975
1976static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977{
1978        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1979}
1980
1981/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982 * counter when SACK is enabled (without SACK, sacked_out is used for
1983 * that purpose).
1984 *
1985 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986 * segments up to the highest received SACK block so far and holes in
1987 * between them.
1988 *
1989 * With reordering, holes may still be in flight, so RFC3517 recovery
1990 * uses pure sacked_out (total number of SACKed segments) even though
1991 * it violates the RFC that uses duplicate ACKs, often these are equal
1992 * but when e.g. out-of-window ACKs or packet duplication occurs,
1993 * they differ. Since neither occurs due to loss, TCP should really
1994 * ignore them.
1995 */
1996static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997{
1998        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1999}
2000
2001static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002{
2003        struct tcp_sock *tp = tcp_sk(sk);
2004        unsigned long delay;
2005
2006        /* Delay early retransmit and entering fast recovery for
2007         * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008         * available, or RTO is scheduled to fire first.
2009         */
2010        if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011            (flag & FLAG_ECE) || !tp->srtt_us)
2012                return false;
2013
2014        delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015                    msecs_to_jiffies(2));
2016
2017        if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018                return false;
2019
2020        inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021                                  TCP_RTO_MAX);
2022        return true;
2023}
2024
2025/* Linux NewReno/SACK/FACK/ECN state machine.
2026 * --------------------------------------
2027 *
2028 * "Open"       Normal state, no dubious events, fast path.
2029 * "Disorder"   In all the respects it is "Open",
2030 *              but requires a bit more attention. It is entered when
2031 *              we see some SACKs or dupacks. It is split of "Open"
2032 *              mainly to move some processing from fast path to slow one.
2033 * "CWR"        CWND was reduced due to some Congestion Notification event.
2034 *              It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2036 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2037 *
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2041 *      * SACK
2042 *      * Duplicate ACK.
2043 *      * ECN ECE.
2044 *
2045 * Counting packets in flight is pretty simple.
2046 *
2047 *      in_flight = packets_out - left_out + retrans_out
2048 *
2049 *      packets_out is SND.NXT-SND.UNA counted in packets.
2050 *
2051 *      retrans_out is number of retransmitted segments.
2052 *
2053 *      left_out is number of segments left network, but not ACKed yet.
2054 *
2055 *              left_out = sacked_out + lost_out
2056 *
2057 *     sacked_out: Packets, which arrived to receiver out of order
2058 *                 and hence not ACKed. With SACKs this number is simply
2059 *                 amount of SACKed data. Even without SACKs
2060 *                 it is easy to give pretty reliable estimate of this number,
2061 *                 counting duplicate ACKs.
2062 *
2063 *       lost_out: Packets lost by network. TCP has no explicit
2064 *                 "loss notification" feedback from network (for now).
2065 *                 It means that this number can be only _guessed_.
2066 *                 Actually, it is the heuristics to predict lossage that
2067 *                 distinguishes different algorithms.
2068 *
2069 *      F.e. after RTO, when all the queue is considered as lost,
2070 *      lost_out = packets_out and in_flight = retrans_out.
2071 *
2072 *              Essentially, we have now two algorithms counting
2073 *              lost packets.
2074 *
2075 *              FACK: It is the simplest heuristics. As soon as we decided
2076 *              that something is lost, we decide that _all_ not SACKed
2077 *              packets until the most forward SACK are lost. I.e.
2078 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079 *              It is absolutely correct estimate, if network does not reorder
2080 *              packets. And it loses any connection to reality when reordering
2081 *              takes place. We use FACK by default until reordering
2082 *              is suspected on the path to this destination.
2083 *
2084 *              NewReno: when Recovery is entered, we assume that one segment
2085 *              is lost (classic Reno). While we are in Recovery and
2086 *              a partial ACK arrives, we assume that one more packet
2087 *              is lost (NewReno). This heuristics are the same in NewReno
2088 *              and SACK.
2089 *
2090 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2091 *  deflation etc. CWND is real congestion window, never inflated, changes
2092 *  only according to classic VJ rules.
2093 *
2094 * Really tricky (and requiring careful tuning) part of algorithm
2095 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096 * The first determines the moment _when_ we should reduce CWND and,
2097 * hence, slow down forward transmission. In fact, it determines the moment
2098 * when we decide that hole is caused by loss, rather than by a reorder.
2099 *
2100 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101 * holes, caused by lost packets.
2102 *
2103 * And the most logically complicated part of algorithm is undo
2104 * heuristics. We detect false retransmits due to both too early
2105 * fast retransmit (reordering) and underestimated RTO, analyzing
2106 * timestamps and D-SACKs. When we detect that some segments were
2107 * retransmitted by mistake and CWND reduction was wrong, we undo
2108 * window reduction and abort recovery phase. This logic is hidden
2109 * inside several functions named tcp_try_undo_<something>.
2110 */
2111
2112/* This function decides, when we should leave Disordered state
2113 * and enter Recovery phase, reducing congestion window.
2114 *
2115 * Main question: may we further continue forward transmission
2116 * with the same cwnd?
2117 */
2118static bool tcp_time_to_recover(struct sock *sk, int flag)
2119{
2120        struct tcp_sock *tp = tcp_sk(sk);
2121        __u32 packets_out;
2122        int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2123
2124        /* Trick#1: The loss is proven. */
2125        if (tp->lost_out)
2126                return true;
2127
2128        /* Not-A-Trick#2 : Classic rule... */
2129        if (tcp_dupack_heuristics(tp) > tp->reordering)
2130                return true;
2131
2132        /* Trick#4: It is still not OK... But will it be useful to delay
2133         * recovery more?
2134         */
2135        packets_out = tp->packets_out;
2136        if (packets_out <= tp->reordering &&
2137            tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138            !tcp_may_send_now(sk)) {
2139                /* We have nothing to send. This connection is limited
2140                 * either by receiver window or by application.
2141                 */
2142                return true;
2143        }
2144
2145        /* If a thin stream is detected, retransmit after first
2146         * received dupack. Employ only if SACK is supported in order
2147         * to avoid possible corner-case series of spurious retransmissions
2148         * Use only if there are no unsent data.
2149         */
2150        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152            tcp_is_sack(tp) && !tcp_send_head(sk))
2153                return true;
2154
2155        /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2156         * retransmissions due to small network reorderings, we implement
2157         * Mitigation A.3 in the RFC and delay the retransmission for a short
2158         * interval if appropriate.
2159         */
2160        if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161            (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162            !tcp_may_send_now(sk))
2163                return !tcp_pause_early_retransmit(sk, flag);
2164
2165        return false;
2166}
2167
2168/* Detect loss in event "A" above by marking head of queue up as lost.
2169 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172 * the maximum SACKed segments to pass before reaching this limit.
2173 */
2174static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2175{
2176        struct tcp_sock *tp = tcp_sk(sk);
2177        struct sk_buff *skb;
2178        int cnt, oldcnt, lost;
2179        unsigned int mss;
2180        /* Use SACK to deduce losses of new sequences sent during recovery */
2181        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2182
2183        WARN_ON(packets > tp->packets_out);
2184        if (tp->lost_skb_hint) {
2185                skb = tp->lost_skb_hint;
2186                cnt = tp->lost_cnt_hint;
2187                /* Head already handled? */
2188                if (mark_head && skb != tcp_write_queue_head(sk))
2189                        return;
2190        } else {
2191                skb = tcp_write_queue_head(sk);
2192                cnt = 0;
2193        }
2194
2195        tcp_for_write_queue_from(skb, sk) {
2196                if (skb == tcp_send_head(sk))
2197                        break;
2198                /* TODO: do this better */
2199                /* this is not the most efficient way to do this... */
2200                tp->lost_skb_hint = skb;
2201                tp->lost_cnt_hint = cnt;
2202
2203                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204                        break;
2205
2206                oldcnt = cnt;
2207                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209                        cnt += tcp_skb_pcount(skb);
2210
2211                if (cnt > packets) {
2212                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214                            (oldcnt >= packets))
2215                                break;
2216
2217                        mss = tcp_skb_mss(skb);
2218                        /* If needed, chop off the prefix to mark as lost. */
2219                        lost = (packets - oldcnt) * mss;
2220                        if (lost < skb->len &&
2221                            tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222                                break;
2223                        cnt = packets;
2224                }
2225
2226                tcp_skb_mark_lost(tp, skb);
2227
2228                if (mark_head)
2229                        break;
2230        }
2231        tcp_verify_left_out(tp);
2232}
2233
2234/* Account newly detected lost packet(s) */
2235
2236static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237{
2238        struct tcp_sock *tp = tcp_sk(sk);
2239
2240        if (tcp_is_reno(tp)) {
2241                tcp_mark_head_lost(sk, 1, 1);
2242        } else if (tcp_is_fack(tp)) {
2243                int lost = tp->fackets_out - tp->reordering;
2244                if (lost <= 0)
2245                        lost = 1;
2246                tcp_mark_head_lost(sk, lost, 0);
2247        } else {
2248                int sacked_upto = tp->sacked_out - tp->reordering;
2249                if (sacked_upto >= 0)
2250                        tcp_mark_head_lost(sk, sacked_upto, 0);
2251                else if (fast_rexmit)
2252                        tcp_mark_head_lost(sk, 1, 1);
2253        }
2254}
2255
2256/* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2258 */
2259static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260{
2261        tp->snd_cwnd = min(tp->snd_cwnd,
2262                           tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263        tp->snd_cwnd_stamp = tcp_time_stamp;
2264}
2265
2266static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2267{
2268        return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269               before(tp->rx_opt.rcv_tsecr, when);
2270}
2271
2272/* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2274 */
2275static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276                                     const struct sk_buff *skb)
2277{
2278        return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279               tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280}
2281
2282/* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2284 */
2285static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286{
2287        return !tp->retrans_stamp ||
2288               tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289}
2290
2291/* Undo procedures. */
2292
2293/* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2301 *
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2306 */
2307static bool tcp_any_retrans_done(const struct sock *sk)
2308{
2309        const struct tcp_sock *tp = tcp_sk(sk);
2310        struct sk_buff *skb;
2311
2312        if (tp->retrans_out)
2313                return true;
2314
2315        skb = tcp_write_queue_head(sk);
2316        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317                return true;
2318
2319        return false;
2320}
2321
2322#if FASTRETRANS_DEBUG > 1
2323static void DBGUNDO(struct sock *sk, const char *msg)
2324{
2325        struct tcp_sock *tp = tcp_sk(sk);
2326        struct inet_sock *inet = inet_sk(sk);
2327
2328        if (sk->sk_family == AF_INET) {
2329                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330                         msg,
2331                         &inet->inet_daddr, ntohs(inet->inet_dport),
2332                         tp->snd_cwnd, tcp_left_out(tp),
2333                         tp->snd_ssthresh, tp->prior_ssthresh,
2334                         tp->packets_out);
2335        }
2336#if IS_ENABLED(CONFIG_IPV6)
2337        else if (sk->sk_family == AF_INET6) {
2338                struct ipv6_pinfo *np = inet6_sk(sk);
2339                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340                         msg,
2341                         &np->daddr, ntohs(inet->inet_dport),
2342                         tp->snd_cwnd, tcp_left_out(tp),
2343                         tp->snd_ssthresh, tp->prior_ssthresh,
2344                         tp->packets_out);
2345        }
2346#endif
2347}
2348#else
2349#define DBGUNDO(x...) do { } while (0)
2350#endif
2351
2352static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353{
2354        struct tcp_sock *tp = tcp_sk(sk);
2355
2356        if (unmark_loss) {
2357                struct sk_buff *skb;
2358
2359                tcp_for_write_queue(skb, sk) {
2360                        if (skb == tcp_send_head(sk))
2361                                break;
2362                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363                }
2364                tp->lost_out = 0;
2365                tcp_clear_all_retrans_hints(tp);
2366        }
2367
2368        if (tp->prior_ssthresh) {
2369                const struct inet_connection_sock *icsk = inet_csk(sk);
2370
2371                if (icsk->icsk_ca_ops->undo_cwnd)
2372                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373                else
2374                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2375
2376                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377                        tp->snd_ssthresh = tp->prior_ssthresh;
2378                        tcp_ecn_withdraw_cwr(tp);
2379                }
2380        }
2381        tp->snd_cwnd_stamp = tcp_time_stamp;
2382        tp->undo_marker = 0;
2383}
2384
2385static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386{
2387        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388}
2389
2390/* People celebrate: "We love our President!" */
2391static bool tcp_try_undo_recovery(struct sock *sk)
2392{
2393        struct tcp_sock *tp = tcp_sk(sk);
2394
2395        if (tcp_may_undo(tp)) {
2396                int mib_idx;
2397
2398                /* Happy end! We did not retransmit anything
2399                 * or our original transmission succeeded.
2400                 */
2401                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402                tcp_undo_cwnd_reduction(sk, false);
2403                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405                else
2406                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2407
2408                NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409        }
2410        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411                /* Hold old state until something *above* high_seq
2412                 * is ACKed. For Reno it is MUST to prevent false
2413                 * fast retransmits (RFC2582). SACK TCP is safe. */
2414                tcp_moderate_cwnd(tp);
2415                if (!tcp_any_retrans_done(sk))
2416                        tp->retrans_stamp = 0;
2417                return true;
2418        }
2419        tcp_set_ca_state(sk, TCP_CA_Open);
2420        return false;
2421}
2422
2423/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424static bool tcp_try_undo_dsack(struct sock *sk)
2425{
2426        struct tcp_sock *tp = tcp_sk(sk);
2427
2428        if (tp->undo_marker && !tp->undo_retrans) {
2429                DBGUNDO(sk, "D-SACK");
2430                tcp_undo_cwnd_reduction(sk, false);
2431                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432                return true;
2433        }
2434        return false;
2435}
2436
2437/* Undo during loss recovery after partial ACK or using F-RTO. */
2438static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439{
2440        struct tcp_sock *tp = tcp_sk(sk);
2441
2442        if (frto_undo || tcp_may_undo(tp)) {
2443                tcp_undo_cwnd_reduction(sk, true);
2444
2445                DBGUNDO(sk, "partial loss");
2446                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447                if (frto_undo)
2448                        NET_INC_STATS_BH(sock_net(sk),
2449                                         LINUX_MIB_TCPSPURIOUSRTOS);
2450                inet_csk(sk)->icsk_retransmits = 0;
2451                if (frto_undo || tcp_is_sack(tp))
2452                        tcp_set_ca_state(sk, TCP_CA_Open);
2453                return true;
2454        }
2455        return false;
2456}
2457
2458/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 *      cwnd reductions across a full RTT.
2463 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 *      But when the retransmits are acked without further losses, PRR
2465 *      slow starts cwnd up to ssthresh to speed up the recovery.
2466 */
2467static void tcp_init_cwnd_reduction(struct sock *sk)
2468{
2469        struct tcp_sock *tp = tcp_sk(sk);
2470
2471        tp->high_seq = tp->snd_nxt;
2472        tp->tlp_high_seq = 0;
2473        tp->snd_cwnd_cnt = 0;
2474        tp->prior_cwnd = tp->snd_cwnd;
2475        tp->prr_delivered = 0;
2476        tp->prr_out = 0;
2477        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478        tcp_ecn_queue_cwr(tp);
2479}
2480
2481static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482                               int flag)
2483{
2484        struct tcp_sock *tp = tcp_sk(sk);
2485        int sndcnt = 0;
2486        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2487
2488        if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489                return;
2490
2491        tp->prr_delivered += newly_acked_sacked;
2492        if (delta < 0) {
2493                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494                               tp->prior_cwnd - 1;
2495                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496        } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497                   !(flag & FLAG_LOST_RETRANS)) {
2498                sndcnt = min_t(int, delta,
2499                               max_t(int, tp->prr_delivered - tp->prr_out,
2500                                     newly_acked_sacked) + 1);
2501        } else {
2502                sndcnt = min(delta, newly_acked_sacked);
2503        }
2504        /* Force a fast retransmit upon entering fast recovery */
2505        sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2507}
2508
2509static inline void tcp_end_cwnd_reduction(struct sock *sk)
2510{
2511        struct tcp_sock *tp = tcp_sk(sk);
2512
2513        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514        if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515            (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516                tp->snd_cwnd = tp->snd_ssthresh;
2517                tp->snd_cwnd_stamp = tcp_time_stamp;
2518        }
2519        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520}
2521
2522/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523void tcp_enter_cwr(struct sock *sk)
2524{
2525        struct tcp_sock *tp = tcp_sk(sk);
2526
2527        tp->prior_ssthresh = 0;
2528        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529                tp->undo_marker = 0;
2530                tcp_init_cwnd_reduction(sk);
2531                tcp_set_ca_state(sk, TCP_CA_CWR);
2532        }
2533}
2534EXPORT_SYMBOL(tcp_enter_cwr);
2535
2536static void tcp_try_keep_open(struct sock *sk)
2537{
2538        struct tcp_sock *tp = tcp_sk(sk);
2539        int state = TCP_CA_Open;
2540
2541        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542                state = TCP_CA_Disorder;
2543
2544        if (inet_csk(sk)->icsk_ca_state != state) {
2545                tcp_set_ca_state(sk, state);
2546                tp->high_seq = tp->snd_nxt;
2547        }
2548}
2549
2550static void tcp_try_to_open(struct sock *sk, int flag)
2551{
2552        struct tcp_sock *tp = tcp_sk(sk);
2553
2554        tcp_verify_left_out(tp);
2555
2556        if (!tcp_any_retrans_done(sk))
2557                tp->retrans_stamp = 0;
2558
2559        if (flag & FLAG_ECE)
2560                tcp_enter_cwr(sk);
2561
2562        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563                tcp_try_keep_open(sk);
2564        }
2565}
2566
2567static void tcp_mtup_probe_failed(struct sock *sk)
2568{
2569        struct inet_connection_sock *icsk = inet_csk(sk);
2570
2571        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572        icsk->icsk_mtup.probe_size = 0;
2573        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574}
2575
2576static void tcp_mtup_probe_success(struct sock *sk)
2577{
2578        struct tcp_sock *tp = tcp_sk(sk);
2579        struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581        /* FIXME: breaks with very large cwnd */
2582        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583        tp->snd_cwnd = tp->snd_cwnd *
2584                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585                       icsk->icsk_mtup.probe_size;
2586        tp->snd_cwnd_cnt = 0;
2587        tp->snd_cwnd_stamp = tcp_time_stamp;
2588        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589
2590        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591        icsk->icsk_mtup.probe_size = 0;
2592        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594}
2595
2596/* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2599 */
2600void tcp_simple_retransmit(struct sock *sk)
2601{
2602        const struct inet_connection_sock *icsk = inet_csk(sk);
2603        struct tcp_sock *tp = tcp_sk(sk);
2604        struct sk_buff *skb;
2605        unsigned int mss = tcp_current_mss(sk);
2606        u32 prior_lost = tp->lost_out;
2607
2608        tcp_for_write_queue(skb, sk) {
2609                if (skb == tcp_send_head(sk))
2610                        break;
2611                if (tcp_skb_seglen(skb) > mss &&
2612                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615                                tp->retrans_out -= tcp_skb_pcount(skb);
2616                        }
2617                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2618                }
2619        }
2620
2621        tcp_clear_retrans_hints_partial(tp);
2622
2623        if (prior_lost == tp->lost_out)
2624                return;
2625
2626        if (tcp_is_reno(tp))
2627                tcp_limit_reno_sacked(tp);
2628
2629        tcp_verify_left_out(tp);
2630
2631        /* Don't muck with the congestion window here.
2632         * Reason is that we do not increase amount of _data_
2633         * in network, but units changed and effective
2634         * cwnd/ssthresh really reduced now.
2635         */
2636        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637                tp->high_seq = tp->snd_nxt;
2638                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639                tp->prior_ssthresh = 0;
2640                tp->undo_marker = 0;
2641                tcp_set_ca_state(sk, TCP_CA_Loss);
2642        }
2643        tcp_xmit_retransmit_queue(sk);
2644}
2645EXPORT_SYMBOL(tcp_simple_retransmit);
2646
2647static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648{
2649        struct tcp_sock *tp = tcp_sk(sk);
2650        int mib_idx;
2651
2652        if (tcp_is_reno(tp))
2653                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654        else
2655                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656
2657        NET_INC_STATS_BH(sock_net(sk), mib_idx);
2658
2659        tp->prior_ssthresh = 0;
2660        tcp_init_undo(tp);
2661
2662        if (!tcp_in_cwnd_reduction(sk)) {
2663                if (!ece_ack)
2664                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665                tcp_init_cwnd_reduction(sk);
2666        }
2667        tcp_set_ca_state(sk, TCP_CA_Recovery);
2668}
2669
2670/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672 */
2673static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674                             int *rexmit)
2675{
2676        struct tcp_sock *tp = tcp_sk(sk);
2677        bool recovered = !before(tp->snd_una, tp->high_seq);
2678
2679        if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680            tcp_try_undo_loss(sk, false))
2681                return;
2682
2683        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684                /* Step 3.b. A timeout is spurious if not all data are
2685                 * lost, i.e., never-retransmitted data are (s)acked.
2686                 */
2687                if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688                    tcp_try_undo_loss(sk, true))
2689                        return;
2690
2691                if (after(tp->snd_nxt, tp->high_seq)) {
2692                        if (flag & FLAG_DATA_SACKED || is_dupack)
2693                                tp->frto = 0; /* Step 3.a. loss was real */
2694                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695                        tp->high_seq = tp->snd_nxt;
2696                        /* Step 2.b. Try send new data (but deferred until cwnd
2697                         * is updated in tcp_ack()). Otherwise fall back to
2698                         * the conventional recovery.
2699                         */
2700                        if (tcp_send_head(sk) &&
2701                            after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702                                *rexmit = REXMIT_NEW;
2703                                return;
2704                        }
2705                        tp->frto = 0;
2706                }
2707        }
2708
2709        if (recovered) {
2710                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711                tcp_try_undo_recovery(sk);
2712                return;
2713        }
2714        if (tcp_is_reno(tp)) {
2715                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2716                 * delivered. Lower inflight to clock out (re)tranmissions.
2717                 */
2718                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719                        tcp_add_reno_sack(sk);
2720                else if (flag & FLAG_SND_UNA_ADVANCED)
2721                        tcp_reset_reno_sack(tp);
2722        }
2723        *rexmit = REXMIT_LOST;
2724}
2725
2726/* Undo during fast recovery after partial ACK. */
2727static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2728{
2729        struct tcp_sock *tp = tcp_sk(sk);
2730
2731        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732                /* Plain luck! Hole if filled with delayed
2733                 * packet, rather than with a retransmit.
2734                 */
2735                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736
2737                /* We are getting evidence that the reordering degree is higher
2738                 * than we realized. If there are no retransmits out then we
2739                 * can undo. Otherwise we clock out new packets but do not
2740                 * mark more packets lost or retransmit more.
2741                 */
2742                if (tp->retrans_out)
2743                        return true;
2744
2745                if (!tcp_any_retrans_done(sk))
2746                        tp->retrans_stamp = 0;
2747
2748                DBGUNDO(sk, "partial recovery");
2749                tcp_undo_cwnd_reduction(sk, true);
2750                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751                tcp_try_keep_open(sk);
2752                return true;
2753        }
2754        return false;
2755}
2756
2757/* Process an event, which can update packets-in-flight not trivially.
2758 * Main goal of this function is to calculate new estimate for left_out,
2759 * taking into account both packets sitting in receiver's buffer and
2760 * packets lost by network.
2761 *
2762 * Besides that it updates the congestion state when packet loss or ECN
2763 * is detected. But it does not reduce the cwnd, it is done by the
2764 * congestion control later.
2765 *
2766 * It does _not_ decide what to send, it is made in function
2767 * tcp_xmit_retransmit_queue().
2768 */
2769static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770                                  bool is_dupack, int *ack_flag, int *rexmit)
2771{
2772        struct inet_connection_sock *icsk = inet_csk(sk);
2773        struct tcp_sock *tp = tcp_sk(sk);
2774        int fast_rexmit = 0, flag = *ack_flag;
2775        bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776                                    (tcp_fackets_out(tp) > tp->reordering));
2777
2778        if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779                tp->sacked_out = 0;
2780        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781                tp->fackets_out = 0;
2782
2783        /* Now state machine starts.
2784         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785        if (flag & FLAG_ECE)
2786                tp->prior_ssthresh = 0;
2787
2788        /* B. In all the states check for reneging SACKs. */
2789        if (tcp_check_sack_reneging(sk, flag))
2790                return;
2791
2792        /* C. Check consistency of the current state. */
2793        tcp_verify_left_out(tp);
2794
2795        /* D. Check state exit conditions. State can be terminated
2796         *    when high_seq is ACKed. */
2797        if (icsk->icsk_ca_state == TCP_CA_Open) {
2798                WARN_ON(tp->retrans_out != 0);
2799                tp->retrans_stamp = 0;
2800        } else if (!before(tp->snd_una, tp->high_seq)) {
2801                switch (icsk->icsk_ca_state) {
2802                case TCP_CA_CWR:
2803                        /* CWR is to be held something *above* high_seq
2804                         * is ACKed for CWR bit to reach receiver. */
2805                        if (tp->snd_una != tp->high_seq) {
2806                                tcp_end_cwnd_reduction(sk);
2807                                tcp_set_ca_state(sk, TCP_CA_Open);
2808                        }
2809                        break;
2810
2811                case TCP_CA_Recovery:
2812                        if (tcp_is_reno(tp))
2813                                tcp_reset_reno_sack(tp);
2814                        if (tcp_try_undo_recovery(sk))
2815                                return;
2816                        tcp_end_cwnd_reduction(sk);
2817                        break;
2818                }
2819        }
2820
2821        /* Use RACK to detect loss */
2822        if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823            tcp_rack_mark_lost(sk)) {
2824                flag |= FLAG_LOST_RETRANS;
2825                *ack_flag |= FLAG_LOST_RETRANS;
2826        }
2827
2828        /* E. Process state. */
2829        switch (icsk->icsk_ca_state) {
2830        case TCP_CA_Recovery:
2831                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832                        if (tcp_is_reno(tp) && is_dupack)
2833                                tcp_add_reno_sack(sk);
2834                } else {
2835                        if (tcp_try_undo_partial(sk, acked))
2836                                return;
2837                        /* Partial ACK arrived. Force fast retransmit. */
2838                        do_lost = tcp_is_reno(tp) ||
2839                                  tcp_fackets_out(tp) > tp->reordering;
2840                }
2841                if (tcp_try_undo_dsack(sk)) {
2842                        tcp_try_keep_open(sk);
2843                        return;
2844                }
2845                break;
2846        case TCP_CA_Loss:
2847                tcp_process_loss(sk, flag, is_dupack, rexmit);
2848                if (icsk->icsk_ca_state != TCP_CA_Open &&
2849                    !(flag & FLAG_LOST_RETRANS))
2850                        return;
2851                /* Change state if cwnd is undone or retransmits are lost */
2852        default:
2853                if (tcp_is_reno(tp)) {
2854                        if (flag & FLAG_SND_UNA_ADVANCED)
2855                                tcp_reset_reno_sack(tp);
2856                        if (is_dupack)
2857                                tcp_add_reno_sack(sk);
2858                }
2859
2860                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861                        tcp_try_undo_dsack(sk);
2862
2863                if (!tcp_time_to_recover(sk, flag)) {
2864                        tcp_try_to_open(sk, flag);
2865                        return;
2866                }
2867
2868                /* MTU probe failure: don't reduce cwnd */
2869                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870                    icsk->icsk_mtup.probe_size &&
2871                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872                        tcp_mtup_probe_failed(sk);
2873                        /* Restores the reduction we did in tcp_mtup_probe() */
2874                        tp->snd_cwnd++;
2875                        tcp_simple_retransmit(sk);
2876                        return;
2877                }
2878
2879                /* Otherwise enter Recovery state */
2880                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881                fast_rexmit = 1;
2882        }
2883
2884        if (do_lost)
2885                tcp_update_scoreboard(sk, fast_rexmit);
2886        *rexmit = REXMIT_LOST;
2887}
2888
2889/* Kathleen Nichols' algorithm for tracking the minimum value of
2890 * a data stream over some fixed time interval. (E.g., the minimum
2891 * RTT over the past five minutes.) It uses constant space and constant
2892 * time per update yet almost always delivers the same minimum as an
2893 * implementation that has to keep all the data in the window.
2894 *
2895 * The algorithm keeps track of the best, 2nd best & 3rd best min
2896 * values, maintaining an invariant that the measurement time of the
2897 * n'th best >= n-1'th best. It also makes sure that the three values
2898 * are widely separated in the time window since that bounds the worse
2899 * case error when that data is monotonically increasing over the window.
2900 *
2901 * Upon getting a new min, we can forget everything earlier because it
2902 * has no value - the new min is <= everything else in the window by
2903 * definition and it's the most recent. So we restart fresh on every new min
2904 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 * best.
2906 */
2907static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908{
2909        const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910        struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911        struct rtt_meas rttm = {
2912                .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913                .ts = now,
2914        };
2915        u32 elapsed;
2916
2917        /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918        if (unlikely(rttm.rtt <= m[0].rtt))
2919                m[0] = m[1] = m[2] = rttm;
2920        else if (rttm.rtt <= m[1].rtt)
2921                m[1] = m[2] = rttm;
2922        else if (rttm.rtt <= m[2].rtt)
2923                m[2] = rttm;
2924
2925        elapsed = now - m[0].ts;
2926        if (unlikely(elapsed > wlen)) {
2927                /* Passed entire window without a new min so make 2nd choice
2928                 * the new min & 3rd choice the new 2nd. So forth and so on.
2929                 */
2930                m[0] = m[1];
2931                m[1] = m[2];
2932                m[2] = rttm;
2933                if (now - m[0].ts > wlen) {
2934                        m[0] = m[1];
2935                        m[1] = rttm;
2936                        if (now - m[0].ts > wlen)
2937                                m[0] = rttm;
2938                }
2939        } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940                /* Passed a quarter of the window without a new min so
2941                 * take 2nd choice from the 2nd quarter of the window.
2942                 */
2943                m[2] = m[1] = rttm;
2944        } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945                /* Passed half the window without a new min so take the 3rd
2946                 * choice from the last half of the window.
2947                 */
2948                m[2] = rttm;
2949        }
2950}
2951
2952static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953                                      long seq_rtt_us, long sack_rtt_us,
2954                                      long ca_rtt_us)
2955{
2956        const struct tcp_sock *tp = tcp_sk(sk);
2957
2958        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960         * Karn's algorithm forbids taking RTT if some retransmitted data
2961         * is acked (RFC6298).
2962         */
2963        if (seq_rtt_us < 0)
2964                seq_rtt_us = sack_rtt_us;
2965
2966        /* RTTM Rule: A TSecr value received in a segment is used to
2967         * update the averaged RTT measurement only if the segment
2968         * acknowledges some new data, i.e., only if it advances the
2969         * left edge of the send window.
2970         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2971         */
2972        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973            flag & FLAG_ACKED)
2974                seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975                                                          tp->rx_opt.rcv_tsecr);
2976        if (seq_rtt_us < 0)
2977                return false;
2978
2979        /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980         * always taken together with ACK, SACK, or TS-opts. Any negative
2981         * values will be skipped with the seq_rtt_us < 0 check above.
2982         */
2983        tcp_update_rtt_min(sk, ca_rtt_us);
2984        tcp_rtt_estimator(sk, seq_rtt_us);
2985        tcp_set_rto(sk);
2986
2987        /* RFC6298: only reset backoff on valid RTT measurement. */
2988        inet_csk(sk)->icsk_backoff = 0;
2989        return true;
2990}
2991
2992/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2994{
2995        long rtt_us = -1L;
2996
2997        if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998                struct skb_mstamp now;
2999
3000                skb_mstamp_get(&now);
3001                rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3002        }
3003
3004        tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3005}
3006
3007
3008static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3009{
3010        const struct inet_connection_sock *icsk = inet_csk(sk);
3011
3012        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3014}
3015
3016/* Restart timer after forward progress on connection.
3017 * RFC2988 recommends to restart timer to now+rto.
3018 */
3019void tcp_rearm_rto(struct sock *sk)
3020{
3021        const struct inet_connection_sock *icsk = inet_csk(sk);
3022        struct tcp_sock *tp = tcp_sk(sk);
3023
3024        /* If the retrans timer is currently being used by Fast Open
3025         * for SYN-ACK retrans purpose, stay put.
3026         */
3027        if (tp->fastopen_rsk)
3028                return;
3029
3030        if (!tp->packets_out) {
3031                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032        } else {
3033                u32 rto = inet_csk(sk)->icsk_rto;
3034                /* Offset the time elapsed after installing regular RTO */
3035                if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037                        struct sk_buff *skb = tcp_write_queue_head(sk);
3038                        const u32 rto_time_stamp =
3039                                tcp_skb_timestamp(skb) + rto;
3040                        s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041                        /* delta may not be positive if the socket is locked
3042                         * when the retrans timer fires and is rescheduled.
3043                         */
3044                        if (delta > 0)
3045                                rto = delta;
3046                }
3047                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048                                          TCP_RTO_MAX);
3049        }
3050}
3051
3052/* This function is called when the delayed ER timer fires. TCP enters
3053 * fast recovery and performs fast-retransmit.
3054 */
3055void tcp_resume_early_retransmit(struct sock *sk)
3056{
3057        struct tcp_sock *tp = tcp_sk(sk);
3058
3059        tcp_rearm_rto(sk);
3060
3061        /* Stop if ER is disabled after the delayed ER timer is scheduled */
3062        if (!tp->do_early_retrans)
3063                return;
3064
3065        tcp_enter_recovery(sk, false);
3066        tcp_update_scoreboard(sk, 1);
3067        tcp_xmit_retransmit_queue(sk);
3068}
3069
3070/* If we get here, the whole TSO packet has not been acked. */
3071static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3072{
3073        struct tcp_sock *tp = tcp_sk(sk);
3074        u32 packets_acked;
3075
3076        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3077
3078        packets_acked = tcp_skb_pcount(skb);
3079        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080                return 0;
3081        packets_acked -= tcp_skb_pcount(skb);
3082
3083        if (packets_acked) {
3084                BUG_ON(tcp_skb_pcount(skb) == 0);
3085                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3086        }
3087
3088        return packets_acked;
3089}
3090
3091static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092                           u32 prior_snd_una)
3093{
3094        const struct skb_shared_info *shinfo;
3095
3096        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097        if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098                return;
3099
3100        shinfo = skb_shinfo(skb);
3101        if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102            !before(shinfo->tskey, prior_snd_una) &&
3103            before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104                __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105}
3106
3107/* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3110 */
3111static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112                               u32 prior_snd_una, int *acked,
3113                               struct tcp_sacktag_state *sack)
3114{
3115        const struct inet_connection_sock *icsk = inet_csk(sk);
3116        struct skb_mstamp first_ackt, last_ackt, now;
3117        struct tcp_sock *tp = tcp_sk(sk);
3118        u32 prior_sacked = tp->sacked_out;
3119        u32 reord = tp->packets_out;
3120        bool fully_acked = true;
3121        long sack_rtt_us = -1L;
3122        long seq_rtt_us = -1L;
3123        long ca_rtt_us = -1L;
3124        struct sk_buff *skb;
3125        u32 pkts_acked = 0;
3126        bool rtt_update;
3127        int flag = 0;
3128
3129        first_ackt.v64 = 0;
3130
3131        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3133                u8 sacked = scb->sacked;
3134                u32 acked_pcount;
3135
3136                tcp_ack_tstamp(sk, skb, prior_snd_una);
3137
3138                /* Determine how many packets and what bytes were acked, tso and else */
3139                if (after(scb->end_seq, tp->snd_una)) {
3140                        if (tcp_skb_pcount(skb) == 1 ||
3141                            !after(tp->snd_una, scb->seq))
3142                                break;
3143
3144                        acked_pcount = tcp_tso_acked(sk, skb);
3145                        if (!acked_pcount)
3146                                break;
3147
3148                        fully_acked = false;
3149                } else {
3150                        /* Speedup tcp_unlink_write_queue() and next loop */
3151                        prefetchw(skb->next);
3152                        acked_pcount = tcp_skb_pcount(skb);
3153                }
3154
3155                if (unlikely(sacked & TCPCB_RETRANS)) {
3156                        if (sacked & TCPCB_SACKED_RETRANS)
3157                                tp->retrans_out -= acked_pcount;
3158                        flag |= FLAG_RETRANS_DATA_ACKED;
3159                } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160                        last_ackt = skb->skb_mstamp;
3161                        WARN_ON_ONCE(last_ackt.v64 == 0);
3162                        if (!first_ackt.v64)
3163                                first_ackt = last_ackt;
3164
3165                        reord = min(pkts_acked, reord);
3166                        if (!after(scb->end_seq, tp->high_seq))
3167                                flag |= FLAG_ORIG_SACK_ACKED;
3168                }
3169
3170                if (sacked & TCPCB_SACKED_ACKED) {
3171                        tp->sacked_out -= acked_pcount;
3172                } else if (tcp_is_sack(tp)) {
3173                        tp->delivered += acked_pcount;
3174                        if (!tcp_skb_spurious_retrans(tp, skb))
3175                                tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3176                }
3177                if (sacked & TCPCB_LOST)
3178                        tp->lost_out -= acked_pcount;
3179
3180                tp->packets_out -= acked_pcount;
3181                pkts_acked += acked_pcount;
3182
3183                /* Initial outgoing SYN's get put onto the write_queue
3184                 * just like anything else we transmit.  It is not
3185                 * true data, and if we misinform our callers that
3186                 * this ACK acks real data, we will erroneously exit
3187                 * connection startup slow start one packet too
3188                 * quickly.  This is severely frowned upon behavior.
3189                 */
3190                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191                        flag |= FLAG_DATA_ACKED;
3192                } else {
3193                        flag |= FLAG_SYN_ACKED;
3194                        tp->retrans_stamp = 0;
3195                }
3196
3197                if (!fully_acked)
3198                        break;
3199
3200                tcp_unlink_write_queue(skb, sk);
3201                sk_wmem_free_skb(sk, skb);
3202                if (unlikely(skb == tp->retransmit_skb_hint))
3203                        tp->retransmit_skb_hint = NULL;
3204                if (unlikely(skb == tp->lost_skb_hint))
3205                        tp->lost_skb_hint = NULL;
3206        }
3207
3208        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209                tp->snd_up = tp->snd_una;
3210
3211        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212                flag |= FLAG_SACK_RENEGING;
3213
3214        skb_mstamp_get(&now);
3215        if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216                seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217                ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3218        }
3219        if (sack->first_sackt.v64) {
3220                sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221                ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3222        }
3223
3224        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225                                        ca_rtt_us);
3226
3227        if (flag & FLAG_ACKED) {
3228                tcp_rearm_rto(sk);
3229                if (unlikely(icsk->icsk_mtup.probe_size &&
3230                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231                        tcp_mtup_probe_success(sk);
3232                }
3233
3234                if (tcp_is_reno(tp)) {
3235                        tcp_remove_reno_sacks(sk, pkts_acked);
3236                } else {
3237                        int delta;
3238
3239                        /* Non-retransmitted hole got filled? That's reordering */
3240                        if (reord < prior_fackets)
3241                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242
3243                        delta = tcp_is_fack(tp) ? pkts_acked :
3244                                                  prior_sacked - tp->sacked_out;
3245                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3246                }
3247
3248                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249
3250        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251                   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3252                /* Do not re-arm RTO if the sack RTT is measured from data sent
3253                 * after when the head was last (re)transmitted. Otherwise the
3254                 * timeout may continue to extend in loss recovery.
3255                 */
3256                tcp_rearm_rto(sk);
3257        }
3258
3259        if (icsk->icsk_ca_ops->pkts_acked)
3260                icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3261
3262#if FASTRETRANS_DEBUG > 0
3263        WARN_ON((int)tp->sacked_out < 0);
3264        WARN_ON((int)tp->lost_out < 0);
3265        WARN_ON((int)tp->retrans_out < 0);
3266        if (!tp->packets_out && tcp_is_sack(tp)) {
3267                icsk = inet_csk(sk);
3268                if (tp->lost_out) {
3269                        pr_debug("Leak l=%u %d\n",
3270                                 tp->lost_out, icsk->icsk_ca_state);
3271                        tp->lost_out = 0;
3272                }
3273                if (tp->sacked_out) {
3274                        pr_debug("Leak s=%u %d\n",
3275                                 tp->sacked_out, icsk->icsk_ca_state);
3276                        tp->sacked_out = 0;
3277                }
3278                if (tp->retrans_out) {
3279                        pr_debug("Leak r=%u %d\n",
3280                                 tp->retrans_out, icsk->icsk_ca_state);
3281                        tp->retrans_out = 0;
3282                }
3283        }
3284#endif
3285        *acked = pkts_acked;
3286        return flag;
3287}
3288
3289static void tcp_ack_probe(struct sock *sk)
3290{
3291        const struct tcp_sock *tp = tcp_sk(sk);
3292        struct inet_connection_sock *icsk = inet_csk(sk);
3293
3294        /* Was it a usable window open? */
3295
3296        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3297                icsk->icsk_backoff = 0;
3298                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299                /* Socket must be waked up by subsequent tcp_data_snd_check().
3300                 * This function is not for random using!
3301                 */
3302        } else {
3303                unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3304
3305                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306                                          when, TCP_RTO_MAX);
3307        }
3308}
3309
3310static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3311{
3312        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314}
3315
3316/* Decide wheather to run the increase function of congestion control. */
3317static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3318{
3319        /* If reordering is high then always grow cwnd whenever data is
3320         * delivered regardless of its ordering. Otherwise stay conservative
3321         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322         * new SACK or ECE mark may first advance cwnd here and later reduce
3323         * cwnd in tcp_fastretrans_alert() based on more states.
3324         */
3325        if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3326                return flag & FLAG_FORWARD_PROGRESS;
3327
3328        return flag & FLAG_DATA_ACKED;
3329}
3330
3331/* The "ultimate" congestion control function that aims to replace the rigid
3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333 * It's called toward the end of processing an ACK with precise rate
3334 * information. All transmission or retransmission are delayed afterwards.
3335 */
3336static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337                             int flag)
3338{
3339        if (tcp_in_cwnd_reduction(sk)) {
3340                /* Reduce cwnd if state mandates */
3341                tcp_cwnd_reduction(sk, acked_sacked, flag);
3342        } else if (tcp_may_raise_cwnd(sk, flag)) {
3343                /* Advance cwnd if state allows */
3344                tcp_cong_avoid(sk, ack, acked_sacked);
3345        }
3346        tcp_update_pacing_rate(sk);
3347}
3348
3349/* Check that window update is acceptable.
3350 * The function assumes that snd_una<=ack<=snd_next.
3351 */
3352static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353                                        const u32 ack, const u32 ack_seq,
3354                                        const u32 nwin)
3355{
3356        return  after(ack, tp->snd_una) ||
3357                after(ack_seq, tp->snd_wl1) ||
3358                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3359}
3360
3361/* If we update tp->snd_una, also update tp->bytes_acked */
3362static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3363{
3364        u32 delta = ack - tp->snd_una;
3365
3366        u64_stats_update_begin(&tp->syncp);
3367        tp->bytes_acked += delta;
3368        u64_stats_update_end(&tp->syncp);
3369        tp->snd_una = ack;
3370}
3371
3372/* If we update tp->rcv_nxt, also update tp->bytes_received */
3373static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374{
3375        u32 delta = seq - tp->rcv_nxt;
3376
3377        u64_stats_update_begin(&tp->syncp);
3378        tp->bytes_received += delta;
3379        u64_stats_update_end(&tp->syncp);
3380        tp->rcv_nxt = seq;
3381}
3382
3383/* Update our send window.
3384 *
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387 */
3388static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389                                 u32 ack_seq)
3390{
3391        struct tcp_sock *tp = tcp_sk(sk);
3392        int flag = 0;
3393        u32 nwin = ntohs(tcp_hdr(skb)->window);
3394
3395        if (likely(!tcp_hdr(skb)->syn))
3396                nwin <<= tp->rx_opt.snd_wscale;
3397
3398        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399                flag |= FLAG_WIN_UPDATE;
3400                tcp_update_wl(tp, ack_seq);
3401
3402                if (tp->snd_wnd != nwin) {
3403                        tp->snd_wnd = nwin;
3404
3405                        /* Note, it is the only place, where
3406                         * fast path is recovered for sending TCP.
3407                         */
3408                        tp->pred_flags = 0;
3409                        tcp_fast_path_check(sk);
3410
3411                        if (tcp_send_head(sk))
3412                                tcp_slow_start_after_idle_check(sk);
3413
3414                        if (nwin > tp->max_window) {
3415                                tp->max_window = nwin;
3416                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417                        }
3418                }
3419        }
3420
3421        tcp_snd_una_update(tp, ack);
3422
3423        return flag;
3424}
3425
3426/* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3432 */
3433bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434                          int mib_idx, u32 *last_oow_ack_time)
3435{
3436        /* Data packets without SYNs are not likely part of an ACK loop. */
3437        if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438            !tcp_hdr(skb)->syn)
3439                goto not_rate_limited;
3440
3441        if (*last_oow_ack_time) {
3442                s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3443
3444                if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445                        NET_INC_STATS_BH(net, mib_idx);
3446                        return true;    /* rate-limited: don't send yet! */
3447                }
3448        }
3449
3450        *last_oow_ack_time = tcp_time_stamp;
3451
3452not_rate_limited:
3453        return false;   /* not rate-limited: go ahead, send dupack now! */
3454}
3455
3456/* RFC 5961 7 [ACK Throttling] */
3457static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3458{
3459        /* unprotected vars, we dont care of overwrites */
3460        static u32 challenge_timestamp;
3461        static unsigned int challenge_count;
3462        struct tcp_sock *tp = tcp_sk(sk);
3463        u32 now;
3464
3465        /* First check our per-socket dupack rate limit. */
3466        if (tcp_oow_rate_limited(sock_net(sk), skb,
3467                                 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468                                 &tp->last_oow_ack_time))
3469                return;
3470
3471        /* Then check the check host-wide RFC 5961 rate limit. */
3472        now = jiffies / HZ;
3473        if (now != challenge_timestamp) {
3474                challenge_timestamp = now;
3475                challenge_count = 0;
3476        }
3477        if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3479                tcp_send_ack(sk);
3480        }
3481}
3482
3483static void tcp_store_ts_recent(struct tcp_sock *tp)
3484{
3485        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486        tp->rx_opt.ts_recent_stamp = get_seconds();
3487}
3488
3489static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3490{
3491        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493                 * extra check below makes sure this can only happen
3494                 * for pure ACK frames.  -DaveM
3495                 *
3496                 * Not only, also it occurs for expired timestamps.
3497                 */
3498
3499                if (tcp_paws_check(&tp->rx_opt, 0))
3500                        tcp_store_ts_recent(tp);
3501        }
3502}
3503
3504/* This routine deals with acks during a TLP episode.
3505 * We mark the end of a TLP episode on receiving TLP dupack or when
3506 * ack is after tlp_high_seq.
3507 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3508 */
3509static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3510{
3511        struct tcp_sock *tp = tcp_sk(sk);
3512
3513        if (before(ack, tp->tlp_high_seq))
3514                return;
3515
3516        if (flag & FLAG_DSACKING_ACK) {
3517                /* This DSACK means original and TLP probe arrived; no loss */
3518                tp->tlp_high_seq = 0;
3519        } else if (after(ack, tp->tlp_high_seq)) {
3520                /* ACK advances: there was a loss, so reduce cwnd. Reset
3521                 * tlp_high_seq in tcp_init_cwnd_reduction()
3522                 */
3523                tcp_init_cwnd_reduction(sk);
3524                tcp_set_ca_state(sk, TCP_CA_CWR);
3525                tcp_end_cwnd_reduction(sk);
3526                tcp_try_keep_open(sk);
3527                NET_INC_STATS_BH(sock_net(sk),
3528                                 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529        } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530                             FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531                /* Pure dupack: original and TLP probe arrived; no loss */
3532                tp->tlp_high_seq = 0;
3533        }
3534}
3535
3536static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3537{
3538        const struct inet_connection_sock *icsk = inet_csk(sk);
3539
3540        if (icsk->icsk_ca_ops->in_ack_event)
3541                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3542}
3543
3544/* Congestion control has updated the cwnd already. So if we're in
3545 * loss recovery then now we do any new sends (for FRTO) or
3546 * retransmits (for CA_Loss or CA_recovery) that make sense.
3547 */
3548static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3549{
3550        struct tcp_sock *tp = tcp_sk(sk);
3551
3552        if (rexmit == REXMIT_NONE)
3553                return;
3554
3555        if (unlikely(rexmit == 2)) {
3556                __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557                                          TCP_NAGLE_OFF);
3558                if (after(tp->snd_nxt, tp->high_seq))
3559                        return;
3560                tp->frto = 0;
3561        }
3562        tcp_xmit_retransmit_queue(sk);
3563}
3564
3565/* This routine deals with incoming acks, but not outgoing ones. */
3566static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3567{
3568        struct inet_connection_sock *icsk = inet_csk(sk);
3569        struct tcp_sock *tp = tcp_sk(sk);
3570        struct tcp_sacktag_state sack_state;
3571        u32 prior_snd_una = tp->snd_una;
3572        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574        bool is_dupack = false;
3575        u32 prior_fackets;
3576        int prior_packets = tp->packets_out;
3577        u32 prior_delivered = tp->delivered;
3578        int acked = 0; /* Number of packets newly acked */
3579        int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3580
3581        sack_state.first_sackt.v64 = 0;
3582
3583        /* We very likely will need to access write queue head. */
3584        prefetchw(sk->sk_write_queue.next);
3585
3586        /* If the ack is older than previous acks
3587         * then we can probably ignore it.
3588         */
3589        if (before(ack, prior_snd_una)) {
3590                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591                if (before(ack, prior_snd_una - tp->max_window)) {
3592                        tcp_send_challenge_ack(sk, skb);
3593                        return -1;
3594                }
3595                goto old_ack;
3596        }
3597
3598        /* If the ack includes data we haven't sent yet, discard
3599         * this segment (RFC793 Section 3.9).
3600         */
3601        if (after(ack, tp->snd_nxt))
3602                goto invalid_ack;
3603
3604        if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606                tcp_rearm_rto(sk);
3607
3608        if (after(ack, prior_snd_una)) {
3609                flag |= FLAG_SND_UNA_ADVANCED;
3610                icsk->icsk_retransmits = 0;
3611        }
3612
3613        prior_fackets = tp->fackets_out;
3614
3615        /* ts_recent update must be made after we are sure that the packet
3616         * is in window.
3617         */
3618        if (flag & FLAG_UPDATE_TS_RECENT)
3619                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3620
3621        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3622                /* Window is constant, pure forward advance.
3623                 * No more checks are required.
3624                 * Note, we use the fact that SND.UNA>=SND.WL2.
3625                 */
3626                tcp_update_wl(tp, ack_seq);
3627                tcp_snd_una_update(tp, ack);
3628                flag |= FLAG_WIN_UPDATE;
3629
3630                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631
3632                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633        } else {
3634                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635
3636                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637                        flag |= FLAG_DATA;
3638                else
3639                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640
3641                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642
3643                if (TCP_SKB_CB(skb)->sacked)
3644                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645                                                        &sack_state);
3646
3647                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648                        flag |= FLAG_ECE;
3649                        ack_ev_flags |= CA_ACK_ECE;
3650                }
3651
3652                if (flag & FLAG_WIN_UPDATE)
3653                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654
3655                tcp_in_ack_event(sk, ack_ev_flags);
3656        }
3657
3658        /* We passed data and got it acked, remove any soft error
3659         * log. Something worked...
3660         */
3661        sk->sk_err_soft = 0;
3662        icsk->icsk_probes_out = 0;
3663        tp->rcv_tstamp = tcp_time_stamp;
3664        if (!prior_packets)
3665                goto no_queue;
3666
3667        /* See if we can take anything off of the retransmit queue. */
3668        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669                                    &sack_state);
3670
3671        if (tcp_ack_is_dubious(sk, flag)) {
3672                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3674        }
3675        if (tp->tlp_high_seq)
3676                tcp_process_tlp_ack(sk, ack, flag);
3677
3678        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679                struct dst_entry *dst = __sk_dst_get(sk);
3680                if (dst)
3681                        dst_confirm(dst);
3682        }
3683
3684        if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685                tcp_schedule_loss_probe(sk);
3686        tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3687        tcp_xmit_recovery(sk, rexmit);
3688        return 1;
3689
3690no_queue:
3691        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3692        if (flag & FLAG_DSACKING_ACK)
3693                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3694        /* If this ack opens up a zero window, clear backoff.  It was
3695         * being used to time the probes, and is probably far higher than
3696         * it needs to be for normal retransmission.
3697         */
3698        if (tcp_send_head(sk))
3699                tcp_ack_probe(sk);
3700
3701        if (tp->tlp_high_seq)
3702                tcp_process_tlp_ack(sk, ack, flag);
3703        return 1;
3704
3705invalid_ack:
3706        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707        return -1;
3708
3709old_ack:
3710        /* If data was SACKed, tag it and see if we should send more data.
3711         * If data was DSACKed, see if we can undo a cwnd reduction.
3712         */
3713        if (TCP_SKB_CB(skb)->sacked) {
3714                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715                                                &sack_state);
3716                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717                tcp_xmit_recovery(sk, rexmit);
3718        }
3719
3720        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721        return 0;
3722}
3723
3724static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725                                      bool syn, struct tcp_fastopen_cookie *foc,
3726                                      bool exp_opt)
3727{
3728        /* Valid only in SYN or SYN-ACK with an even length.  */
3729        if (!foc || !syn || len < 0 || (len & 1))
3730                return;
3731
3732        if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733            len <= TCP_FASTOPEN_COOKIE_MAX)
3734                memcpy(foc->val, cookie, len);
3735        else if (len != 0)
3736                len = -1;
3737        foc->len = len;
3738        foc->exp = exp_opt;
3739}
3740
3741/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745void tcp_parse_options(const struct sk_buff *skb,
3746                       struct tcp_options_received *opt_rx, int estab,
3747                       struct tcp_fastopen_cookie *foc)
3748{
3749        const unsigned char *ptr;
3750        const struct tcphdr *th = tcp_hdr(skb);
3751        int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753        ptr = (const unsigned char *)(th + 1);
3754        opt_rx->saw_tstamp = 0;
3755
3756        while (length > 0) {
3757                int opcode = *ptr++;
3758                int opsize;
3759
3760                switch (opcode) {
3761                case TCPOPT_EOL:
3762                        return;
3763                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3764                        length--;
3765                        continue;
3766                default:
3767                        opsize = *ptr++;
3768                        if (opsize < 2) /* "silly options" */
3769                                return;
3770                        if (opsize > length)
3771                                return; /* don't parse partial options */
3772                        switch (opcode) {
3773                        case TCPOPT_MSS:
3774                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775                                        u16 in_mss = get_unaligned_be16(ptr);
3776                                        if (in_mss) {
3777                                                if (opt_rx->user_mss &&
3778                                                    opt_rx->user_mss < in_mss)
3779                                                        in_mss = opt_rx->user_mss;
3780                                                opt_rx->mss_clamp = in_mss;
3781                                        }
3782                                }
3783                                break;
3784                        case TCPOPT_WINDOW:
3785                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3786                                    !estab && sysctl_tcp_window_scaling) {
3787                                        __u8 snd_wscale = *(__u8 *)ptr;
3788                                        opt_rx->wscale_ok = 1;
3789                                        if (snd_wscale > 14) {
3790                                                net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791                                                                     __func__,
3792                                                                     snd_wscale);
3793                                                snd_wscale = 14;
3794                                        }
3795                                        opt_rx->snd_wscale = snd_wscale;
3796                                }
3797                                break;
3798                        case TCPOPT_TIMESTAMP:
3799                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3800                                    ((estab && opt_rx->tstamp_ok) ||
3801                                     (!estab && sysctl_tcp_timestamps))) {
3802                                        opt_rx->saw_tstamp = 1;
3803                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805                                }
3806                                break;
3807                        case TCPOPT_SACK_PERM:
3808                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809                                    !estab && sysctl_tcp_sack) {
3810                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3811                                        tcp_sack_reset(opt_rx);
3812                                }
3813                                break;
3814
3815                        case TCPOPT_SACK:
3816                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818                                   opt_rx->sack_ok) {
3819                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820                                }
3821                                break;
3822#ifdef CONFIG_TCP_MD5SIG
3823                        case TCPOPT_MD5SIG:
3824                                /*
3825                                 * The MD5 Hash has already been
3826                                 * checked (see tcp_v{4,6}_do_rcv()).
3827                                 */
3828                                break;
3829#endif
3830                        case TCPOPT_FASTOPEN:
3831                                tcp_parse_fastopen_option(
3832                                        opsize - TCPOLEN_FASTOPEN_BASE,
3833                                        ptr, th->syn, foc, false);
3834                                break;
3835
3836                        case TCPOPT_EXP:
3837                                /* Fast Open option shares code 254 using a
3838                                 * 16 bits magic number.
3839                                 */
3840                                if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841                                    get_unaligned_be16(ptr) ==
3842                                    TCPOPT_FASTOPEN_MAGIC)
3843                                        tcp_parse_fastopen_option(opsize -
3844                                                TCPOLEN_EXP_FASTOPEN_BASE,
3845                                                ptr + 2, th->syn, foc, true);
3846                                break;
3847
3848                        }
3849                        ptr += opsize-2;
3850                        length -= opsize;
3851                }
3852        }
3853}
3854EXPORT_SYMBOL(tcp_parse_options);
3855
3856static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3857{
3858        const __be32 *ptr = (const __be32 *)(th + 1);
3859
3860        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862                tp->rx_opt.saw_tstamp = 1;
3863                ++ptr;
3864                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865                ++ptr;
3866                if (*ptr)
3867                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868                else
3869                        tp->rx_opt.rcv_tsecr = 0;
3870                return true;
3871        }
3872        return false;
3873}
3874
3875/* Fast parse options. This hopes to only see timestamps.
3876 * If it is wrong it falls back on tcp_parse_options().
3877 */
3878static bool tcp_fast_parse_options(const struct sk_buff *skb,
3879                                   const struct tcphdr *th, struct tcp_sock *tp)
3880{
3881        /* In the spirit of fast parsing, compare doff directly to constant
3882         * values.  Because equality is used, short doff can be ignored here.
3883         */
3884        if (th->doff == (sizeof(*th) / 4)) {
3885                tp->rx_opt.saw_tstamp = 0;
3886                return false;
3887        } else if (tp->rx_opt.tstamp_ok &&
3888                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889                if (tcp_parse_aligned_timestamp(tp, th))
3890                        return true;
3891        }
3892
3893        tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3896
3897        return true;
3898}
3899
3900#ifdef CONFIG_TCP_MD5SIG
3901/*
3902 * Parse MD5 Signature option
3903 */
3904const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3905{
3906        int length = (th->doff << 2) - sizeof(*th);
3907        const u8 *ptr = (const u8 *)(th + 1);
3908
3909        /* If the TCP option is too short, we can short cut */
3910        if (length < TCPOLEN_MD5SIG)
3911                return NULL;
3912
3913        while (length > 0) {
3914                int opcode = *ptr++;
3915                int opsize;
3916
3917                switch (opcode) {
3918                case TCPOPT_EOL:
3919                        return NULL;
3920                case TCPOPT_NOP:
3921                        length--;
3922                        continue;
3923                default:
3924                        opsize = *ptr++;
3925                        if (opsize < 2 || opsize > length)
3926                                return NULL;
3927                        if (opcode == TCPOPT_MD5SIG)
3928                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929                }
3930                ptr += opsize - 2;
3931                length -= opsize;
3932        }
3933        return NULL;
3934}
3935EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936#endif
3937
3938/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962{
3963        const struct tcp_sock *tp = tcp_sk(sk);
3964        const struct tcphdr *th = tcp_hdr(skb);
3965        u32 seq = TCP_SKB_CB(skb)->seq;
3966        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968        return (/* 1. Pure ACK with correct sequence number. */
3969                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971                /* 2. ... and duplicate ACK. */
3972                ack == tp->snd_una &&
3973
3974                /* 3. ... and does not update window. */
3975                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977                /* 4. ... and sits in replay window. */
3978                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979}
3980
3981static inline bool tcp_paws_discard(const struct sock *sk,
3982                                   const struct sk_buff *skb)
3983{
3984        const struct tcp_sock *tp = tcp_sk(sk);
3985
3986        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987               !tcp_disordered_ack(sk, skb);
3988}
3989
3990/* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004{
4005        return  !before(end_seq, tp->rcv_wup) &&
4006                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007}
4008
4009/* When we get a reset we do this. */
4010void tcp_reset(struct sock *sk)
4011{
4012        /* We want the right error as BSD sees it (and indeed as we do). */
4013        switch (sk->sk_state) {
4014        case TCP_SYN_SENT:
4015                sk->sk_err = ECONNREFUSED;
4016                break;
4017        case TCP_CLOSE_WAIT:
4018                sk->sk_err = EPIPE;
4019                break;
4020        case TCP_CLOSE:
4021                return;
4022        default:
4023                sk->sk_err = ECONNRESET;
4024        }
4025        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4026        smp_wmb();
4027
4028        if (!sock_flag(sk, SOCK_DEAD))
4029                sk->sk_error_report(sk);
4030
4031        tcp_done(sk);
4032}
4033
4034/*
4035 *      Process the FIN bit. This now behaves as it is supposed to work
4036 *      and the FIN takes effect when it is validly part of sequence
4037 *      space. Not before when we get holes.
4038 *
4039 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 *      TIME-WAIT)
4042 *
4043 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 *      close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048void tcp_fin(struct sock *sk)
4049{
4050        struct tcp_sock *tp = tcp_sk(sk);
4051
4052        inet_csk_schedule_ack(sk);
4053
4054        sk->sk_shutdown |= RCV_SHUTDOWN;
4055        sock_set_flag(sk, SOCK_DONE);
4056
4057        switch (sk->sk_state) {
4058        case TCP_SYN_RECV:
4059        case TCP_ESTABLISHED:
4060                /* Move to CLOSE_WAIT */
4061                tcp_set_state(sk, TCP_CLOSE_WAIT);
4062                inet_csk(sk)->icsk_ack.pingpong = 1;
4063                break;
4064
4065        case TCP_CLOSE_WAIT:
4066        case TCP_CLOSING:
4067                /* Received a retransmission of the FIN, do
4068                 * nothing.
4069                 */
4070                break;
4071        case TCP_LAST_ACK:
4072                /* RFC793: Remain in the LAST-ACK state. */
4073                break;
4074
4075        case TCP_FIN_WAIT1:
4076                /* This case occurs when a simultaneous close
4077                 * happens, we must ack the received FIN and
4078                 * enter the CLOSING state.
4079                 */
4080                tcp_send_ack(sk);
4081                tcp_set_state(sk, TCP_CLOSING);
4082                break;
4083        case TCP_FIN_WAIT2:
4084                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085                tcp_send_ack(sk);
4086                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087                break;
4088        default:
4089                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090                 * cases we should never reach this piece of code.
4091                 */
4092                pr_err("%s: Impossible, sk->sk_state=%d\n",
4093                       __func__, sk->sk_state);
4094                break;
4095        }
4096
4097        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098         * Probably, we should reset in this case. For now drop them.
4099         */
4100        __skb_queue_purge(&tp->out_of_order_queue);
4101        if (tcp_is_sack(tp))
4102                tcp_sack_reset(&tp->rx_opt);
4103        sk_mem_reclaim(sk);
4104
4105        if (!sock_flag(sk, SOCK_DEAD)) {
4106                sk->sk_state_change(sk);
4107
4108                /* Do not send POLL_HUP for half duplex close. */
4109                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110                    sk->sk_state == TCP_CLOSE)
4111                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112                else
4113                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114        }
4115}
4116
4117static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118                                  u32 end_seq)
4119{
4120        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121                if (before(seq, sp->start_seq))
4122                        sp->start_seq = seq;
4123                if (after(end_seq, sp->end_seq))
4124                        sp->end_seq = end_seq;
4125                return true;
4126        }
4127        return false;
4128}
4129
4130static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131{
4132        struct tcp_sock *tp = tcp_sk(sk);
4133
4134        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135                int mib_idx;
4136
4137                if (before(seq, tp->rcv_nxt))
4138                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139                else
4140                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142                NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144                tp->rx_opt.dsack = 1;
4145                tp->duplicate_sack[0].start_seq = seq;
4146                tp->duplicate_sack[0].end_seq = end_seq;
4147        }
4148}
4149
4150static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152        struct tcp_sock *tp = tcp_sk(sk);
4153
4154        if (!tp->rx_opt.dsack)
4155                tcp_dsack_set(sk, seq, end_seq);
4156        else
4157                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158}
4159
4160static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161{
4162        struct tcp_sock *tp = tcp_sk(sk);
4163
4164        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167                tcp_enter_quickack_mode(sk);
4168
4169                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173                                end_seq = tp->rcv_nxt;
4174                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175                }
4176        }
4177
4178        tcp_send_ack(sk);
4179}
4180
4181/* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185{
4186        int this_sack;
4187        struct tcp_sack_block *sp = &tp->selective_acks[0];
4188        struct tcp_sack_block *swalk = sp + 1;
4189
4190        /* See if the recent change to the first SACK eats into
4191         * or hits the sequence space of other SACK blocks, if so coalesce.
4192         */
4193        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195                        int i;
4196
4197                        /* Zap SWALK, by moving every further SACK up by one slot.
4198                         * Decrease num_sacks.
4199                         */
4200                        tp->rx_opt.num_sacks--;
4201                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202                                sp[i] = sp[i + 1];
4203                        continue;
4204                }
4205                this_sack++, swalk++;
4206        }
4207}
4208
4209static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210{
4211        struct tcp_sock *tp = tcp_sk(sk);
4212        struct tcp_sack_block *sp = &tp->selective_acks[0];
4213        int cur_sacks = tp->rx_opt.num_sacks;
4214        int this_sack;
4215
4216        if (!cur_sacks)
4217                goto new_sack;
4218
4219        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220                if (tcp_sack_extend(sp, seq, end_seq)) {
4221                        /* Rotate this_sack to the first one. */
4222                        for (; this_sack > 0; this_sack--, sp--)
4223                                swap(*sp, *(sp - 1));
4224                        if (cur_sacks > 1)
4225                                tcp_sack_maybe_coalesce(tp);
4226                        return;
4227                }
4228        }
4229
4230        /* Could not find an adjacent existing SACK, build a new one,
4231         * put it at the front, and shift everyone else down.  We
4232         * always know there is at least one SACK present already here.
4233         *
4234         * If the sack array is full, forget about the last one.
4235         */
4236        if (this_sack >= TCP_NUM_SACKS) {
4237                this_sack--;
4238                tp->rx_opt.num_sacks--;
4239                sp--;
4240        }
4241        for (; this_sack > 0; this_sack--, sp--)
4242                *sp = *(sp - 1);
4243
4244new_sack:
4245        /* Build the new head SACK, and we're done. */
4246        sp->start_seq = seq;
4247        sp->end_seq = end_seq;
4248        tp->rx_opt.num_sacks++;
4249}
4250
4251/* RCV.NXT advances, some SACKs should be eaten. */
4252
4253static void tcp_sack_remove(struct tcp_sock *tp)
4254{
4255        struct tcp_sack_block *sp = &tp->selective_acks[0];
4256        int num_sacks = tp->rx_opt.num_sacks;
4257        int this_sack;
4258
4259        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260        if (skb_queue_empty(&tp->out_of_order_queue)) {
4261                tp->rx_opt.num_sacks = 0;
4262                return;
4263        }
4264
4265        for (this_sack = 0; this_sack < num_sacks;) {
4266                /* Check if the start of the sack is covered by RCV.NXT. */
4267                if (!before(tp->rcv_nxt, sp->start_seq)) {
4268                        int i;
4269
4270                        /* RCV.NXT must cover all the block! */
4271                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273                        /* Zap this SACK, by moving forward any other SACKS. */
4274                        for (i = this_sack+1; i < num_sacks; i++)
4275                                tp->selective_acks[i-1] = tp->selective_acks[i];
4276                        num_sacks--;
4277                        continue;
4278                }
4279                this_sack++;
4280                sp++;
4281        }
4282        tp->rx_opt.num_sacks = num_sacks;
4283}
4284
4285/**
4286 * tcp_try_coalesce - try to merge skb to prior one
4287 * @sk: socket
4288 * @to: prior buffer
4289 * @from: buffer to add in queue
4290 * @fragstolen: pointer to boolean
4291 *
4292 * Before queueing skb @from after @to, try to merge them
4293 * to reduce overall memory use and queue lengths, if cost is small.
4294 * Packets in ofo or receive queues can stay a long time.
4295 * Better try to coalesce them right now to avoid future collapses.
4296 * Returns true if caller should free @from instead of queueing it
4297 */
4298static bool tcp_try_coalesce(struct sock *sk,
4299                             struct sk_buff *to,
4300                             struct sk_buff *from,
4301                             bool *fragstolen)
4302{
4303        int delta;
4304
4305        *fragstolen = false;
4306
4307        /* Its possible this segment overlaps with prior segment in queue */
4308        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309                return false;
4310
4311        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312                return false;
4313
4314        atomic_add(delta, &sk->sk_rmem_alloc);
4315        sk_mem_charge(sk, delta);
4316        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320        return true;
4321}
4322
4323/* This one checks to see if we can put data from the
4324 * out_of_order queue into the receive_queue.
4325 */
4326static void tcp_ofo_queue(struct sock *sk)
4327{
4328        struct tcp_sock *tp = tcp_sk(sk);
4329        __u32 dsack_high = tp->rcv_nxt;
4330        struct sk_buff *skb, *tail;
4331        bool fragstolen, eaten;
4332
4333        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4334                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335                        break;
4336
4337                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338                        __u32 dsack = dsack_high;
4339                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4341                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4342                }
4343
4344                __skb_unlink(skb, &tp->out_of_order_queue);
4345                if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346                        SOCK_DEBUG(sk, "ofo packet was already received\n");
4347                        __kfree_skb(skb);
4348                        continue;
4349                }
4350                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352                           TCP_SKB_CB(skb)->end_seq);
4353
4354                tail = skb_peek_tail(&sk->sk_receive_queue);
4355                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4357                if (!eaten)
4358                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4359                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4360                        tcp_fin(sk);
4361                if (eaten)
4362                        kfree_skb_partial(skb, fragstolen);
4363        }
4364}
4365
4366static bool tcp_prune_ofo_queue(struct sock *sk);
4367static int tcp_prune_queue(struct sock *sk);
4368
4369static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370                                 unsigned int size)
4371{
4372        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373            !sk_rmem_schedule(sk, skb, size)) {
4374
4375                if (tcp_prune_queue(sk) < 0)
4376                        return -1;
4377
4378                if (!sk_rmem_schedule(sk, skb, size)) {
4379                        if (!tcp_prune_ofo_queue(sk))
4380                                return -1;
4381
4382                        if (!sk_rmem_schedule(sk, skb, size))
4383                                return -1;
4384                }
4385        }
4386        return 0;
4387}
4388
4389static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4390{
4391        struct tcp_sock *tp = tcp_sk(sk);
4392        struct sk_buff *skb1;
4393        u32 seq, end_seq;
4394
4395        tcp_ecn_check_ce(tp, skb);
4396
4397        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399                __kfree_skb(skb);
4400                return;
4401        }
4402
4403        /* Disable header prediction. */
4404        tp->pred_flags = 0;
4405        inet_csk_schedule_ack(sk);
4406
4407        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409                   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4410
4411        skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412        if (!skb1) {
4413                /* Initial out of order segment, build 1 SACK. */
4414                if (tcp_is_sack(tp)) {
4415                        tp->rx_opt.num_sacks = 1;
4416                        tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417                        tp->selective_acks[0].end_seq =
4418                                                TCP_SKB_CB(skb)->end_seq;
4419                }
4420                __skb_queue_head(&tp->out_of_order_queue, skb);
4421                goto end;
4422        }
4423
4424        seq = TCP_SKB_CB(skb)->seq;
4425        end_seq = TCP_SKB_CB(skb)->end_seq;
4426
4427        if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428                bool fragstolen;
4429
4430                if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431                        __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432                } else {
4433                        tcp_grow_window(sk, skb);
4434                        kfree_skb_partial(skb, fragstolen);
4435                        skb = NULL;
4436                }
4437
4438                if (!tp->rx_opt.num_sacks ||
4439                    tp->selective_acks[0].end_seq != seq)
4440                        goto add_sack;
4441
4442                /* Common case: data arrive in order after hole. */
4443                tp->selective_acks[0].end_seq = end_seq;
4444                goto end;
4445        }
4446
4447        /* Find place to insert this segment. */
4448        while (1) {
4449                if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450                        break;
4451                if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452                        skb1 = NULL;
4453                        break;
4454                }
4455                skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456        }
4457
4458        /* Do skb overlap to previous one? */
4459        if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460                if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461                        /* All the bits are present. Drop. */
4462                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463                        __kfree_skb(skb);
4464                        skb = NULL;
4465                        tcp_dsack_set(sk, seq, end_seq);
4466                        goto add_sack;
4467                }
4468                if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469                        /* Partial overlap. */
4470                        tcp_dsack_set(sk, seq,
4471                                      TCP_SKB_CB(skb1)->end_seq);
4472                } else {
4473                        if (skb_queue_is_first(&tp->out_of_order_queue,
4474                                               skb1))
4475                                skb1 = NULL;
4476                        else
4477                                skb1 = skb_queue_prev(
4478                                        &tp->out_of_order_queue,
4479                                        skb1);
4480                }
4481        }
4482        if (!skb1)
4483                __skb_queue_head(&tp->out_of_order_queue, skb);
4484        else
4485                __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486
4487        /* And clean segments covered by new one as whole. */
4488        while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489                skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4490
4491                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492                        break;
4493                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495                                         end_seq);
4496                        break;
4497                }
4498                __skb_unlink(skb1, &tp->out_of_order_queue);
4499                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500                                 TCP_SKB_CB(skb1)->end_seq);
4501                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502                __kfree_skb(skb1);
4503        }
4504
4505add_sack:
4506        if (tcp_is_sack(tp))
4507                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508end:
4509        if (skb) {
4510                tcp_grow_window(sk, skb);
4511                skb_set_owner_r(skb, sk);
4512        }
4513}
4514
4515static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516                  bool *fragstolen)
4517{
4518        int eaten;
4519        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520
4521        __skb_pull(skb, hdrlen);
4522        eaten = (tail &&
4523                 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524        tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525        if (!eaten) {
4526                __skb_queue_tail(&sk->sk_receive_queue, skb);
4527                skb_set_owner_r(skb, sk);
4528        }
4529        return eaten;
4530}
4531
4532int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533{
4534        struct sk_buff *skb;
4535        int err = -ENOMEM;
4536        int data_len = 0;
4537        bool fragstolen;
4538
4539        if (size == 0)
4540                return 0;
4541
4542        if (size > PAGE_SIZE) {
4543                int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544
4545                data_len = npages << PAGE_SHIFT;
4546                size = data_len + (size & ~PAGE_MASK);
4547        }
4548        skb = alloc_skb_with_frags(size - data_len, data_len,
4549                                   PAGE_ALLOC_COSTLY_ORDER,
4550                                   &err, sk->sk_allocation);
4551        if (!skb)
4552                goto err;
4553
4554        skb_put(skb, size - data_len);
4555        skb->data_len = data_len;
4556        skb->len = size;
4557
4558        if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559                goto err_free;
4560
4561        err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562        if (err)
4563                goto err_free;
4564
4565        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568
4569        if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570                WARN_ON_ONCE(fragstolen); /* should not happen */
4571                __kfree_skb(skb);
4572        }
4573        return size;
4574
4575err_free:
4576        kfree_skb(skb);
4577err:
4578        return err;
4579
4580}
4581
4582static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583{
4584        struct tcp_sock *tp = tcp_sk(sk);
4585        int eaten = -1;
4586        bool fragstolen = false;
4587
4588        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589                goto drop;
4590
4591        skb_dst_drop(skb);
4592        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4593
4594        tcp_ecn_accept_cwr(tp, skb);
4595
4596        tp->rx_opt.dsack = 0;
4597
4598        /*  Queue data for delivery to the user.
4599         *  Packets in sequence go to the receive queue.
4600         *  Out of sequence packets to the out_of_order_queue.
4601         */
4602        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603                if (tcp_receive_window(tp) == 0)
4604                        goto out_of_window;
4605
4606                /* Ok. In sequence. In window. */
4607                if (tp->ucopy.task == current &&
4608                    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609                    sock_owned_by_user(sk) && !tp->urg_data) {
4610                        int chunk = min_t(unsigned int, skb->len,
4611                                          tp->ucopy.len);
4612
4613                        __set_current_state(TASK_RUNNING);
4614
4615                        local_bh_enable();
4616                        if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617                                tp->ucopy.len -= chunk;
4618                                tp->copied_seq += chunk;
4619                                eaten = (chunk == skb->len);
4620                                tcp_rcv_space_adjust(sk);
4621                        }
4622                        local_bh_disable();
4623                }
4624
4625                if (eaten <= 0) {
4626queue_and_out:
4627                        if (eaten < 0) {
4628                                if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629                                        sk_forced_mem_schedule(sk, skb->truesize);
4630                                else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631                                        goto drop;
4632                        }
4633                        eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634                }
4635                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636                if (skb->len)
4637                        tcp_event_data_recv(sk, skb);
4638                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639                        tcp_fin(sk);
4640
4641                if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642                        tcp_ofo_queue(sk);
4643
4644                        /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645                         * gap in queue is filled.
4646                         */
4647                        if (skb_queue_empty(&tp->out_of_order_queue))
4648                                inet_csk(sk)->icsk_ack.pingpong = 0;
4649                }
4650
4651                if (tp->rx_opt.num_sacks)
4652                        tcp_sack_remove(tp);
4653
4654                tcp_fast_path_check(sk);
4655
4656                if (eaten > 0)
4657                        kfree_skb_partial(skb, fragstolen);
4658                if (!sock_flag(sk, SOCK_DEAD))
4659                        sk->sk_data_ready(sk);
4660                return;
4661        }
4662
4663        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4665                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668out_of_window:
4669                tcp_enter_quickack_mode(sk);
4670                inet_csk_schedule_ack(sk);
4671drop:
4672                __kfree_skb(skb);
4673                return;
4674        }
4675
4676        /* Out of window. F.e. zero window probe. */
4677        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678                goto out_of_window;
4679
4680        tcp_enter_quickack_mode(sk);
4681
4682        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683                /* Partial packet, seq < rcv_next < end_seq */
4684                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686                           TCP_SKB_CB(skb)->end_seq);
4687
4688                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690                /* If window is closed, drop tail of packet. But after
4691                 * remembering D-SACK for its head made in previous line.
4692                 */
4693                if (!tcp_receive_window(tp))
4694                        goto out_of_window;
4695                goto queue_and_out;
4696        }
4697
4698        tcp_data_queue_ofo(sk, skb);
4699}
4700
4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702                                        struct sk_buff_head *list)
4703{
4704        struct sk_buff *next = NULL;
4705
4706        if (!skb_queue_is_last(list, skb))
4707                next = skb_queue_next(list, skb);
4708
4709        __skb_unlink(skb, list);
4710        __kfree_skb(skb);
4711        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713        return next;
4714}
4715
4716/* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4718 *
4719 * If tail is NULL, this means until the end of the list.
4720 *
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4723 */
4724static void
4725tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726             struct sk_buff *head, struct sk_buff *tail,
4727             u32 start, u32 end)
4728{
4729        struct sk_buff *skb, *n;
4730        bool end_of_skbs;
4731
4732        /* First, check that queue is collapsible and find
4733         * the point where collapsing can be useful. */
4734        skb = head;
4735restart:
4736        end_of_skbs = true;
4737        skb_queue_walk_from_safe(list, skb, n) {
4738                if (skb == tail)
4739                        break;
4740                /* No new bits? It is possible on ofo queue. */
4741                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742                        skb = tcp_collapse_one(sk, skb, list);
4743                        if (!skb)
4744                                break;
4745                        goto restart;
4746                }
4747
4748                /* The first skb to collapse is:
4749                 * - not SYN/FIN and
4750                 * - bloated or contains data before "start" or
4751                 *   overlaps to the next one.
4752                 */
4753                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754                    (tcp_win_from_space(skb->truesize) > skb->len ||
4755                     before(TCP_SKB_CB(skb)->seq, start))) {
4756                        end_of_skbs = false;
4757                        break;
4758                }
4759
4760                if (!skb_queue_is_last(list, skb)) {
4761                        struct sk_buff *next = skb_queue_next(list, skb);
4762                        if (next != tail &&
4763                            TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764                                end_of_skbs = false;
4765                                break;
4766                        }
4767                }
4768
4769                /* Decided to skip this, advance start seq. */
4770                start = TCP_SKB_CB(skb)->end_seq;
4771        }
4772        if (end_of_skbs ||
4773            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774                return;
4775
4776        while (before(start, end)) {
4777                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778                struct sk_buff *nskb;
4779
4780                nskb = alloc_skb(copy, GFP_ATOMIC);
4781                if (!nskb)
4782                        return;
4783
4784                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786                __skb_queue_before(list, skb, nskb);
4787                skb_set_owner_r(nskb, sk);
4788
4789                /* Copy data, releasing collapsed skbs. */
4790                while (copy > 0) {
4791                        int offset = start - TCP_SKB_CB(skb)->seq;
4792                        int size = TCP_SKB_CB(skb)->end_seq - start;
4793
4794                        BUG_ON(offset < 0);
4795                        if (size > 0) {
4796                                size = min(copy, size);
4797                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798                                        BUG();
4799                                TCP_SKB_CB(nskb)->end_seq += size;
4800                                copy -= size;
4801                                start += size;
4802                        }
4803                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804                                skb = tcp_collapse_one(sk, skb, list);
4805                                if (!skb ||
4806                                    skb == tail ||
4807                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4808                                        return;
4809                        }
4810                }
4811        }
4812}
4813
4814/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815 * and tcp_collapse() them until all the queue is collapsed.
4816 */
4817static void tcp_collapse_ofo_queue(struct sock *sk)
4818{
4819        struct tcp_sock *tp = tcp_sk(sk);
4820        struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821        struct sk_buff *head;
4822        u32 start, end;
4823
4824        if (!skb)
4825                return;
4826
4827        start = TCP_SKB_CB(skb)->seq;
4828        end = TCP_SKB_CB(skb)->end_seq;
4829        head = skb;
4830
4831        for (;;) {
4832                struct sk_buff *next = NULL;
4833
4834                if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835                        next = skb_queue_next(&tp->out_of_order_queue, skb);
4836                skb = next;
4837
4838                /* Segment is terminated when we see gap or when
4839                 * we are at the end of all the queue. */
4840                if (!skb ||
4841                    after(TCP_SKB_CB(skb)->seq, end) ||
4842                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4843                        tcp_collapse(sk, &tp->out_of_order_queue,
4844                                     head, skb, start, end);
4845                        head = skb;
4846                        if (!skb)
4847                                break;
4848                        /* Start new segment */
4849                        start = TCP_SKB_CB(skb)->seq;
4850                        end = TCP_SKB_CB(skb)->end_seq;
4851                } else {
4852                        if (before(TCP_SKB_CB(skb)->seq, start))
4853                                start = TCP_SKB_CB(skb)->seq;
4854                        if (after(TCP_SKB_CB(skb)->end_seq, end))
4855                                end = TCP_SKB_CB(skb)->end_seq;
4856                }
4857        }
4858}
4859
4860/*
4861 * Purge the out-of-order queue.
4862 * Return true if queue was pruned.
4863 */
4864static bool tcp_prune_ofo_queue(struct sock *sk)
4865{
4866        struct tcp_sock *tp = tcp_sk(sk);
4867        bool res = false;
4868
4869        if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871                __skb_queue_purge(&tp->out_of_order_queue);
4872
4873                /* Reset SACK state.  A conforming SACK implementation will
4874                 * do the same at a timeout based retransmit.  When a connection
4875                 * is in a sad state like this, we care only about integrity
4876                 * of the connection not performance.
4877                 */
4878                if (tp->rx_opt.sack_ok)
4879                        tcp_sack_reset(&tp->rx_opt);
4880                sk_mem_reclaim(sk);
4881                res = true;
4882        }
4883        return res;
4884}
4885
4886/* Reduce allocated memory if we can, trying to get
4887 * the socket within its memory limits again.
4888 *
4889 * Return less than zero if we should start dropping frames
4890 * until the socket owning process reads some of the data
4891 * to stabilize the situation.
4892 */
4893static int tcp_prune_queue(struct sock *sk)
4894{
4895        struct tcp_sock *tp = tcp_sk(sk);
4896
4897        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4898
4899        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4900
4901        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902                tcp_clamp_window(sk);
4903        else if (tcp_under_memory_pressure(sk))
4904                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4905
4906        tcp_collapse_ofo_queue(sk);
4907        if (!skb_queue_empty(&sk->sk_receive_queue))
4908                tcp_collapse(sk, &sk->sk_receive_queue,
4909                             skb_peek(&sk->sk_receive_queue),
4910                             NULL,
4911                             tp->copied_seq, tp->rcv_nxt);
4912        sk_mem_reclaim(sk);
4913
4914        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915                return 0;
4916
4917        /* Collapsing did not help, destructive actions follow.
4918         * This must not ever occur. */
4919
4920        tcp_prune_ofo_queue(sk);
4921
4922        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923                return 0;
4924
4925        /* If we are really being abused, tell the caller to silently
4926         * drop receive data on the floor.  It will get retransmitted
4927         * and hopefully then we'll have sufficient space.
4928         */
4929        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4930
4931        /* Massive buffer overcommit. */
4932        tp->pred_flags = 0;
4933        return -1;
4934}
4935
4936static bool tcp_should_expand_sndbuf(const struct sock *sk)
4937{
4938        const struct tcp_sock *tp = tcp_sk(sk);
4939
4940        /* If the user specified a specific send buffer setting, do
4941         * not modify it.
4942         */
4943        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944                return false;
4945
4946        /* If we are under global TCP memory pressure, do not expand.  */
4947        if (tcp_under_memory_pressure(sk))
4948                return false;
4949
4950        /* If we are under soft global TCP memory pressure, do not expand.  */
4951        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952                return false;
4953
4954        /* If we filled the congestion window, do not expand.  */
4955        if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956                return false;
4957
4958        return true;
4959}
4960
4961/* When incoming ACK allowed to free some skb from write_queue,
4962 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963 * on the exit from tcp input handler.
4964 *
4965 * PROBLEM: sndbuf expansion does not work well with largesend.
4966 */
4967static void tcp_new_space(struct sock *sk)
4968{
4969        struct tcp_sock *tp = tcp_sk(sk);
4970
4971        if (tcp_should_expand_sndbuf(sk)) {
4972                tcp_sndbuf_expand(sk);
4973                tp->snd_cwnd_stamp = tcp_time_stamp;
4974        }
4975
4976        sk->sk_write_space(sk);
4977}
4978
4979static void tcp_check_space(struct sock *sk)
4980{
4981        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983                /* pairs with tcp_poll() */
4984                smp_mb__after_atomic();
4985                if (sk->sk_socket &&
4986                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987                        tcp_new_space(sk);
4988        }
4989}
4990
4991static inline void tcp_data_snd_check(struct sock *sk)
4992{
4993        tcp_push_pending_frames(sk);
4994        tcp_check_space(sk);
4995}
4996
4997/*
4998 * Check if sending an ack is needed.
4999 */
5000static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5001{
5002        struct tcp_sock *tp = tcp_sk(sk);
5003
5004            /* More than one full frame received... */
5005        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006             /* ... and right edge of window advances far enough.
5007              * (tcp_recvmsg() will send ACK otherwise). Or...
5008              */
5009             __tcp_select_window(sk) >= tp->rcv_wnd) ||
5010            /* We ACK each frame or... */
5011            tcp_in_quickack_mode(sk) ||
5012            /* We have out of order data. */
5013            (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014                /* Then ack it now */
5015                tcp_send_ack(sk);
5016        } else {
5017                /* Else, send delayed ack. */
5018                tcp_send_delayed_ack(sk);
5019        }
5020}
5021
5022static inline void tcp_ack_snd_check(struct sock *sk)
5023{
5024        if (!inet_csk_ack_scheduled(sk)) {
5025                /* We sent a data segment already. */
5026                return;
5027        }
5028        __tcp_ack_snd_check(sk, 1);
5029}
5030
5031/*
5032 *      This routine is only called when we have urgent data
5033 *      signaled. Its the 'slow' part of tcp_urg. It could be
5034 *      moved inline now as tcp_urg is only called from one
5035 *      place. We handle URGent data wrong. We have to - as
5036 *      BSD still doesn't use the correction from RFC961.
5037 *      For 1003.1g we should support a new option TCP_STDURG to permit
5038 *      either form (or just set the sysctl tcp_stdurg).
5039 */
5040
5041static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5042{
5043        struct tcp_sock *tp = tcp_sk(sk);
5044        u32 ptr = ntohs(th->urg_ptr);
5045
5046        if (ptr && !sysctl_tcp_stdurg)
5047                ptr--;
5048        ptr += ntohl(th->seq);
5049
5050        /* Ignore urgent data that we've already seen and read. */
5051        if (after(tp->copied_seq, ptr))
5052                return;
5053
5054        /* Do not replay urg ptr.
5055         *
5056         * NOTE: interesting situation not covered by specs.
5057         * Misbehaving sender may send urg ptr, pointing to segment,
5058         * which we already have in ofo queue. We are not able to fetch
5059         * such data and will stay in TCP_URG_NOTYET until will be eaten
5060         * by recvmsg(). Seems, we are not obliged to handle such wicked
5061         * situations. But it is worth to think about possibility of some
5062         * DoSes using some hypothetical application level deadlock.
5063         */
5064        if (before(ptr, tp->rcv_nxt))
5065                return;
5066
5067        /* Do we already have a newer (or duplicate) urgent pointer? */
5068        if (tp->urg_data && !after(ptr, tp->urg_seq))
5069                return;
5070
5071        /* Tell the world about our new urgent pointer. */
5072        sk_send_sigurg(sk);
5073
5074        /* We may be adding urgent data when the last byte read was
5075         * urgent. To do this requires some care. We cannot just ignore
5076         * tp->copied_seq since we would read the last urgent byte again
5077         * as data, nor can we alter copied_seq until this data arrives
5078         * or we break the semantics of SIOCATMARK (and thus sockatmark())
5079         *
5080         * NOTE. Double Dutch. Rendering to plain English: author of comment
5081         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5082         * and expect that both A and B disappear from stream. This is _wrong_.
5083         * Though this happens in BSD with high probability, this is occasional.
5084         * Any application relying on this is buggy. Note also, that fix "works"
5085         * only in this artificial test. Insert some normal data between A and B and we will
5086         * decline of BSD again. Verdict: it is better to remove to trap
5087         * buggy users.
5088         */
5089        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092                tp->copied_seq++;
5093                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094                        __skb_unlink(skb, &sk->sk_receive_queue);
5095                        __kfree_skb(skb);
5096                }
5097        }
5098
5099        tp->urg_data = TCP_URG_NOTYET;
5100        tp->urg_seq = ptr;
5101
5102        /* Disable header prediction. */
5103        tp->pred_flags = 0;
5104}
5105
5106/* This is the 'fast' part of urgent handling. */
5107static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5108{
5109        struct tcp_sock *tp = tcp_sk(sk);
5110
5111        /* Check if we get a new urgent pointer - normally not. */
5112        if (th->urg)
5113                tcp_check_urg(sk, th);
5114
5115        /* Do we wait for any urgent data? - normally not... */
5116        if (tp->urg_data == TCP_URG_NOTYET) {
5117                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118                          th->syn;
5119
5120                /* Is the urgent pointer pointing into this packet? */
5121                if (ptr < skb->len) {
5122                        u8 tmp;
5123                        if (skb_copy_bits(skb, ptr, &tmp, 1))
5124                                BUG();
5125                        tp->urg_data = TCP_URG_VALID | tmp;
5126                        if (!sock_flag(sk, SOCK_DEAD))
5127                                sk->sk_data_ready(sk);
5128                }
5129        }
5130}
5131
5132static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5133{
5134        struct tcp_sock *tp = tcp_sk(sk);
5135        int chunk = skb->len - hlen;
5136        int err;
5137
5138        local_bh_enable();
5139        if (skb_csum_unnecessary(skb))
5140                err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141        else
5142                err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5143
5144        if (!err) {
5145                tp->ucopy.len -= chunk;
5146                tp->copied_seq += chunk;
5147                tcp_rcv_space_adjust(sk);
5148        }
5149
5150        local_bh_disable();
5151        return err;
5152}
5153
5154static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155                                            struct sk_buff *skb)
5156{
5157        __sum16 result;
5158
5159        if (sock_owned_by_user(sk)) {
5160                local_bh_enable();
5161                result = __tcp_checksum_complete(skb);
5162                local_bh_disable();
5163        } else {
5164                result = __tcp_checksum_complete(skb);
5165        }
5166        return result;
5167}
5168
5169static inline bool tcp_checksum_complete_user(struct sock *sk,
5170                                             struct sk_buff *skb)
5171{
5172        return !skb_csum_unnecessary(skb) &&
5173               __tcp_checksum_complete_user(sk, skb);
5174}
5175
5176/* Does PAWS and seqno based validation of an incoming segment, flags will
5177 * play significant role here.
5178 */
5179static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180                                  const struct tcphdr *th, int syn_inerr)
5181{
5182        struct tcp_sock *tp = tcp_sk(sk);
5183
5184        /* RFC1323: H1. Apply PAWS check first. */
5185        if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5186            tcp_paws_discard(sk, skb)) {
5187                if (!th->rst) {
5188                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5189                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190                                                  LINUX_MIB_TCPACKSKIPPEDPAWS,
5191                                                  &tp->last_oow_ack_time))
5192                                tcp_send_dupack(sk, skb);
5193                        goto discard;
5194                }
5195                /* Reset is accepted even if it did not pass PAWS. */
5196        }
5197
5198        /* Step 1: check sequence number */
5199        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5200                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5201                 * (RST) segments are validated by checking their SEQ-fields."
5202                 * And page 69: "If an incoming segment is not acceptable,
5203                 * an acknowledgment should be sent in reply (unless the RST
5204                 * bit is set, if so drop the segment and return)".
5205                 */
5206                if (!th->rst) {
5207                        if (th->syn)
5208                                goto syn_challenge;
5209                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210                                                  LINUX_MIB_TCPACKSKIPPEDSEQ,
5211                                                  &tp->last_oow_ack_time))
5212                                tcp_send_dupack(sk, skb);
5213                }
5214                goto discard;
5215        }
5216
5217        /* Step 2: check RST bit */
5218        if (th->rst) {
5219                /* RFC 5961 3.2 :
5220                 * If sequence number exactly matches RCV.NXT, then
5221                 *     RESET the connection
5222                 * else
5223                 *     Send a challenge ACK
5224                 */
5225                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5226                        tcp_reset(sk);
5227                else
5228                        tcp_send_challenge_ack(sk, skb);
5229                goto discard;
5230        }
5231
5232        /* step 3: check security and precedence [ignored] */
5233
5234        /* step 4: Check for a SYN
5235         * RFC 5961 4.2 : Send a challenge ack
5236         */
5237        if (th->syn) {
5238syn_challenge:
5239                if (syn_inerr)
5240                        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242                tcp_send_challenge_ack(sk, skb);
5243                goto discard;
5244        }
5245
5246        return true;
5247
5248discard:
5249        __kfree_skb(skb);
5250        return false;
5251}
5252
5253/*
5254 *      TCP receive function for the ESTABLISHED state.
5255 *
5256 *      It is split into a fast path and a slow path. The fast path is
5257 *      disabled when:
5258 *      - A zero window was announced from us - zero window probing
5259 *        is only handled properly in the slow path.
5260 *      - Out of order segments arrived.
5261 *      - Urgent data is expected.
5262 *      - There is no buffer space left
5263 *      - Unexpected TCP flags/window values/header lengths are received
5264 *        (detected by checking the TCP header against pred_flags)
5265 *      - Data is sent in both directions. Fast path only supports pure senders
5266 *        or pure receivers (this means either the sequence number or the ack
5267 *        value must stay constant)
5268 *      - Unexpected TCP option.
5269 *
5270 *      When these conditions are not satisfied it drops into a standard
5271 *      receive procedure patterned after RFC793 to handle all cases.
5272 *      The first three cases are guaranteed by proper pred_flags setting,
5273 *      the rest is checked inline. Fast processing is turned on in
5274 *      tcp_data_queue when everything is OK.
5275 */
5276void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277                         const struct tcphdr *th, unsigned int len)
5278{
5279        struct tcp_sock *tp = tcp_sk(sk);
5280
5281        if (unlikely(!sk->sk_rx_dst))
5282                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5283        /*
5284         *      Header prediction.
5285         *      The code loosely follows the one in the famous
5286         *      "30 instruction TCP receive" Van Jacobson mail.
5287         *
5288         *      Van's trick is to deposit buffers into socket queue
5289         *      on a device interrupt, to call tcp_recv function
5290         *      on the receive process context and checksum and copy
5291         *      the buffer to user space. smart...
5292         *
5293         *      Our current scheme is not silly either but we take the
5294         *      extra cost of the net_bh soft interrupt processing...
5295         *      We do checksum and copy also but from device to kernel.
5296         */
5297
5298        tp->rx_opt.saw_tstamp = 0;
5299
5300        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5301         *      if header_prediction is to be made
5302         *      'S' will always be tp->tcp_header_len >> 2
5303         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304         *  turn it off (when there are holes in the receive
5305         *       space for instance)
5306         *      PSH flag is ignored.
5307         */
5308
5309        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312                int tcp_header_len = tp->tcp_header_len;
5313
5314                /* Timestamp header prediction: tcp_header_len
5315                 * is automatically equal to th->doff*4 due to pred_flags
5316                 * match.
5317                 */
5318
5319                /* Check timestamp */
5320                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321                        /* No? Slow path! */
5322                        if (!tcp_parse_aligned_timestamp(tp, th))
5323                                goto slow_path;
5324
5325                        /* If PAWS failed, check it more carefully in slow path */
5326                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327                                goto slow_path;
5328
5329                        /* DO NOT update ts_recent here, if checksum fails
5330                         * and timestamp was corrupted part, it will result
5331                         * in a hung connection since we will drop all
5332                         * future packets due to the PAWS test.
5333                         */
5334                }
5335
5336                if (len <= tcp_header_len) {
5337                        /* Bulk data transfer: sender */
5338                        if (len == tcp_header_len) {
5339                                /* Predicted packet is in window by definition.
5340                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341                                 * Hence, check seq<=rcv_wup reduces to:
5342                                 */
5343                                if (tcp_header_len ==
5344                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345                                    tp->rcv_nxt == tp->rcv_wup)
5346                                        tcp_store_ts_recent(tp);
5347
5348                                /* We know that such packets are checksummed
5349                                 * on entry.
5350                                 */
5351                                tcp_ack(sk, skb, 0);
5352                                __kfree_skb(skb);
5353                                tcp_data_snd_check(sk);
5354                                return;
5355                        } else { /* Header too small */
5356                                TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357                                goto discard;
5358                        }
5359                } else {
5360                        int eaten = 0;
5361                        bool fragstolen = false;
5362
5363                        if (tp->ucopy.task == current &&
5364                            tp->copied_seq == tp->rcv_nxt &&
5365                            len - tcp_header_len <= tp->ucopy.len &&
5366                            sock_owned_by_user(sk)) {
5367                                __set_current_state(TASK_RUNNING);
5368
5369                                if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5370                                        /* Predicted packet is in window by definition.
5371                                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372                                         * Hence, check seq<=rcv_wup reduces to:
5373                                         */
5374                                        if (tcp_header_len ==
5375                                            (sizeof(struct tcphdr) +
5376                                             TCPOLEN_TSTAMP_ALIGNED) &&
5377                                            tp->rcv_nxt == tp->rcv_wup)
5378                                                tcp_store_ts_recent(tp);
5379
5380                                        tcp_rcv_rtt_measure_ts(sk, skb);
5381
5382                                        __skb_pull(skb, tcp_header_len);
5383                                        tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384                                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5385                                        eaten = 1;
5386                                }
5387                        }
5388                        if (!eaten) {
5389                                if (tcp_checksum_complete_user(sk, skb))
5390                                        goto csum_error;
5391
5392                                if ((int)skb->truesize > sk->sk_forward_alloc)
5393                                        goto step5;
5394
5395                                /* Predicted packet is in window by definition.
5396                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397                                 * Hence, check seq<=rcv_wup reduces to:
5398                                 */
5399                                if (tcp_header_len ==
5400                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401                                    tp->rcv_nxt == tp->rcv_wup)
5402                                        tcp_store_ts_recent(tp);
5403
5404                                tcp_rcv_rtt_measure_ts(sk, skb);
5405
5406                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5407
5408                                /* Bulk data transfer: receiver */
5409                                eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410                                                      &fragstolen);
5411                        }
5412
5413                        tcp_event_data_recv(sk, skb);
5414
5415                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416                                /* Well, only one small jumplet in fast path... */
5417                                tcp_ack(sk, skb, FLAG_DATA);
5418                                tcp_data_snd_check(sk);
5419                                if (!inet_csk_ack_scheduled(sk))
5420                                        goto no_ack;
5421                        }
5422
5423                        __tcp_ack_snd_check(sk, 0);
5424no_ack:
5425                        if (eaten)
5426                                kfree_skb_partial(skb, fragstolen);
5427                        sk->sk_data_ready(sk);
5428                        return;
5429                }
5430        }
5431
5432slow_path:
5433        if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434                goto csum_error;
5435
5436        if (!th->ack && !th->rst && !th->syn)
5437                goto discard;
5438
5439        /*
5440         *      Standard slow path.
5441         */
5442
5443        if (!tcp_validate_incoming(sk, skb, th, 1))
5444                return;
5445
5446step5:
5447        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448                goto discard;
5449
5450        tcp_rcv_rtt_measure_ts(sk, skb);
5451
5452        /* Process urgent data. */
5453        tcp_urg(sk, skb, th);
5454
5455        /* step 7: process the segment text */
5456        tcp_data_queue(sk, skb);
5457
5458        tcp_data_snd_check(sk);
5459        tcp_ack_snd_check(sk);
5460        return;
5461
5462csum_error:
5463        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5465
5466discard:
5467        __kfree_skb(skb);
5468}
5469EXPORT_SYMBOL(tcp_rcv_established);
5470
5471void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472{
5473        struct tcp_sock *tp = tcp_sk(sk);
5474        struct inet_connection_sock *icsk = inet_csk(sk);
5475
5476        tcp_set_state(sk, TCP_ESTABLISHED);
5477
5478        if (skb) {
5479                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480                security_inet_conn_established(sk, skb);
5481        }
5482
5483        /* Make sure socket is routed, for correct metrics.  */
5484        icsk->icsk_af_ops->rebuild_header(sk);
5485
5486        tcp_init_metrics(sk);
5487
5488        tcp_init_congestion_control(sk);
5489
5490        /* Prevent spurious tcp_cwnd_restart() on first data
5491         * packet.
5492         */
5493        tp->lsndtime = tcp_time_stamp;
5494
5495        tcp_init_buffer_space(sk);
5496
5497        if (sock_flag(sk, SOCK_KEEPOPEN))
5498                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5499
5500        if (!tp->rx_opt.snd_wscale)
5501                __tcp_fast_path_on(tp, tp->snd_wnd);
5502        else
5503                tp->pred_flags = 0;
5504
5505        if (!sock_flag(sk, SOCK_DEAD)) {
5506                sk->sk_state_change(sk);
5507                sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5508        }
5509}
5510
5511static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512                                    struct tcp_fastopen_cookie *cookie)
5513{
5514        struct tcp_sock *tp = tcp_sk(sk);
5515        struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516        u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517        bool syn_drop = false;
5518
5519        if (mss == tp->rx_opt.user_mss) {
5520                struct tcp_options_received opt;
5521
5522                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523                tcp_clear_options(&opt);
5524                opt.user_mss = opt.mss_clamp = 0;
5525                tcp_parse_options(synack, &opt, 0, NULL);
5526                mss = opt.mss_clamp;
5527        }
5528
5529        if (!tp->syn_fastopen) {
5530                /* Ignore an unsolicited cookie */
5531                cookie->len = -1;
5532        } else if (tp->total_retrans) {
5533                /* SYN timed out and the SYN-ACK neither has a cookie nor
5534                 * acknowledges data. Presumably the remote received only
5535                 * the retransmitted (regular) SYNs: either the original
5536                 * SYN-data or the corresponding SYN-ACK was dropped.
5537                 */
5538                syn_drop = (cookie->len < 0 && data);
5539        } else if (cookie->len < 0 && !tp->syn_data) {
5540                /* We requested a cookie but didn't get it. If we did not use
5541                 * the (old) exp opt format then try so next time (try_exp=1).
5542                 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5543                 */
5544                try_exp = tp->syn_fastopen_exp ? 2 : 1;
5545        }
5546
5547        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5548
5549        if (data) { /* Retransmit unacked data in SYN */
5550                tcp_for_write_queue_from(data, sk) {
5551                        if (data == tcp_send_head(sk) ||
5552                            __tcp_retransmit_skb(sk, data))
5553                                break;
5554                }
5555                tcp_rearm_rto(sk);
5556                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5557                return true;
5558        }
5559        tp->syn_data_acked = tp->syn_data;
5560        if (tp->syn_data_acked)
5561                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5562
5563        tcp_fastopen_add_skb(sk, synack);
5564
5565        return false;
5566}
5567
5568static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569                                         const struct tcphdr *th)
5570{
5571        struct inet_connection_sock *icsk = inet_csk(sk);
5572        struct tcp_sock *tp = tcp_sk(sk);
5573        struct tcp_fastopen_cookie foc = { .len = -1 };
5574        int saved_clamp = tp->rx_opt.mss_clamp;
5575
5576        tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5579
5580        if (th->ack) {
5581                /* rfc793:
5582                 * "If the state is SYN-SENT then
5583                 *    first check the ACK bit
5584                 *      If the ACK bit is set
5585                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586                 *        a reset (unless the RST bit is set, if so drop
5587                 *        the segment and return)"
5588                 */
5589                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5591                        goto reset_and_undo;
5592
5593                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595                             tcp_time_stamp)) {
5596                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5597                        goto reset_and_undo;
5598                }
5599
5600                /* Now ACK is acceptable.
5601                 *
5602                 * "If the RST bit is set
5603                 *    If the ACK was acceptable then signal the user "error:
5604                 *    connection reset", drop the segment, enter CLOSED state,
5605                 *    delete TCB, and return."
5606                 */
5607
5608                if (th->rst) {
5609                        tcp_reset(sk);
5610                        goto discard;
5611                }
5612
5613                /* rfc793:
5614                 *   "fifth, if neither of the SYN or RST bits is set then
5615                 *    drop the segment and return."
5616                 *
5617                 *    See note below!
5618                 *                                        --ANK(990513)
5619                 */
5620                if (!th->syn)
5621                        goto discard_and_undo;
5622
5623                /* rfc793:
5624                 *   "If the SYN bit is on ...
5625                 *    are acceptable then ...
5626                 *    (our SYN has been ACKed), change the connection
5627                 *    state to ESTABLISHED..."
5628                 */
5629
5630                tcp_ecn_rcv_synack(tp, th);
5631
5632                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633                tcp_ack(sk, skb, FLAG_SLOWPATH);
5634
5635                /* Ok.. it's good. Set up sequence numbers and
5636                 * move to established.
5637                 */
5638                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640
5641                /* RFC1323: The window in SYN & SYN/ACK segments is
5642                 * never scaled.
5643                 */
5644                tp->snd_wnd = ntohs(th->window);
5645
5646                if (!tp->rx_opt.wscale_ok) {
5647                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648                        tp->window_clamp = min(tp->window_clamp, 65535U);
5649                }
5650
5651                if (tp->rx_opt.saw_tstamp) {
5652                        tp->rx_opt.tstamp_ok       = 1;
5653                        tp->tcp_header_len =
5654                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5656                        tcp_store_ts_recent(tp);
5657                } else {
5658                        tp->tcp_header_len = sizeof(struct tcphdr);
5659                }
5660
5661                if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662                        tcp_enable_fack(tp);
5663
5664                tcp_mtup_init(sk);
5665                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666                tcp_initialize_rcv_mss(sk);
5667
5668                /* Remember, tcp_poll() does not lock socket!
5669                 * Change state from SYN-SENT only after copied_seq
5670                 * is initialized. */
5671                tp->copied_seq = tp->rcv_nxt;
5672
5673                smp_mb();
5674
5675                tcp_finish_connect(sk, skb);
5676
5677                if ((tp->syn_fastopen || tp->syn_data) &&
5678                    tcp_rcv_fastopen_synack(sk, skb, &foc))
5679                        return -1;
5680
5681                if (sk->sk_write_pending ||
5682                    icsk->icsk_accept_queue.rskq_defer_accept ||
5683                    icsk->icsk_ack.pingpong) {
5684                        /* Save one ACK. Data will be ready after
5685                         * several ticks, if write_pending is set.
5686                         *
5687                         * It may be deleted, but with this feature tcpdumps
5688                         * look so _wonderfully_ clever, that I was not able
5689                         * to stand against the temptation 8)     --ANK
5690                         */
5691                        inet_csk_schedule_ack(sk);
5692                        icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693                        tcp_enter_quickack_mode(sk);
5694                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5696
5697discard:
5698                        __kfree_skb(skb);
5699                        return 0;
5700                } else {
5701                        tcp_send_ack(sk);
5702                }
5703                return -1;
5704        }
5705
5706        /* No ACK in the segment */
5707
5708        if (th->rst) {
5709                /* rfc793:
5710                 * "If the RST bit is set
5711                 *
5712                 *      Otherwise (no ACK) drop the segment and return."
5713                 */
5714
5715                goto discard_and_undo;
5716        }
5717
5718        /* PAWS check. */
5719        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720            tcp_paws_reject(&tp->rx_opt, 0))
5721                goto discard_and_undo;
5722
5723        if (th->syn) {
5724                /* We see SYN without ACK. It is attempt of
5725                 * simultaneous connect with crossed SYNs.
5726                 * Particularly, it can be connect to self.
5727                 */
5728                tcp_set_state(sk, TCP_SYN_RECV);
5729
5730                if (tp->rx_opt.saw_tstamp) {
5731                        tp->rx_opt.tstamp_ok = 1;
5732                        tcp_store_ts_recent(tp);
5733                        tp->tcp_header_len =
5734                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735                } else {
5736                        tp->tcp_header_len = sizeof(struct tcphdr);
5737                }
5738
5739                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740                tp->copied_seq = tp->rcv_nxt;
5741                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742
5743                /* RFC1323: The window in SYN & SYN/ACK segments is
5744                 * never scaled.
5745                 */
5746                tp->snd_wnd    = ntohs(th->window);
5747                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748                tp->max_window = tp->snd_wnd;
5749
5750                tcp_ecn_rcv_syn(tp, th);
5751
5752                tcp_mtup_init(sk);
5753                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754                tcp_initialize_rcv_mss(sk);
5755
5756                tcp_send_synack(sk);
5757#if 0
5758                /* Note, we could accept data and URG from this segment.
5759                 * There are no obstacles to make this (except that we must
5760                 * either change tcp_recvmsg() to prevent it from returning data
5761                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5762                 *
5763                 * However, if we ignore data in ACKless segments sometimes,
5764                 * we have no reasons to accept it sometimes.
5765                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766                 * is not flawless. So, discard packet for sanity.
5767                 * Uncomment this return to process the data.
5768                 */
5769                return -1;
5770#else
5771                goto discard;
5772#endif
5773        }
5774        /* "fifth, if neither of the SYN or RST bits is set then
5775         * drop the segment and return."
5776         */
5777
5778discard_and_undo:
5779        tcp_clear_options(&tp->rx_opt);
5780        tp->rx_opt.mss_clamp = saved_clamp;
5781        goto discard;
5782
5783reset_and_undo:
5784        tcp_clear_options(&tp->rx_opt);
5785        tp->rx_opt.mss_clamp = saved_clamp;
5786        return 1;
5787}
5788
5789/*
5790 *      This function implements the receiving procedure of RFC 793 for
5791 *      all states except ESTABLISHED and TIME_WAIT.
5792 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793 *      address independent.
5794 */
5795
5796int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5797{
5798        struct tcp_sock *tp = tcp_sk(sk);
5799        struct inet_connection_sock *icsk = inet_csk(sk);
5800        const struct tcphdr *th = tcp_hdr(skb);
5801        struct request_sock *req;
5802        int queued = 0;
5803        bool acceptable;
5804
5805        tp->rx_opt.saw_tstamp = 0;
5806
5807        switch (sk->sk_state) {
5808        case TCP_CLOSE:
5809                goto discard;
5810
5811        case TCP_LISTEN:
5812                if (th->ack)
5813                        return 1;
5814
5815                if (th->rst)
5816                        goto discard;
5817
5818                if (th->syn) {
5819                        if (th->fin)
5820                                goto discard;
5821                        if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5822                                return 1;
5823
5824                        /* Now we have several options: In theory there is
5825                         * nothing else in the frame. KA9Q has an option to
5826                         * send data with the syn, BSD accepts data with the
5827                         * syn up to the [to be] advertised window and
5828                         * Solaris 2.1 gives you a protocol error. For now
5829                         * we just ignore it, that fits the spec precisely
5830                         * and avoids incompatibilities. It would be nice in
5831                         * future to drop through and process the data.
5832                         *
5833                         * Now that TTCP is starting to be used we ought to
5834                         * queue this data.
5835                         * But, this leaves one open to an easy denial of
5836                         * service attack, and SYN cookies can't defend
5837                         * against this problem. So, we drop the data
5838                         * in the interest of security over speed unless
5839                         * it's still in use.
5840                         */
5841                        kfree_skb(skb);
5842                        return 0;
5843                }
5844                goto discard;
5845
5846        case TCP_SYN_SENT:
5847                queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848                if (queued >= 0)
5849                        return queued;
5850
5851                /* Do step6 onward by hand. */
5852                tcp_urg(sk, skb, th);
5853                __kfree_skb(skb);
5854                tcp_data_snd_check(sk);
5855                return 0;
5856        }
5857
5858        req = tp->fastopen_rsk;
5859        if (req) {
5860                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861                    sk->sk_state != TCP_FIN_WAIT1);
5862
5863                if (!tcp_check_req(sk, skb, req, true))
5864                        goto discard;
5865        }
5866
5867        if (!th->ack && !th->rst && !th->syn)
5868                goto discard;
5869
5870        if (!tcp_validate_incoming(sk, skb, th, 0))
5871                return 0;
5872
5873        /* step 5: check the ACK field */
5874        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875                                      FLAG_UPDATE_TS_RECENT) > 0;
5876
5877        switch (sk->sk_state) {
5878        case TCP_SYN_RECV:
5879                if (!acceptable)
5880                        return 1;
5881
5882                if (!tp->srtt_us)
5883                        tcp_synack_rtt_meas(sk, req);
5884
5885                /* Once we leave TCP_SYN_RECV, we no longer need req
5886                 * so release it.
5887                 */
5888                if (req) {
5889                        tp->total_retrans = req->num_retrans;
5890                        reqsk_fastopen_remove(sk, req, false);
5891                } else {
5892                        /* Make sure socket is routed, for correct metrics. */
5893                        icsk->icsk_af_ops->rebuild_header(sk);
5894                        tcp_init_congestion_control(sk);
5895
5896                        tcp_mtup_init(sk);
5897                        tp->copied_seq = tp->rcv_nxt;
5898                        tcp_init_buffer_space(sk);
5899                }
5900                smp_mb();
5901                tcp_set_state(sk, TCP_ESTABLISHED);
5902                sk->sk_state_change(sk);
5903
5904                /* Note, that this wakeup is only for marginal crossed SYN case.
5905                 * Passively open sockets are not waked up, because
5906                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5907                 */
5908                if (sk->sk_socket)
5909                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5910
5911                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5914
5915                if (tp->rx_opt.tstamp_ok)
5916                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5917
5918                if (req) {
5919                        /* Re-arm the timer because data may have been sent out.
5920                         * This is similar to the regular data transmission case
5921                         * when new data has just been ack'ed.
5922                         *
5923                         * (TFO) - we could try to be more aggressive and
5924                         * retransmitting any data sooner based on when they
5925                         * are sent out.
5926                         */
5927                        tcp_rearm_rto(sk);
5928                } else
5929                        tcp_init_metrics(sk);
5930
5931                tcp_update_pacing_rate(sk);
5932
5933                /* Prevent spurious tcp_cwnd_restart() on first data packet */
5934                tp->lsndtime = tcp_time_stamp;
5935
5936                tcp_initialize_rcv_mss(sk);
5937                tcp_fast_path_on(tp);
5938                break;
5939
5940        case TCP_FIN_WAIT1: {
5941                struct dst_entry *dst;
5942                int tmo;
5943
5944                /* If we enter the TCP_FIN_WAIT1 state and we are a
5945                 * Fast Open socket and this is the first acceptable
5946                 * ACK we have received, this would have acknowledged
5947                 * our SYNACK so stop the SYNACK timer.
5948                 */
5949                if (req) {
5950                        /* Return RST if ack_seq is invalid.
5951                         * Note that RFC793 only says to generate a
5952                         * DUPACK for it but for TCP Fast Open it seems
5953                         * better to treat this case like TCP_SYN_RECV
5954                         * above.
5955                         */
5956                        if (!acceptable)
5957                                return 1;
5958                        /* We no longer need the request sock. */
5959                        reqsk_fastopen_remove(sk, req, false);
5960                        tcp_rearm_rto(sk);
5961                }
5962                if (tp->snd_una != tp->write_seq)
5963                        break;
5964
5965                tcp_set_state(sk, TCP_FIN_WAIT2);
5966                sk->sk_shutdown |= SEND_SHUTDOWN;
5967
5968                dst = __sk_dst_get(sk);
5969                if (dst)
5970                        dst_confirm(dst);
5971
5972                if (!sock_flag(sk, SOCK_DEAD)) {
5973                        /* Wake up lingering close() */
5974                        sk->sk_state_change(sk);
5975                        break;
5976                }
5977
5978                if (tp->linger2 < 0 ||
5979                    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980                     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5981                        tcp_done(sk);
5982                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983                        return 1;
5984                }
5985
5986                tmo = tcp_fin_time(sk);
5987                if (tmo > TCP_TIMEWAIT_LEN) {
5988                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989                } else if (th->fin || sock_owned_by_user(sk)) {
5990                        /* Bad case. We could lose such FIN otherwise.
5991                         * It is not a big problem, but it looks confusing
5992                         * and not so rare event. We still can lose it now,
5993                         * if it spins in bh_lock_sock(), but it is really
5994                         * marginal case.
5995                         */
5996                        inet_csk_reset_keepalive_timer(sk, tmo);
5997                } else {
5998                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999                        goto discard;
6000                }
6001                break;
6002        }
6003
6004        case TCP_CLOSING:
6005                if (tp->snd_una == tp->write_seq) {
6006                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007                        goto discard;
6008                }
6009                break;
6010
6011        case TCP_LAST_ACK:
6012                if (tp->snd_una == tp->write_seq) {
6013                        tcp_update_metrics(sk);
6014                        tcp_done(sk);
6015                        goto discard;
6016                }
6017                break;
6018        }
6019
6020        /* step 6: check the URG bit */
6021        tcp_urg(sk, skb, th);
6022
6023        /* step 7: process the segment text */
6024        switch (sk->sk_state) {
6025        case TCP_CLOSE_WAIT:
6026        case TCP_CLOSING:
6027        case TCP_LAST_ACK:
6028                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6029                        break;
6030        case TCP_FIN_WAIT1:
6031        case TCP_FIN_WAIT2:
6032                /* RFC 793 says to queue data in these states,
6033                 * RFC 1122 says we MUST send a reset.
6034                 * BSD 4.4 also does reset.
6035                 */
6036                if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040                                tcp_reset(sk);
6041                                return 1;
6042                        }
6043                }
6044                /* Fall through */
6045        case TCP_ESTABLISHED:
6046                tcp_data_queue(sk, skb);
6047                queued = 1;
6048                break;
6049        }
6050
6051        /* tcp_data could move socket to TIME-WAIT */
6052        if (sk->sk_state != TCP_CLOSE) {
6053                tcp_data_snd_check(sk);
6054                tcp_ack_snd_check(sk);
6055        }
6056
6057        if (!queued) {
6058discard:
6059                __kfree_skb(skb);
6060        }
6061        return 0;
6062}
6063EXPORT_SYMBOL(tcp_rcv_state_process);
6064
6065static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6066{
6067        struct inet_request_sock *ireq = inet_rsk(req);
6068
6069        if (family == AF_INET)
6070                net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071                                    &ireq->ir_rmt_addr, port);
6072#if IS_ENABLED(CONFIG_IPV6)
6073        else if (family == AF_INET6)
6074                net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075                                    &ireq->ir_v6_rmt_addr, port);
6076#endif
6077}
6078
6079/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080 *
6081 * If we receive a SYN packet with these bits set, it means a
6082 * network is playing bad games with TOS bits. In order to
6083 * avoid possible false congestion notifications, we disable
6084 * TCP ECN negotiation.
6085 *
6086 * Exception: tcp_ca wants ECN. This is required for DCTCP
6087 * congestion control: Linux DCTCP asserts ECT on all packets,
6088 * including SYN, which is most optimal solution; however,
6089 * others, such as FreeBSD do not.
6090 */
6091static void tcp_ecn_create_request(struct request_sock *req,
6092                                   const struct sk_buff *skb,
6093                                   const struct sock *listen_sk,
6094                                   const struct dst_entry *dst)
6095{
6096        const struct tcphdr *th = tcp_hdr(skb);
6097        const struct net *net = sock_net(listen_sk);
6098        bool th_ecn = th->ece && th->cwr;
6099        bool ect, ecn_ok;
6100        u32 ecn_ok_dst;
6101
6102        if (!th_ecn)
6103                return;
6104
6105        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106        ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107        ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6108
6109        if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110            (ecn_ok_dst & DST_FEATURE_ECN_CA))
6111                inet_rsk(req)->ecn_ok = 1;
6112}
6113
6114static void tcp_openreq_init(struct request_sock *req,
6115                             const struct tcp_options_received *rx_opt,
6116                             struct sk_buff *skb, const struct sock *sk)
6117{
6118        struct inet_request_sock *ireq = inet_rsk(req);
6119
6120        req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
6121        req->cookie_ts = 0;
6122        tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123        tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124        skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125        tcp_rsk(req)->last_oow_ack_time = 0;
6126        req->mss = rx_opt->mss_clamp;
6127        req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128        ireq->tstamp_ok = rx_opt->tstamp_ok;
6129        ireq->sack_ok = rx_opt->sack_ok;
6130        ireq->snd_wscale = rx_opt->snd_wscale;
6131        ireq->wscale_ok = rx_opt->wscale_ok;
6132        ireq->acked = 0;
6133        ireq->ecn_ok = 0;
6134        ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135        ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136        ireq->ir_mark = inet_request_mark(sk, skb);
6137}
6138
6139struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140                                      struct sock *sk_listener,
6141                                      bool attach_listener)
6142{
6143        struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144                                               attach_listener);
6145
6146        if (req) {
6147                struct inet_request_sock *ireq = inet_rsk(req);
6148
6149                kmemcheck_annotate_bitfield(ireq, flags);
6150                ireq->opt = NULL;
6151                atomic64_set(&ireq->ir_cookie, 0);
6152                ireq->ireq_state = TCP_NEW_SYN_RECV;
6153                write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154                ireq->ireq_family = sk_listener->sk_family;
6155        }
6156
6157        return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165                                 const struct sk_buff *skb,
6166                                 const char *proto)
6167{
6168        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169        const char *msg = "Dropping request";
6170        bool want_cookie = false;
6171        struct net *net = sock_net(sk);
6172
6173#ifdef CONFIG_SYN_COOKIES
6174        if (net->ipv4.sysctl_tcp_syncookies) {
6175                msg = "Sending cookies";
6176                want_cookie = true;
6177                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178        } else
6179#endif
6180                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182        if (!queue->synflood_warned &&
6183            net->ipv4.sysctl_tcp_syncookies != 2 &&
6184            xchg(&queue->synflood_warned, 1) == 0)
6185                pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186                        proto, ntohs(tcp_hdr(skb)->dest), msg);
6187
6188        return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192                                 struct request_sock *req,
6193                                 const struct sk_buff *skb)
6194{
6195        if (tcp_sk(sk)->save_syn) {
6196                u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197                u32 *copy;
6198
6199                copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200                if (copy) {
6201                        copy[0] = len;
6202                        memcpy(&copy[1], skb_network_header(skb), len);
6203                        req->saved_syn = copy;
6204                }
6205        }
6206}
6207
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209                     const struct tcp_request_sock_ops *af_ops,
6210                     struct sock *sk, struct sk_buff *skb)
6211{
6212        struct tcp_fastopen_cookie foc = { .len = -1 };
6213        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214        struct tcp_options_received tmp_opt;
6215        struct tcp_sock *tp = tcp_sk(sk);
6216        struct net *net = sock_net(sk);
6217        struct sock *fastopen_sk = NULL;
6218        struct dst_entry *dst = NULL;
6219        struct request_sock *req;
6220        bool want_cookie = false;
6221        struct flowi fl;
6222
6223        /* TW buckets are converted to open requests without
6224         * limitations, they conserve resources and peer is
6225         * evidently real one.
6226         */
6227        if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229                want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230                if (!want_cookie)
6231                        goto drop;
6232        }
6233
6234
6235        /* Accept backlog is full. If we have already queued enough
6236         * of warm entries in syn queue, drop request. It is better than
6237         * clogging syn queue with openreqs with exponentially increasing
6238         * timeout.
6239         */
6240        if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242                goto drop;
6243        }
6244
6245        req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246        if (!req)
6247                goto drop;
6248
6249        tcp_rsk(req)->af_specific = af_ops;
6250
6251        tcp_clear_options(&tmp_opt);
6252        tmp_opt.mss_clamp = af_ops->mss_clamp;
6253        tmp_opt.user_mss  = tp->rx_opt.user_mss;
6254        tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6255
6256        if (want_cookie && !tmp_opt.saw_tstamp)
6257                tcp_clear_options(&tmp_opt);
6258
6259        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260        tcp_openreq_init(req, &tmp_opt, skb, sk);
6261
6262        /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263        inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265        af_ops->init_req(req, sk, skb);
6266
6267        if (security_inet_conn_request(sk, skb, req))
6268                goto drop_and_free;
6269
6270        if (!want_cookie && !isn) {
6271                /* VJ's idea. We save last timestamp seen
6272                 * from the destination in peer table, when entering
6273                 * state TIME-WAIT, and check against it before
6274                 * accepting new connection request.
6275                 *
6276                 * If "isn" is not zero, this request hit alive
6277                 * timewait bucket, so that all the necessary checks
6278                 * are made in the function processing timewait state.
6279                 */
6280                if (tcp_death_row.sysctl_tw_recycle) {
6281                        bool strict;
6282
6283                        dst = af_ops->route_req(sk, &fl, req, &strict);
6284
6285                        if (dst && strict &&
6286                            !tcp_peer_is_proven(req, dst, true,
6287                                                tmp_opt.saw_tstamp)) {
6288                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289                                goto drop_and_release;
6290                        }
6291                }
6292                /* Kill the following clause, if you dislike this way. */
6293                else if (!net->ipv4.sysctl_tcp_syncookies &&
6294                         (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295                          (sysctl_max_syn_backlog >> 2)) &&
6296                         !tcp_peer_is_proven(req, dst, false,
6297                                             tmp_opt.saw_tstamp)) {
6298                        /* Without syncookies last quarter of
6299                         * backlog is filled with destinations,
6300                         * proven to be alive.
6301                         * It means that we continue to communicate
6302                         * to destinations, already remembered
6303                         * to the moment of synflood.
6304                         */
6305                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306                                    rsk_ops->family);
6307                        goto drop_and_release;
6308                }
6309
6310                isn = af_ops->init_seq(skb);
6311        }
6312        if (!dst) {
6313                dst = af_ops->route_req(sk, &fl, req, NULL);
6314                if (!dst)
6315                        goto drop_and_free;
6316        }
6317
6318        tcp_ecn_create_request(req, skb, sk, dst);
6319
6320        if (want_cookie) {
6321                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6322                req->cookie_ts = tmp_opt.tstamp_ok;
6323                if (!tmp_opt.tstamp_ok)
6324                        inet_rsk(req)->ecn_ok = 0;
6325        }
6326
6327        tcp_rsk(req)->snt_isn = isn;
6328        tcp_rsk(req)->txhash = net_tx_rndhash();
6329        tcp_openreq_init_rwin(req, sk, dst);
6330        if (!want_cookie) {
6331                tcp_reqsk_record_syn(sk, req, skb);
6332                fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6333        }
6334        if (fastopen_sk) {
6335                af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336                                    &foc, false);
6337                /* Add the child socket directly into the accept queue */
6338                inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6339                sk->sk_data_ready(sk);
6340                bh_unlock_sock(fastopen_sk);
6341                sock_put(fastopen_sk);
6342        } else {
6343                tcp_rsk(req)->tfo_listener = false;
6344                if (!want_cookie)
6345                        inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346                af_ops->send_synack(sk, dst, &fl, req,
6347                                    &foc, !want_cookie);
6348                if (want_cookie)
6349                        goto drop_and_free;
6350        }
6351        reqsk_put(req);
6352        return 0;
6353
6354drop_and_release:
6355        dst_release(dst);
6356drop_and_free:
6357        reqsk_free(req);
6358drop:
6359        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360        return 0;
6361}
6362EXPORT_SYMBOL(tcp_conn_request);
6363