linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        wq->flags = 0;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298                                              init_once);
 299        if (sock_inode_cachep == NULL)
 300                return -ENOMEM;
 301        return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305        .alloc_inode    = sock_alloc_inode,
 306        .destroy_inode  = sock_destroy_inode,
 307        .statfs         = simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316                                d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320        .d_dname  = sockfs_dname,
 321};
 322
 323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 324                         int flags, const char *dev_name, void *data)
 325{
 326        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 327                &sockfs_dentry_operations, SOCKFS_MAGIC);
 328}
 329
 330static struct vfsmount *sock_mnt __read_mostly;
 331
 332static struct file_system_type sock_fs_type = {
 333        .name =         "sockfs",
 334        .mount =        sockfs_mount,
 335        .kill_sb =      kill_anon_super,
 336};
 337
 338/*
 339 *      Obtains the first available file descriptor and sets it up for use.
 340 *
 341 *      These functions create file structures and maps them to fd space
 342 *      of the current process. On success it returns file descriptor
 343 *      and file struct implicitly stored in sock->file.
 344 *      Note that another thread may close file descriptor before we return
 345 *      from this function. We use the fact that now we do not refer
 346 *      to socket after mapping. If one day we will need it, this
 347 *      function will increment ref. count on file by 1.
 348 *
 349 *      In any case returned fd MAY BE not valid!
 350 *      This race condition is unavoidable
 351 *      with shared fd spaces, we cannot solve it inside kernel,
 352 *      but we take care of internal coherence yet.
 353 */
 354
 355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 356{
 357        struct qstr name = { .name = "" };
 358        struct path path;
 359        struct file *file;
 360
 361        if (dname) {
 362                name.name = dname;
 363                name.len = strlen(name.name);
 364        } else if (sock->sk) {
 365                name.name = sock->sk->sk_prot_creator->name;
 366                name.len = strlen(name.name);
 367        }
 368        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 369        if (unlikely(!path.dentry))
 370                return ERR_PTR(-ENOMEM);
 371        path.mnt = mntget(sock_mnt);
 372
 373        d_instantiate(path.dentry, SOCK_INODE(sock));
 374
 375        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 376                  &socket_file_ops);
 377        if (IS_ERR(file)) {
 378                /* drop dentry, keep inode */
 379                ihold(d_inode(path.dentry));
 380                path_put(&path);
 381                return file;
 382        }
 383
 384        sock->file = file;
 385        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 386        file->private_data = sock;
 387        return file;
 388}
 389EXPORT_SYMBOL(sock_alloc_file);
 390
 391static int sock_map_fd(struct socket *sock, int flags)
 392{
 393        struct file *newfile;
 394        int fd = get_unused_fd_flags(flags);
 395        if (unlikely(fd < 0))
 396                return fd;
 397
 398        newfile = sock_alloc_file(sock, flags, NULL);
 399        if (likely(!IS_ERR(newfile))) {
 400                fd_install(fd, newfile);
 401                return fd;
 402        }
 403
 404        put_unused_fd(fd);
 405        return PTR_ERR(newfile);
 406}
 407
 408struct socket *sock_from_file(struct file *file, int *err)
 409{
 410        if (file->f_op == &socket_file_ops)
 411                return file->private_data;      /* set in sock_map_fd */
 412
 413        *err = -ENOTSOCK;
 414        return NULL;
 415}
 416EXPORT_SYMBOL(sock_from_file);
 417
 418/**
 419 *      sockfd_lookup - Go from a file number to its socket slot
 420 *      @fd: file handle
 421 *      @err: pointer to an error code return
 422 *
 423 *      The file handle passed in is locked and the socket it is bound
 424 *      too is returned. If an error occurs the err pointer is overwritten
 425 *      with a negative errno code and NULL is returned. The function checks
 426 *      for both invalid handles and passing a handle which is not a socket.
 427 *
 428 *      On a success the socket object pointer is returned.
 429 */
 430
 431struct socket *sockfd_lookup(int fd, int *err)
 432{
 433        struct file *file;
 434        struct socket *sock;
 435
 436        file = fget(fd);
 437        if (!file) {
 438                *err = -EBADF;
 439                return NULL;
 440        }
 441
 442        sock = sock_from_file(file, err);
 443        if (!sock)
 444                fput(file);
 445        return sock;
 446}
 447EXPORT_SYMBOL(sockfd_lookup);
 448
 449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 450{
 451        struct fd f = fdget(fd);
 452        struct socket *sock;
 453
 454        *err = -EBADF;
 455        if (f.file) {
 456                sock = sock_from_file(f.file, err);
 457                if (likely(sock)) {
 458                        *fput_needed = f.flags;
 459                        return sock;
 460                }
 461                fdput(f);
 462        }
 463        return NULL;
 464}
 465
 466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 469static ssize_t sockfs_getxattr(struct dentry *dentry,
 470                               const char *name, void *value, size_t size)
 471{
 472        const char *proto_name;
 473        size_t proto_size;
 474        int error;
 475
 476        error = -ENODATA;
 477        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 478                proto_name = dentry->d_name.name;
 479                proto_size = strlen(proto_name);
 480
 481                if (value) {
 482                        error = -ERANGE;
 483                        if (proto_size + 1 > size)
 484                                goto out;
 485
 486                        strncpy(value, proto_name, proto_size + 1);
 487                }
 488                error = proto_size + 1;
 489        }
 490
 491out:
 492        return error;
 493}
 494
 495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 496                                size_t size)
 497{
 498        ssize_t len;
 499        ssize_t used = 0;
 500
 501        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 502        if (len < 0)
 503                return len;
 504        used += len;
 505        if (buffer) {
 506                if (size < used)
 507                        return -ERANGE;
 508                buffer += len;
 509        }
 510
 511        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 512        used += len;
 513        if (buffer) {
 514                if (size < used)
 515                        return -ERANGE;
 516                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 517                buffer += len;
 518        }
 519
 520        return used;
 521}
 522
 523static const struct inode_operations sockfs_inode_ops = {
 524        .getxattr = sockfs_getxattr,
 525        .listxattr = sockfs_listxattr,
 526};
 527
 528/**
 529 *      sock_alloc      -       allocate a socket
 530 *
 531 *      Allocate a new inode and socket object. The two are bound together
 532 *      and initialised. The socket is then returned. If we are out of inodes
 533 *      NULL is returned.
 534 */
 535
 536struct socket *sock_alloc(void)
 537{
 538        struct inode *inode;
 539        struct socket *sock;
 540
 541        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 542        if (!inode)
 543                return NULL;
 544
 545        sock = SOCKET_I(inode);
 546
 547        kmemcheck_annotate_bitfield(sock, type);
 548        inode->i_ino = get_next_ino();
 549        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 550        inode->i_uid = current_fsuid();
 551        inode->i_gid = current_fsgid();
 552        inode->i_op = &sockfs_inode_ops;
 553
 554        this_cpu_add(sockets_in_use, 1);
 555        return sock;
 556}
 557EXPORT_SYMBOL(sock_alloc);
 558
 559/**
 560 *      sock_release    -       close a socket
 561 *      @sock: socket to close
 562 *
 563 *      The socket is released from the protocol stack if it has a release
 564 *      callback, and the inode is then released if the socket is bound to
 565 *      an inode not a file.
 566 */
 567
 568void sock_release(struct socket *sock)
 569{
 570        if (sock->ops) {
 571                struct module *owner = sock->ops->owner;
 572
 573                sock->ops->release(sock);
 574                sock->ops = NULL;
 575                module_put(owner);
 576        }
 577
 578        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 579                pr_err("%s: fasync list not empty!\n", __func__);
 580
 581        this_cpu_sub(sockets_in_use, 1);
 582        if (!sock->file) {
 583                iput(SOCK_INODE(sock));
 584                return;
 585        }
 586        sock->file = NULL;
 587}
 588EXPORT_SYMBOL(sock_release);
 589
 590void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 591{
 592        u8 flags = *tx_flags;
 593
 594        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 595                flags |= SKBTX_HW_TSTAMP;
 596
 597        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 598                flags |= SKBTX_SW_TSTAMP;
 599
 600        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
 601                flags |= SKBTX_SCHED_TSTAMP;
 602
 603        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
 604                flags |= SKBTX_ACK_TSTAMP;
 605
 606        *tx_flags = flags;
 607}
 608EXPORT_SYMBOL(__sock_tx_timestamp);
 609
 610static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 611{
 612        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 613        BUG_ON(ret == -EIOCBQUEUED);
 614        return ret;
 615}
 616
 617int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 618{
 619        int err = security_socket_sendmsg(sock, msg,
 620                                          msg_data_left(msg));
 621
 622        return err ?: sock_sendmsg_nosec(sock, msg);
 623}
 624EXPORT_SYMBOL(sock_sendmsg);
 625
 626int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 627                   struct kvec *vec, size_t num, size_t size)
 628{
 629        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 630        return sock_sendmsg(sock, msg);
 631}
 632EXPORT_SYMBOL(kernel_sendmsg);
 633
 634/*
 635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 636 */
 637void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 638        struct sk_buff *skb)
 639{
 640        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 641        struct scm_timestamping tss;
 642        int empty = 1;
 643        struct skb_shared_hwtstamps *shhwtstamps =
 644                skb_hwtstamps(skb);
 645
 646        /* Race occurred between timestamp enabling and packet
 647           receiving.  Fill in the current time for now. */
 648        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 649                __net_timestamp(skb);
 650
 651        if (need_software_tstamp) {
 652                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 653                        struct timeval tv;
 654                        skb_get_timestamp(skb, &tv);
 655                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 656                                 sizeof(tv), &tv);
 657                } else {
 658                        struct timespec ts;
 659                        skb_get_timestampns(skb, &ts);
 660                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 661                                 sizeof(ts), &ts);
 662                }
 663        }
 664
 665        memset(&tss, 0, sizeof(tss));
 666        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 667            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 668                empty = 0;
 669        if (shhwtstamps &&
 670            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 671            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 672                empty = 0;
 673        if (!empty)
 674                put_cmsg(msg, SOL_SOCKET,
 675                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 676}
 677EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 678
 679void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 680        struct sk_buff *skb)
 681{
 682        int ack;
 683
 684        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 685                return;
 686        if (!skb->wifi_acked_valid)
 687                return;
 688
 689        ack = skb->wifi_acked;
 690
 691        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 692}
 693EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 694
 695static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 696                                   struct sk_buff *skb)
 697{
 698        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 699                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 700                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 701}
 702
 703void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 704        struct sk_buff *skb)
 705{
 706        sock_recv_timestamp(msg, sk, skb);
 707        sock_recv_drops(msg, sk, skb);
 708}
 709EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 710
 711static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 712                                     size_t size, int flags)
 713{
 714        return sock->ops->recvmsg(sock, msg, size, flags);
 715}
 716
 717int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
 718                 int flags)
 719{
 720        int err = security_socket_recvmsg(sock, msg, size, flags);
 721
 722        return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
 723}
 724EXPORT_SYMBOL(sock_recvmsg);
 725
 726/**
 727 * kernel_recvmsg - Receive a message from a socket (kernel space)
 728 * @sock:       The socket to receive the message from
 729 * @msg:        Received message
 730 * @vec:        Input s/g array for message data
 731 * @num:        Size of input s/g array
 732 * @size:       Number of bytes to read
 733 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 734 *
 735 * On return the msg structure contains the scatter/gather array passed in the
 736 * vec argument. The array is modified so that it consists of the unfilled
 737 * portion of the original array.
 738 *
 739 * The returned value is the total number of bytes received, or an error.
 740 */
 741int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 742                   struct kvec *vec, size_t num, size_t size, int flags)
 743{
 744        mm_segment_t oldfs = get_fs();
 745        int result;
 746
 747        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 748        set_fs(KERNEL_DS);
 749        result = sock_recvmsg(sock, msg, size, flags);
 750        set_fs(oldfs);
 751        return result;
 752}
 753EXPORT_SYMBOL(kernel_recvmsg);
 754
 755static ssize_t sock_sendpage(struct file *file, struct page *page,
 756                             int offset, size_t size, loff_t *ppos, int more)
 757{
 758        struct socket *sock;
 759        int flags;
 760
 761        sock = file->private_data;
 762
 763        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 764        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 765        flags |= more;
 766
 767        return kernel_sendpage(sock, page, offset, size, flags);
 768}
 769
 770static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 771                                struct pipe_inode_info *pipe, size_t len,
 772                                unsigned int flags)
 773{
 774        struct socket *sock = file->private_data;
 775
 776        if (unlikely(!sock->ops->splice_read))
 777                return -EINVAL;
 778
 779        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 780}
 781
 782static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 783{
 784        struct file *file = iocb->ki_filp;
 785        struct socket *sock = file->private_data;
 786        struct msghdr msg = {.msg_iter = *to,
 787                             .msg_iocb = iocb};
 788        ssize_t res;
 789
 790        if (file->f_flags & O_NONBLOCK)
 791                msg.msg_flags = MSG_DONTWAIT;
 792
 793        if (iocb->ki_pos != 0)
 794                return -ESPIPE;
 795
 796        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 797                return 0;
 798
 799        res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
 800        *to = msg.msg_iter;
 801        return res;
 802}
 803
 804static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 805{
 806        struct file *file = iocb->ki_filp;
 807        struct socket *sock = file->private_data;
 808        struct msghdr msg = {.msg_iter = *from,
 809                             .msg_iocb = iocb};
 810        ssize_t res;
 811
 812        if (iocb->ki_pos != 0)
 813                return -ESPIPE;
 814
 815        if (file->f_flags & O_NONBLOCK)
 816                msg.msg_flags = MSG_DONTWAIT;
 817
 818        if (sock->type == SOCK_SEQPACKET)
 819                msg.msg_flags |= MSG_EOR;
 820
 821        res = sock_sendmsg(sock, &msg);
 822        *from = msg.msg_iter;
 823        return res;
 824}
 825
 826/*
 827 * Atomic setting of ioctl hooks to avoid race
 828 * with module unload.
 829 */
 830
 831static DEFINE_MUTEX(br_ioctl_mutex);
 832static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 833
 834void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 835{
 836        mutex_lock(&br_ioctl_mutex);
 837        br_ioctl_hook = hook;
 838        mutex_unlock(&br_ioctl_mutex);
 839}
 840EXPORT_SYMBOL(brioctl_set);
 841
 842static DEFINE_MUTEX(vlan_ioctl_mutex);
 843static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 844
 845void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 846{
 847        mutex_lock(&vlan_ioctl_mutex);
 848        vlan_ioctl_hook = hook;
 849        mutex_unlock(&vlan_ioctl_mutex);
 850}
 851EXPORT_SYMBOL(vlan_ioctl_set);
 852
 853static DEFINE_MUTEX(dlci_ioctl_mutex);
 854static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 855
 856void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 857{
 858        mutex_lock(&dlci_ioctl_mutex);
 859        dlci_ioctl_hook = hook;
 860        mutex_unlock(&dlci_ioctl_mutex);
 861}
 862EXPORT_SYMBOL(dlci_ioctl_set);
 863
 864static long sock_do_ioctl(struct net *net, struct socket *sock,
 865                                 unsigned int cmd, unsigned long arg)
 866{
 867        int err;
 868        void __user *argp = (void __user *)arg;
 869
 870        err = sock->ops->ioctl(sock, cmd, arg);
 871
 872        /*
 873         * If this ioctl is unknown try to hand it down
 874         * to the NIC driver.
 875         */
 876        if (err == -ENOIOCTLCMD)
 877                err = dev_ioctl(net, cmd, argp);
 878
 879        return err;
 880}
 881
 882/*
 883 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 884 *      what to do with it - that's up to the protocol still.
 885 */
 886
 887static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 888{
 889        struct socket *sock;
 890        struct sock *sk;
 891        void __user *argp = (void __user *)arg;
 892        int pid, err;
 893        struct net *net;
 894
 895        sock = file->private_data;
 896        sk = sock->sk;
 897        net = sock_net(sk);
 898        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 899                err = dev_ioctl(net, cmd, argp);
 900        } else
 901#ifdef CONFIG_WEXT_CORE
 902        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 903                err = dev_ioctl(net, cmd, argp);
 904        } else
 905#endif
 906                switch (cmd) {
 907                case FIOSETOWN:
 908                case SIOCSPGRP:
 909                        err = -EFAULT;
 910                        if (get_user(pid, (int __user *)argp))
 911                                break;
 912                        f_setown(sock->file, pid, 1);
 913                        err = 0;
 914                        break;
 915                case FIOGETOWN:
 916                case SIOCGPGRP:
 917                        err = put_user(f_getown(sock->file),
 918                                       (int __user *)argp);
 919                        break;
 920                case SIOCGIFBR:
 921                case SIOCSIFBR:
 922                case SIOCBRADDBR:
 923                case SIOCBRDELBR:
 924                        err = -ENOPKG;
 925                        if (!br_ioctl_hook)
 926                                request_module("bridge");
 927
 928                        mutex_lock(&br_ioctl_mutex);
 929                        if (br_ioctl_hook)
 930                                err = br_ioctl_hook(net, cmd, argp);
 931                        mutex_unlock(&br_ioctl_mutex);
 932                        break;
 933                case SIOCGIFVLAN:
 934                case SIOCSIFVLAN:
 935                        err = -ENOPKG;
 936                        if (!vlan_ioctl_hook)
 937                                request_module("8021q");
 938
 939                        mutex_lock(&vlan_ioctl_mutex);
 940                        if (vlan_ioctl_hook)
 941                                err = vlan_ioctl_hook(net, argp);
 942                        mutex_unlock(&vlan_ioctl_mutex);
 943                        break;
 944                case SIOCADDDLCI:
 945                case SIOCDELDLCI:
 946                        err = -ENOPKG;
 947                        if (!dlci_ioctl_hook)
 948                                request_module("dlci");
 949
 950                        mutex_lock(&dlci_ioctl_mutex);
 951                        if (dlci_ioctl_hook)
 952                                err = dlci_ioctl_hook(cmd, argp);
 953                        mutex_unlock(&dlci_ioctl_mutex);
 954                        break;
 955                default:
 956                        err = sock_do_ioctl(net, sock, cmd, arg);
 957                        break;
 958                }
 959        return err;
 960}
 961
 962int sock_create_lite(int family, int type, int protocol, struct socket **res)
 963{
 964        int err;
 965        struct socket *sock = NULL;
 966
 967        err = security_socket_create(family, type, protocol, 1);
 968        if (err)
 969                goto out;
 970
 971        sock = sock_alloc();
 972        if (!sock) {
 973                err = -ENOMEM;
 974                goto out;
 975        }
 976
 977        sock->type = type;
 978        err = security_socket_post_create(sock, family, type, protocol, 1);
 979        if (err)
 980                goto out_release;
 981
 982out:
 983        *res = sock;
 984        return err;
 985out_release:
 986        sock_release(sock);
 987        sock = NULL;
 988        goto out;
 989}
 990EXPORT_SYMBOL(sock_create_lite);
 991
 992/* No kernel lock held - perfect */
 993static unsigned int sock_poll(struct file *file, poll_table *wait)
 994{
 995        unsigned int busy_flag = 0;
 996        struct socket *sock;
 997
 998        /*
 999         *      We can't return errors to poll, so it's either yes or no.
1000         */
1001        sock = file->private_data;
1002
1003        if (sk_can_busy_loop(sock->sk)) {
1004                /* this socket can poll_ll so tell the system call */
1005                busy_flag = POLL_BUSY_LOOP;
1006
1007                /* once, only if requested by syscall */
1008                if (wait && (wait->_key & POLL_BUSY_LOOP))
1009                        sk_busy_loop(sock->sk, 1);
1010        }
1011
1012        return busy_flag | sock->ops->poll(file, sock, wait);
1013}
1014
1015static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016{
1017        struct socket *sock = file->private_data;
1018
1019        return sock->ops->mmap(file, sock, vma);
1020}
1021
1022static int sock_close(struct inode *inode, struct file *filp)
1023{
1024        sock_release(SOCKET_I(inode));
1025        return 0;
1026}
1027
1028/*
1029 *      Update the socket async list
1030 *
1031 *      Fasync_list locking strategy.
1032 *
1033 *      1. fasync_list is modified only under process context socket lock
1034 *         i.e. under semaphore.
1035 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 *         or under socket lock
1037 */
1038
1039static int sock_fasync(int fd, struct file *filp, int on)
1040{
1041        struct socket *sock = filp->private_data;
1042        struct sock *sk = sock->sk;
1043        struct socket_wq *wq;
1044
1045        if (sk == NULL)
1046                return -EINVAL;
1047
1048        lock_sock(sk);
1049        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050        fasync_helper(fd, filp, on, &wq->fasync_list);
1051
1052        if (!wq->fasync_list)
1053                sock_reset_flag(sk, SOCK_FASYNC);
1054        else
1055                sock_set_flag(sk, SOCK_FASYNC);
1056
1057        release_sock(sk);
1058        return 0;
1059}
1060
1061/* This function may be called only under rcu_lock */
1062
1063int sock_wake_async(struct socket_wq *wq, int how, int band)
1064{
1065        if (!wq || !wq->fasync_list)
1066                return -1;
1067
1068        switch (how) {
1069        case SOCK_WAKE_WAITD:
1070                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071                        break;
1072                goto call_kill;
1073        case SOCK_WAKE_SPACE:
1074                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075                        break;
1076                /* fall through */
1077        case SOCK_WAKE_IO:
1078call_kill:
1079                kill_fasync(&wq->fasync_list, SIGIO, band);
1080                break;
1081        case SOCK_WAKE_URG:
1082                kill_fasync(&wq->fasync_list, SIGURG, band);
1083        }
1084
1085        return 0;
1086}
1087EXPORT_SYMBOL(sock_wake_async);
1088
1089int __sock_create(struct net *net, int family, int type, int protocol,
1090                         struct socket **res, int kern)
1091{
1092        int err;
1093        struct socket *sock;
1094        const struct net_proto_family *pf;
1095
1096        /*
1097         *      Check protocol is in range
1098         */
1099        if (family < 0 || family >= NPROTO)
1100                return -EAFNOSUPPORT;
1101        if (type < 0 || type >= SOCK_MAX)
1102                return -EINVAL;
1103
1104        /* Compatibility.
1105
1106           This uglymoron is moved from INET layer to here to avoid
1107           deadlock in module load.
1108         */
1109        if (family == PF_INET && type == SOCK_PACKET) {
1110                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111                             current->comm);
1112                family = PF_PACKET;
1113        }
1114
1115        err = security_socket_create(family, type, protocol, kern);
1116        if (err)
1117                return err;
1118
1119        /*
1120         *      Allocate the socket and allow the family to set things up. if
1121         *      the protocol is 0, the family is instructed to select an appropriate
1122         *      default.
1123         */
1124        sock = sock_alloc();
1125        if (!sock) {
1126                net_warn_ratelimited("socket: no more sockets\n");
1127                return -ENFILE; /* Not exactly a match, but its the
1128                                   closest posix thing */
1129        }
1130
1131        sock->type = type;
1132
1133#ifdef CONFIG_MODULES
1134        /* Attempt to load a protocol module if the find failed.
1135         *
1136         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137         * requested real, full-featured networking support upon configuration.
1138         * Otherwise module support will break!
1139         */
1140        if (rcu_access_pointer(net_families[family]) == NULL)
1141                request_module("net-pf-%d", family);
1142#endif
1143
1144        rcu_read_lock();
1145        pf = rcu_dereference(net_families[family]);
1146        err = -EAFNOSUPPORT;
1147        if (!pf)
1148                goto out_release;
1149
1150        /*
1151         * We will call the ->create function, that possibly is in a loadable
1152         * module, so we have to bump that loadable module refcnt first.
1153         */
1154        if (!try_module_get(pf->owner))
1155                goto out_release;
1156
1157        /* Now protected by module ref count */
1158        rcu_read_unlock();
1159
1160        err = pf->create(net, sock, protocol, kern);
1161        if (err < 0)
1162                goto out_module_put;
1163
1164        /*
1165         * Now to bump the refcnt of the [loadable] module that owns this
1166         * socket at sock_release time we decrement its refcnt.
1167         */
1168        if (!try_module_get(sock->ops->owner))
1169                goto out_module_busy;
1170
1171        /*
1172         * Now that we're done with the ->create function, the [loadable]
1173         * module can have its refcnt decremented
1174         */
1175        module_put(pf->owner);
1176        err = security_socket_post_create(sock, family, type, protocol, kern);
1177        if (err)
1178                goto out_sock_release;
1179        *res = sock;
1180
1181        return 0;
1182
1183out_module_busy:
1184        err = -EAFNOSUPPORT;
1185out_module_put:
1186        sock->ops = NULL;
1187        module_put(pf->owner);
1188out_sock_release:
1189        sock_release(sock);
1190        return err;
1191
1192out_release:
1193        rcu_read_unlock();
1194        goto out_sock_release;
1195}
1196EXPORT_SYMBOL(__sock_create);
1197
1198int sock_create(int family, int type, int protocol, struct socket **res)
1199{
1200        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201}
1202EXPORT_SYMBOL(sock_create);
1203
1204int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205{
1206        return __sock_create(net, family, type, protocol, res, 1);
1207}
1208EXPORT_SYMBOL(sock_create_kern);
1209
1210SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211{
1212        int retval;
1213        struct socket *sock;
1214        int flags;
1215
1216        /* Check the SOCK_* constants for consistency.  */
1217        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221
1222        flags = type & ~SOCK_TYPE_MASK;
1223        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224                return -EINVAL;
1225        type &= SOCK_TYPE_MASK;
1226
1227        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229
1230        retval = sock_create(family, type, protocol, &sock);
1231        if (retval < 0)
1232                goto out;
1233
1234        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235        if (retval < 0)
1236                goto out_release;
1237
1238out:
1239        /* It may be already another descriptor 8) Not kernel problem. */
1240        return retval;
1241
1242out_release:
1243        sock_release(sock);
1244        return retval;
1245}
1246
1247/*
1248 *      Create a pair of connected sockets.
1249 */
1250
1251SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252                int __user *, usockvec)
1253{
1254        struct socket *sock1, *sock2;
1255        int fd1, fd2, err;
1256        struct file *newfile1, *newfile2;
1257        int flags;
1258
1259        flags = type & ~SOCK_TYPE_MASK;
1260        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261                return -EINVAL;
1262        type &= SOCK_TYPE_MASK;
1263
1264        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266
1267        /*
1268         * Obtain the first socket and check if the underlying protocol
1269         * supports the socketpair call.
1270         */
1271
1272        err = sock_create(family, type, protocol, &sock1);
1273        if (err < 0)
1274                goto out;
1275
1276        err = sock_create(family, type, protocol, &sock2);
1277        if (err < 0)
1278                goto out_release_1;
1279
1280        err = sock1->ops->socketpair(sock1, sock2);
1281        if (err < 0)
1282                goto out_release_both;
1283
1284        fd1 = get_unused_fd_flags(flags);
1285        if (unlikely(fd1 < 0)) {
1286                err = fd1;
1287                goto out_release_both;
1288        }
1289
1290        fd2 = get_unused_fd_flags(flags);
1291        if (unlikely(fd2 < 0)) {
1292                err = fd2;
1293                goto out_put_unused_1;
1294        }
1295
1296        newfile1 = sock_alloc_file(sock1, flags, NULL);
1297        if (IS_ERR(newfile1)) {
1298                err = PTR_ERR(newfile1);
1299                goto out_put_unused_both;
1300        }
1301
1302        newfile2 = sock_alloc_file(sock2, flags, NULL);
1303        if (IS_ERR(newfile2)) {
1304                err = PTR_ERR(newfile2);
1305                goto out_fput_1;
1306        }
1307
1308        err = put_user(fd1, &usockvec[0]);
1309        if (err)
1310                goto out_fput_both;
1311
1312        err = put_user(fd2, &usockvec[1]);
1313        if (err)
1314                goto out_fput_both;
1315
1316        audit_fd_pair(fd1, fd2);
1317
1318        fd_install(fd1, newfile1);
1319        fd_install(fd2, newfile2);
1320        /* fd1 and fd2 may be already another descriptors.
1321         * Not kernel problem.
1322         */
1323
1324        return 0;
1325
1326out_fput_both:
1327        fput(newfile2);
1328        fput(newfile1);
1329        put_unused_fd(fd2);
1330        put_unused_fd(fd1);
1331        goto out;
1332
1333out_fput_1:
1334        fput(newfile1);
1335        put_unused_fd(fd2);
1336        put_unused_fd(fd1);
1337        sock_release(sock2);
1338        goto out;
1339
1340out_put_unused_both:
1341        put_unused_fd(fd2);
1342out_put_unused_1:
1343        put_unused_fd(fd1);
1344out_release_both:
1345        sock_release(sock2);
1346out_release_1:
1347        sock_release(sock1);
1348out:
1349        return err;
1350}
1351
1352/*
1353 *      Bind a name to a socket. Nothing much to do here since it's
1354 *      the protocol's responsibility to handle the local address.
1355 *
1356 *      We move the socket address to kernel space before we call
1357 *      the protocol layer (having also checked the address is ok).
1358 */
1359
1360SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361{
1362        struct socket *sock;
1363        struct sockaddr_storage address;
1364        int err, fput_needed;
1365
1366        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367        if (sock) {
1368                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369                if (err >= 0) {
1370                        err = security_socket_bind(sock,
1371                                                   (struct sockaddr *)&address,
1372                                                   addrlen);
1373                        if (!err)
1374                                err = sock->ops->bind(sock,
1375                                                      (struct sockaddr *)
1376                                                      &address, addrlen);
1377                }
1378                fput_light(sock->file, fput_needed);
1379        }
1380        return err;
1381}
1382
1383/*
1384 *      Perform a listen. Basically, we allow the protocol to do anything
1385 *      necessary for a listen, and if that works, we mark the socket as
1386 *      ready for listening.
1387 */
1388
1389SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390{
1391        struct socket *sock;
1392        int err, fput_needed;
1393        int somaxconn;
1394
1395        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396        if (sock) {
1397                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398                if ((unsigned int)backlog > somaxconn)
1399                        backlog = somaxconn;
1400
1401                err = security_socket_listen(sock, backlog);
1402                if (!err)
1403                        err = sock->ops->listen(sock, backlog);
1404
1405                fput_light(sock->file, fput_needed);
1406        }
1407        return err;
1408}
1409
1410/*
1411 *      For accept, we attempt to create a new socket, set up the link
1412 *      with the client, wake up the client, then return the new
1413 *      connected fd. We collect the address of the connector in kernel
1414 *      space and move it to user at the very end. This is unclean because
1415 *      we open the socket then return an error.
1416 *
1417 *      1003.1g adds the ability to recvmsg() to query connection pending
1418 *      status to recvmsg. We need to add that support in a way thats
1419 *      clean when we restucture accept also.
1420 */
1421
1422SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423                int __user *, upeer_addrlen, int, flags)
1424{
1425        struct socket *sock, *newsock;
1426        struct file *newfile;
1427        int err, len, newfd, fput_needed;
1428        struct sockaddr_storage address;
1429
1430        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431                return -EINVAL;
1432
1433        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435
1436        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437        if (!sock)
1438                goto out;
1439
1440        err = -ENFILE;
1441        newsock = sock_alloc();
1442        if (!newsock)
1443                goto out_put;
1444
1445        newsock->type = sock->type;
1446        newsock->ops = sock->ops;
1447
1448        /*
1449         * We don't need try_module_get here, as the listening socket (sock)
1450         * has the protocol module (sock->ops->owner) held.
1451         */
1452        __module_get(newsock->ops->owner);
1453
1454        newfd = get_unused_fd_flags(flags);
1455        if (unlikely(newfd < 0)) {
1456                err = newfd;
1457                sock_release(newsock);
1458                goto out_put;
1459        }
1460        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461        if (IS_ERR(newfile)) {
1462                err = PTR_ERR(newfile);
1463                put_unused_fd(newfd);
1464                sock_release(newsock);
1465                goto out_put;
1466        }
1467
1468        err = security_socket_accept(sock, newsock);
1469        if (err)
1470                goto out_fd;
1471
1472        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1473        if (err < 0)
1474                goto out_fd;
1475
1476        if (upeer_sockaddr) {
1477                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1478                                          &len, 2) < 0) {
1479                        err = -ECONNABORTED;
1480                        goto out_fd;
1481                }
1482                err = move_addr_to_user(&address,
1483                                        len, upeer_sockaddr, upeer_addrlen);
1484                if (err < 0)
1485                        goto out_fd;
1486        }
1487
1488        /* File flags are not inherited via accept() unlike another OSes. */
1489
1490        fd_install(newfd, newfile);
1491        err = newfd;
1492
1493out_put:
1494        fput_light(sock->file, fput_needed);
1495out:
1496        return err;
1497out_fd:
1498        fput(newfile);
1499        put_unused_fd(newfd);
1500        goto out_put;
1501}
1502
1503SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1504                int __user *, upeer_addrlen)
1505{
1506        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1507}
1508
1509/*
1510 *      Attempt to connect to a socket with the server address.  The address
1511 *      is in user space so we verify it is OK and move it to kernel space.
1512 *
1513 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1514 *      break bindings
1515 *
1516 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1517 *      other SEQPACKET protocols that take time to connect() as it doesn't
1518 *      include the -EINPROGRESS status for such sockets.
1519 */
1520
1521SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1522                int, addrlen)
1523{
1524        struct socket *sock;
1525        struct sockaddr_storage address;
1526        int err, fput_needed;
1527
1528        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529        if (!sock)
1530                goto out;
1531        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1532        if (err < 0)
1533                goto out_put;
1534
1535        err =
1536            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1537        if (err)
1538                goto out_put;
1539
1540        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1541                                 sock->file->f_flags);
1542out_put:
1543        fput_light(sock->file, fput_needed);
1544out:
1545        return err;
1546}
1547
1548/*
1549 *      Get the local address ('name') of a socket object. Move the obtained
1550 *      name to user space.
1551 */
1552
1553SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1554                int __user *, usockaddr_len)
1555{
1556        struct socket *sock;
1557        struct sockaddr_storage address;
1558        int len, err, fput_needed;
1559
1560        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561        if (!sock)
1562                goto out;
1563
1564        err = security_socket_getsockname(sock);
1565        if (err)
1566                goto out_put;
1567
1568        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1569        if (err)
1570                goto out_put;
1571        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1572
1573out_put:
1574        fput_light(sock->file, fput_needed);
1575out:
1576        return err;
1577}
1578
1579/*
1580 *      Get the remote address ('name') of a socket object. Move the obtained
1581 *      name to user space.
1582 */
1583
1584SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1585                int __user *, usockaddr_len)
1586{
1587        struct socket *sock;
1588        struct sockaddr_storage address;
1589        int len, err, fput_needed;
1590
1591        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1592        if (sock != NULL) {
1593                err = security_socket_getpeername(sock);
1594                if (err) {
1595                        fput_light(sock->file, fput_needed);
1596                        return err;
1597                }
1598
1599                err =
1600                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1601                                       1);
1602                if (!err)
1603                        err = move_addr_to_user(&address, len, usockaddr,
1604                                                usockaddr_len);
1605                fput_light(sock->file, fput_needed);
1606        }
1607        return err;
1608}
1609
1610/*
1611 *      Send a datagram to a given address. We move the address into kernel
1612 *      space and check the user space data area is readable before invoking
1613 *      the protocol.
1614 */
1615
1616SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1617                unsigned int, flags, struct sockaddr __user *, addr,
1618                int, addr_len)
1619{
1620        struct socket *sock;
1621        struct sockaddr_storage address;
1622        int err;
1623        struct msghdr msg;
1624        struct iovec iov;
1625        int fput_needed;
1626
1627        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1628        if (unlikely(err))
1629                return err;
1630        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631        if (!sock)
1632                goto out;
1633
1634        msg.msg_name = NULL;
1635        msg.msg_control = NULL;
1636        msg.msg_controllen = 0;
1637        msg.msg_namelen = 0;
1638        if (addr) {
1639                err = move_addr_to_kernel(addr, addr_len, &address);
1640                if (err < 0)
1641                        goto out_put;
1642                msg.msg_name = (struct sockaddr *)&address;
1643                msg.msg_namelen = addr_len;
1644        }
1645        if (sock->file->f_flags & O_NONBLOCK)
1646                flags |= MSG_DONTWAIT;
1647        msg.msg_flags = flags;
1648        err = sock_sendmsg(sock, &msg);
1649
1650out_put:
1651        fput_light(sock->file, fput_needed);
1652out:
1653        return err;
1654}
1655
1656/*
1657 *      Send a datagram down a socket.
1658 */
1659
1660SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1661                unsigned int, flags)
1662{
1663        return sys_sendto(fd, buff, len, flags, NULL, 0);
1664}
1665
1666/*
1667 *      Receive a frame from the socket and optionally record the address of the
1668 *      sender. We verify the buffers are writable and if needed move the
1669 *      sender address from kernel to user space.
1670 */
1671
1672SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1673                unsigned int, flags, struct sockaddr __user *, addr,
1674                int __user *, addr_len)
1675{
1676        struct socket *sock;
1677        struct iovec iov;
1678        struct msghdr msg;
1679        struct sockaddr_storage address;
1680        int err, err2;
1681        int fput_needed;
1682
1683        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1684        if (unlikely(err))
1685                return err;
1686        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687        if (!sock)
1688                goto out;
1689
1690        msg.msg_control = NULL;
1691        msg.msg_controllen = 0;
1692        /* Save some cycles and don't copy the address if not needed */
1693        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1694        /* We assume all kernel code knows the size of sockaddr_storage */
1695        msg.msg_namelen = 0;
1696        msg.msg_iocb = NULL;
1697        if (sock->file->f_flags & O_NONBLOCK)
1698                flags |= MSG_DONTWAIT;
1699        err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1700
1701        if (err >= 0 && addr != NULL) {
1702                err2 = move_addr_to_user(&address,
1703                                         msg.msg_namelen, addr, addr_len);
1704                if (err2 < 0)
1705                        err = err2;
1706        }
1707
1708        fput_light(sock->file, fput_needed);
1709out:
1710        return err;
1711}
1712
1713/*
1714 *      Receive a datagram from a socket.
1715 */
1716
1717SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1718                unsigned int, flags)
1719{
1720        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1721}
1722
1723/*
1724 *      Set a socket option. Because we don't know the option lengths we have
1725 *      to pass the user mode parameter for the protocols to sort out.
1726 */
1727
1728SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1729                char __user *, optval, int, optlen)
1730{
1731        int err, fput_needed;
1732        struct socket *sock;
1733
1734        if (optlen < 0)
1735                return -EINVAL;
1736
1737        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738        if (sock != NULL) {
1739                err = security_socket_setsockopt(sock, level, optname);
1740                if (err)
1741                        goto out_put;
1742
1743                if (level == SOL_SOCKET)
1744                        err =
1745                            sock_setsockopt(sock, level, optname, optval,
1746                                            optlen);
1747                else
1748                        err =
1749                            sock->ops->setsockopt(sock, level, optname, optval,
1750                                                  optlen);
1751out_put:
1752                fput_light(sock->file, fput_needed);
1753        }
1754        return err;
1755}
1756
1757/*
1758 *      Get a socket option. Because we don't know the option lengths we have
1759 *      to pass a user mode parameter for the protocols to sort out.
1760 */
1761
1762SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1763                char __user *, optval, int __user *, optlen)
1764{
1765        int err, fput_needed;
1766        struct socket *sock;
1767
1768        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769        if (sock != NULL) {
1770                err = security_socket_getsockopt(sock, level, optname);
1771                if (err)
1772                        goto out_put;
1773
1774                if (level == SOL_SOCKET)
1775                        err =
1776                            sock_getsockopt(sock, level, optname, optval,
1777                                            optlen);
1778                else
1779                        err =
1780                            sock->ops->getsockopt(sock, level, optname, optval,
1781                                                  optlen);
1782out_put:
1783                fput_light(sock->file, fput_needed);
1784        }
1785        return err;
1786}
1787
1788/*
1789 *      Shutdown a socket.
1790 */
1791
1792SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1793{
1794        int err, fput_needed;
1795        struct socket *sock;
1796
1797        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798        if (sock != NULL) {
1799                err = security_socket_shutdown(sock, how);
1800                if (!err)
1801                        err = sock->ops->shutdown(sock, how);
1802                fput_light(sock->file, fput_needed);
1803        }
1804        return err;
1805}
1806
1807/* A couple of helpful macros for getting the address of the 32/64 bit
1808 * fields which are the same type (int / unsigned) on our platforms.
1809 */
1810#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1811#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1812#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1813
1814struct used_address {
1815        struct sockaddr_storage name;
1816        unsigned int name_len;
1817};
1818
1819static int copy_msghdr_from_user(struct msghdr *kmsg,
1820                                 struct user_msghdr __user *umsg,
1821                                 struct sockaddr __user **save_addr,
1822                                 struct iovec **iov)
1823{
1824        struct sockaddr __user *uaddr;
1825        struct iovec __user *uiov;
1826        size_t nr_segs;
1827        ssize_t err;
1828
1829        if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1830            __get_user(uaddr, &umsg->msg_name) ||
1831            __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1832            __get_user(uiov, &umsg->msg_iov) ||
1833            __get_user(nr_segs, &umsg->msg_iovlen) ||
1834            __get_user(kmsg->msg_control, &umsg->msg_control) ||
1835            __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1836            __get_user(kmsg->msg_flags, &umsg->msg_flags))
1837                return -EFAULT;
1838
1839        if (!uaddr)
1840                kmsg->msg_namelen = 0;
1841
1842        if (kmsg->msg_namelen < 0)
1843                return -EINVAL;
1844
1845        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1846                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1847
1848        if (save_addr)
1849                *save_addr = uaddr;
1850
1851        if (uaddr && kmsg->msg_namelen) {
1852                if (!save_addr) {
1853                        err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1854                                                  kmsg->msg_name);
1855                        if (err < 0)
1856                                return err;
1857                }
1858        } else {
1859                kmsg->msg_name = NULL;
1860                kmsg->msg_namelen = 0;
1861        }
1862
1863        if (nr_segs > UIO_MAXIOV)
1864                return -EMSGSIZE;
1865
1866        kmsg->msg_iocb = NULL;
1867
1868        return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1869                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1870}
1871
1872static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1873                         struct msghdr *msg_sys, unsigned int flags,
1874                         struct used_address *used_address,
1875                         unsigned int allowed_msghdr_flags)
1876{
1877        struct compat_msghdr __user *msg_compat =
1878            (struct compat_msghdr __user *)msg;
1879        struct sockaddr_storage address;
1880        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883        /* 20 is size of ipv6_pktinfo */
1884        unsigned char *ctl_buf = ctl;
1885        int ctl_len;
1886        ssize_t err;
1887
1888        msg_sys->msg_name = &address;
1889
1890        if (MSG_CMSG_COMPAT & flags)
1891                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892        else
1893                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894        if (err < 0)
1895                return err;
1896
1897        err = -ENOBUFS;
1898
1899        if (msg_sys->msg_controllen > INT_MAX)
1900                goto out_freeiov;
1901        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1902        ctl_len = msg_sys->msg_controllen;
1903        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904                err =
1905                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1906                                                     sizeof(ctl));
1907                if (err)
1908                        goto out_freeiov;
1909                ctl_buf = msg_sys->msg_control;
1910                ctl_len = msg_sys->msg_controllen;
1911        } else if (ctl_len) {
1912                if (ctl_len > sizeof(ctl)) {
1913                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914                        if (ctl_buf == NULL)
1915                                goto out_freeiov;
1916                }
1917                err = -EFAULT;
1918                /*
1919                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1920                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921                 * checking falls down on this.
1922                 */
1923                if (copy_from_user(ctl_buf,
1924                                   (void __user __force *)msg_sys->msg_control,
1925                                   ctl_len))
1926                        goto out_freectl;
1927                msg_sys->msg_control = ctl_buf;
1928        }
1929        msg_sys->msg_flags = flags;
1930
1931        if (sock->file->f_flags & O_NONBLOCK)
1932                msg_sys->msg_flags |= MSG_DONTWAIT;
1933        /*
1934         * If this is sendmmsg() and current destination address is same as
1935         * previously succeeded address, omit asking LSM's decision.
1936         * used_address->name_len is initialized to UINT_MAX so that the first
1937         * destination address never matches.
1938         */
1939        if (used_address && msg_sys->msg_name &&
1940            used_address->name_len == msg_sys->msg_namelen &&
1941            !memcmp(&used_address->name, msg_sys->msg_name,
1942                    used_address->name_len)) {
1943                err = sock_sendmsg_nosec(sock, msg_sys);
1944                goto out_freectl;
1945        }
1946        err = sock_sendmsg(sock, msg_sys);
1947        /*
1948         * If this is sendmmsg() and sending to current destination address was
1949         * successful, remember it.
1950         */
1951        if (used_address && err >= 0) {
1952                used_address->name_len = msg_sys->msg_namelen;
1953                if (msg_sys->msg_name)
1954                        memcpy(&used_address->name, msg_sys->msg_name,
1955                               used_address->name_len);
1956        }
1957
1958out_freectl:
1959        if (ctl_buf != ctl)
1960                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1961out_freeiov:
1962        kfree(iov);
1963        return err;
1964}
1965
1966/*
1967 *      BSD sendmsg interface
1968 */
1969
1970long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1971{
1972        int fput_needed, err;
1973        struct msghdr msg_sys;
1974        struct socket *sock;
1975
1976        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977        if (!sock)
1978                goto out;
1979
1980        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1981
1982        fput_light(sock->file, fput_needed);
1983out:
1984        return err;
1985}
1986
1987SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1988{
1989        if (flags & MSG_CMSG_COMPAT)
1990                return -EINVAL;
1991        return __sys_sendmsg(fd, msg, flags);
1992}
1993
1994/*
1995 *      Linux sendmmsg interface
1996 */
1997
1998int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1999                   unsigned int flags)
2000{
2001        int fput_needed, err, datagrams;
2002        struct socket *sock;
2003        struct mmsghdr __user *entry;
2004        struct compat_mmsghdr __user *compat_entry;
2005        struct msghdr msg_sys;
2006        struct used_address used_address;
2007        unsigned int oflags = flags;
2008
2009        if (vlen > UIO_MAXIOV)
2010                vlen = UIO_MAXIOV;
2011
2012        datagrams = 0;
2013
2014        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015        if (!sock)
2016                return err;
2017
2018        used_address.name_len = UINT_MAX;
2019        entry = mmsg;
2020        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021        err = 0;
2022        flags |= MSG_BATCH;
2023
2024        while (datagrams < vlen) {
2025                if (datagrams == vlen - 1)
2026                        flags = oflags;
2027
2028                if (MSG_CMSG_COMPAT & flags) {
2029                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2030                                             &msg_sys, flags, &used_address, MSG_EOR);
2031                        if (err < 0)
2032                                break;
2033                        err = __put_user(err, &compat_entry->msg_len);
2034                        ++compat_entry;
2035                } else {
2036                        err = ___sys_sendmsg(sock,
2037                                             (struct user_msghdr __user *)entry,
2038                                             &msg_sys, flags, &used_address, MSG_EOR);
2039                        if (err < 0)
2040                                break;
2041                        err = put_user(err, &entry->msg_len);
2042                        ++entry;
2043                }
2044
2045                if (err)
2046                        break;
2047                ++datagrams;
2048                cond_resched();
2049        }
2050
2051        fput_light(sock->file, fput_needed);
2052
2053        /* We only return an error if no datagrams were able to be sent */
2054        if (datagrams != 0)
2055                return datagrams;
2056
2057        return err;
2058}
2059
2060SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061                unsigned int, vlen, unsigned int, flags)
2062{
2063        if (flags & MSG_CMSG_COMPAT)
2064                return -EINVAL;
2065        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066}
2067
2068static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2070{
2071        struct compat_msghdr __user *msg_compat =
2072            (struct compat_msghdr __user *)msg;
2073        struct iovec iovstack[UIO_FASTIOV];
2074        struct iovec *iov = iovstack;
2075        unsigned long cmsg_ptr;
2076        int total_len, len;
2077        ssize_t err;
2078
2079        /* kernel mode address */
2080        struct sockaddr_storage addr;
2081
2082        /* user mode address pointers */
2083        struct sockaddr __user *uaddr;
2084        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086        msg_sys->msg_name = &addr;
2087
2088        if (MSG_CMSG_COMPAT & flags)
2089                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090        else
2091                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092        if (err < 0)
2093                return err;
2094        total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099        /* We assume all kernel code knows the size of sockaddr_storage */
2100        msg_sys->msg_namelen = 0;
2101
2102        if (sock->file->f_flags & O_NONBLOCK)
2103                flags |= MSG_DONTWAIT;
2104        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105                                                          total_len, flags);
2106        if (err < 0)
2107                goto out_freeiov;
2108        len = err;
2109
2110        if (uaddr != NULL) {
2111                err = move_addr_to_user(&addr,
2112                                        msg_sys->msg_namelen, uaddr,
2113                                        uaddr_len);
2114                if (err < 0)
2115                        goto out_freeiov;
2116        }
2117        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118                         COMPAT_FLAGS(msg));
2119        if (err)
2120                goto out_freeiov;
2121        if (MSG_CMSG_COMPAT & flags)
2122                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123                                 &msg_compat->msg_controllen);
2124        else
2125                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126                                 &msg->msg_controllen);
2127        if (err)
2128                goto out_freeiov;
2129        err = len;
2130
2131out_freeiov:
2132        kfree(iov);
2133        return err;
2134}
2135
2136/*
2137 *      BSD recvmsg interface
2138 */
2139
2140long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141{
2142        int fput_needed, err;
2143        struct msghdr msg_sys;
2144        struct socket *sock;
2145
2146        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147        if (!sock)
2148                goto out;
2149
2150        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152        fput_light(sock->file, fput_needed);
2153out:
2154        return err;
2155}
2156
2157SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158                unsigned int, flags)
2159{
2160        if (flags & MSG_CMSG_COMPAT)
2161                return -EINVAL;
2162        return __sys_recvmsg(fd, msg, flags);
2163}
2164
2165/*
2166 *     Linux recvmmsg interface
2167 */
2168
2169int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170                   unsigned int flags, struct timespec *timeout)
2171{
2172        int fput_needed, err, datagrams;
2173        struct socket *sock;
2174        struct mmsghdr __user *entry;
2175        struct compat_mmsghdr __user *compat_entry;
2176        struct msghdr msg_sys;
2177        struct timespec end_time;
2178
2179        if (timeout &&
2180            poll_select_set_timeout(&end_time, timeout->tv_sec,
2181                                    timeout->tv_nsec))
2182                return -EINVAL;
2183
2184        datagrams = 0;
2185
2186        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187        if (!sock)
2188                return err;
2189
2190        err = sock_error(sock->sk);
2191        if (err)
2192                goto out_put;
2193
2194        entry = mmsg;
2195        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197        while (datagrams < vlen) {
2198                /*
2199                 * No need to ask LSM for more than the first datagram.
2200                 */
2201                if (MSG_CMSG_COMPAT & flags) {
2202                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203                                             &msg_sys, flags & ~MSG_WAITFORONE,
2204                                             datagrams);
2205                        if (err < 0)
2206                                break;
2207                        err = __put_user(err, &compat_entry->msg_len);
2208                        ++compat_entry;
2209                } else {
2210                        err = ___sys_recvmsg(sock,
2211                                             (struct user_msghdr __user *)entry,
2212                                             &msg_sys, flags & ~MSG_WAITFORONE,
2213                                             datagrams);
2214                        if (err < 0)
2215                                break;
2216                        err = put_user(err, &entry->msg_len);
2217                        ++entry;
2218                }
2219
2220                if (err)
2221                        break;
2222                ++datagrams;
2223
2224                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225                if (flags & MSG_WAITFORONE)
2226                        flags |= MSG_DONTWAIT;
2227
2228                if (timeout) {
2229                        ktime_get_ts(timeout);
2230                        *timeout = timespec_sub(end_time, *timeout);
2231                        if (timeout->tv_sec < 0) {
2232                                timeout->tv_sec = timeout->tv_nsec = 0;
2233                                break;
2234                        }
2235
2236                        /* Timeout, return less than vlen datagrams */
2237                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238                                break;
2239                }
2240
2241                /* Out of band data, return right away */
2242                if (msg_sys.msg_flags & MSG_OOB)
2243                        break;
2244                cond_resched();
2245        }
2246
2247        if (err == 0)
2248                goto out_put;
2249
2250        if (datagrams == 0) {
2251                datagrams = err;
2252                goto out_put;
2253        }
2254
2255        /*
2256         * We may return less entries than requested (vlen) if the
2257         * sock is non block and there aren't enough datagrams...
2258         */
2259        if (err != -EAGAIN) {
2260                /*
2261                 * ... or  if recvmsg returns an error after we
2262                 * received some datagrams, where we record the
2263                 * error to return on the next call or if the
2264                 * app asks about it using getsockopt(SO_ERROR).
2265                 */
2266                sock->sk->sk_err = -err;
2267        }
2268out_put:
2269        fput_light(sock->file, fput_needed);
2270
2271        return datagrams;
2272}
2273
2274SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275                unsigned int, vlen, unsigned int, flags,
2276                struct timespec __user *, timeout)
2277{
2278        int datagrams;
2279        struct timespec timeout_sys;
2280
2281        if (flags & MSG_CMSG_COMPAT)
2282                return -EINVAL;
2283
2284        if (!timeout)
2285                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286
2287        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288                return -EFAULT;
2289
2290        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2291
2292        if (datagrams > 0 &&
2293            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294                datagrams = -EFAULT;
2295
2296        return datagrams;
2297}
2298
2299#ifdef __ARCH_WANT_SYS_SOCKETCALL
2300/* Argument list sizes for sys_socketcall */
2301#define AL(x) ((x) * sizeof(unsigned long))
2302static const unsigned char nargs[21] = {
2303        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306        AL(4), AL(5), AL(4)
2307};
2308
2309#undef AL
2310
2311/*
2312 *      System call vectors.
2313 *
2314 *      Argument checking cleaned up. Saved 20% in size.
2315 *  This function doesn't need to set the kernel lock because
2316 *  it is set by the callees.
2317 */
2318
2319SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320{
2321        unsigned long a[AUDITSC_ARGS];
2322        unsigned long a0, a1;
2323        int err;
2324        unsigned int len;
2325
2326        if (call < 1 || call > SYS_SENDMMSG)
2327                return -EINVAL;
2328
2329        len = nargs[call];
2330        if (len > sizeof(a))
2331                return -EINVAL;
2332
2333        /* copy_from_user should be SMP safe. */
2334        if (copy_from_user(a, args, len))
2335                return -EFAULT;
2336
2337        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2338        if (err)
2339                return err;
2340
2341        a0 = a[0];
2342        a1 = a[1];
2343
2344        switch (call) {
2345        case SYS_SOCKET:
2346                err = sys_socket(a0, a1, a[2]);
2347                break;
2348        case SYS_BIND:
2349                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2350                break;
2351        case SYS_CONNECT:
2352                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2353                break;
2354        case SYS_LISTEN:
2355                err = sys_listen(a0, a1);
2356                break;
2357        case SYS_ACCEPT:
2358                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359                                  (int __user *)a[2], 0);
2360                break;
2361        case SYS_GETSOCKNAME:
2362                err =
2363                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2364                                    (int __user *)a[2]);
2365                break;
2366        case SYS_GETPEERNAME:
2367                err =
2368                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2369                                    (int __user *)a[2]);
2370                break;
2371        case SYS_SOCKETPAIR:
2372                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2373                break;
2374        case SYS_SEND:
2375                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2376                break;
2377        case SYS_SENDTO:
2378                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2379                                 (struct sockaddr __user *)a[4], a[5]);
2380                break;
2381        case SYS_RECV:
2382                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2383                break;
2384        case SYS_RECVFROM:
2385                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2386                                   (struct sockaddr __user *)a[4],
2387                                   (int __user *)a[5]);
2388                break;
2389        case SYS_SHUTDOWN:
2390                err = sys_shutdown(a0, a1);
2391                break;
2392        case SYS_SETSOCKOPT:
2393                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2394                break;
2395        case SYS_GETSOCKOPT:
2396                err =
2397                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2398                                   (int __user *)a[4]);
2399                break;
2400        case SYS_SENDMSG:
2401                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2402                break;
2403        case SYS_SENDMMSG:
2404                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2405                break;
2406        case SYS_RECVMSG:
2407                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2408                break;
2409        case SYS_RECVMMSG:
2410                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2411                                   (struct timespec __user *)a[4]);
2412                break;
2413        case SYS_ACCEPT4:
2414                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2415                                  (int __user *)a[2], a[3]);
2416                break;
2417        default:
2418                err = -EINVAL;
2419                break;
2420        }
2421        return err;
2422}
2423
2424#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2425
2426/**
2427 *      sock_register - add a socket protocol handler
2428 *      @ops: description of protocol
2429 *
2430 *      This function is called by a protocol handler that wants to
2431 *      advertise its address family, and have it linked into the
2432 *      socket interface. The value ops->family corresponds to the
2433 *      socket system call protocol family.
2434 */
2435int sock_register(const struct net_proto_family *ops)
2436{
2437        int err;
2438
2439        if (ops->family >= NPROTO) {
2440                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2441                return -ENOBUFS;
2442        }
2443
2444        spin_lock(&net_family_lock);
2445        if (rcu_dereference_protected(net_families[ops->family],
2446                                      lockdep_is_held(&net_family_lock)))
2447                err = -EEXIST;
2448        else {
2449                rcu_assign_pointer(net_families[ops->family], ops);
2450                err = 0;
2451        }
2452        spin_unlock(&net_family_lock);
2453
2454        pr_info("NET: Registered protocol family %d\n", ops->family);
2455        return err;
2456}
2457EXPORT_SYMBOL(sock_register);
2458
2459/**
2460 *      sock_unregister - remove a protocol handler
2461 *      @family: protocol family to remove
2462 *
2463 *      This function is called by a protocol handler that wants to
2464 *      remove its address family, and have it unlinked from the
2465 *      new socket creation.
2466 *
2467 *      If protocol handler is a module, then it can use module reference
2468 *      counts to protect against new references. If protocol handler is not
2469 *      a module then it needs to provide its own protection in
2470 *      the ops->create routine.
2471 */
2472void sock_unregister(int family)
2473{
2474        BUG_ON(family < 0 || family >= NPROTO);
2475
2476        spin_lock(&net_family_lock);
2477        RCU_INIT_POINTER(net_families[family], NULL);
2478        spin_unlock(&net_family_lock);
2479
2480        synchronize_rcu();
2481
2482        pr_info("NET: Unregistered protocol family %d\n", family);
2483}
2484EXPORT_SYMBOL(sock_unregister);
2485
2486static int __init sock_init(void)
2487{
2488        int err;
2489        /*
2490         *      Initialize the network sysctl infrastructure.
2491         */
2492        err = net_sysctl_init();
2493        if (err)
2494                goto out;
2495
2496        /*
2497         *      Initialize skbuff SLAB cache
2498         */
2499        skb_init();
2500
2501        /*
2502         *      Initialize the protocols module.
2503         */
2504
2505        init_inodecache();
2506
2507        err = register_filesystem(&sock_fs_type);
2508        if (err)
2509                goto out_fs;
2510        sock_mnt = kern_mount(&sock_fs_type);
2511        if (IS_ERR(sock_mnt)) {
2512                err = PTR_ERR(sock_mnt);
2513                goto out_mount;
2514        }
2515
2516        /* The real protocol initialization is performed in later initcalls.
2517         */
2518
2519#ifdef CONFIG_NETFILTER
2520        err = netfilter_init();
2521        if (err)
2522                goto out;
2523#endif
2524
2525        ptp_classifier_init();
2526
2527out:
2528        return err;
2529
2530out_mount:
2531        unregister_filesystem(&sock_fs_type);
2532out_fs:
2533        goto out;
2534}
2535
2536core_initcall(sock_init);       /* early initcall */
2537
2538#ifdef CONFIG_PROC_FS
2539void socket_seq_show(struct seq_file *seq)
2540{
2541        int cpu;
2542        int counter = 0;
2543
2544        for_each_possible_cpu(cpu)
2545            counter += per_cpu(sockets_in_use, cpu);
2546
2547        /* It can be negative, by the way. 8) */
2548        if (counter < 0)
2549                counter = 0;
2550
2551        seq_printf(seq, "sockets: used %d\n", counter);
2552}
2553#endif                          /* CONFIG_PROC_FS */
2554
2555#ifdef CONFIG_COMPAT
2556static int do_siocgstamp(struct net *net, struct socket *sock,
2557                         unsigned int cmd, void __user *up)
2558{
2559        mm_segment_t old_fs = get_fs();
2560        struct timeval ktv;
2561        int err;
2562
2563        set_fs(KERNEL_DS);
2564        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2565        set_fs(old_fs);
2566        if (!err)
2567                err = compat_put_timeval(&ktv, up);
2568
2569        return err;
2570}
2571
2572static int do_siocgstampns(struct net *net, struct socket *sock,
2573                           unsigned int cmd, void __user *up)
2574{
2575        mm_segment_t old_fs = get_fs();
2576        struct timespec kts;
2577        int err;
2578
2579        set_fs(KERNEL_DS);
2580        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2581        set_fs(old_fs);
2582        if (!err)
2583                err = compat_put_timespec(&kts, up);
2584
2585        return err;
2586}
2587
2588static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2589{
2590        struct ifreq __user *uifr;
2591        int err;
2592
2593        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2594        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2595                return -EFAULT;
2596
2597        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2598        if (err)
2599                return err;
2600
2601        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2602                return -EFAULT;
2603
2604        return 0;
2605}
2606
2607static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2608{
2609        struct compat_ifconf ifc32;
2610        struct ifconf ifc;
2611        struct ifconf __user *uifc;
2612        struct compat_ifreq __user *ifr32;
2613        struct ifreq __user *ifr;
2614        unsigned int i, j;
2615        int err;
2616
2617        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2618                return -EFAULT;
2619
2620        memset(&ifc, 0, sizeof(ifc));
2621        if (ifc32.ifcbuf == 0) {
2622                ifc32.ifc_len = 0;
2623                ifc.ifc_len = 0;
2624                ifc.ifc_req = NULL;
2625                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2626        } else {
2627                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2628                        sizeof(struct ifreq);
2629                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2630                ifc.ifc_len = len;
2631                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2632                ifr32 = compat_ptr(ifc32.ifcbuf);
2633                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2634                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2635                                return -EFAULT;
2636                        ifr++;
2637                        ifr32++;
2638                }
2639        }
2640        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2641                return -EFAULT;
2642
2643        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2644        if (err)
2645                return err;
2646
2647        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2648                return -EFAULT;
2649
2650        ifr = ifc.ifc_req;
2651        ifr32 = compat_ptr(ifc32.ifcbuf);
2652        for (i = 0, j = 0;
2653             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2654             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2655                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2656                        return -EFAULT;
2657                ifr32++;
2658                ifr++;
2659        }
2660
2661        if (ifc32.ifcbuf == 0) {
2662                /* Translate from 64-bit structure multiple to
2663                 * a 32-bit one.
2664                 */
2665                i = ifc.ifc_len;
2666                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2667                ifc32.ifc_len = i;
2668        } else {
2669                ifc32.ifc_len = i;
2670        }
2671        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2672                return -EFAULT;
2673
2674        return 0;
2675}
2676
2677static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2678{
2679        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2680        bool convert_in = false, convert_out = false;
2681        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2682        struct ethtool_rxnfc __user *rxnfc;
2683        struct ifreq __user *ifr;
2684        u32 rule_cnt = 0, actual_rule_cnt;
2685        u32 ethcmd;
2686        u32 data;
2687        int ret;
2688
2689        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2690                return -EFAULT;
2691
2692        compat_rxnfc = compat_ptr(data);
2693
2694        if (get_user(ethcmd, &compat_rxnfc->cmd))
2695                return -EFAULT;
2696
2697        /* Most ethtool structures are defined without padding.
2698         * Unfortunately struct ethtool_rxnfc is an exception.
2699         */
2700        switch (ethcmd) {
2701        default:
2702                break;
2703        case ETHTOOL_GRXCLSRLALL:
2704                /* Buffer size is variable */
2705                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2706                        return -EFAULT;
2707                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2708                        return -ENOMEM;
2709                buf_size += rule_cnt * sizeof(u32);
2710                /* fall through */
2711        case ETHTOOL_GRXRINGS:
2712        case ETHTOOL_GRXCLSRLCNT:
2713        case ETHTOOL_GRXCLSRULE:
2714        case ETHTOOL_SRXCLSRLINS:
2715                convert_out = true;
2716                /* fall through */
2717        case ETHTOOL_SRXCLSRLDEL:
2718                buf_size += sizeof(struct ethtool_rxnfc);
2719                convert_in = true;
2720                break;
2721        }
2722
2723        ifr = compat_alloc_user_space(buf_size);
2724        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2725
2726        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2727                return -EFAULT;
2728
2729        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2730                     &ifr->ifr_ifru.ifru_data))
2731                return -EFAULT;
2732
2733        if (convert_in) {
2734                /* We expect there to be holes between fs.m_ext and
2735                 * fs.ring_cookie and at the end of fs, but nowhere else.
2736                 */
2737                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2738                             sizeof(compat_rxnfc->fs.m_ext) !=
2739                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2740                             sizeof(rxnfc->fs.m_ext));
2741                BUILD_BUG_ON(
2742                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2743                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2744                        offsetof(struct ethtool_rxnfc, fs.location) -
2745                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2746
2747                if (copy_in_user(rxnfc, compat_rxnfc,
2748                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2749                                 (void __user *)rxnfc) ||
2750                    copy_in_user(&rxnfc->fs.ring_cookie,
2751                                 &compat_rxnfc->fs.ring_cookie,
2752                                 (void __user *)(&rxnfc->fs.location + 1) -
2753                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2754                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2755                                 sizeof(rxnfc->rule_cnt)))
2756                        return -EFAULT;
2757        }
2758
2759        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2760        if (ret)
2761                return ret;
2762
2763        if (convert_out) {
2764                if (copy_in_user(compat_rxnfc, rxnfc,
2765                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2766                                 (const void __user *)rxnfc) ||
2767                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2768                                 &rxnfc->fs.ring_cookie,
2769                                 (const void __user *)(&rxnfc->fs.location + 1) -
2770                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2771                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2772                                 sizeof(rxnfc->rule_cnt)))
2773                        return -EFAULT;
2774
2775                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2776                        /* As an optimisation, we only copy the actual
2777                         * number of rules that the underlying
2778                         * function returned.  Since Mallory might
2779                         * change the rule count in user memory, we
2780                         * check that it is less than the rule count
2781                         * originally given (as the user buffer size),
2782                         * which has been range-checked.
2783                         */
2784                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2785                                return -EFAULT;
2786                        if (actual_rule_cnt < rule_cnt)
2787                                rule_cnt = actual_rule_cnt;
2788                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2789                                         &rxnfc->rule_locs[0],
2790                                         rule_cnt * sizeof(u32)))
2791                                return -EFAULT;
2792                }
2793        }
2794
2795        return 0;
2796}
2797
2798static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2799{
2800        void __user *uptr;
2801        compat_uptr_t uptr32;
2802        struct ifreq __user *uifr;
2803
2804        uifr = compat_alloc_user_space(sizeof(*uifr));
2805        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806                return -EFAULT;
2807
2808        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2809                return -EFAULT;
2810
2811        uptr = compat_ptr(uptr32);
2812
2813        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2814                return -EFAULT;
2815
2816        return dev_ioctl(net, SIOCWANDEV, uifr);
2817}
2818
2819static int bond_ioctl(struct net *net, unsigned int cmd,
2820                         struct compat_ifreq __user *ifr32)
2821{
2822        struct ifreq kifr;
2823        mm_segment_t old_fs;
2824        int err;
2825
2826        switch (cmd) {
2827        case SIOCBONDENSLAVE:
2828        case SIOCBONDRELEASE:
2829        case SIOCBONDSETHWADDR:
2830        case SIOCBONDCHANGEACTIVE:
2831                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2832                        return -EFAULT;
2833
2834                old_fs = get_fs();
2835                set_fs(KERNEL_DS);
2836                err = dev_ioctl(net, cmd,
2837                                (struct ifreq __user __force *) &kifr);
2838                set_fs(old_fs);
2839
2840                return err;
2841        default:
2842                return -ENOIOCTLCMD;
2843        }
2844}
2845
2846/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2847static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2848                                 struct compat_ifreq __user *u_ifreq32)
2849{
2850        struct ifreq __user *u_ifreq64;
2851        char tmp_buf[IFNAMSIZ];
2852        void __user *data64;
2853        u32 data32;
2854
2855        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2856                           IFNAMSIZ))
2857                return -EFAULT;
2858        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2859                return -EFAULT;
2860        data64 = compat_ptr(data32);
2861
2862        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2863
2864        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2865                         IFNAMSIZ))
2866                return -EFAULT;
2867        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2868                return -EFAULT;
2869
2870        return dev_ioctl(net, cmd, u_ifreq64);
2871}
2872
2873static int dev_ifsioc(struct net *net, struct socket *sock,
2874                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2875{
2876        struct ifreq __user *uifr;
2877        int err;
2878
2879        uifr = compat_alloc_user_space(sizeof(*uifr));
2880        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2881                return -EFAULT;
2882
2883        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2884
2885        if (!err) {
2886                switch (cmd) {
2887                case SIOCGIFFLAGS:
2888                case SIOCGIFMETRIC:
2889                case SIOCGIFMTU:
2890                case SIOCGIFMEM:
2891                case SIOCGIFHWADDR:
2892                case SIOCGIFINDEX:
2893                case SIOCGIFADDR:
2894                case SIOCGIFBRDADDR:
2895                case SIOCGIFDSTADDR:
2896                case SIOCGIFNETMASK:
2897                case SIOCGIFPFLAGS:
2898                case SIOCGIFTXQLEN:
2899                case SIOCGMIIPHY:
2900                case SIOCGMIIREG:
2901                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2902                                err = -EFAULT;
2903                        break;
2904                }
2905        }
2906        return err;
2907}
2908
2909static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2910                        struct compat_ifreq __user *uifr32)
2911{
2912        struct ifreq ifr;
2913        struct compat_ifmap __user *uifmap32;
2914        mm_segment_t old_fs;
2915        int err;
2916
2917        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2918        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2919        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2920        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2921        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2922        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2923        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2924        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2925        if (err)
2926                return -EFAULT;
2927
2928        old_fs = get_fs();
2929        set_fs(KERNEL_DS);
2930        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2931        set_fs(old_fs);
2932
2933        if (cmd == SIOCGIFMAP && !err) {
2934                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2935                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2936                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2937                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2938                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2939                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2940                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2941                if (err)
2942                        err = -EFAULT;
2943        }
2944        return err;
2945}
2946
2947struct rtentry32 {
2948        u32             rt_pad1;
2949        struct sockaddr rt_dst;         /* target address               */
2950        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2951        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2952        unsigned short  rt_flags;
2953        short           rt_pad2;
2954        u32             rt_pad3;
2955        unsigned char   rt_tos;
2956        unsigned char   rt_class;
2957        short           rt_pad4;
2958        short           rt_metric;      /* +1 for binary compatibility! */
2959        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2960        u32             rt_mtu;         /* per route MTU/Window         */
2961        u32             rt_window;      /* Window clamping              */
2962        unsigned short  rt_irtt;        /* Initial RTT                  */
2963};
2964
2965struct in6_rtmsg32 {
2966        struct in6_addr         rtmsg_dst;
2967        struct in6_addr         rtmsg_src;
2968        struct in6_addr         rtmsg_gateway;
2969        u32                     rtmsg_type;
2970        u16                     rtmsg_dst_len;
2971        u16                     rtmsg_src_len;
2972        u32                     rtmsg_metric;
2973        u32                     rtmsg_info;
2974        u32                     rtmsg_flags;
2975        s32                     rtmsg_ifindex;
2976};
2977
2978static int routing_ioctl(struct net *net, struct socket *sock,
2979                         unsigned int cmd, void __user *argp)
2980{
2981        int ret;
2982        void *r = NULL;
2983        struct in6_rtmsg r6;
2984        struct rtentry r4;
2985        char devname[16];
2986        u32 rtdev;
2987        mm_segment_t old_fs = get_fs();
2988
2989        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2990                struct in6_rtmsg32 __user *ur6 = argp;
2991                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2992                        3 * sizeof(struct in6_addr));
2993                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2994                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2995                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2996                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2997                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2998                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2999                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3000
3001                r = (void *) &r6;
3002        } else { /* ipv4 */
3003                struct rtentry32 __user *ur4 = argp;
3004                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3005                                        3 * sizeof(struct sockaddr));
3006                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3007                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3008                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3009                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3010                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3011                ret |= get_user(rtdev, &(ur4->rt_dev));
3012                if (rtdev) {
3013                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3014                        r4.rt_dev = (char __user __force *)devname;
3015                        devname[15] = 0;
3016                } else
3017                        r4.rt_dev = NULL;
3018
3019                r = (void *) &r4;
3020        }
3021
3022        if (ret) {
3023                ret = -EFAULT;
3024                goto out;
3025        }
3026
3027        set_fs(KERNEL_DS);
3028        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3029        set_fs(old_fs);
3030
3031out:
3032        return ret;
3033}
3034
3035/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3036 * for some operations; this forces use of the newer bridge-utils that
3037 * use compatible ioctls
3038 */
3039static int old_bridge_ioctl(compat_ulong_t __user *argp)
3040{
3041        compat_ulong_t tmp;
3042
3043        if (get_user(tmp, argp))
3044                return -EFAULT;
3045        if (tmp == BRCTL_GET_VERSION)
3046                return BRCTL_VERSION + 1;
3047        return -EINVAL;
3048}
3049
3050static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3051                         unsigned int cmd, unsigned long arg)
3052{
3053        void __user *argp = compat_ptr(arg);
3054        struct sock *sk = sock->sk;
3055        struct net *net = sock_net(sk);
3056
3057        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3058                return compat_ifr_data_ioctl(net, cmd, argp);
3059
3060        switch (cmd) {
3061        case SIOCSIFBR:
3062        case SIOCGIFBR:
3063                return old_bridge_ioctl(argp);
3064        case SIOCGIFNAME:
3065                return dev_ifname32(net, argp);
3066        case SIOCGIFCONF:
3067                return dev_ifconf(net, argp);
3068        case SIOCETHTOOL:
3069                return ethtool_ioctl(net, argp);
3070        case SIOCWANDEV:
3071                return compat_siocwandev(net, argp);
3072        case SIOCGIFMAP:
3073        case SIOCSIFMAP:
3074                return compat_sioc_ifmap(net, cmd, argp);
3075        case SIOCBONDENSLAVE:
3076        case SIOCBONDRELEASE:
3077        case SIOCBONDSETHWADDR:
3078        case SIOCBONDCHANGEACTIVE:
3079                return bond_ioctl(net, cmd, argp);
3080        case SIOCADDRT:
3081        case SIOCDELRT:
3082                return routing_ioctl(net, sock, cmd, argp);
3083        case SIOCGSTAMP:
3084                return do_siocgstamp(net, sock, cmd, argp);
3085        case SIOCGSTAMPNS:
3086                return do_siocgstampns(net, sock, cmd, argp);
3087        case SIOCBONDSLAVEINFOQUERY:
3088        case SIOCBONDINFOQUERY:
3089        case SIOCSHWTSTAMP:
3090        case SIOCGHWTSTAMP:
3091                return compat_ifr_data_ioctl(net, cmd, argp);
3092
3093        case FIOSETOWN:
3094        case SIOCSPGRP:
3095        case FIOGETOWN:
3096        case SIOCGPGRP:
3097        case SIOCBRADDBR:
3098        case SIOCBRDELBR:
3099        case SIOCGIFVLAN:
3100        case SIOCSIFVLAN:
3101        case SIOCADDDLCI:
3102        case SIOCDELDLCI:
3103                return sock_ioctl(file, cmd, arg);
3104
3105        case SIOCGIFFLAGS:
3106        case SIOCSIFFLAGS:
3107        case SIOCGIFMETRIC:
3108        case SIOCSIFMETRIC:
3109        case SIOCGIFMTU:
3110        case SIOCSIFMTU:
3111        case SIOCGIFMEM:
3112        case SIOCSIFMEM:
3113        case SIOCGIFHWADDR:
3114        case SIOCSIFHWADDR:
3115        case SIOCADDMULTI:
3116        case SIOCDELMULTI:
3117        case SIOCGIFINDEX:
3118        case SIOCGIFADDR:
3119        case SIOCSIFADDR:
3120        case SIOCSIFHWBROADCAST:
3121        case SIOCDIFADDR:
3122        case SIOCGIFBRDADDR:
3123        case SIOCSIFBRDADDR:
3124        case SIOCGIFDSTADDR:
3125        case SIOCSIFDSTADDR:
3126        case SIOCGIFNETMASK:
3127        case SIOCSIFNETMASK:
3128        case SIOCSIFPFLAGS:
3129        case SIOCGIFPFLAGS:
3130        case SIOCGIFTXQLEN:
3131        case SIOCSIFTXQLEN:
3132        case SIOCBRADDIF:
3133        case SIOCBRDELIF:
3134        case SIOCSIFNAME:
3135        case SIOCGMIIPHY:
3136        case SIOCGMIIREG:
3137        case SIOCSMIIREG:
3138                return dev_ifsioc(net, sock, cmd, argp);
3139
3140        case SIOCSARP:
3141        case SIOCGARP:
3142        case SIOCDARP:
3143        case SIOCATMARK:
3144                return sock_do_ioctl(net, sock, cmd, arg);
3145        }
3146
3147        return -ENOIOCTLCMD;
3148}
3149
3150static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3151                              unsigned long arg)
3152{
3153        struct socket *sock = file->private_data;
3154        int ret = -ENOIOCTLCMD;
3155        struct sock *sk;
3156        struct net *net;
3157
3158        sk = sock->sk;
3159        net = sock_net(sk);
3160
3161        if (sock->ops->compat_ioctl)
3162                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3163
3164        if (ret == -ENOIOCTLCMD &&
3165            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3166                ret = compat_wext_handle_ioctl(net, cmd, arg);
3167
3168        if (ret == -ENOIOCTLCMD)
3169                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3170
3171        return ret;
3172}
3173#endif
3174
3175int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3176{
3177        return sock->ops->bind(sock, addr, addrlen);
3178}
3179EXPORT_SYMBOL(kernel_bind);
3180
3181int kernel_listen(struct socket *sock, int backlog)
3182{
3183        return sock->ops->listen(sock, backlog);
3184}
3185EXPORT_SYMBOL(kernel_listen);
3186
3187int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3188{
3189        struct sock *sk = sock->sk;
3190        int err;
3191
3192        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3193                               newsock);
3194        if (err < 0)
3195                goto done;
3196
3197        err = sock->ops->accept(sock, *newsock, flags);
3198        if (err < 0) {
3199                sock_release(*newsock);
3200                *newsock = NULL;
3201                goto done;
3202        }
3203
3204        (*newsock)->ops = sock->ops;
3205        __module_get((*newsock)->ops->owner);
3206
3207done:
3208        return err;
3209}
3210EXPORT_SYMBOL(kernel_accept);
3211
3212int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3213                   int flags)
3214{
3215        return sock->ops->connect(sock, addr, addrlen, flags);
3216}
3217EXPORT_SYMBOL(kernel_connect);
3218
3219int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3220                         int *addrlen)
3221{
3222        return sock->ops->getname(sock, addr, addrlen, 0);
3223}
3224EXPORT_SYMBOL(kernel_getsockname);
3225
3226int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3227                         int *addrlen)
3228{
3229        return sock->ops->getname(sock, addr, addrlen, 1);
3230}
3231EXPORT_SYMBOL(kernel_getpeername);
3232
3233int kernel_getsockopt(struct socket *sock, int level, int optname,
3234                        char *optval, int *optlen)
3235{
3236        mm_segment_t oldfs = get_fs();
3237        char __user *uoptval;
3238        int __user *uoptlen;
3239        int err;
3240
3241        uoptval = (char __user __force *) optval;
3242        uoptlen = (int __user __force *) optlen;
3243
3244        set_fs(KERNEL_DS);
3245        if (level == SOL_SOCKET)
3246                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3247        else
3248                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3249                                            uoptlen);
3250        set_fs(oldfs);
3251        return err;
3252}
3253EXPORT_SYMBOL(kernel_getsockopt);
3254
3255int kernel_setsockopt(struct socket *sock, int level, int optname,
3256                        char *optval, unsigned int optlen)
3257{
3258        mm_segment_t oldfs = get_fs();
3259        char __user *uoptval;
3260        int err;
3261
3262        uoptval = (char __user __force *) optval;
3263
3264        set_fs(KERNEL_DS);
3265        if (level == SOL_SOCKET)
3266                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3267        else
3268                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3269                                            optlen);
3270        set_fs(oldfs);
3271        return err;
3272}
3273EXPORT_SYMBOL(kernel_setsockopt);
3274
3275int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3276                    size_t size, int flags)
3277{
3278        if (sock->ops->sendpage)
3279                return sock->ops->sendpage(sock, page, offset, size, flags);
3280
3281        return sock_no_sendpage(sock, page, offset, size, flags);
3282}
3283EXPORT_SYMBOL(kernel_sendpage);
3284
3285int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3286{
3287        mm_segment_t oldfs = get_fs();
3288        int err;
3289
3290        set_fs(KERNEL_DS);
3291        err = sock->ops->ioctl(sock, cmd, arg);
3292        set_fs(oldfs);
3293
3294        return err;
3295}
3296EXPORT_SYMBOL(kernel_sock_ioctl);
3297
3298int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3299{
3300        return sock->ops->shutdown(sock, how);
3301}
3302EXPORT_SYMBOL(kernel_sock_shutdown);
3303