linux/net/sched/sch_qfq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
   3 *
   4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
   5 * Copyright (c) 2012 Paolo Valente.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/bitops.h>
  15#include <linux/errno.h>
  16#include <linux/netdevice.h>
  17#include <linux/pkt_sched.h>
  18#include <net/sch_generic.h>
  19#include <net/pkt_sched.h>
  20#include <net/pkt_cls.h>
  21
  22
  23/*  Quick Fair Queueing Plus
  24    ========================
  25
  26    Sources:
  27
  28    [1] Paolo Valente,
  29    "Reducing the Execution Time of Fair-Queueing Schedulers."
  30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  31
  32    Sources for QFQ:
  33
  34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  36
  37    See also:
  38    http://retis.sssup.it/~fabio/linux/qfq/
  39 */
  40
  41/*
  42
  43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  44  classes. Each aggregate is timestamped with a virtual start time S
  45  and a virtual finish time F, and scheduled according to its
  46  timestamps. S and F are computed as a function of a system virtual
  47  time function V. The classes within each aggregate are instead
  48  scheduled with DRR.
  49
  50  To speed up operations, QFQ+ divides also aggregates into a limited
  51  number of groups. Which group a class belongs to depends on the
  52  ratio between the maximum packet length for the class and the weight
  53  of the class. Groups have their own S and F. In the end, QFQ+
  54  schedules groups, then aggregates within groups, then classes within
  55  aggregates. See [1] and [2] for a full description.
  56
  57  Virtual time computations.
  58
  59  S, F and V are all computed in fixed point arithmetic with
  60  FRAC_BITS decimal bits.
  61
  62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  63        one bit per index.
  64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  65
  66  The layout of the bits is as below:
  67
  68                   [ MTU_SHIFT ][      FRAC_BITS    ]
  69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
  70                                 ^.__grp->index = 0
  71                                 *.__grp->slot_shift
  72
  73  where MIN_SLOT_SHIFT is derived by difference from the others.
  74
  75  The max group index corresponds to Lmax/w_min, where
  76  Lmax=1<<MTU_SHIFT, w_min = 1 .
  77  From this, and knowing how many groups (MAX_INDEX) we want,
  78  we can derive the shift corresponding to each group.
  79
  80  Because we often need to compute
  81        F = S + len/w_i  and V = V + len/wsum
  82  instead of storing w_i store the value
  83        inv_w = (1<<FRAC_BITS)/w_i
  84  so we can do F = S + len * inv_w * wsum.
  85  We use W_TOT in the formulas so we can easily move between
  86  static and adaptive weight sum.
  87
  88  The per-scheduler-instance data contain all the data structures
  89  for the scheduler: bitmaps and bucket lists.
  90
  91 */
  92
  93/*
  94 * Maximum number of consecutive slots occupied by backlogged classes
  95 * inside a group.
  96 */
  97#define QFQ_MAX_SLOTS   32
  98
  99/*
 100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
 102 * group with the smallest index that can support the L_i / r_i configured
 103 * for the classes in the aggregate.
 104 *
 105 * grp->index is the index of the group; and grp->slot_shift
 106 * is the shift for the corresponding (scaled) sigma_i.
 107 */
 108#define QFQ_MAX_INDEX           24
 109#define QFQ_MAX_WSHIFT          10
 110
 111#define QFQ_MAX_WEIGHT          (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
 112#define QFQ_MAX_WSUM            (64*QFQ_MAX_WEIGHT)
 113
 114#define FRAC_BITS               30      /* fixed point arithmetic */
 115#define ONE_FP                  (1UL << FRAC_BITS)
 116
 117#define QFQ_MTU_SHIFT           16      /* to support TSO/GSO */
 118#define QFQ_MIN_LMAX            512     /* see qfq_slot_insert */
 119
 120#define QFQ_MAX_AGG_CLASSES     8 /* max num classes per aggregate allowed */
 121
 122/*
 123 * Possible group states.  These values are used as indexes for the bitmaps
 124 * array of struct qfq_queue.
 125 */
 126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
 127
 128struct qfq_group;
 129
 130struct qfq_aggregate;
 131
 132struct qfq_class {
 133        struct Qdisc_class_common common;
 134
 135        unsigned int refcnt;
 136        unsigned int filter_cnt;
 137
 138        struct gnet_stats_basic_packed bstats;
 139        struct gnet_stats_queue qstats;
 140        struct gnet_stats_rate_est64 rate_est;
 141        struct Qdisc *qdisc;
 142        struct list_head alist;         /* Link for active-classes list. */
 143        struct qfq_aggregate *agg;      /* Parent aggregate. */
 144        int deficit;                    /* DRR deficit counter. */
 145};
 146
 147struct qfq_aggregate {
 148        struct hlist_node next; /* Link for the slot list. */
 149        u64 S, F;               /* flow timestamps (exact) */
 150
 151        /* group we belong to. In principle we would need the index,
 152         * which is log_2(lmax/weight), but we never reference it
 153         * directly, only the group.
 154         */
 155        struct qfq_group *grp;
 156
 157        /* these are copied from the flowset. */
 158        u32     class_weight; /* Weight of each class in this aggregate. */
 159        /* Max pkt size for the classes in this aggregate, DRR quantum. */
 160        int     lmax;
 161
 162        u32     inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
 163        u32     budgetmax;  /* Max budget for this aggregate. */
 164        u32     initial_budget, budget;     /* Initial and current budget. */
 165
 166        int               num_classes;  /* Number of classes in this aggr. */
 167        struct list_head  active;       /* DRR queue of active classes. */
 168
 169        struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
 170};
 171
 172struct qfq_group {
 173        u64 S, F;                       /* group timestamps (approx). */
 174        unsigned int slot_shift;        /* Slot shift. */
 175        unsigned int index;             /* Group index. */
 176        unsigned int front;             /* Index of the front slot. */
 177        unsigned long full_slots;       /* non-empty slots */
 178
 179        /* Array of RR lists of active aggregates. */
 180        struct hlist_head slots[QFQ_MAX_SLOTS];
 181};
 182
 183struct qfq_sched {
 184        struct tcf_proto __rcu *filter_list;
 185        struct Qdisc_class_hash clhash;
 186
 187        u64                     oldV, V;        /* Precise virtual times. */
 188        struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
 189        u32                     wsum;           /* weight sum */
 190        u32                     iwsum;          /* inverse weight sum */
 191
 192        unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
 193        struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
 194        u32 min_slot_shift;     /* Index of the group-0 bit in the bitmaps. */
 195
 196        u32 max_agg_classes;            /* Max number of classes per aggr. */
 197        struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
 198};
 199
 200/*
 201 * Possible reasons why the timestamps of an aggregate are updated
 202 * enqueue: the aggregate switches from idle to active and must scheduled
 203 *          for service
 204 * requeue: the aggregate finishes its budget, so it stops being served and
 205 *          must be rescheduled for service
 206 */
 207enum update_reason {enqueue, requeue};
 208
 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
 210{
 211        struct qfq_sched *q = qdisc_priv(sch);
 212        struct Qdisc_class_common *clc;
 213
 214        clc = qdisc_class_find(&q->clhash, classid);
 215        if (clc == NULL)
 216                return NULL;
 217        return container_of(clc, struct qfq_class, common);
 218}
 219
 220static void qfq_purge_queue(struct qfq_class *cl)
 221{
 222        unsigned int len = cl->qdisc->q.qlen;
 223        unsigned int backlog = cl->qdisc->qstats.backlog;
 224
 225        qdisc_reset(cl->qdisc);
 226        qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
 227}
 228
 229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
 230        [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
 231        [TCA_QFQ_LMAX] = { .type = NLA_U32 },
 232};
 233
 234/*
 235 * Calculate a flow index, given its weight and maximum packet length.
 236 * index = log_2(maxlen/weight) but we need to apply the scaling.
 237 * This is used only once at flow creation.
 238 */
 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
 240{
 241        u64 slot_size = (u64)maxlen * inv_w;
 242        unsigned long size_map;
 243        int index = 0;
 244
 245        size_map = slot_size >> min_slot_shift;
 246        if (!size_map)
 247                goto out;
 248
 249        index = __fls(size_map) + 1;    /* basically a log_2 */
 250        index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
 251
 252        if (index < 0)
 253                index = 0;
 254out:
 255        pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
 256                 (unsigned long) ONE_FP/inv_w, maxlen, index);
 257
 258        return index;
 259}
 260
 261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
 262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
 263                             enum update_reason);
 264
 265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 266                         u32 lmax, u32 weight)
 267{
 268        INIT_LIST_HEAD(&agg->active);
 269        hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 270
 271        agg->lmax = lmax;
 272        agg->class_weight = weight;
 273}
 274
 275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
 276                                          u32 lmax, u32 weight)
 277{
 278        struct qfq_aggregate *agg;
 279
 280        hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
 281                if (agg->lmax == lmax && agg->class_weight == weight)
 282                        return agg;
 283
 284        return NULL;
 285}
 286
 287
 288/* Update aggregate as a function of the new number of classes. */
 289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 290                           int new_num_classes)
 291{
 292        u32 new_agg_weight;
 293
 294        if (new_num_classes == q->max_agg_classes)
 295                hlist_del_init(&agg->nonfull_next);
 296
 297        if (agg->num_classes > new_num_classes &&
 298            new_num_classes == q->max_agg_classes - 1) /* agg no more full */
 299                hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 300
 301        /* The next assignment may let
 302         * agg->initial_budget > agg->budgetmax
 303         * hold, we will take it into account in charge_actual_service().
 304         */
 305        agg->budgetmax = new_num_classes * agg->lmax;
 306        new_agg_weight = agg->class_weight * new_num_classes;
 307        agg->inv_w = ONE_FP/new_agg_weight;
 308
 309        if (agg->grp == NULL) {
 310                int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
 311                                       q->min_slot_shift);
 312                agg->grp = &q->groups[i];
 313        }
 314
 315        q->wsum +=
 316                (int) agg->class_weight * (new_num_classes - agg->num_classes);
 317        q->iwsum = ONE_FP / q->wsum;
 318
 319        agg->num_classes = new_num_classes;
 320}
 321
 322/* Add class to aggregate. */
 323static void qfq_add_to_agg(struct qfq_sched *q,
 324                           struct qfq_aggregate *agg,
 325                           struct qfq_class *cl)
 326{
 327        cl->agg = agg;
 328
 329        qfq_update_agg(q, agg, agg->num_classes+1);
 330        if (cl->qdisc->q.qlen > 0) { /* adding an active class */
 331                list_add_tail(&cl->alist, &agg->active);
 332                if (list_first_entry(&agg->active, struct qfq_class, alist) ==
 333                    cl && q->in_serv_agg != agg) /* agg was inactive */
 334                        qfq_activate_agg(q, agg, enqueue); /* schedule agg */
 335        }
 336}
 337
 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
 339
 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
 341{
 342        hlist_del_init(&agg->nonfull_next);
 343        q->wsum -= agg->class_weight;
 344        if (q->wsum != 0)
 345                q->iwsum = ONE_FP / q->wsum;
 346
 347        if (q->in_serv_agg == agg)
 348                q->in_serv_agg = qfq_choose_next_agg(q);
 349        kfree(agg);
 350}
 351
 352/* Deschedule class from within its parent aggregate. */
 353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
 354{
 355        struct qfq_aggregate *agg = cl->agg;
 356
 357
 358        list_del(&cl->alist); /* remove from RR queue of the aggregate */
 359        if (list_empty(&agg->active)) /* agg is now inactive */
 360                qfq_deactivate_agg(q, agg);
 361}
 362
 363/* Remove class from its parent aggregate. */
 364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 365{
 366        struct qfq_aggregate *agg = cl->agg;
 367
 368        cl->agg = NULL;
 369        if (agg->num_classes == 1) { /* agg being emptied, destroy it */
 370                qfq_destroy_agg(q, agg);
 371                return;
 372        }
 373        qfq_update_agg(q, agg, agg->num_classes-1);
 374}
 375
 376/* Deschedule class and remove it from its parent aggregate. */
 377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 378{
 379        if (cl->qdisc->q.qlen > 0) /* class is active */
 380                qfq_deactivate_class(q, cl);
 381
 382        qfq_rm_from_agg(q, cl);
 383}
 384
 385/* Move class to a new aggregate, matching the new class weight and/or lmax */
 386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
 387                           u32 lmax)
 388{
 389        struct qfq_sched *q = qdisc_priv(sch);
 390        struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
 391
 392        if (new_agg == NULL) { /* create new aggregate */
 393                new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
 394                if (new_agg == NULL)
 395                        return -ENOBUFS;
 396                qfq_init_agg(q, new_agg, lmax, weight);
 397        }
 398        qfq_deact_rm_from_agg(q, cl);
 399        qfq_add_to_agg(q, new_agg, cl);
 400
 401        return 0;
 402}
 403
 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 405                            struct nlattr **tca, unsigned long *arg)
 406{
 407        struct qfq_sched *q = qdisc_priv(sch);
 408        struct qfq_class *cl = (struct qfq_class *)*arg;
 409        bool existing = false;
 410        struct nlattr *tb[TCA_QFQ_MAX + 1];
 411        struct qfq_aggregate *new_agg = NULL;
 412        u32 weight, lmax, inv_w;
 413        int err;
 414        int delta_w;
 415
 416        if (tca[TCA_OPTIONS] == NULL) {
 417                pr_notice("qfq: no options\n");
 418                return -EINVAL;
 419        }
 420
 421        err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
 422        if (err < 0)
 423                return err;
 424
 425        if (tb[TCA_QFQ_WEIGHT]) {
 426                weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
 427                if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
 428                        pr_notice("qfq: invalid weight %u\n", weight);
 429                        return -EINVAL;
 430                }
 431        } else
 432                weight = 1;
 433
 434        if (tb[TCA_QFQ_LMAX]) {
 435                lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
 436                if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
 437                        pr_notice("qfq: invalid max length %u\n", lmax);
 438                        return -EINVAL;
 439                }
 440        } else
 441                lmax = psched_mtu(qdisc_dev(sch));
 442
 443        inv_w = ONE_FP / weight;
 444        weight = ONE_FP / inv_w;
 445
 446        if (cl != NULL &&
 447            lmax == cl->agg->lmax &&
 448            weight == cl->agg->class_weight)
 449                return 0; /* nothing to change */
 450
 451        delta_w = weight - (cl ? cl->agg->class_weight : 0);
 452
 453        if (q->wsum + delta_w > QFQ_MAX_WSUM) {
 454                pr_notice("qfq: total weight out of range (%d + %u)\n",
 455                          delta_w, q->wsum);
 456                return -EINVAL;
 457        }
 458
 459        if (cl != NULL) { /* modify existing class */
 460                if (tca[TCA_RATE]) {
 461                        err = gen_replace_estimator(&cl->bstats, NULL,
 462                                                    &cl->rate_est,
 463                                                    qdisc_root_sleeping_lock(sch),
 464                                                    tca[TCA_RATE]);
 465                        if (err)
 466                                return err;
 467                }
 468                existing = true;
 469                goto set_change_agg;
 470        }
 471
 472        /* create and init new class */
 473        cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
 474        if (cl == NULL)
 475                return -ENOBUFS;
 476
 477        cl->refcnt = 1;
 478        cl->common.classid = classid;
 479        cl->deficit = lmax;
 480
 481        cl->qdisc = qdisc_create_dflt(sch->dev_queue,
 482                                      &pfifo_qdisc_ops, classid);
 483        if (cl->qdisc == NULL)
 484                cl->qdisc = &noop_qdisc;
 485
 486        if (tca[TCA_RATE]) {
 487                err = gen_new_estimator(&cl->bstats, NULL,
 488                                        &cl->rate_est,
 489                                        qdisc_root_sleeping_lock(sch),
 490                                        tca[TCA_RATE]);
 491                if (err)
 492                        goto destroy_class;
 493        }
 494
 495        sch_tree_lock(sch);
 496        qdisc_class_hash_insert(&q->clhash, &cl->common);
 497        sch_tree_unlock(sch);
 498
 499        qdisc_class_hash_grow(sch, &q->clhash);
 500
 501set_change_agg:
 502        sch_tree_lock(sch);
 503        new_agg = qfq_find_agg(q, lmax, weight);
 504        if (new_agg == NULL) { /* create new aggregate */
 505                sch_tree_unlock(sch);
 506                new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
 507                if (new_agg == NULL) {
 508                        err = -ENOBUFS;
 509                        gen_kill_estimator(&cl->bstats, &cl->rate_est);
 510                        goto destroy_class;
 511                }
 512                sch_tree_lock(sch);
 513                qfq_init_agg(q, new_agg, lmax, weight);
 514        }
 515        if (existing)
 516                qfq_deact_rm_from_agg(q, cl);
 517        qfq_add_to_agg(q, new_agg, cl);
 518        sch_tree_unlock(sch);
 519
 520        *arg = (unsigned long)cl;
 521        return 0;
 522
 523destroy_class:
 524        qdisc_destroy(cl->qdisc);
 525        kfree(cl);
 526        return err;
 527}
 528
 529static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
 530{
 531        struct qfq_sched *q = qdisc_priv(sch);
 532
 533        qfq_rm_from_agg(q, cl);
 534        gen_kill_estimator(&cl->bstats, &cl->rate_est);
 535        qdisc_destroy(cl->qdisc);
 536        kfree(cl);
 537}
 538
 539static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
 540{
 541        struct qfq_sched *q = qdisc_priv(sch);
 542        struct qfq_class *cl = (struct qfq_class *)arg;
 543
 544        if (cl->filter_cnt > 0)
 545                return -EBUSY;
 546
 547        sch_tree_lock(sch);
 548
 549        qfq_purge_queue(cl);
 550        qdisc_class_hash_remove(&q->clhash, &cl->common);
 551
 552        BUG_ON(--cl->refcnt == 0);
 553        /*
 554         * This shouldn't happen: we "hold" one cops->get() when called
 555         * from tc_ctl_tclass; the destroy method is done from cops->put().
 556         */
 557
 558        sch_tree_unlock(sch);
 559        return 0;
 560}
 561
 562static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
 563{
 564        struct qfq_class *cl = qfq_find_class(sch, classid);
 565
 566        if (cl != NULL)
 567                cl->refcnt++;
 568
 569        return (unsigned long)cl;
 570}
 571
 572static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
 573{
 574        struct qfq_class *cl = (struct qfq_class *)arg;
 575
 576        if (--cl->refcnt == 0)
 577                qfq_destroy_class(sch, cl);
 578}
 579
 580static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
 581                                              unsigned long cl)
 582{
 583        struct qfq_sched *q = qdisc_priv(sch);
 584
 585        if (cl)
 586                return NULL;
 587
 588        return &q->filter_list;
 589}
 590
 591static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
 592                                  u32 classid)
 593{
 594        struct qfq_class *cl = qfq_find_class(sch, classid);
 595
 596        if (cl != NULL)
 597                cl->filter_cnt++;
 598
 599        return (unsigned long)cl;
 600}
 601
 602static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
 603{
 604        struct qfq_class *cl = (struct qfq_class *)arg;
 605
 606        cl->filter_cnt--;
 607}
 608
 609static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
 610                           struct Qdisc *new, struct Qdisc **old)
 611{
 612        struct qfq_class *cl = (struct qfq_class *)arg;
 613
 614        if (new == NULL) {
 615                new = qdisc_create_dflt(sch->dev_queue,
 616                                        &pfifo_qdisc_ops, cl->common.classid);
 617                if (new == NULL)
 618                        new = &noop_qdisc;
 619        }
 620
 621        *old = qdisc_replace(sch, new, &cl->qdisc);
 622        return 0;
 623}
 624
 625static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
 626{
 627        struct qfq_class *cl = (struct qfq_class *)arg;
 628
 629        return cl->qdisc;
 630}
 631
 632static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
 633                          struct sk_buff *skb, struct tcmsg *tcm)
 634{
 635        struct qfq_class *cl = (struct qfq_class *)arg;
 636        struct nlattr *nest;
 637
 638        tcm->tcm_parent = TC_H_ROOT;
 639        tcm->tcm_handle = cl->common.classid;
 640        tcm->tcm_info   = cl->qdisc->handle;
 641
 642        nest = nla_nest_start(skb, TCA_OPTIONS);
 643        if (nest == NULL)
 644                goto nla_put_failure;
 645        if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
 646            nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
 647                goto nla_put_failure;
 648        return nla_nest_end(skb, nest);
 649
 650nla_put_failure:
 651        nla_nest_cancel(skb, nest);
 652        return -EMSGSIZE;
 653}
 654
 655static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
 656                                struct gnet_dump *d)
 657{
 658        struct qfq_class *cl = (struct qfq_class *)arg;
 659        struct tc_qfq_stats xstats;
 660
 661        memset(&xstats, 0, sizeof(xstats));
 662
 663        xstats.weight = cl->agg->class_weight;
 664        xstats.lmax = cl->agg->lmax;
 665
 666        if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
 667            gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
 668            gnet_stats_copy_queue(d, NULL,
 669                                  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
 670                return -1;
 671
 672        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
 673}
 674
 675static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 676{
 677        struct qfq_sched *q = qdisc_priv(sch);
 678        struct qfq_class *cl;
 679        unsigned int i;
 680
 681        if (arg->stop)
 682                return;
 683
 684        for (i = 0; i < q->clhash.hashsize; i++) {
 685                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
 686                        if (arg->count < arg->skip) {
 687                                arg->count++;
 688                                continue;
 689                        }
 690                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
 691                                arg->stop = 1;
 692                                return;
 693                        }
 694                        arg->count++;
 695                }
 696        }
 697}
 698
 699static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
 700                                      int *qerr)
 701{
 702        struct qfq_sched *q = qdisc_priv(sch);
 703        struct qfq_class *cl;
 704        struct tcf_result res;
 705        struct tcf_proto *fl;
 706        int result;
 707
 708        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
 709                pr_debug("qfq_classify: found %d\n", skb->priority);
 710                cl = qfq_find_class(sch, skb->priority);
 711                if (cl != NULL)
 712                        return cl;
 713        }
 714
 715        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 716        fl = rcu_dereference_bh(q->filter_list);
 717        result = tc_classify(skb, fl, &res, false);
 718        if (result >= 0) {
 719#ifdef CONFIG_NET_CLS_ACT
 720                switch (result) {
 721                case TC_ACT_QUEUED:
 722                case TC_ACT_STOLEN:
 723                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 724                case TC_ACT_SHOT:
 725                        return NULL;
 726                }
 727#endif
 728                cl = (struct qfq_class *)res.class;
 729                if (cl == NULL)
 730                        cl = qfq_find_class(sch, res.classid);
 731                return cl;
 732        }
 733
 734        return NULL;
 735}
 736
 737/* Generic comparison function, handling wraparound. */
 738static inline int qfq_gt(u64 a, u64 b)
 739{
 740        return (s64)(a - b) > 0;
 741}
 742
 743/* Round a precise timestamp to its slotted value. */
 744static inline u64 qfq_round_down(u64 ts, unsigned int shift)
 745{
 746        return ts & ~((1ULL << shift) - 1);
 747}
 748
 749/* return the pointer to the group with lowest index in the bitmap */
 750static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
 751                                        unsigned long bitmap)
 752{
 753        int index = __ffs(bitmap);
 754        return &q->groups[index];
 755}
 756/* Calculate a mask to mimic what would be ffs_from(). */
 757static inline unsigned long mask_from(unsigned long bitmap, int from)
 758{
 759        return bitmap & ~((1UL << from) - 1);
 760}
 761
 762/*
 763 * The state computation relies on ER=0, IR=1, EB=2, IB=3
 764 * First compute eligibility comparing grp->S, q->V,
 765 * then check if someone is blocking us and possibly add EB
 766 */
 767static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
 768{
 769        /* if S > V we are not eligible */
 770        unsigned int state = qfq_gt(grp->S, q->V);
 771        unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
 772        struct qfq_group *next;
 773
 774        if (mask) {
 775                next = qfq_ffs(q, mask);
 776                if (qfq_gt(grp->F, next->F))
 777                        state |= EB;
 778        }
 779
 780        return state;
 781}
 782
 783
 784/*
 785 * In principle
 786 *      q->bitmaps[dst] |= q->bitmaps[src] & mask;
 787 *      q->bitmaps[src] &= ~mask;
 788 * but we should make sure that src != dst
 789 */
 790static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
 791                                   int src, int dst)
 792{
 793        q->bitmaps[dst] |= q->bitmaps[src] & mask;
 794        q->bitmaps[src] &= ~mask;
 795}
 796
 797static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
 798{
 799        unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
 800        struct qfq_group *next;
 801
 802        if (mask) {
 803                next = qfq_ffs(q, mask);
 804                if (!qfq_gt(next->F, old_F))
 805                        return;
 806        }
 807
 808        mask = (1UL << index) - 1;
 809        qfq_move_groups(q, mask, EB, ER);
 810        qfq_move_groups(q, mask, IB, IR);
 811}
 812
 813/*
 814 * perhaps
 815 *
 816        old_V ^= q->V;
 817        old_V >>= q->min_slot_shift;
 818        if (old_V) {
 819                ...
 820        }
 821 *
 822 */
 823static void qfq_make_eligible(struct qfq_sched *q)
 824{
 825        unsigned long vslot = q->V >> q->min_slot_shift;
 826        unsigned long old_vslot = q->oldV >> q->min_slot_shift;
 827
 828        if (vslot != old_vslot) {
 829                unsigned long mask;
 830                int last_flip_pos = fls(vslot ^ old_vslot);
 831
 832                if (last_flip_pos > 31) /* higher than the number of groups */
 833                        mask = ~0UL;    /* make all groups eligible */
 834                else
 835                        mask = (1UL << last_flip_pos) - 1;
 836
 837                qfq_move_groups(q, mask, IR, ER);
 838                qfq_move_groups(q, mask, IB, EB);
 839        }
 840}
 841
 842/*
 843 * The index of the slot in which the input aggregate agg is to be
 844 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
 845 * and not a '-1' because the start time of the group may be moved
 846 * backward by one slot after the aggregate has been inserted, and
 847 * this would cause non-empty slots to be right-shifted by one
 848 * position.
 849 *
 850 * QFQ+ fully satisfies this bound to the slot index if the parameters
 851 * of the classes are not changed dynamically, and if QFQ+ never
 852 * happens to postpone the service of agg unjustly, i.e., it never
 853 * happens that the aggregate becomes backlogged and eligible, or just
 854 * eligible, while an aggregate with a higher approximated finish time
 855 * is being served. In particular, in this case QFQ+ guarantees that
 856 * the timestamps of agg are low enough that the slot index is never
 857 * higher than 2. Unfortunately, QFQ+ cannot provide the same
 858 * guarantee if it happens to unjustly postpone the service of agg, or
 859 * if the parameters of some class are changed.
 860 *
 861 * As for the first event, i.e., an out-of-order service, the
 862 * upper bound to the slot index guaranteed by QFQ+ grows to
 863 * 2 +
 864 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
 865 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
 866 *
 867 * The following function deals with this problem by backward-shifting
 868 * the timestamps of agg, if needed, so as to guarantee that the slot
 869 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
 870 * cause the service of other aggregates to be postponed, yet the
 871 * worst-case guarantees of these aggregates are not violated.  In
 872 * fact, in case of no out-of-order service, the timestamps of agg
 873 * would have been even lower than they are after the backward shift,
 874 * because QFQ+ would have guaranteed a maximum value equal to 2 for
 875 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
 876 * service is postponed because of the backward-shift would have
 877 * however waited for the service of agg before being served.
 878 *
 879 * The other event that may cause the slot index to be higher than 2
 880 * for agg is a recent change of the parameters of some class. If the
 881 * weight of a class is increased or the lmax (max_pkt_size) of the
 882 * class is decreased, then a new aggregate with smaller slot size
 883 * than the original parent aggregate of the class may happen to be
 884 * activated. The activation of this aggregate should be properly
 885 * delayed to when the service of the class has finished in the ideal
 886 * system tracked by QFQ+. If the activation of the aggregate is not
 887 * delayed to this reference time instant, then this aggregate may be
 888 * unjustly served before other aggregates waiting for service. This
 889 * may cause the above bound to the slot index to be violated for some
 890 * of these unlucky aggregates.
 891 *
 892 * Instead of delaying the activation of the new aggregate, which is
 893 * quite complex, the above-discussed capping of the slot index is
 894 * used to handle also the consequences of a change of the parameters
 895 * of a class.
 896 */
 897static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
 898                            u64 roundedS)
 899{
 900        u64 slot = (roundedS - grp->S) >> grp->slot_shift;
 901        unsigned int i; /* slot index in the bucket list */
 902
 903        if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
 904                u64 deltaS = roundedS - grp->S -
 905                        ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
 906                agg->S -= deltaS;
 907                agg->F -= deltaS;
 908                slot = QFQ_MAX_SLOTS - 2;
 909        }
 910
 911        i = (grp->front + slot) % QFQ_MAX_SLOTS;
 912
 913        hlist_add_head(&agg->next, &grp->slots[i]);
 914        __set_bit(slot, &grp->full_slots);
 915}
 916
 917/* Maybe introduce hlist_first_entry?? */
 918static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
 919{
 920        return hlist_entry(grp->slots[grp->front].first,
 921                           struct qfq_aggregate, next);
 922}
 923
 924/*
 925 * remove the entry from the slot
 926 */
 927static void qfq_front_slot_remove(struct qfq_group *grp)
 928{
 929        struct qfq_aggregate *agg = qfq_slot_head(grp);
 930
 931        BUG_ON(!agg);
 932        hlist_del(&agg->next);
 933        if (hlist_empty(&grp->slots[grp->front]))
 934                __clear_bit(0, &grp->full_slots);
 935}
 936
 937/*
 938 * Returns the first aggregate in the first non-empty bucket of the
 939 * group. As a side effect, adjusts the bucket list so the first
 940 * non-empty bucket is at position 0 in full_slots.
 941 */
 942static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
 943{
 944        unsigned int i;
 945
 946        pr_debug("qfq slot_scan: grp %u full %#lx\n",
 947                 grp->index, grp->full_slots);
 948
 949        if (grp->full_slots == 0)
 950                return NULL;
 951
 952        i = __ffs(grp->full_slots);  /* zero based */
 953        if (i > 0) {
 954                grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
 955                grp->full_slots >>= i;
 956        }
 957
 958        return qfq_slot_head(grp);
 959}
 960
 961/*
 962 * adjust the bucket list. When the start time of a group decreases,
 963 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
 964 * move the objects. The mask of occupied slots must be shifted
 965 * because we use ffs() to find the first non-empty slot.
 966 * This covers decreases in the group's start time, but what about
 967 * increases of the start time ?
 968 * Here too we should make sure that i is less than 32
 969 */
 970static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
 971{
 972        unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
 973
 974        grp->full_slots <<= i;
 975        grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
 976}
 977
 978static void qfq_update_eligible(struct qfq_sched *q)
 979{
 980        struct qfq_group *grp;
 981        unsigned long ineligible;
 982
 983        ineligible = q->bitmaps[IR] | q->bitmaps[IB];
 984        if (ineligible) {
 985                if (!q->bitmaps[ER]) {
 986                        grp = qfq_ffs(q, ineligible);
 987                        if (qfq_gt(grp->S, q->V))
 988                                q->V = grp->S;
 989                }
 990                qfq_make_eligible(q);
 991        }
 992}
 993
 994/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
 995static void agg_dequeue(struct qfq_aggregate *agg,
 996                        struct qfq_class *cl, unsigned int len)
 997{
 998        qdisc_dequeue_peeked(cl->qdisc);
 999
1000        cl->deficit -= (int) len;
1001
1002        if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1003                list_del(&cl->alist);
1004        else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1005                cl->deficit += agg->lmax;
1006                list_move_tail(&cl->alist, &agg->active);
1007        }
1008}
1009
1010static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1011                                           struct qfq_class **cl,
1012                                           unsigned int *len)
1013{
1014        struct sk_buff *skb;
1015
1016        *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1017        skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1018        if (skb == NULL)
1019                WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1020        else
1021                *len = qdisc_pkt_len(skb);
1022
1023        return skb;
1024}
1025
1026/* Update F according to the actual service received by the aggregate. */
1027static inline void charge_actual_service(struct qfq_aggregate *agg)
1028{
1029        /* Compute the service received by the aggregate, taking into
1030         * account that, after decreasing the number of classes in
1031         * agg, it may happen that
1032         * agg->initial_budget - agg->budget > agg->bugdetmax
1033         */
1034        u32 service_received = min(agg->budgetmax,
1035                                   agg->initial_budget - agg->budget);
1036
1037        agg->F = agg->S + (u64)service_received * agg->inv_w;
1038}
1039
1040/* Assign a reasonable start time for a new aggregate in group i.
1041 * Admissible values for \hat(F) are multiples of \sigma_i
1042 * no greater than V+\sigma_i . Larger values mean that
1043 * we had a wraparound so we consider the timestamp to be stale.
1044 *
1045 * If F is not stale and F >= V then we set S = F.
1046 * Otherwise we should assign S = V, but this may violate
1047 * the ordering in EB (see [2]). So, if we have groups in ER,
1048 * set S to the F_j of the first group j which would be blocking us.
1049 * We are guaranteed not to move S backward because
1050 * otherwise our group i would still be blocked.
1051 */
1052static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1053{
1054        unsigned long mask;
1055        u64 limit, roundedF;
1056        int slot_shift = agg->grp->slot_shift;
1057
1058        roundedF = qfq_round_down(agg->F, slot_shift);
1059        limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1060
1061        if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1062                /* timestamp was stale */
1063                mask = mask_from(q->bitmaps[ER], agg->grp->index);
1064                if (mask) {
1065                        struct qfq_group *next = qfq_ffs(q, mask);
1066                        if (qfq_gt(roundedF, next->F)) {
1067                                if (qfq_gt(limit, next->F))
1068                                        agg->S = next->F;
1069                                else /* preserve timestamp correctness */
1070                                        agg->S = limit;
1071                                return;
1072                        }
1073                }
1074                agg->S = q->V;
1075        } else  /* timestamp is not stale */
1076                agg->S = agg->F;
1077}
1078
1079/* Update the timestamps of agg before scheduling/rescheduling it for
1080 * service.  In particular, assign to agg->F its maximum possible
1081 * value, i.e., the virtual finish time with which the aggregate
1082 * should be labeled if it used all its budget once in service.
1083 */
1084static inline void
1085qfq_update_agg_ts(struct qfq_sched *q,
1086                    struct qfq_aggregate *agg, enum update_reason reason)
1087{
1088        if (reason != requeue)
1089                qfq_update_start(q, agg);
1090        else /* just charge agg for the service received */
1091                agg->S = agg->F;
1092
1093        agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1094}
1095
1096static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1097
1098static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1099{
1100        struct qfq_sched *q = qdisc_priv(sch);
1101        struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1102        struct qfq_class *cl;
1103        struct sk_buff *skb = NULL;
1104        /* next-packet len, 0 means no more active classes in in-service agg */
1105        unsigned int len = 0;
1106
1107        if (in_serv_agg == NULL)
1108                return NULL;
1109
1110        if (!list_empty(&in_serv_agg->active))
1111                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1112
1113        /*
1114         * If there are no active classes in the in-service aggregate,
1115         * or if the aggregate has not enough budget to serve its next
1116         * class, then choose the next aggregate to serve.
1117         */
1118        if (len == 0 || in_serv_agg->budget < len) {
1119                charge_actual_service(in_serv_agg);
1120
1121                /* recharge the budget of the aggregate */
1122                in_serv_agg->initial_budget = in_serv_agg->budget =
1123                        in_serv_agg->budgetmax;
1124
1125                if (!list_empty(&in_serv_agg->active)) {
1126                        /*
1127                         * Still active: reschedule for
1128                         * service. Possible optimization: if no other
1129                         * aggregate is active, then there is no point
1130                         * in rescheduling this aggregate, and we can
1131                         * just keep it as the in-service one. This
1132                         * should be however a corner case, and to
1133                         * handle it, we would need to maintain an
1134                         * extra num_active_aggs field.
1135                        */
1136                        qfq_update_agg_ts(q, in_serv_agg, requeue);
1137                        qfq_schedule_agg(q, in_serv_agg);
1138                } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1139                        q->in_serv_agg = NULL;
1140                        return NULL;
1141                }
1142
1143                /*
1144                 * If we get here, there are other aggregates queued:
1145                 * choose the new aggregate to serve.
1146                 */
1147                in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1148                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1149        }
1150        if (!skb)
1151                return NULL;
1152
1153        sch->q.qlen--;
1154        qdisc_bstats_update(sch, skb);
1155
1156        agg_dequeue(in_serv_agg, cl, len);
1157        /* If lmax is lowered, through qfq_change_class, for a class
1158         * owning pending packets with larger size than the new value
1159         * of lmax, then the following condition may hold.
1160         */
1161        if (unlikely(in_serv_agg->budget < len))
1162                in_serv_agg->budget = 0;
1163        else
1164                in_serv_agg->budget -= len;
1165
1166        q->V += (u64)len * q->iwsum;
1167        pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1168                 len, (unsigned long long) in_serv_agg->F,
1169                 (unsigned long long) q->V);
1170
1171        return skb;
1172}
1173
1174static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1175{
1176        struct qfq_group *grp;
1177        struct qfq_aggregate *agg, *new_front_agg;
1178        u64 old_F;
1179
1180        qfq_update_eligible(q);
1181        q->oldV = q->V;
1182
1183        if (!q->bitmaps[ER])
1184                return NULL;
1185
1186        grp = qfq_ffs(q, q->bitmaps[ER]);
1187        old_F = grp->F;
1188
1189        agg = qfq_slot_head(grp);
1190
1191        /* agg starts to be served, remove it from schedule */
1192        qfq_front_slot_remove(grp);
1193
1194        new_front_agg = qfq_slot_scan(grp);
1195
1196        if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1197                __clear_bit(grp->index, &q->bitmaps[ER]);
1198        else {
1199                u64 roundedS = qfq_round_down(new_front_agg->S,
1200                                              grp->slot_shift);
1201                unsigned int s;
1202
1203                if (grp->S == roundedS)
1204                        return agg;
1205                grp->S = roundedS;
1206                grp->F = roundedS + (2ULL << grp->slot_shift);
1207                __clear_bit(grp->index, &q->bitmaps[ER]);
1208                s = qfq_calc_state(q, grp);
1209                __set_bit(grp->index, &q->bitmaps[s]);
1210        }
1211
1212        qfq_unblock_groups(q, grp->index, old_F);
1213
1214        return agg;
1215}
1216
1217static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1218{
1219        struct qfq_sched *q = qdisc_priv(sch);
1220        struct qfq_class *cl;
1221        struct qfq_aggregate *agg;
1222        int err = 0;
1223
1224        cl = qfq_classify(skb, sch, &err);
1225        if (cl == NULL) {
1226                if (err & __NET_XMIT_BYPASS)
1227                        qdisc_qstats_drop(sch);
1228                kfree_skb(skb);
1229                return err;
1230        }
1231        pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1232
1233        if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1234                pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1235                         cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1236                err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1237                                     qdisc_pkt_len(skb));
1238                if (err)
1239                        return err;
1240        }
1241
1242        err = qdisc_enqueue(skb, cl->qdisc);
1243        if (unlikely(err != NET_XMIT_SUCCESS)) {
1244                pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1245                if (net_xmit_drop_count(err)) {
1246                        cl->qstats.drops++;
1247                        qdisc_qstats_drop(sch);
1248                }
1249                return err;
1250        }
1251
1252        bstats_update(&cl->bstats, skb);
1253        ++sch->q.qlen;
1254
1255        agg = cl->agg;
1256        /* if the queue was not empty, then done here */
1257        if (cl->qdisc->q.qlen != 1) {
1258                if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1259                    list_first_entry(&agg->active, struct qfq_class, alist)
1260                    == cl && cl->deficit < qdisc_pkt_len(skb))
1261                        list_move_tail(&cl->alist, &agg->active);
1262
1263                return err;
1264        }
1265
1266        /* schedule class for service within the aggregate */
1267        cl->deficit = agg->lmax;
1268        list_add_tail(&cl->alist, &agg->active);
1269
1270        if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1271            q->in_serv_agg == agg)
1272                return err; /* non-empty or in service, nothing else to do */
1273
1274        qfq_activate_agg(q, agg, enqueue);
1275
1276        return err;
1277}
1278
1279/*
1280 * Schedule aggregate according to its timestamps.
1281 */
1282static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1283{
1284        struct qfq_group *grp = agg->grp;
1285        u64 roundedS;
1286        int s;
1287
1288        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1289
1290        /*
1291         * Insert agg in the correct bucket.
1292         * If agg->S >= grp->S we don't need to adjust the
1293         * bucket list and simply go to the insertion phase.
1294         * Otherwise grp->S is decreasing, we must make room
1295         * in the bucket list, and also recompute the group state.
1296         * Finally, if there were no flows in this group and nobody
1297         * was in ER make sure to adjust V.
1298         */
1299        if (grp->full_slots) {
1300                if (!qfq_gt(grp->S, agg->S))
1301                        goto skip_update;
1302
1303                /* create a slot for this agg->S */
1304                qfq_slot_rotate(grp, roundedS);
1305                /* group was surely ineligible, remove */
1306                __clear_bit(grp->index, &q->bitmaps[IR]);
1307                __clear_bit(grp->index, &q->bitmaps[IB]);
1308        } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1309                   q->in_serv_agg == NULL)
1310                q->V = roundedS;
1311
1312        grp->S = roundedS;
1313        grp->F = roundedS + (2ULL << grp->slot_shift);
1314        s = qfq_calc_state(q, grp);
1315        __set_bit(grp->index, &q->bitmaps[s]);
1316
1317        pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1318                 s, q->bitmaps[s],
1319                 (unsigned long long) agg->S,
1320                 (unsigned long long) agg->F,
1321                 (unsigned long long) q->V);
1322
1323skip_update:
1324        qfq_slot_insert(grp, agg, roundedS);
1325}
1326
1327
1328/* Update agg ts and schedule agg for service */
1329static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1330                             enum update_reason reason)
1331{
1332        agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1333
1334        qfq_update_agg_ts(q, agg, reason);
1335        if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1336                q->in_serv_agg = agg; /* start serving this aggregate */
1337                 /* update V: to be in service, agg must be eligible */
1338                q->oldV = q->V = agg->S;
1339        } else if (agg != q->in_serv_agg)
1340                qfq_schedule_agg(q, agg);
1341}
1342
1343static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1344                            struct qfq_aggregate *agg)
1345{
1346        unsigned int i, offset;
1347        u64 roundedS;
1348
1349        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1350        offset = (roundedS - grp->S) >> grp->slot_shift;
1351
1352        i = (grp->front + offset) % QFQ_MAX_SLOTS;
1353
1354        hlist_del(&agg->next);
1355        if (hlist_empty(&grp->slots[i]))
1356                __clear_bit(offset, &grp->full_slots);
1357}
1358
1359/*
1360 * Called to forcibly deschedule an aggregate.  If the aggregate is
1361 * not in the front bucket, or if the latter has other aggregates in
1362 * the front bucket, we can simply remove the aggregate with no other
1363 * side effects.
1364 * Otherwise we must propagate the event up.
1365 */
1366static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1367{
1368        struct qfq_group *grp = agg->grp;
1369        unsigned long mask;
1370        u64 roundedS;
1371        int s;
1372
1373        if (agg == q->in_serv_agg) {
1374                charge_actual_service(agg);
1375                q->in_serv_agg = qfq_choose_next_agg(q);
1376                return;
1377        }
1378
1379        agg->F = agg->S;
1380        qfq_slot_remove(q, grp, agg);
1381
1382        if (!grp->full_slots) {
1383                __clear_bit(grp->index, &q->bitmaps[IR]);
1384                __clear_bit(grp->index, &q->bitmaps[EB]);
1385                __clear_bit(grp->index, &q->bitmaps[IB]);
1386
1387                if (test_bit(grp->index, &q->bitmaps[ER]) &&
1388                    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1389                        mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1390                        if (mask)
1391                                mask = ~((1UL << __fls(mask)) - 1);
1392                        else
1393                                mask = ~0UL;
1394                        qfq_move_groups(q, mask, EB, ER);
1395                        qfq_move_groups(q, mask, IB, IR);
1396                }
1397                __clear_bit(grp->index, &q->bitmaps[ER]);
1398        } else if (hlist_empty(&grp->slots[grp->front])) {
1399                agg = qfq_slot_scan(grp);
1400                roundedS = qfq_round_down(agg->S, grp->slot_shift);
1401                if (grp->S != roundedS) {
1402                        __clear_bit(grp->index, &q->bitmaps[ER]);
1403                        __clear_bit(grp->index, &q->bitmaps[IR]);
1404                        __clear_bit(grp->index, &q->bitmaps[EB]);
1405                        __clear_bit(grp->index, &q->bitmaps[IB]);
1406                        grp->S = roundedS;
1407                        grp->F = roundedS + (2ULL << grp->slot_shift);
1408                        s = qfq_calc_state(q, grp);
1409                        __set_bit(grp->index, &q->bitmaps[s]);
1410                }
1411        }
1412}
1413
1414static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1415{
1416        struct qfq_sched *q = qdisc_priv(sch);
1417        struct qfq_class *cl = (struct qfq_class *)arg;
1418
1419        if (cl->qdisc->q.qlen == 0)
1420                qfq_deactivate_class(q, cl);
1421}
1422
1423static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1424                                       struct hlist_head *slot)
1425{
1426        struct qfq_aggregate *agg;
1427        struct qfq_class *cl;
1428        unsigned int len;
1429
1430        hlist_for_each_entry(agg, slot, next) {
1431                list_for_each_entry(cl, &agg->active, alist) {
1432
1433                        if (!cl->qdisc->ops->drop)
1434                                continue;
1435
1436                        len = cl->qdisc->ops->drop(cl->qdisc);
1437                        if (len > 0) {
1438                                if (cl->qdisc->q.qlen == 0)
1439                                        qfq_deactivate_class(q, cl);
1440
1441                                return len;
1442                        }
1443                }
1444        }
1445        return 0;
1446}
1447
1448static unsigned int qfq_drop(struct Qdisc *sch)
1449{
1450        struct qfq_sched *q = qdisc_priv(sch);
1451        struct qfq_group *grp;
1452        unsigned int i, j, len;
1453
1454        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1455                grp = &q->groups[i];
1456                for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1457                        len = qfq_drop_from_slot(q, &grp->slots[j]);
1458                        if (len > 0) {
1459                                sch->q.qlen--;
1460                                return len;
1461                        }
1462                }
1463
1464        }
1465
1466        return 0;
1467}
1468
1469static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1470{
1471        struct qfq_sched *q = qdisc_priv(sch);
1472        struct qfq_group *grp;
1473        int i, j, err;
1474        u32 max_cl_shift, maxbudg_shift, max_classes;
1475
1476        err = qdisc_class_hash_init(&q->clhash);
1477        if (err < 0)
1478                return err;
1479
1480        if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1481                max_classes = QFQ_MAX_AGG_CLASSES;
1482        else
1483                max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1484        /* max_cl_shift = floor(log_2(max_classes)) */
1485        max_cl_shift = __fls(max_classes);
1486        q->max_agg_classes = 1<<max_cl_shift;
1487
1488        /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1489        maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1490        q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1491
1492        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1493                grp = &q->groups[i];
1494                grp->index = i;
1495                grp->slot_shift = q->min_slot_shift + i;
1496                for (j = 0; j < QFQ_MAX_SLOTS; j++)
1497                        INIT_HLIST_HEAD(&grp->slots[j]);
1498        }
1499
1500        INIT_HLIST_HEAD(&q->nonfull_aggs);
1501
1502        return 0;
1503}
1504
1505static void qfq_reset_qdisc(struct Qdisc *sch)
1506{
1507        struct qfq_sched *q = qdisc_priv(sch);
1508        struct qfq_class *cl;
1509        unsigned int i;
1510
1511        for (i = 0; i < q->clhash.hashsize; i++) {
1512                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1513                        if (cl->qdisc->q.qlen > 0)
1514                                qfq_deactivate_class(q, cl);
1515
1516                        qdisc_reset(cl->qdisc);
1517                }
1518        }
1519        sch->q.qlen = 0;
1520}
1521
1522static void qfq_destroy_qdisc(struct Qdisc *sch)
1523{
1524        struct qfq_sched *q = qdisc_priv(sch);
1525        struct qfq_class *cl;
1526        struct hlist_node *next;
1527        unsigned int i;
1528
1529        tcf_destroy_chain(&q->filter_list);
1530
1531        for (i = 0; i < q->clhash.hashsize; i++) {
1532                hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1533                                          common.hnode) {
1534                        qfq_destroy_class(sch, cl);
1535                }
1536        }
1537        qdisc_class_hash_destroy(&q->clhash);
1538}
1539
1540static const struct Qdisc_class_ops qfq_class_ops = {
1541        .change         = qfq_change_class,
1542        .delete         = qfq_delete_class,
1543        .get            = qfq_get_class,
1544        .put            = qfq_put_class,
1545        .tcf_chain      = qfq_tcf_chain,
1546        .bind_tcf       = qfq_bind_tcf,
1547        .unbind_tcf     = qfq_unbind_tcf,
1548        .graft          = qfq_graft_class,
1549        .leaf           = qfq_class_leaf,
1550        .qlen_notify    = qfq_qlen_notify,
1551        .dump           = qfq_dump_class,
1552        .dump_stats     = qfq_dump_class_stats,
1553        .walk           = qfq_walk,
1554};
1555
1556static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1557        .cl_ops         = &qfq_class_ops,
1558        .id             = "qfq",
1559        .priv_size      = sizeof(struct qfq_sched),
1560        .enqueue        = qfq_enqueue,
1561        .dequeue        = qfq_dequeue,
1562        .peek           = qdisc_peek_dequeued,
1563        .drop           = qfq_drop,
1564        .init           = qfq_init_qdisc,
1565        .reset          = qfq_reset_qdisc,
1566        .destroy        = qfq_destroy_qdisc,
1567        .owner          = THIS_MODULE,
1568};
1569
1570static int __init qfq_init(void)
1571{
1572        return register_qdisc(&qfq_qdisc_ops);
1573}
1574
1575static void __exit qfq_exit(void)
1576{
1577        unregister_qdisc(&qfq_qdisc_ops);
1578}
1579
1580module_init(qfq_init);
1581module_exit(qfq_exit);
1582MODULE_LICENSE("GPL");
1583