linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1/*
   2 * VMware vSockets Driver
   3 *
   4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 */
  15
  16/* Implementation notes:
  17 *
  18 * - There are two kinds of sockets: those created by user action (such as
  19 * calling socket(2)) and those created by incoming connection request packets.
  20 *
  21 * - There are two "global" tables, one for bound sockets (sockets that have
  22 * specified an address that they are responsible for) and one for connected
  23 * sockets (sockets that have established a connection with another socket).
  24 * These tables are "global" in that all sockets on the system are placed
  25 * within them. - Note, though, that the bound table contains an extra entry
  26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  27 * that list. The bound table is used solely for lookup of sockets when packets
  28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  30 * sockets out of the bound hash buckets will reduce the chance of collisions
  31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  32 * socket type in the hash table lookups.
  33 *
  34 * - Sockets created by user action will either be "client" sockets that
  35 * initiate a connection or "server" sockets that listen for connections; we do
  36 * not support simultaneous connects (two "client" sockets connecting).
  37 *
  38 * - "Server" sockets are referred to as listener sockets throughout this
  39 * implementation because they are in the VSOCK_SS_LISTEN state.  When a
  40 * connection request is received (the second kind of socket mentioned above),
  41 * we create a new socket and refer to it as a pending socket.  These pending
  42 * sockets are placed on the pending connection list of the listener socket.
  43 * When future packets are received for the address the listener socket is
  44 * bound to, we check if the source of the packet is from one that has an
  45 * existing pending connection.  If it does, we process the packet for the
  46 * pending socket.  When that socket reaches the connected state, it is removed
  47 * from the listener socket's pending list and enqueued in the listener
  48 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  49 * from the listener socket's accept queue.  If the socket cannot be accepted
  50 * for some reason then it is marked rejected.  Once the connection is
  51 * accepted, it is owned by the user process and the responsibility for cleanup
  52 * falls with that user process.
  53 *
  54 * - It is possible that these pending sockets will never reach the connected
  55 * state; in fact, we may never receive another packet after the connection
  56 * request.  Because of this, we must schedule a cleanup function to run in the
  57 * future, after some amount of time passes where a connection should have been
  58 * established.  This function ensures that the socket is off all lists so it
  59 * cannot be retrieved, then drops all references to the socket so it is cleaned
  60 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  61 * function will also cleanup rejected sockets, those that reach the connected
  62 * state but leave it before they have been accepted.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 */
  78
  79#include <linux/types.h>
  80#include <linux/bitops.h>
  81#include <linux/cred.h>
  82#include <linux/init.h>
  83#include <linux/io.h>
  84#include <linux/kernel.h>
  85#include <linux/kmod.h>
  86#include <linux/list.h>
  87#include <linux/miscdevice.h>
  88#include <linux/module.h>
  89#include <linux/mutex.h>
  90#include <linux/net.h>
  91#include <linux/poll.h>
  92#include <linux/skbuff.h>
  93#include <linux/smp.h>
  94#include <linux/socket.h>
  95#include <linux/stddef.h>
  96#include <linux/unistd.h>
  97#include <linux/wait.h>
  98#include <linux/workqueue.h>
  99#include <net/sock.h>
 100#include <net/af_vsock.h>
 101
 102static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 103static void vsock_sk_destruct(struct sock *sk);
 104static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 105
 106/* Protocol family. */
 107static struct proto vsock_proto = {
 108        .name = "AF_VSOCK",
 109        .owner = THIS_MODULE,
 110        .obj_size = sizeof(struct vsock_sock),
 111};
 112
 113/* The default peer timeout indicates how long we will wait for a peer response
 114 * to a control message.
 115 */
 116#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 117
 118static const struct vsock_transport *transport;
 119static DEFINE_MUTEX(vsock_register_mutex);
 120
 121/**** EXPORTS ****/
 122
 123/* Get the ID of the local context.  This is transport dependent. */
 124
 125int vm_sockets_get_local_cid(void)
 126{
 127        return transport->get_local_cid();
 128}
 129EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
 130
 131/**** UTILS ****/
 132
 133/* Each bound VSocket is stored in the bind hash table and each connected
 134 * VSocket is stored in the connected hash table.
 135 *
 136 * Unbound sockets are all put on the same list attached to the end of the hash
 137 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 138 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 139 * represents the list that addr hashes to).
 140 *
 141 * Specifically, we initialize the vsock_bind_table array to a size of
 142 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 143 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 144 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 145 * mods with VSOCK_HASH_SIZE to ensure this.
 146 */
 147#define VSOCK_HASH_SIZE         251
 148#define MAX_PORT_RETRIES        24
 149
 150#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 151#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 152#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 153
 154/* XXX This can probably be implemented in a better way. */
 155#define VSOCK_CONN_HASH(src, dst)                               \
 156        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 157#define vsock_connected_sockets(src, dst)               \
 158        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 159#define vsock_connected_sockets_vsk(vsk)                                \
 160        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 161
 162static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 163static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 164static DEFINE_SPINLOCK(vsock_table_lock);
 165
 166/* Autobind this socket to the local address if necessary. */
 167static int vsock_auto_bind(struct vsock_sock *vsk)
 168{
 169        struct sock *sk = sk_vsock(vsk);
 170        struct sockaddr_vm local_addr;
 171
 172        if (vsock_addr_bound(&vsk->local_addr))
 173                return 0;
 174        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 175        return __vsock_bind(sk, &local_addr);
 176}
 177
 178static void vsock_init_tables(void)
 179{
 180        int i;
 181
 182        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 183                INIT_LIST_HEAD(&vsock_bind_table[i]);
 184
 185        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 186                INIT_LIST_HEAD(&vsock_connected_table[i]);
 187}
 188
 189static void __vsock_insert_bound(struct list_head *list,
 190                                 struct vsock_sock *vsk)
 191{
 192        sock_hold(&vsk->sk);
 193        list_add(&vsk->bound_table, list);
 194}
 195
 196static void __vsock_insert_connected(struct list_head *list,
 197                                     struct vsock_sock *vsk)
 198{
 199        sock_hold(&vsk->sk);
 200        list_add(&vsk->connected_table, list);
 201}
 202
 203static void __vsock_remove_bound(struct vsock_sock *vsk)
 204{
 205        list_del_init(&vsk->bound_table);
 206        sock_put(&vsk->sk);
 207}
 208
 209static void __vsock_remove_connected(struct vsock_sock *vsk)
 210{
 211        list_del_init(&vsk->connected_table);
 212        sock_put(&vsk->sk);
 213}
 214
 215static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 216{
 217        struct vsock_sock *vsk;
 218
 219        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
 220                if (addr->svm_port == vsk->local_addr.svm_port)
 221                        return sk_vsock(vsk);
 222
 223        return NULL;
 224}
 225
 226static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 227                                                  struct sockaddr_vm *dst)
 228{
 229        struct vsock_sock *vsk;
 230
 231        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 232                            connected_table) {
 233                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 234                    dst->svm_port == vsk->local_addr.svm_port) {
 235                        return sk_vsock(vsk);
 236                }
 237        }
 238
 239        return NULL;
 240}
 241
 242static bool __vsock_in_bound_table(struct vsock_sock *vsk)
 243{
 244        return !list_empty(&vsk->bound_table);
 245}
 246
 247static bool __vsock_in_connected_table(struct vsock_sock *vsk)
 248{
 249        return !list_empty(&vsk->connected_table);
 250}
 251
 252static void vsock_insert_unbound(struct vsock_sock *vsk)
 253{
 254        spin_lock_bh(&vsock_table_lock);
 255        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 256        spin_unlock_bh(&vsock_table_lock);
 257}
 258
 259void vsock_insert_connected(struct vsock_sock *vsk)
 260{
 261        struct list_head *list = vsock_connected_sockets(
 262                &vsk->remote_addr, &vsk->local_addr);
 263
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_connected(list, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268EXPORT_SYMBOL_GPL(vsock_insert_connected);
 269
 270void vsock_remove_bound(struct vsock_sock *vsk)
 271{
 272        spin_lock_bh(&vsock_table_lock);
 273        __vsock_remove_bound(vsk);
 274        spin_unlock_bh(&vsock_table_lock);
 275}
 276EXPORT_SYMBOL_GPL(vsock_remove_bound);
 277
 278void vsock_remove_connected(struct vsock_sock *vsk)
 279{
 280        spin_lock_bh(&vsock_table_lock);
 281        __vsock_remove_connected(vsk);
 282        spin_unlock_bh(&vsock_table_lock);
 283}
 284EXPORT_SYMBOL_GPL(vsock_remove_connected);
 285
 286struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 287{
 288        struct sock *sk;
 289
 290        spin_lock_bh(&vsock_table_lock);
 291        sk = __vsock_find_bound_socket(addr);
 292        if (sk)
 293                sock_hold(sk);
 294
 295        spin_unlock_bh(&vsock_table_lock);
 296
 297        return sk;
 298}
 299EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 300
 301struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 302                                         struct sockaddr_vm *dst)
 303{
 304        struct sock *sk;
 305
 306        spin_lock_bh(&vsock_table_lock);
 307        sk = __vsock_find_connected_socket(src, dst);
 308        if (sk)
 309                sock_hold(sk);
 310
 311        spin_unlock_bh(&vsock_table_lock);
 312
 313        return sk;
 314}
 315EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 316
 317static bool vsock_in_bound_table(struct vsock_sock *vsk)
 318{
 319        bool ret;
 320
 321        spin_lock_bh(&vsock_table_lock);
 322        ret = __vsock_in_bound_table(vsk);
 323        spin_unlock_bh(&vsock_table_lock);
 324
 325        return ret;
 326}
 327
 328static bool vsock_in_connected_table(struct vsock_sock *vsk)
 329{
 330        bool ret;
 331
 332        spin_lock_bh(&vsock_table_lock);
 333        ret = __vsock_in_connected_table(vsk);
 334        spin_unlock_bh(&vsock_table_lock);
 335
 336        return ret;
 337}
 338
 339void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 340{
 341        int i;
 342
 343        spin_lock_bh(&vsock_table_lock);
 344
 345        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 346                struct vsock_sock *vsk;
 347                list_for_each_entry(vsk, &vsock_connected_table[i],
 348                                    connected_table)
 349                        fn(sk_vsock(vsk));
 350        }
 351
 352        spin_unlock_bh(&vsock_table_lock);
 353}
 354EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 355
 356void vsock_add_pending(struct sock *listener, struct sock *pending)
 357{
 358        struct vsock_sock *vlistener;
 359        struct vsock_sock *vpending;
 360
 361        vlistener = vsock_sk(listener);
 362        vpending = vsock_sk(pending);
 363
 364        sock_hold(pending);
 365        sock_hold(listener);
 366        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 367}
 368EXPORT_SYMBOL_GPL(vsock_add_pending);
 369
 370void vsock_remove_pending(struct sock *listener, struct sock *pending)
 371{
 372        struct vsock_sock *vpending = vsock_sk(pending);
 373
 374        list_del_init(&vpending->pending_links);
 375        sock_put(listener);
 376        sock_put(pending);
 377}
 378EXPORT_SYMBOL_GPL(vsock_remove_pending);
 379
 380void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 381{
 382        struct vsock_sock *vlistener;
 383        struct vsock_sock *vconnected;
 384
 385        vlistener = vsock_sk(listener);
 386        vconnected = vsock_sk(connected);
 387
 388        sock_hold(connected);
 389        sock_hold(listener);
 390        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 391}
 392EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 393
 394static struct sock *vsock_dequeue_accept(struct sock *listener)
 395{
 396        struct vsock_sock *vlistener;
 397        struct vsock_sock *vconnected;
 398
 399        vlistener = vsock_sk(listener);
 400
 401        if (list_empty(&vlistener->accept_queue))
 402                return NULL;
 403
 404        vconnected = list_entry(vlistener->accept_queue.next,
 405                                struct vsock_sock, accept_queue);
 406
 407        list_del_init(&vconnected->accept_queue);
 408        sock_put(listener);
 409        /* The caller will need a reference on the connected socket so we let
 410         * it call sock_put().
 411         */
 412
 413        return sk_vsock(vconnected);
 414}
 415
 416static bool vsock_is_accept_queue_empty(struct sock *sk)
 417{
 418        struct vsock_sock *vsk = vsock_sk(sk);
 419        return list_empty(&vsk->accept_queue);
 420}
 421
 422static bool vsock_is_pending(struct sock *sk)
 423{
 424        struct vsock_sock *vsk = vsock_sk(sk);
 425        return !list_empty(&vsk->pending_links);
 426}
 427
 428static int vsock_send_shutdown(struct sock *sk, int mode)
 429{
 430        return transport->shutdown(vsock_sk(sk), mode);
 431}
 432
 433void vsock_pending_work(struct work_struct *work)
 434{
 435        struct sock *sk;
 436        struct sock *listener;
 437        struct vsock_sock *vsk;
 438        bool cleanup;
 439
 440        vsk = container_of(work, struct vsock_sock, dwork.work);
 441        sk = sk_vsock(vsk);
 442        listener = vsk->listener;
 443        cleanup = true;
 444
 445        lock_sock(listener);
 446        lock_sock(sk);
 447
 448        if (vsock_is_pending(sk)) {
 449                vsock_remove_pending(listener, sk);
 450        } else if (!vsk->rejected) {
 451                /* We are not on the pending list and accept() did not reject
 452                 * us, so we must have been accepted by our user process.  We
 453                 * just need to drop our references to the sockets and be on
 454                 * our way.
 455                 */
 456                cleanup = false;
 457                goto out;
 458        }
 459
 460        listener->sk_ack_backlog--;
 461
 462        /* We need to remove ourself from the global connected sockets list so
 463         * incoming packets can't find this socket, and to reduce the reference
 464         * count.
 465         */
 466        if (vsock_in_connected_table(vsk))
 467                vsock_remove_connected(vsk);
 468
 469        sk->sk_state = SS_FREE;
 470
 471out:
 472        release_sock(sk);
 473        release_sock(listener);
 474        if (cleanup)
 475                sock_put(sk);
 476
 477        sock_put(sk);
 478        sock_put(listener);
 479}
 480EXPORT_SYMBOL_GPL(vsock_pending_work);
 481
 482/**** SOCKET OPERATIONS ****/
 483
 484static int __vsock_bind_stream(struct vsock_sock *vsk,
 485                               struct sockaddr_vm *addr)
 486{
 487        static u32 port = LAST_RESERVED_PORT + 1;
 488        struct sockaddr_vm new_addr;
 489
 490        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 491
 492        if (addr->svm_port == VMADDR_PORT_ANY) {
 493                bool found = false;
 494                unsigned int i;
 495
 496                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 497                        if (port <= LAST_RESERVED_PORT)
 498                                port = LAST_RESERVED_PORT + 1;
 499
 500                        new_addr.svm_port = port++;
 501
 502                        if (!__vsock_find_bound_socket(&new_addr)) {
 503                                found = true;
 504                                break;
 505                        }
 506                }
 507
 508                if (!found)
 509                        return -EADDRNOTAVAIL;
 510        } else {
 511                /* If port is in reserved range, ensure caller
 512                 * has necessary privileges.
 513                 */
 514                if (addr->svm_port <= LAST_RESERVED_PORT &&
 515                    !capable(CAP_NET_BIND_SERVICE)) {
 516                        return -EACCES;
 517                }
 518
 519                if (__vsock_find_bound_socket(&new_addr))
 520                        return -EADDRINUSE;
 521        }
 522
 523        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 524
 525        /* Remove stream sockets from the unbound list and add them to the hash
 526         * table for easy lookup by its address.  The unbound list is simply an
 527         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 528         */
 529        __vsock_remove_bound(vsk);
 530        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 531
 532        return 0;
 533}
 534
 535static int __vsock_bind_dgram(struct vsock_sock *vsk,
 536                              struct sockaddr_vm *addr)
 537{
 538        return transport->dgram_bind(vsk, addr);
 539}
 540
 541static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 542{
 543        struct vsock_sock *vsk = vsock_sk(sk);
 544        u32 cid;
 545        int retval;
 546
 547        /* First ensure this socket isn't already bound. */
 548        if (vsock_addr_bound(&vsk->local_addr))
 549                return -EINVAL;
 550
 551        /* Now bind to the provided address or select appropriate values if
 552         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 553         * like AF_INET prevents binding to a non-local IP address (in most
 554         * cases), we only allow binding to the local CID.
 555         */
 556        cid = transport->get_local_cid();
 557        if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
 558                return -EADDRNOTAVAIL;
 559
 560        switch (sk->sk_socket->type) {
 561        case SOCK_STREAM:
 562                spin_lock_bh(&vsock_table_lock);
 563                retval = __vsock_bind_stream(vsk, addr);
 564                spin_unlock_bh(&vsock_table_lock);
 565                break;
 566
 567        case SOCK_DGRAM:
 568                retval = __vsock_bind_dgram(vsk, addr);
 569                break;
 570
 571        default:
 572                retval = -EINVAL;
 573                break;
 574        }
 575
 576        return retval;
 577}
 578
 579struct sock *__vsock_create(struct net *net,
 580                            struct socket *sock,
 581                            struct sock *parent,
 582                            gfp_t priority,
 583                            unsigned short type,
 584                            int kern)
 585{
 586        struct sock *sk;
 587        struct vsock_sock *psk;
 588        struct vsock_sock *vsk;
 589
 590        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 591        if (!sk)
 592                return NULL;
 593
 594        sock_init_data(sock, sk);
 595
 596        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 597         * non-NULL. We make sure that our sockets always have a type by
 598         * setting it here if needed.
 599         */
 600        if (!sock)
 601                sk->sk_type = type;
 602
 603        vsk = vsock_sk(sk);
 604        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 605        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 606
 607        sk->sk_destruct = vsock_sk_destruct;
 608        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 609        sk->sk_state = 0;
 610        sock_reset_flag(sk, SOCK_DONE);
 611
 612        INIT_LIST_HEAD(&vsk->bound_table);
 613        INIT_LIST_HEAD(&vsk->connected_table);
 614        vsk->listener = NULL;
 615        INIT_LIST_HEAD(&vsk->pending_links);
 616        INIT_LIST_HEAD(&vsk->accept_queue);
 617        vsk->rejected = false;
 618        vsk->sent_request = false;
 619        vsk->ignore_connecting_rst = false;
 620        vsk->peer_shutdown = 0;
 621
 622        psk = parent ? vsock_sk(parent) : NULL;
 623        if (parent) {
 624                vsk->trusted = psk->trusted;
 625                vsk->owner = get_cred(psk->owner);
 626                vsk->connect_timeout = psk->connect_timeout;
 627        } else {
 628                vsk->trusted = capable(CAP_NET_ADMIN);
 629                vsk->owner = get_current_cred();
 630                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 631        }
 632
 633        if (transport->init(vsk, psk) < 0) {
 634                sk_free(sk);
 635                return NULL;
 636        }
 637
 638        if (sock)
 639                vsock_insert_unbound(vsk);
 640
 641        return sk;
 642}
 643EXPORT_SYMBOL_GPL(__vsock_create);
 644
 645static void __vsock_release(struct sock *sk)
 646{
 647        if (sk) {
 648                struct sk_buff *skb;
 649                struct sock *pending;
 650                struct vsock_sock *vsk;
 651
 652                vsk = vsock_sk(sk);
 653                pending = NULL; /* Compiler warning. */
 654
 655                if (vsock_in_bound_table(vsk))
 656                        vsock_remove_bound(vsk);
 657
 658                if (vsock_in_connected_table(vsk))
 659                        vsock_remove_connected(vsk);
 660
 661                transport->release(vsk);
 662
 663                lock_sock(sk);
 664                sock_orphan(sk);
 665                sk->sk_shutdown = SHUTDOWN_MASK;
 666
 667                while ((skb = skb_dequeue(&sk->sk_receive_queue)))
 668                        kfree_skb(skb);
 669
 670                /* Clean up any sockets that never were accepted. */
 671                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 672                        __vsock_release(pending);
 673                        sock_put(pending);
 674                }
 675
 676                release_sock(sk);
 677                sock_put(sk);
 678        }
 679}
 680
 681static void vsock_sk_destruct(struct sock *sk)
 682{
 683        struct vsock_sock *vsk = vsock_sk(sk);
 684
 685        transport->destruct(vsk);
 686
 687        /* When clearing these addresses, there's no need to set the family and
 688         * possibly register the address family with the kernel.
 689         */
 690        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 691        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 692
 693        put_cred(vsk->owner);
 694}
 695
 696static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 697{
 698        int err;
 699
 700        err = sock_queue_rcv_skb(sk, skb);
 701        if (err)
 702                kfree_skb(skb);
 703
 704        return err;
 705}
 706
 707s64 vsock_stream_has_data(struct vsock_sock *vsk)
 708{
 709        return transport->stream_has_data(vsk);
 710}
 711EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 712
 713s64 vsock_stream_has_space(struct vsock_sock *vsk)
 714{
 715        return transport->stream_has_space(vsk);
 716}
 717EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 718
 719static int vsock_release(struct socket *sock)
 720{
 721        __vsock_release(sock->sk);
 722        sock->sk = NULL;
 723        sock->state = SS_FREE;
 724
 725        return 0;
 726}
 727
 728static int
 729vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 730{
 731        int err;
 732        struct sock *sk;
 733        struct sockaddr_vm *vm_addr;
 734
 735        sk = sock->sk;
 736
 737        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 738                return -EINVAL;
 739
 740        lock_sock(sk);
 741        err = __vsock_bind(sk, vm_addr);
 742        release_sock(sk);
 743
 744        return err;
 745}
 746
 747static int vsock_getname(struct socket *sock,
 748                         struct sockaddr *addr, int *addr_len, int peer)
 749{
 750        int err;
 751        struct sock *sk;
 752        struct vsock_sock *vsk;
 753        struct sockaddr_vm *vm_addr;
 754
 755        sk = sock->sk;
 756        vsk = vsock_sk(sk);
 757        err = 0;
 758
 759        lock_sock(sk);
 760
 761        if (peer) {
 762                if (sock->state != SS_CONNECTED) {
 763                        err = -ENOTCONN;
 764                        goto out;
 765                }
 766                vm_addr = &vsk->remote_addr;
 767        } else {
 768                vm_addr = &vsk->local_addr;
 769        }
 770
 771        if (!vm_addr) {
 772                err = -EINVAL;
 773                goto out;
 774        }
 775
 776        /* sys_getsockname() and sys_getpeername() pass us a
 777         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 778         * that macro is defined in socket.c instead of .h, so we hardcode its
 779         * value here.
 780         */
 781        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 782        memcpy(addr, vm_addr, sizeof(*vm_addr));
 783        *addr_len = sizeof(*vm_addr);
 784
 785out:
 786        release_sock(sk);
 787        return err;
 788}
 789
 790static int vsock_shutdown(struct socket *sock, int mode)
 791{
 792        int err;
 793        struct sock *sk;
 794
 795        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 796         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 797         * here like the other address families do.  Note also that the
 798         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 799         * which is what we want.
 800         */
 801        mode++;
 802
 803        if ((mode & ~SHUTDOWN_MASK) || !mode)
 804                return -EINVAL;
 805
 806        /* If this is a STREAM socket and it is not connected then bail out
 807         * immediately.  If it is a DGRAM socket then we must first kick the
 808         * socket so that it wakes up from any sleeping calls, for example
 809         * recv(), and then afterwards return the error.
 810         */
 811
 812        sk = sock->sk;
 813        if (sock->state == SS_UNCONNECTED) {
 814                err = -ENOTCONN;
 815                if (sk->sk_type == SOCK_STREAM)
 816                        return err;
 817        } else {
 818                sock->state = SS_DISCONNECTING;
 819                err = 0;
 820        }
 821
 822        /* Receive and send shutdowns are treated alike. */
 823        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 824        if (mode) {
 825                lock_sock(sk);
 826                sk->sk_shutdown |= mode;
 827                sk->sk_state_change(sk);
 828                release_sock(sk);
 829
 830                if (sk->sk_type == SOCK_STREAM) {
 831                        sock_reset_flag(sk, SOCK_DONE);
 832                        vsock_send_shutdown(sk, mode);
 833                }
 834        }
 835
 836        return err;
 837}
 838
 839static unsigned int vsock_poll(struct file *file, struct socket *sock,
 840                               poll_table *wait)
 841{
 842        struct sock *sk;
 843        unsigned int mask;
 844        struct vsock_sock *vsk;
 845
 846        sk = sock->sk;
 847        vsk = vsock_sk(sk);
 848
 849        poll_wait(file, sk_sleep(sk), wait);
 850        mask = 0;
 851
 852        if (sk->sk_err)
 853                /* Signify that there has been an error on this socket. */
 854                mask |= POLLERR;
 855
 856        /* INET sockets treat local write shutdown and peer write shutdown as a
 857         * case of POLLHUP set.
 858         */
 859        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 860            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 861             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 862                mask |= POLLHUP;
 863        }
 864
 865        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 866            vsk->peer_shutdown & SEND_SHUTDOWN) {
 867                mask |= POLLRDHUP;
 868        }
 869
 870        if (sock->type == SOCK_DGRAM) {
 871                /* For datagram sockets we can read if there is something in
 872                 * the queue and write as long as the socket isn't shutdown for
 873                 * sending.
 874                 */
 875                if (!skb_queue_empty(&sk->sk_receive_queue) ||
 876                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 877                        mask |= POLLIN | POLLRDNORM;
 878                }
 879
 880                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 881                        mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
 882
 883        } else if (sock->type == SOCK_STREAM) {
 884                lock_sock(sk);
 885
 886                /* Listening sockets that have connections in their accept
 887                 * queue can be read.
 888                 */
 889                if (sk->sk_state == VSOCK_SS_LISTEN
 890                    && !vsock_is_accept_queue_empty(sk))
 891                        mask |= POLLIN | POLLRDNORM;
 892
 893                /* If there is something in the queue then we can read. */
 894                if (transport->stream_is_active(vsk) &&
 895                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 896                        bool data_ready_now = false;
 897                        int ret = transport->notify_poll_in(
 898                                        vsk, 1, &data_ready_now);
 899                        if (ret < 0) {
 900                                mask |= POLLERR;
 901                        } else {
 902                                if (data_ready_now)
 903                                        mask |= POLLIN | POLLRDNORM;
 904
 905                        }
 906                }
 907
 908                /* Sockets whose connections have been closed, reset, or
 909                 * terminated should also be considered read, and we check the
 910                 * shutdown flag for that.
 911                 */
 912                if (sk->sk_shutdown & RCV_SHUTDOWN ||
 913                    vsk->peer_shutdown & SEND_SHUTDOWN) {
 914                        mask |= POLLIN | POLLRDNORM;
 915                }
 916
 917                /* Connected sockets that can produce data can be written. */
 918                if (sk->sk_state == SS_CONNECTED) {
 919                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 920                                bool space_avail_now = false;
 921                                int ret = transport->notify_poll_out(
 922                                                vsk, 1, &space_avail_now);
 923                                if (ret < 0) {
 924                                        mask |= POLLERR;
 925                                } else {
 926                                        if (space_avail_now)
 927                                                /* Remove POLLWRBAND since INET
 928                                                 * sockets are not setting it.
 929                                                 */
 930                                                mask |= POLLOUT | POLLWRNORM;
 931
 932                                }
 933                        }
 934                }
 935
 936                /* Simulate INET socket poll behaviors, which sets
 937                 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
 938                 * but local send is not shutdown.
 939                 */
 940                if (sk->sk_state == SS_UNCONNECTED) {
 941                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 942                                mask |= POLLOUT | POLLWRNORM;
 943
 944                }
 945
 946                release_sock(sk);
 947        }
 948
 949        return mask;
 950}
 951
 952static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
 953                               size_t len)
 954{
 955        int err;
 956        struct sock *sk;
 957        struct vsock_sock *vsk;
 958        struct sockaddr_vm *remote_addr;
 959
 960        if (msg->msg_flags & MSG_OOB)
 961                return -EOPNOTSUPP;
 962
 963        /* For now, MSG_DONTWAIT is always assumed... */
 964        err = 0;
 965        sk = sock->sk;
 966        vsk = vsock_sk(sk);
 967
 968        lock_sock(sk);
 969
 970        err = vsock_auto_bind(vsk);
 971        if (err)
 972                goto out;
 973
 974
 975        /* If the provided message contains an address, use that.  Otherwise
 976         * fall back on the socket's remote handle (if it has been connected).
 977         */
 978        if (msg->msg_name &&
 979            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
 980                            &remote_addr) == 0) {
 981                /* Ensure this address is of the right type and is a valid
 982                 * destination.
 983                 */
 984
 985                if (remote_addr->svm_cid == VMADDR_CID_ANY)
 986                        remote_addr->svm_cid = transport->get_local_cid();
 987
 988                if (!vsock_addr_bound(remote_addr)) {
 989                        err = -EINVAL;
 990                        goto out;
 991                }
 992        } else if (sock->state == SS_CONNECTED) {
 993                remote_addr = &vsk->remote_addr;
 994
 995                if (remote_addr->svm_cid == VMADDR_CID_ANY)
 996                        remote_addr->svm_cid = transport->get_local_cid();
 997
 998                /* XXX Should connect() or this function ensure remote_addr is
 999                 * bound?
1000                 */
1001                if (!vsock_addr_bound(&vsk->remote_addr)) {
1002                        err = -EINVAL;
1003                        goto out;
1004                }
1005        } else {
1006                err = -EINVAL;
1007                goto out;
1008        }
1009
1010        if (!transport->dgram_allow(remote_addr->svm_cid,
1011                                    remote_addr->svm_port)) {
1012                err = -EINVAL;
1013                goto out;
1014        }
1015
1016        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1017
1018out:
1019        release_sock(sk);
1020        return err;
1021}
1022
1023static int vsock_dgram_connect(struct socket *sock,
1024                               struct sockaddr *addr, int addr_len, int flags)
1025{
1026        int err;
1027        struct sock *sk;
1028        struct vsock_sock *vsk;
1029        struct sockaddr_vm *remote_addr;
1030
1031        sk = sock->sk;
1032        vsk = vsock_sk(sk);
1033
1034        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1035        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1036                lock_sock(sk);
1037                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1038                                VMADDR_PORT_ANY);
1039                sock->state = SS_UNCONNECTED;
1040                release_sock(sk);
1041                return 0;
1042        } else if (err != 0)
1043                return -EINVAL;
1044
1045        lock_sock(sk);
1046
1047        err = vsock_auto_bind(vsk);
1048        if (err)
1049                goto out;
1050
1051        if (!transport->dgram_allow(remote_addr->svm_cid,
1052                                    remote_addr->svm_port)) {
1053                err = -EINVAL;
1054                goto out;
1055        }
1056
1057        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058        sock->state = SS_CONNECTED;
1059
1060out:
1061        release_sock(sk);
1062        return err;
1063}
1064
1065static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1066                               size_t len, int flags)
1067{
1068        return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1069}
1070
1071static const struct proto_ops vsock_dgram_ops = {
1072        .family = PF_VSOCK,
1073        .owner = THIS_MODULE,
1074        .release = vsock_release,
1075        .bind = vsock_bind,
1076        .connect = vsock_dgram_connect,
1077        .socketpair = sock_no_socketpair,
1078        .accept = sock_no_accept,
1079        .getname = vsock_getname,
1080        .poll = vsock_poll,
1081        .ioctl = sock_no_ioctl,
1082        .listen = sock_no_listen,
1083        .shutdown = vsock_shutdown,
1084        .setsockopt = sock_no_setsockopt,
1085        .getsockopt = sock_no_getsockopt,
1086        .sendmsg = vsock_dgram_sendmsg,
1087        .recvmsg = vsock_dgram_recvmsg,
1088        .mmap = sock_no_mmap,
1089        .sendpage = sock_no_sendpage,
1090};
1091
1092static void vsock_connect_timeout(struct work_struct *work)
1093{
1094        struct sock *sk;
1095        struct vsock_sock *vsk;
1096
1097        vsk = container_of(work, struct vsock_sock, dwork.work);
1098        sk = sk_vsock(vsk);
1099
1100        lock_sock(sk);
1101        if (sk->sk_state == SS_CONNECTING &&
1102            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1103                sk->sk_state = SS_UNCONNECTED;
1104                sk->sk_err = ETIMEDOUT;
1105                sk->sk_error_report(sk);
1106        }
1107        release_sock(sk);
1108
1109        sock_put(sk);
1110}
1111
1112static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1113                                int addr_len, int flags)
1114{
1115        int err;
1116        struct sock *sk;
1117        struct vsock_sock *vsk;
1118        struct sockaddr_vm *remote_addr;
1119        long timeout;
1120        DEFINE_WAIT(wait);
1121
1122        err = 0;
1123        sk = sock->sk;
1124        vsk = vsock_sk(sk);
1125
1126        lock_sock(sk);
1127
1128        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129        switch (sock->state) {
1130        case SS_CONNECTED:
1131                err = -EISCONN;
1132                goto out;
1133        case SS_DISCONNECTING:
1134                err = -EINVAL;
1135                goto out;
1136        case SS_CONNECTING:
1137                /* This continues on so we can move sock into the SS_CONNECTED
1138                 * state once the connection has completed (at which point err
1139                 * will be set to zero also).  Otherwise, we will either wait
1140                 * for the connection or return -EALREADY should this be a
1141                 * non-blocking call.
1142                 */
1143                err = -EALREADY;
1144                break;
1145        default:
1146                if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1147                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1148                        err = -EINVAL;
1149                        goto out;
1150                }
1151
1152                /* The hypervisor and well-known contexts do not have socket
1153                 * endpoints.
1154                 */
1155                if (!transport->stream_allow(remote_addr->svm_cid,
1156                                             remote_addr->svm_port)) {
1157                        err = -ENETUNREACH;
1158                        goto out;
1159                }
1160
1161                /* Set the remote address that we are connecting to. */
1162                memcpy(&vsk->remote_addr, remote_addr,
1163                       sizeof(vsk->remote_addr));
1164
1165                err = vsock_auto_bind(vsk);
1166                if (err)
1167                        goto out;
1168
1169                sk->sk_state = SS_CONNECTING;
1170
1171                err = transport->connect(vsk);
1172                if (err < 0)
1173                        goto out;
1174
1175                /* Mark sock as connecting and set the error code to in
1176                 * progress in case this is a non-blocking connect.
1177                 */
1178                sock->state = SS_CONNECTING;
1179                err = -EINPROGRESS;
1180        }
1181
1182        /* The receive path will handle all communication until we are able to
1183         * enter the connected state.  Here we wait for the connection to be
1184         * completed or a notification of an error.
1185         */
1186        timeout = vsk->connect_timeout;
1187        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1188
1189        while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1190                if (flags & O_NONBLOCK) {
1191                        /* If we're not going to block, we schedule a timeout
1192                         * function to generate a timeout on the connection
1193                         * attempt, in case the peer doesn't respond in a
1194                         * timely manner. We hold on to the socket until the
1195                         * timeout fires.
1196                         */
1197                        sock_hold(sk);
1198                        INIT_DELAYED_WORK(&vsk->dwork,
1199                                          vsock_connect_timeout);
1200                        schedule_delayed_work(&vsk->dwork, timeout);
1201
1202                        /* Skip ahead to preserve error code set above. */
1203                        goto out_wait;
1204                }
1205
1206                release_sock(sk);
1207                timeout = schedule_timeout(timeout);
1208                lock_sock(sk);
1209
1210                if (signal_pending(current)) {
1211                        err = sock_intr_errno(timeout);
1212                        sk->sk_state = SS_UNCONNECTED;
1213                        sock->state = SS_UNCONNECTED;
1214                        goto out_wait;
1215                } else if (timeout == 0) {
1216                        err = -ETIMEDOUT;
1217                        sk->sk_state = SS_UNCONNECTED;
1218                        sock->state = SS_UNCONNECTED;
1219                        goto out_wait;
1220                }
1221
1222                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1223        }
1224
1225        if (sk->sk_err) {
1226                err = -sk->sk_err;
1227                sk->sk_state = SS_UNCONNECTED;
1228                sock->state = SS_UNCONNECTED;
1229        } else {
1230                err = 0;
1231        }
1232
1233out_wait:
1234        finish_wait(sk_sleep(sk), &wait);
1235out:
1236        release_sock(sk);
1237        return err;
1238}
1239
1240static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1241{
1242        struct sock *listener;
1243        int err;
1244        struct sock *connected;
1245        struct vsock_sock *vconnected;
1246        long timeout;
1247        DEFINE_WAIT(wait);
1248
1249        err = 0;
1250        listener = sock->sk;
1251
1252        lock_sock(listener);
1253
1254        if (sock->type != SOCK_STREAM) {
1255                err = -EOPNOTSUPP;
1256                goto out;
1257        }
1258
1259        if (listener->sk_state != VSOCK_SS_LISTEN) {
1260                err = -EINVAL;
1261                goto out;
1262        }
1263
1264        /* Wait for children sockets to appear; these are the new sockets
1265         * created upon connection establishment.
1266         */
1267        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1268        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1269
1270        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1271               listener->sk_err == 0) {
1272                release_sock(listener);
1273                timeout = schedule_timeout(timeout);
1274                finish_wait(sk_sleep(listener), &wait);
1275                lock_sock(listener);
1276
1277                if (signal_pending(current)) {
1278                        err = sock_intr_errno(timeout);
1279                        goto out;
1280                } else if (timeout == 0) {
1281                        err = -EAGAIN;
1282                        goto out;
1283                }
1284
1285                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1286        }
1287        finish_wait(sk_sleep(listener), &wait);
1288
1289        if (listener->sk_err)
1290                err = -listener->sk_err;
1291
1292        if (connected) {
1293                listener->sk_ack_backlog--;
1294
1295                lock_sock(connected);
1296                vconnected = vsock_sk(connected);
1297
1298                /* If the listener socket has received an error, then we should
1299                 * reject this socket and return.  Note that we simply mark the
1300                 * socket rejected, drop our reference, and let the cleanup
1301                 * function handle the cleanup; the fact that we found it in
1302                 * the listener's accept queue guarantees that the cleanup
1303                 * function hasn't run yet.
1304                 */
1305                if (err) {
1306                        vconnected->rejected = true;
1307                } else {
1308                        newsock->state = SS_CONNECTED;
1309                        sock_graft(connected, newsock);
1310                }
1311
1312                release_sock(connected);
1313                sock_put(connected);
1314        }
1315
1316out:
1317        release_sock(listener);
1318        return err;
1319}
1320
1321static int vsock_listen(struct socket *sock, int backlog)
1322{
1323        int err;
1324        struct sock *sk;
1325        struct vsock_sock *vsk;
1326
1327        sk = sock->sk;
1328
1329        lock_sock(sk);
1330
1331        if (sock->type != SOCK_STREAM) {
1332                err = -EOPNOTSUPP;
1333                goto out;
1334        }
1335
1336        if (sock->state != SS_UNCONNECTED) {
1337                err = -EINVAL;
1338                goto out;
1339        }
1340
1341        vsk = vsock_sk(sk);
1342
1343        if (!vsock_addr_bound(&vsk->local_addr)) {
1344                err = -EINVAL;
1345                goto out;
1346        }
1347
1348        sk->sk_max_ack_backlog = backlog;
1349        sk->sk_state = VSOCK_SS_LISTEN;
1350
1351        err = 0;
1352
1353out:
1354        release_sock(sk);
1355        return err;
1356}
1357
1358static int vsock_stream_setsockopt(struct socket *sock,
1359                                   int level,
1360                                   int optname,
1361                                   char __user *optval,
1362                                   unsigned int optlen)
1363{
1364        int err;
1365        struct sock *sk;
1366        struct vsock_sock *vsk;
1367        u64 val;
1368
1369        if (level != AF_VSOCK)
1370                return -ENOPROTOOPT;
1371
1372#define COPY_IN(_v)                                       \
1373        do {                                              \
1374                if (optlen < sizeof(_v)) {                \
1375                        err = -EINVAL;                    \
1376                        goto exit;                        \
1377                }                                         \
1378                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1379                        err = -EFAULT;                                  \
1380                        goto exit;                                      \
1381                }                                                       \
1382        } while (0)
1383
1384        err = 0;
1385        sk = sock->sk;
1386        vsk = vsock_sk(sk);
1387
1388        lock_sock(sk);
1389
1390        switch (optname) {
1391        case SO_VM_SOCKETS_BUFFER_SIZE:
1392                COPY_IN(val);
1393                transport->set_buffer_size(vsk, val);
1394                break;
1395
1396        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1397                COPY_IN(val);
1398                transport->set_max_buffer_size(vsk, val);
1399                break;
1400
1401        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1402                COPY_IN(val);
1403                transport->set_min_buffer_size(vsk, val);
1404                break;
1405
1406        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1407                struct timeval tv;
1408                COPY_IN(tv);
1409                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1410                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1411                        vsk->connect_timeout = tv.tv_sec * HZ +
1412                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1413                        if (vsk->connect_timeout == 0)
1414                                vsk->connect_timeout =
1415                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1416
1417                } else {
1418                        err = -ERANGE;
1419                }
1420                break;
1421        }
1422
1423        default:
1424                err = -ENOPROTOOPT;
1425                break;
1426        }
1427
1428#undef COPY_IN
1429
1430exit:
1431        release_sock(sk);
1432        return err;
1433}
1434
1435static int vsock_stream_getsockopt(struct socket *sock,
1436                                   int level, int optname,
1437                                   char __user *optval,
1438                                   int __user *optlen)
1439{
1440        int err;
1441        int len;
1442        struct sock *sk;
1443        struct vsock_sock *vsk;
1444        u64 val;
1445
1446        if (level != AF_VSOCK)
1447                return -ENOPROTOOPT;
1448
1449        err = get_user(len, optlen);
1450        if (err != 0)
1451                return err;
1452
1453#define COPY_OUT(_v)                            \
1454        do {                                    \
1455                if (len < sizeof(_v))           \
1456                        return -EINVAL;         \
1457                                                \
1458                len = sizeof(_v);               \
1459                if (copy_to_user(optval, &_v, len) != 0)        \
1460                        return -EFAULT;                         \
1461                                                                \
1462        } while (0)
1463
1464        err = 0;
1465        sk = sock->sk;
1466        vsk = vsock_sk(sk);
1467
1468        switch (optname) {
1469        case SO_VM_SOCKETS_BUFFER_SIZE:
1470                val = transport->get_buffer_size(vsk);
1471                COPY_OUT(val);
1472                break;
1473
1474        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1475                val = transport->get_max_buffer_size(vsk);
1476                COPY_OUT(val);
1477                break;
1478
1479        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1480                val = transport->get_min_buffer_size(vsk);
1481                COPY_OUT(val);
1482                break;
1483
1484        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1485                struct timeval tv;
1486                tv.tv_sec = vsk->connect_timeout / HZ;
1487                tv.tv_usec =
1488                    (vsk->connect_timeout -
1489                     tv.tv_sec * HZ) * (1000000 / HZ);
1490                COPY_OUT(tv);
1491                break;
1492        }
1493        default:
1494                return -ENOPROTOOPT;
1495        }
1496
1497        err = put_user(len, optlen);
1498        if (err != 0)
1499                return -EFAULT;
1500
1501#undef COPY_OUT
1502
1503        return 0;
1504}
1505
1506static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1507                                size_t len)
1508{
1509        struct sock *sk;
1510        struct vsock_sock *vsk;
1511        ssize_t total_written;
1512        long timeout;
1513        int err;
1514        struct vsock_transport_send_notify_data send_data;
1515
1516        DEFINE_WAIT(wait);
1517
1518        sk = sock->sk;
1519        vsk = vsock_sk(sk);
1520        total_written = 0;
1521        err = 0;
1522
1523        if (msg->msg_flags & MSG_OOB)
1524                return -EOPNOTSUPP;
1525
1526        lock_sock(sk);
1527
1528        /* Callers should not provide a destination with stream sockets. */
1529        if (msg->msg_namelen) {
1530                err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1531                goto out;
1532        }
1533
1534        /* Send data only if both sides are not shutdown in the direction. */
1535        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1536            vsk->peer_shutdown & RCV_SHUTDOWN) {
1537                err = -EPIPE;
1538                goto out;
1539        }
1540
1541        if (sk->sk_state != SS_CONNECTED ||
1542            !vsock_addr_bound(&vsk->local_addr)) {
1543                err = -ENOTCONN;
1544                goto out;
1545        }
1546
1547        if (!vsock_addr_bound(&vsk->remote_addr)) {
1548                err = -EDESTADDRREQ;
1549                goto out;
1550        }
1551
1552        /* Wait for room in the produce queue to enqueue our user's data. */
1553        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1554
1555        err = transport->notify_send_init(vsk, &send_data);
1556        if (err < 0)
1557                goto out;
1558
1559
1560        while (total_written < len) {
1561                ssize_t written;
1562
1563                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1564                while (vsock_stream_has_space(vsk) == 0 &&
1565                       sk->sk_err == 0 &&
1566                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1567                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1568
1569                        /* Don't wait for non-blocking sockets. */
1570                        if (timeout == 0) {
1571                                err = -EAGAIN;
1572                                finish_wait(sk_sleep(sk), &wait);
1573                                goto out_err;
1574                        }
1575
1576                        err = transport->notify_send_pre_block(vsk, &send_data);
1577                        if (err < 0) {
1578                                finish_wait(sk_sleep(sk), &wait);
1579                                goto out_err;
1580                        }
1581
1582                        release_sock(sk);
1583                        timeout = schedule_timeout(timeout);
1584                        lock_sock(sk);
1585                        if (signal_pending(current)) {
1586                                err = sock_intr_errno(timeout);
1587                                finish_wait(sk_sleep(sk), &wait);
1588                                goto out_err;
1589                        } else if (timeout == 0) {
1590                                err = -EAGAIN;
1591                                finish_wait(sk_sleep(sk), &wait);
1592                                goto out_err;
1593                        }
1594
1595                        prepare_to_wait(sk_sleep(sk), &wait,
1596                                        TASK_INTERRUPTIBLE);
1597                }
1598                finish_wait(sk_sleep(sk), &wait);
1599
1600                /* These checks occur both as part of and after the loop
1601                 * conditional since we need to check before and after
1602                 * sleeping.
1603                 */
1604                if (sk->sk_err) {
1605                        err = -sk->sk_err;
1606                        goto out_err;
1607                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1608                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1609                        err = -EPIPE;
1610                        goto out_err;
1611                }
1612
1613                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1614                if (err < 0)
1615                        goto out_err;
1616
1617                /* Note that enqueue will only write as many bytes as are free
1618                 * in the produce queue, so we don't need to ensure len is
1619                 * smaller than the queue size.  It is the caller's
1620                 * responsibility to check how many bytes we were able to send.
1621                 */
1622
1623                written = transport->stream_enqueue(
1624                                vsk, msg,
1625                                len - total_written);
1626                if (written < 0) {
1627                        err = -ENOMEM;
1628                        goto out_err;
1629                }
1630
1631                total_written += written;
1632
1633                err = transport->notify_send_post_enqueue(
1634                                vsk, written, &send_data);
1635                if (err < 0)
1636                        goto out_err;
1637
1638        }
1639
1640out_err:
1641        if (total_written > 0)
1642                err = total_written;
1643out:
1644        release_sock(sk);
1645        return err;
1646}
1647
1648
1649static int
1650vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1651                     int flags)
1652{
1653        struct sock *sk;
1654        struct vsock_sock *vsk;
1655        int err;
1656        size_t target;
1657        ssize_t copied;
1658        long timeout;
1659        struct vsock_transport_recv_notify_data recv_data;
1660
1661        DEFINE_WAIT(wait);
1662
1663        sk = sock->sk;
1664        vsk = vsock_sk(sk);
1665        err = 0;
1666
1667        lock_sock(sk);
1668
1669        if (sk->sk_state != SS_CONNECTED) {
1670                /* Recvmsg is supposed to return 0 if a peer performs an
1671                 * orderly shutdown. Differentiate between that case and when a
1672                 * peer has not connected or a local shutdown occured with the
1673                 * SOCK_DONE flag.
1674                 */
1675                if (sock_flag(sk, SOCK_DONE))
1676                        err = 0;
1677                else
1678                        err = -ENOTCONN;
1679
1680                goto out;
1681        }
1682
1683        if (flags & MSG_OOB) {
1684                err = -EOPNOTSUPP;
1685                goto out;
1686        }
1687
1688        /* We don't check peer_shutdown flag here since peer may actually shut
1689         * down, but there can be data in the queue that a local socket can
1690         * receive.
1691         */
1692        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1693                err = 0;
1694                goto out;
1695        }
1696
1697        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1698         * is not an error.  We may as well bail out now.
1699         */
1700        if (!len) {
1701                err = 0;
1702                goto out;
1703        }
1704
1705        /* We must not copy less than target bytes into the user's buffer
1706         * before returning successfully, so we wait for the consume queue to
1707         * have that much data to consume before dequeueing.  Note that this
1708         * makes it impossible to handle cases where target is greater than the
1709         * queue size.
1710         */
1711        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1712        if (target >= transport->stream_rcvhiwat(vsk)) {
1713                err = -ENOMEM;
1714                goto out;
1715        }
1716        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1717        copied = 0;
1718
1719        err = transport->notify_recv_init(vsk, target, &recv_data);
1720        if (err < 0)
1721                goto out;
1722
1723
1724        while (1) {
1725                s64 ready;
1726
1727                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1728                ready = vsock_stream_has_data(vsk);
1729
1730                if (ready == 0) {
1731                        if (sk->sk_err != 0 ||
1732                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1733                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1734                                finish_wait(sk_sleep(sk), &wait);
1735                                break;
1736                        }
1737                        /* Don't wait for non-blocking sockets. */
1738                        if (timeout == 0) {
1739                                err = -EAGAIN;
1740                                finish_wait(sk_sleep(sk), &wait);
1741                                break;
1742                        }
1743
1744                        err = transport->notify_recv_pre_block(
1745                                        vsk, target, &recv_data);
1746                        if (err < 0) {
1747                                finish_wait(sk_sleep(sk), &wait);
1748                                break;
1749                        }
1750                        release_sock(sk);
1751                        timeout = schedule_timeout(timeout);
1752                        lock_sock(sk);
1753
1754                        if (signal_pending(current)) {
1755                                err = sock_intr_errno(timeout);
1756                                finish_wait(sk_sleep(sk), &wait);
1757                                break;
1758                        } else if (timeout == 0) {
1759                                err = -EAGAIN;
1760                                finish_wait(sk_sleep(sk), &wait);
1761                                break;
1762                        }
1763                } else {
1764                        ssize_t read;
1765
1766                        finish_wait(sk_sleep(sk), &wait);
1767
1768                        if (ready < 0) {
1769                                /* Invalid queue pair content. XXX This should
1770                                * be changed to a connection reset in a later
1771                                * change.
1772                                */
1773
1774                                err = -ENOMEM;
1775                                goto out;
1776                        }
1777
1778                        err = transport->notify_recv_pre_dequeue(
1779                                        vsk, target, &recv_data);
1780                        if (err < 0)
1781                                break;
1782
1783                        read = transport->stream_dequeue(
1784                                        vsk, msg,
1785                                        len - copied, flags);
1786                        if (read < 0) {
1787                                err = -ENOMEM;
1788                                break;
1789                        }
1790
1791                        copied += read;
1792
1793                        err = transport->notify_recv_post_dequeue(
1794                                        vsk, target, read,
1795                                        !(flags & MSG_PEEK), &recv_data);
1796                        if (err < 0)
1797                                goto out;
1798
1799                        if (read >= target || flags & MSG_PEEK)
1800                                break;
1801
1802                        target -= read;
1803                }
1804        }
1805
1806        if (sk->sk_err)
1807                err = -sk->sk_err;
1808        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1809                err = 0;
1810
1811        if (copied > 0)
1812                err = copied;
1813
1814out:
1815        release_sock(sk);
1816        return err;
1817}
1818
1819static const struct proto_ops vsock_stream_ops = {
1820        .family = PF_VSOCK,
1821        .owner = THIS_MODULE,
1822        .release = vsock_release,
1823        .bind = vsock_bind,
1824        .connect = vsock_stream_connect,
1825        .socketpair = sock_no_socketpair,
1826        .accept = vsock_accept,
1827        .getname = vsock_getname,
1828        .poll = vsock_poll,
1829        .ioctl = sock_no_ioctl,
1830        .listen = vsock_listen,
1831        .shutdown = vsock_shutdown,
1832        .setsockopt = vsock_stream_setsockopt,
1833        .getsockopt = vsock_stream_getsockopt,
1834        .sendmsg = vsock_stream_sendmsg,
1835        .recvmsg = vsock_stream_recvmsg,
1836        .mmap = sock_no_mmap,
1837        .sendpage = sock_no_sendpage,
1838};
1839
1840static int vsock_create(struct net *net, struct socket *sock,
1841                        int protocol, int kern)
1842{
1843        if (!sock)
1844                return -EINVAL;
1845
1846        if (protocol && protocol != PF_VSOCK)
1847                return -EPROTONOSUPPORT;
1848
1849        switch (sock->type) {
1850        case SOCK_DGRAM:
1851                sock->ops = &vsock_dgram_ops;
1852                break;
1853        case SOCK_STREAM:
1854                sock->ops = &vsock_stream_ops;
1855                break;
1856        default:
1857                return -ESOCKTNOSUPPORT;
1858        }
1859
1860        sock->state = SS_UNCONNECTED;
1861
1862        return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1863}
1864
1865static const struct net_proto_family vsock_family_ops = {
1866        .family = AF_VSOCK,
1867        .create = vsock_create,
1868        .owner = THIS_MODULE,
1869};
1870
1871static long vsock_dev_do_ioctl(struct file *filp,
1872                               unsigned int cmd, void __user *ptr)
1873{
1874        u32 __user *p = ptr;
1875        int retval = 0;
1876
1877        switch (cmd) {
1878        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1879                if (put_user(transport->get_local_cid(), p) != 0)
1880                        retval = -EFAULT;
1881                break;
1882
1883        default:
1884                pr_err("Unknown ioctl %d\n", cmd);
1885                retval = -EINVAL;
1886        }
1887
1888        return retval;
1889}
1890
1891static long vsock_dev_ioctl(struct file *filp,
1892                            unsigned int cmd, unsigned long arg)
1893{
1894        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1895}
1896
1897#ifdef CONFIG_COMPAT
1898static long vsock_dev_compat_ioctl(struct file *filp,
1899                                   unsigned int cmd, unsigned long arg)
1900{
1901        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1902}
1903#endif
1904
1905static const struct file_operations vsock_device_ops = {
1906        .owner          = THIS_MODULE,
1907        .unlocked_ioctl = vsock_dev_ioctl,
1908#ifdef CONFIG_COMPAT
1909        .compat_ioctl   = vsock_dev_compat_ioctl,
1910#endif
1911        .open           = nonseekable_open,
1912};
1913
1914static struct miscdevice vsock_device = {
1915        .name           = "vsock",
1916        .fops           = &vsock_device_ops,
1917};
1918
1919int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1920{
1921        int err = mutex_lock_interruptible(&vsock_register_mutex);
1922
1923        if (err)
1924                return err;
1925
1926        if (transport) {
1927                err = -EBUSY;
1928                goto err_busy;
1929        }
1930
1931        /* Transport must be the owner of the protocol so that it can't
1932         * unload while there are open sockets.
1933         */
1934        vsock_proto.owner = owner;
1935        transport = t;
1936
1937        vsock_init_tables();
1938
1939        vsock_device.minor = MISC_DYNAMIC_MINOR;
1940        err = misc_register(&vsock_device);
1941        if (err) {
1942                pr_err("Failed to register misc device\n");
1943                goto err_reset_transport;
1944        }
1945
1946        err = proto_register(&vsock_proto, 1);  /* we want our slab */
1947        if (err) {
1948                pr_err("Cannot register vsock protocol\n");
1949                goto err_deregister_misc;
1950        }
1951
1952        err = sock_register(&vsock_family_ops);
1953        if (err) {
1954                pr_err("could not register af_vsock (%d) address family: %d\n",
1955                       AF_VSOCK, err);
1956                goto err_unregister_proto;
1957        }
1958
1959        mutex_unlock(&vsock_register_mutex);
1960        return 0;
1961
1962err_unregister_proto:
1963        proto_unregister(&vsock_proto);
1964err_deregister_misc:
1965        misc_deregister(&vsock_device);
1966err_reset_transport:
1967        transport = NULL;
1968err_busy:
1969        mutex_unlock(&vsock_register_mutex);
1970        return err;
1971}
1972EXPORT_SYMBOL_GPL(__vsock_core_init);
1973
1974void vsock_core_exit(void)
1975{
1976        mutex_lock(&vsock_register_mutex);
1977
1978        misc_deregister(&vsock_device);
1979        sock_unregister(AF_VSOCK);
1980        proto_unregister(&vsock_proto);
1981
1982        /* We do not want the assignment below re-ordered. */
1983        mb();
1984        transport = NULL;
1985
1986        mutex_unlock(&vsock_register_mutex);
1987}
1988EXPORT_SYMBOL_GPL(vsock_core_exit);
1989
1990MODULE_AUTHOR("VMware, Inc.");
1991MODULE_DESCRIPTION("VMware Virtual Socket Family");
1992MODULE_VERSION("1.0.1.0-k");
1993MODULE_LICENSE("GPL v2");
1994