linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
  93                                    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96                                        struct context *tcontext,
  97                                        u16 tclass,
  98                                        struct av_decision *avd,
  99                                        struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102        u16 value; /* policy value */
 103        unsigned num_perms;
 104        u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111                               struct security_class_mapping *map,
 112                               struct selinux_mapping **out_map_p,
 113                               u16 *out_map_size)
 114{
 115        struct selinux_mapping *out_map = NULL;
 116        size_t size = sizeof(struct selinux_mapping);
 117        u16 i, j;
 118        unsigned k;
 119        bool print_unknown_handle = false;
 120
 121        /* Find number of classes in the input mapping */
 122        if (!map)
 123                return -EINVAL;
 124        i = 0;
 125        while (map[i].name)
 126                i++;
 127
 128        /* Allocate space for the class records, plus one for class zero */
 129        out_map = kcalloc(++i, size, GFP_ATOMIC);
 130        if (!out_map)
 131                return -ENOMEM;
 132
 133        /* Store the raw class and permission values */
 134        j = 0;
 135        while (map[j].name) {
 136                struct security_class_mapping *p_in = map + (j++);
 137                struct selinux_mapping *p_out = out_map + j;
 138
 139                /* An empty class string skips ahead */
 140                if (!strcmp(p_in->name, "")) {
 141                        p_out->num_perms = 0;
 142                        continue;
 143                }
 144
 145                p_out->value = string_to_security_class(pol, p_in->name);
 146                if (!p_out->value) {
 147                        printk(KERN_INFO
 148                               "SELinux:  Class %s not defined in policy.\n",
 149                               p_in->name);
 150                        if (pol->reject_unknown)
 151                                goto err;
 152                        p_out->num_perms = 0;
 153                        print_unknown_handle = true;
 154                        continue;
 155                }
 156
 157                k = 0;
 158                while (p_in->perms && p_in->perms[k]) {
 159                        /* An empty permission string skips ahead */
 160                        if (!*p_in->perms[k]) {
 161                                k++;
 162                                continue;
 163                        }
 164                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165                                                            p_in->perms[k]);
 166                        if (!p_out->perms[k]) {
 167                                printk(KERN_INFO
 168                                       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169                                       p_in->perms[k], p_in->name);
 170                                if (pol->reject_unknown)
 171                                        goto err;
 172                                print_unknown_handle = true;
 173                        }
 174
 175                        k++;
 176                }
 177                p_out->num_perms = k;
 178        }
 179
 180        if (print_unknown_handle)
 181                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182                       pol->allow_unknown ? "allowed" : "denied");
 183
 184        *out_map_p = out_map;
 185        *out_map_size = i;
 186        return 0;
 187err:
 188        kfree(out_map);
 189        return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198        if (tclass < current_mapping_size)
 199                return current_mapping[tclass].value;
 200
 201        return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209        u16 i;
 210
 211        for (i = 1; i < current_mapping_size; i++) {
 212                if (current_mapping[i].value == pol_value)
 213                        return i;
 214        }
 215
 216        return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 220                         int allow_unknown)
 221{
 222        if (tclass < current_mapping_size) {
 223                unsigned i, n = current_mapping[tclass].num_perms;
 224                u32 result;
 225
 226                for (i = 0, result = 0; i < n; i++) {
 227                        if (avd->allowed & current_mapping[tclass].perms[i])
 228                                result |= 1<<i;
 229                        if (allow_unknown && !current_mapping[tclass].perms[i])
 230                                result |= 1<<i;
 231                }
 232                avd->allowed = result;
 233
 234                for (i = 0, result = 0; i < n; i++)
 235                        if (avd->auditallow & current_mapping[tclass].perms[i])
 236                                result |= 1<<i;
 237                avd->auditallow = result;
 238
 239                for (i = 0, result = 0; i < n; i++) {
 240                        if (avd->auditdeny & current_mapping[tclass].perms[i])
 241                                result |= 1<<i;
 242                        if (!allow_unknown && !current_mapping[tclass].perms[i])
 243                                result |= 1<<i;
 244                }
 245                /*
 246                 * In case the kernel has a bug and requests a permission
 247                 * between num_perms and the maximum permission number, we
 248                 * should audit that denial
 249                 */
 250                for (; i < (sizeof(u32)*8); i++)
 251                        result |= 1<<i;
 252                avd->auditdeny = result;
 253        }
 254}
 255
 256int security_mls_enabled(void)
 257{
 258        return policydb.mls_enabled;
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 273                                struct context *tcontext,
 274                                struct context *xcontext,
 275                                struct constraint_expr *cexpr)
 276{
 277        u32 val1, val2;
 278        struct context *c;
 279        struct role_datum *r1, *r2;
 280        struct mls_level *l1, *l2;
 281        struct constraint_expr *e;
 282        int s[CEXPR_MAXDEPTH];
 283        int sp = -1;
 284
 285        for (e = cexpr; e; e = e->next) {
 286                switch (e->expr_type) {
 287                case CEXPR_NOT:
 288                        BUG_ON(sp < 0);
 289                        s[sp] = !s[sp];
 290                        break;
 291                case CEXPR_AND:
 292                        BUG_ON(sp < 1);
 293                        sp--;
 294                        s[sp] &= s[sp + 1];
 295                        break;
 296                case CEXPR_OR:
 297                        BUG_ON(sp < 1);
 298                        sp--;
 299                        s[sp] |= s[sp + 1];
 300                        break;
 301                case CEXPR_ATTR:
 302                        if (sp == (CEXPR_MAXDEPTH - 1))
 303                                return 0;
 304                        switch (e->attr) {
 305                        case CEXPR_USER:
 306                                val1 = scontext->user;
 307                                val2 = tcontext->user;
 308                                break;
 309                        case CEXPR_TYPE:
 310                                val1 = scontext->type;
 311                                val2 = tcontext->type;
 312                                break;
 313                        case CEXPR_ROLE:
 314                                val1 = scontext->role;
 315                                val2 = tcontext->role;
 316                                r1 = policydb.role_val_to_struct[val1 - 1];
 317                                r2 = policydb.role_val_to_struct[val2 - 1];
 318                                switch (e->op) {
 319                                case CEXPR_DOM:
 320                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 321                                                                  val2 - 1);
 322                                        continue;
 323                                case CEXPR_DOMBY:
 324                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 325                                                                  val1 - 1);
 326                                        continue;
 327                                case CEXPR_INCOMP:
 328                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329                                                                    val2 - 1) &&
 330                                                   !ebitmap_get_bit(&r2->dominates,
 331                                                                    val1 - 1));
 332                                        continue;
 333                                default:
 334                                        break;
 335                                }
 336                                break;
 337                        case CEXPR_L1L2:
 338                                l1 = &(scontext->range.level[0]);
 339                                l2 = &(tcontext->range.level[0]);
 340                                goto mls_ops;
 341                        case CEXPR_L1H2:
 342                                l1 = &(scontext->range.level[0]);
 343                                l2 = &(tcontext->range.level[1]);
 344                                goto mls_ops;
 345                        case CEXPR_H1L2:
 346                                l1 = &(scontext->range.level[1]);
 347                                l2 = &(tcontext->range.level[0]);
 348                                goto mls_ops;
 349                        case CEXPR_H1H2:
 350                                l1 = &(scontext->range.level[1]);
 351                                l2 = &(tcontext->range.level[1]);
 352                                goto mls_ops;
 353                        case CEXPR_L1H1:
 354                                l1 = &(scontext->range.level[0]);
 355                                l2 = &(scontext->range.level[1]);
 356                                goto mls_ops;
 357                        case CEXPR_L2H2:
 358                                l1 = &(tcontext->range.level[0]);
 359                                l2 = &(tcontext->range.level[1]);
 360                                goto mls_ops;
 361mls_ops:
 362                        switch (e->op) {
 363                        case CEXPR_EQ:
 364                                s[++sp] = mls_level_eq(l1, l2);
 365                                continue;
 366                        case CEXPR_NEQ:
 367                                s[++sp] = !mls_level_eq(l1, l2);
 368                                continue;
 369                        case CEXPR_DOM:
 370                                s[++sp] = mls_level_dom(l1, l2);
 371                                continue;
 372                        case CEXPR_DOMBY:
 373                                s[++sp] = mls_level_dom(l2, l1);
 374                                continue;
 375                        case CEXPR_INCOMP:
 376                                s[++sp] = mls_level_incomp(l2, l1);
 377                                continue;
 378                        default:
 379                                BUG();
 380                                return 0;
 381                        }
 382                        break;
 383                        default:
 384                                BUG();
 385                                return 0;
 386                        }
 387
 388                        switch (e->op) {
 389                        case CEXPR_EQ:
 390                                s[++sp] = (val1 == val2);
 391                                break;
 392                        case CEXPR_NEQ:
 393                                s[++sp] = (val1 != val2);
 394                                break;
 395                        default:
 396                                BUG();
 397                                return 0;
 398                        }
 399                        break;
 400                case CEXPR_NAMES:
 401                        if (sp == (CEXPR_MAXDEPTH-1))
 402                                return 0;
 403                        c = scontext;
 404                        if (e->attr & CEXPR_TARGET)
 405                                c = tcontext;
 406                        else if (e->attr & CEXPR_XTARGET) {
 407                                c = xcontext;
 408                                if (!c) {
 409                                        BUG();
 410                                        return 0;
 411                                }
 412                        }
 413                        if (e->attr & CEXPR_USER)
 414                                val1 = c->user;
 415                        else if (e->attr & CEXPR_ROLE)
 416                                val1 = c->role;
 417                        else if (e->attr & CEXPR_TYPE)
 418                                val1 = c->type;
 419                        else {
 420                                BUG();
 421                                return 0;
 422                        }
 423
 424                        switch (e->op) {
 425                        case CEXPR_EQ:
 426                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427                                break;
 428                        case CEXPR_NEQ:
 429                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430                                break;
 431                        default:
 432                                BUG();
 433                                return 0;
 434                        }
 435                        break;
 436                default:
 437                        BUG();
 438                        return 0;
 439                }
 440        }
 441
 442        BUG_ON(sp != 0);
 443        return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452        struct perm_datum *pdatum = d;
 453        char **permission_names = args;
 454
 455        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457        permission_names[pdatum->value - 1] = (char *)k;
 458
 459        return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 463                                    struct context *tcontext,
 464                                    u16 tclass,
 465                                    u32 permissions,
 466                                    const char *reason)
 467{
 468        struct common_datum *common_dat;
 469        struct class_datum *tclass_dat;
 470        struct audit_buffer *ab;
 471        char *tclass_name;
 472        char *scontext_name = NULL;
 473        char *tcontext_name = NULL;
 474        char *permission_names[32];
 475        int index;
 476        u32 length;
 477        bool need_comma = false;
 478
 479        if (!permissions)
 480                return;
 481
 482        tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483        tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484        common_dat = tclass_dat->comdatum;
 485
 486        /* init permission_names */
 487        if (common_dat &&
 488            hashtab_map(common_dat->permissions.table,
 489                        dump_masked_av_helper, permission_names) < 0)
 490                goto out;
 491
 492        if (hashtab_map(tclass_dat->permissions.table,
 493                        dump_masked_av_helper, permission_names) < 0)
 494                goto out;
 495
 496        /* get scontext/tcontext in text form */
 497        if (context_struct_to_string(scontext,
 498                                     &scontext_name, &length) < 0)
 499                goto out;
 500
 501        if (context_struct_to_string(tcontext,
 502                                     &tcontext_name, &length) < 0)
 503                goto out;
 504
 505        /* audit a message */
 506        ab = audit_log_start(current->audit_context,
 507                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508        if (!ab)
 509                goto out;
 510
 511        audit_log_format(ab, "op=security_compute_av reason=%s "
 512                         "scontext=%s tcontext=%s tclass=%s perms=",
 513                         reason, scontext_name, tcontext_name, tclass_name);
 514
 515        for (index = 0; index < 32; index++) {
 516                u32 mask = (1 << index);
 517
 518                if ((mask & permissions) == 0)
 519                        continue;
 520
 521                audit_log_format(ab, "%s%s",
 522                                 need_comma ? "," : "",
 523                                 permission_names[index]
 524                                 ? permission_names[index] : "????");
 525                need_comma = true;
 526        }
 527        audit_log_end(ab);
 528out:
 529        /* release scontext/tcontext */
 530        kfree(tcontext_name);
 531        kfree(scontext_name);
 532
 533        return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 541                                     struct context *tcontext,
 542                                     u16 tclass,
 543                                     struct av_decision *avd)
 544{
 545        struct context lo_scontext;
 546        struct context lo_tcontext;
 547        struct av_decision lo_avd;
 548        struct type_datum *source;
 549        struct type_datum *target;
 550        u32 masked = 0;
 551
 552        source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553                                    scontext->type - 1);
 554        BUG_ON(!source);
 555
 556        target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557                                    tcontext->type - 1);
 558        BUG_ON(!target);
 559
 560        if (source->bounds) {
 561                memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563                memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564                lo_scontext.type = source->bounds;
 565
 566                context_struct_compute_av(&lo_scontext,
 567                                          tcontext,
 568                                          tclass,
 569                                          &lo_avd,
 570                                          NULL);
 571                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572                        return;         /* no masked permission */
 573                masked = ~lo_avd.allowed & avd->allowed;
 574        }
 575
 576        if (target->bounds) {
 577                memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580                lo_tcontext.type = target->bounds;
 581
 582                context_struct_compute_av(scontext,
 583                                          &lo_tcontext,
 584                                          tclass,
 585                                          &lo_avd,
 586                                          NULL);
 587                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588                        return;         /* no masked permission */
 589                masked = ~lo_avd.allowed & avd->allowed;
 590        }
 591
 592        if (source->bounds && target->bounds) {
 593                memset(&lo_avd, 0, sizeof(lo_avd));
 594                /*
 595                 * lo_scontext and lo_tcontext are already
 596                 * set up.
 597                 */
 598
 599                context_struct_compute_av(&lo_scontext,
 600                                          &lo_tcontext,
 601                                          tclass,
 602                                          &lo_avd,
 603                                          NULL);
 604                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605                        return;         /* no masked permission */
 606                masked = ~lo_avd.allowed & avd->allowed;
 607        }
 608
 609        if (masked) {
 610                /* mask violated permissions */
 611                avd->allowed &= ~masked;
 612
 613                /* audit masked permissions */
 614                security_dump_masked_av(scontext, tcontext,
 615                                        tclass, masked, "bounds");
 616        }
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624                struct extended_perms *xperms,
 625                struct avtab_node *node)
 626{
 627        unsigned int i;
 628
 629        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630                /* if one or more driver has all permissions allowed */
 631                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634                /* if allowing permissions within a driver */
 635                security_xperm_set(xperms->drivers.p,
 636                                        node->datum.u.xperms->driver);
 637        }
 638
 639        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641                xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649                                        struct context *tcontext,
 650                                        u16 tclass,
 651                                        struct av_decision *avd,
 652                                        struct extended_perms *xperms)
 653{
 654        struct constraint_node *constraint;
 655        struct role_allow *ra;
 656        struct avtab_key avkey;
 657        struct avtab_node *node;
 658        struct class_datum *tclass_datum;
 659        struct ebitmap *sattr, *tattr;
 660        struct ebitmap_node *snode, *tnode;
 661        unsigned int i, j;
 662
 663        avd->allowed = 0;
 664        avd->auditallow = 0;
 665        avd->auditdeny = 0xffffffff;
 666        if (xperms) {
 667                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668                xperms->len = 0;
 669        }
 670
 671        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672                if (printk_ratelimit())
 673                        printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674                return;
 675        }
 676
 677        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679        /*
 680         * If a specific type enforcement rule was defined for
 681         * this permission check, then use it.
 682         */
 683        avkey.target_class = tclass;
 684        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685        sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686        BUG_ON(!sattr);
 687        tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688        BUG_ON(!tattr);
 689        ebitmap_for_each_positive_bit(sattr, snode, i) {
 690                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691                        avkey.source_type = i + 1;
 692                        avkey.target_type = j + 1;
 693                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 694                             node;
 695                             node = avtab_search_node_next(node, avkey.specified)) {
 696                                if (node->key.specified == AVTAB_ALLOWED)
 697                                        avd->allowed |= node->datum.u.data;
 698                                else if (node->key.specified == AVTAB_AUDITALLOW)
 699                                        avd->auditallow |= node->datum.u.data;
 700                                else if (node->key.specified == AVTAB_AUDITDENY)
 701                                        avd->auditdeny &= node->datum.u.data;
 702                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703                                        services_compute_xperms_drivers(xperms, node);
 704                        }
 705
 706                        /* Check conditional av table for additional permissions */
 707                        cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708                                        avd, xperms);
 709
 710                }
 711        }
 712
 713        /*
 714         * Remove any permissions prohibited by a constraint (this includes
 715         * the MLS policy).
 716         */
 717        constraint = tclass_datum->constraints;
 718        while (constraint) {
 719                if ((constraint->permissions & (avd->allowed)) &&
 720                    !constraint_expr_eval(scontext, tcontext, NULL,
 721                                          constraint->expr)) {
 722                        avd->allowed &= ~(constraint->permissions);
 723                }
 724                constraint = constraint->next;
 725        }
 726
 727        /*
 728         * If checking process transition permission and the
 729         * role is changing, then check the (current_role, new_role)
 730         * pair.
 731         */
 732        if (tclass == policydb.process_class &&
 733            (avd->allowed & policydb.process_trans_perms) &&
 734            scontext->role != tcontext->role) {
 735                for (ra = policydb.role_allow; ra; ra = ra->next) {
 736                        if (scontext->role == ra->role &&
 737                            tcontext->role == ra->new_role)
 738                                break;
 739                }
 740                if (!ra)
 741                        avd->allowed &= ~policydb.process_trans_perms;
 742        }
 743
 744        /*
 745         * If the given source and target types have boundary
 746         * constraint, lazy checks have to mask any violated
 747         * permission and notice it to userspace via audit.
 748         */
 749        type_attribute_bounds_av(scontext, tcontext,
 750                                 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 754                                           struct context *ncontext,
 755                                           struct context *tcontext,
 756                                           u16 tclass)
 757{
 758        char *o = NULL, *n = NULL, *t = NULL;
 759        u32 olen, nlen, tlen;
 760
 761        if (context_struct_to_string(ocontext, &o, &olen))
 762                goto out;
 763        if (context_struct_to_string(ncontext, &n, &nlen))
 764                goto out;
 765        if (context_struct_to_string(tcontext, &t, &tlen))
 766                goto out;
 767        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768                  "op=security_validate_transition seresult=denied"
 769                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770                  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772        kfree(o);
 773        kfree(n);
 774        kfree(t);
 775
 776        if (!selinux_enforcing)
 777                return 0;
 778        return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 782                                          u16 orig_tclass, bool user)
 783{
 784        struct context *ocontext;
 785        struct context *ncontext;
 786        struct context *tcontext;
 787        struct class_datum *tclass_datum;
 788        struct constraint_node *constraint;
 789        u16 tclass;
 790        int rc = 0;
 791
 792        if (!ss_initialized)
 793                return 0;
 794
 795        read_lock(&policy_rwlock);
 796
 797        if (!user)
 798                tclass = unmap_class(orig_tclass);
 799        else
 800                tclass = orig_tclass;
 801
 802        if (!tclass || tclass > policydb.p_classes.nprim) {
 803                rc = -EINVAL;
 804                goto out;
 805        }
 806        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808        ocontext = sidtab_search(&sidtab, oldsid);
 809        if (!ocontext) {
 810                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811                        __func__, oldsid);
 812                rc = -EINVAL;
 813                goto out;
 814        }
 815
 816        ncontext = sidtab_search(&sidtab, newsid);
 817        if (!ncontext) {
 818                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819                        __func__, newsid);
 820                rc = -EINVAL;
 821                goto out;
 822        }
 823
 824        tcontext = sidtab_search(&sidtab, tasksid);
 825        if (!tcontext) {
 826                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827                        __func__, tasksid);
 828                rc = -EINVAL;
 829                goto out;
 830        }
 831
 832        constraint = tclass_datum->validatetrans;
 833        while (constraint) {
 834                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 835                                          constraint->expr)) {
 836                        if (user)
 837                                rc = -EPERM;
 838                        else
 839                                rc = security_validtrans_handle_fail(ocontext,
 840                                                                     ncontext,
 841                                                                     tcontext,
 842                                                                     tclass);
 843                        goto out;
 844                }
 845                constraint = constraint->next;
 846        }
 847
 848out:
 849        read_unlock(&policy_rwlock);
 850        return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854                                        u16 tclass)
 855{
 856        return security_compute_validatetrans(oldsid, newsid, tasksid,
 857                                                tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 861                                 u16 orig_tclass)
 862{
 863        return security_compute_validatetrans(oldsid, newsid, tasksid,
 864                                                orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 877{
 878        struct context *old_context, *new_context;
 879        struct type_datum *type;
 880        int index;
 881        int rc;
 882
 883        read_lock(&policy_rwlock);
 884
 885        rc = -EINVAL;
 886        old_context = sidtab_search(&sidtab, old_sid);
 887        if (!old_context) {
 888                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889                       __func__, old_sid);
 890                goto out;
 891        }
 892
 893        rc = -EINVAL;
 894        new_context = sidtab_search(&sidtab, new_sid);
 895        if (!new_context) {
 896                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897                       __func__, new_sid);
 898                goto out;
 899        }
 900
 901        rc = 0;
 902        /* type/domain unchanged */
 903        if (old_context->type == new_context->type)
 904                goto out;
 905
 906        index = new_context->type;
 907        while (true) {
 908                type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909                                          index - 1);
 910                BUG_ON(!type);
 911
 912                /* not bounded anymore */
 913                rc = -EPERM;
 914                if (!type->bounds)
 915                        break;
 916
 917                /* @newsid is bounded by @oldsid */
 918                rc = 0;
 919                if (type->bounds == old_context->type)
 920                        break;
 921
 922                index = type->bounds;
 923        }
 924
 925        if (rc) {
 926                char *old_name = NULL;
 927                char *new_name = NULL;
 928                u32 length;
 929
 930                if (!context_struct_to_string(old_context,
 931                                              &old_name, &length) &&
 932                    !context_struct_to_string(new_context,
 933                                              &new_name, &length)) {
 934                        audit_log(current->audit_context,
 935                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936                                  "op=security_bounded_transition "
 937                                  "seresult=denied "
 938                                  "oldcontext=%s newcontext=%s",
 939                                  old_name, new_name);
 940                }
 941                kfree(new_name);
 942                kfree(old_name);
 943        }
 944out:
 945        read_unlock(&policy_rwlock);
 946
 947        return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952        avd->allowed = 0;
 953        avd->auditallow = 0;
 954        avd->auditdeny = 0xffffffff;
 955        avd->seqno = latest_granting;
 956        avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960                                        struct avtab_node *node)
 961{
 962        unsigned int i;
 963
 964        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965                if (xpermd->driver != node->datum.u.xperms->driver)
 966                        return;
 967        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969                                        xpermd->driver))
 970                        return;
 971        } else {
 972                BUG();
 973        }
 974
 975        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976                xpermd->used |= XPERMS_ALLOWED;
 977                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978                        memset(xpermd->allowed->p, 0xff,
 979                                        sizeof(xpermd->allowed->p));
 980                }
 981                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983                                xpermd->allowed->p[i] |=
 984                                        node->datum.u.xperms->perms.p[i];
 985                }
 986        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987                xpermd->used |= XPERMS_AUDITALLOW;
 988                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989                        memset(xpermd->auditallow->p, 0xff,
 990                                        sizeof(xpermd->auditallow->p));
 991                }
 992                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994                                xpermd->auditallow->p[i] |=
 995                                        node->datum.u.xperms->perms.p[i];
 996                }
 997        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998                xpermd->used |= XPERMS_DONTAUDIT;
 999                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000                        memset(xpermd->dontaudit->p, 0xff,
1001                                        sizeof(xpermd->dontaudit->p));
1002                }
1003                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005                                xpermd->dontaudit->p[i] |=
1006                                        node->datum.u.xperms->perms.p[i];
1007                }
1008        } else {
1009                BUG();
1010        }
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014                                u32 tsid,
1015                                u16 orig_tclass,
1016                                u8 driver,
1017                                struct extended_perms_decision *xpermd)
1018{
1019        u16 tclass;
1020        struct context *scontext, *tcontext;
1021        struct avtab_key avkey;
1022        struct avtab_node *node;
1023        struct ebitmap *sattr, *tattr;
1024        struct ebitmap_node *snode, *tnode;
1025        unsigned int i, j;
1026
1027        xpermd->driver = driver;
1028        xpermd->used = 0;
1029        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033        read_lock(&policy_rwlock);
1034        if (!ss_initialized)
1035                goto allow;
1036
1037        scontext = sidtab_search(&sidtab, ssid);
1038        if (!scontext) {
1039                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040                       __func__, ssid);
1041                goto out;
1042        }
1043
1044        tcontext = sidtab_search(&sidtab, tsid);
1045        if (!tcontext) {
1046                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047                       __func__, tsid);
1048                goto out;
1049        }
1050
1051        tclass = unmap_class(orig_tclass);
1052        if (unlikely(orig_tclass && !tclass)) {
1053                if (policydb.allow_unknown)
1054                        goto allow;
1055                goto out;
1056        }
1057
1058
1059        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061                goto out;
1062        }
1063
1064        avkey.target_class = tclass;
1065        avkey.specified = AVTAB_XPERMS;
1066        sattr = flex_array_get(policydb.type_attr_map_array,
1067                                scontext->type - 1);
1068        BUG_ON(!sattr);
1069        tattr = flex_array_get(policydb.type_attr_map_array,
1070                                tcontext->type - 1);
1071        BUG_ON(!tattr);
1072        ebitmap_for_each_positive_bit(sattr, snode, i) {
1073                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074                        avkey.source_type = i + 1;
1075                        avkey.target_type = j + 1;
1076                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1077                             node;
1078                             node = avtab_search_node_next(node, avkey.specified))
1079                                services_compute_xperms_decision(xpermd, node);
1080
1081                        cond_compute_xperms(&policydb.te_cond_avtab,
1082                                                &avkey, xpermd);
1083                }
1084        }
1085out:
1086        read_unlock(&policy_rwlock);
1087        return;
1088allow:
1089        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090        goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
1105                         u32 tsid,
1106                         u16 orig_tclass,
1107                         struct av_decision *avd,
1108                         struct extended_perms *xperms)
1109{
1110        u16 tclass;
1111        struct context *scontext = NULL, *tcontext = NULL;
1112
1113        read_lock(&policy_rwlock);
1114        avd_init(avd);
1115        xperms->len = 0;
1116        if (!ss_initialized)
1117                goto allow;
1118
1119        scontext = sidtab_search(&sidtab, ssid);
1120        if (!scontext) {
1121                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122                       __func__, ssid);
1123                goto out;
1124        }
1125
1126        /* permissive domain? */
1127        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128                avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130        tcontext = sidtab_search(&sidtab, tsid);
1131        if (!tcontext) {
1132                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133                       __func__, tsid);
1134                goto out;
1135        }
1136
1137        tclass = unmap_class(orig_tclass);
1138        if (unlikely(orig_tclass && !tclass)) {
1139                if (policydb.allow_unknown)
1140                        goto allow;
1141                goto out;
1142        }
1143        context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144        map_decision(orig_tclass, avd, policydb.allow_unknown);
1145out:
1146        read_unlock(&policy_rwlock);
1147        return;
1148allow:
1149        avd->allowed = 0xffffffff;
1150        goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154                              u32 tsid,
1155                              u16 tclass,
1156                              struct av_decision *avd)
1157{
1158        struct context *scontext = NULL, *tcontext = NULL;
1159
1160        read_lock(&policy_rwlock);
1161        avd_init(avd);
1162        if (!ss_initialized)
1163                goto allow;
1164
1165        scontext = sidtab_search(&sidtab, ssid);
1166        if (!scontext) {
1167                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168                       __func__, ssid);
1169                goto out;
1170        }
1171
1172        /* permissive domain? */
1173        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174                avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176        tcontext = sidtab_search(&sidtab, tsid);
1177        if (!tcontext) {
1178                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179                       __func__, tsid);
1180                goto out;
1181        }
1182
1183        if (unlikely(!tclass)) {
1184                if (policydb.allow_unknown)
1185                        goto allow;
1186                goto out;
1187        }
1188
1189        context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1190 out:
1191        read_unlock(&policy_rwlock);
1192        return;
1193allow:
1194        avd->allowed = 0xffffffff;
1195        goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1206{
1207        char *scontextp;
1208
1209        if (scontext)
1210                *scontext = NULL;
1211        *scontext_len = 0;
1212
1213        if (context->len) {
1214                *scontext_len = context->len;
1215                if (scontext) {
1216                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1217                        if (!(*scontext))
1218                                return -ENOMEM;
1219                }
1220                return 0;
1221        }
1222
1223        /* Compute the size of the context. */
1224        *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225        *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226        *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227        *scontext_len += mls_compute_context_len(context);
1228
1229        if (!scontext)
1230                return 0;
1231
1232        /* Allocate space for the context; caller must free this space. */
1233        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234        if (!scontextp)
1235                return -ENOMEM;
1236        *scontext = scontextp;
1237
1238        /*
1239         * Copy the user name, role name and type name into the context.
1240         */
1241        scontextp += sprintf(scontextp, "%s:%s:%s",
1242                sym_name(&policydb, SYM_USERS, context->user - 1),
1243                sym_name(&policydb, SYM_ROLES, context->role - 1),
1244                sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246        mls_sid_to_context(context, &scontextp);
1247
1248        *scontextp = 0;
1249
1250        return 0;
1251}
1252
1253#include "initial_sid_to_string.h"
1254
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257        if (unlikely(sid > SECINITSID_NUM))
1258                return NULL;
1259        return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263                                        u32 *scontext_len, int force)
1264{
1265        struct context *context;
1266        int rc = 0;
1267
1268        if (scontext)
1269                *scontext = NULL;
1270        *scontext_len  = 0;
1271
1272        if (!ss_initialized) {
1273                if (sid <= SECINITSID_NUM) {
1274                        char *scontextp;
1275
1276                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1277                        if (!scontext)
1278                                goto out;
1279                        scontextp = kmemdup(initial_sid_to_string[sid],
1280                                            *scontext_len, GFP_ATOMIC);
1281                        if (!scontextp) {
1282                                rc = -ENOMEM;
1283                                goto out;
1284                        }
1285                        *scontext = scontextp;
1286                        goto out;
1287                }
1288                printk(KERN_ERR "SELinux: %s:  called before initial "
1289                       "load_policy on unknown SID %d\n", __func__, sid);
1290                rc = -EINVAL;
1291                goto out;
1292        }
1293        read_lock(&policy_rwlock);
1294        if (force)
1295                context = sidtab_search_force(&sidtab, sid);
1296        else
1297                context = sidtab_search(&sidtab, sid);
1298        if (!context) {
1299                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300                        __func__, sid);
1301                rc = -EINVAL;
1302                goto out_unlock;
1303        }
1304        rc = context_struct_to_string(context, scontext, scontext_len);
1305out_unlock:
1306        read_unlock(&policy_rwlock);
1307out:
1308        return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1323{
1324        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1328{
1329        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336                                    struct sidtab *sidtabp,
1337                                    char *scontext,
1338                                    u32 scontext_len,
1339                                    struct context *ctx,
1340                                    u32 def_sid)
1341{
1342        struct role_datum *role;
1343        struct type_datum *typdatum;
1344        struct user_datum *usrdatum;
1345        char *scontextp, *p, oldc;
1346        int rc = 0;
1347
1348        context_init(ctx);
1349
1350        /* Parse the security context. */
1351
1352        rc = -EINVAL;
1353        scontextp = (char *) scontext;
1354
1355        /* Extract the user. */
1356        p = scontextp;
1357        while (*p && *p != ':')
1358                p++;
1359
1360        if (*p == 0)
1361                goto out;
1362
1363        *p++ = 0;
1364
1365        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366        if (!usrdatum)
1367                goto out;
1368
1369        ctx->user = usrdatum->value;
1370
1371        /* Extract role. */
1372        scontextp = p;
1373        while (*p && *p != ':')
1374                p++;
1375
1376        if (*p == 0)
1377                goto out;
1378
1379        *p++ = 0;
1380
1381        role = hashtab_search(pol->p_roles.table, scontextp);
1382        if (!role)
1383                goto out;
1384        ctx->role = role->value;
1385
1386        /* Extract type. */
1387        scontextp = p;
1388        while (*p && *p != ':')
1389                p++;
1390        oldc = *p;
1391        *p++ = 0;
1392
1393        typdatum = hashtab_search(pol->p_types.table, scontextp);
1394        if (!typdatum || typdatum->attribute)
1395                goto out;
1396
1397        ctx->type = typdatum->value;
1398
1399        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400        if (rc)
1401                goto out;
1402
1403        rc = -EINVAL;
1404        if ((p - scontext) < scontext_len)
1405                goto out;
1406
1407        /* Check the validity of the new context. */
1408        if (!policydb_context_isvalid(pol, ctx))
1409                goto out;
1410        rc = 0;
1411out:
1412        if (rc)
1413                context_destroy(ctx);
1414        return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1418                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419                                        int force)
1420{
1421        char *scontext2, *str = NULL;
1422        struct context context;
1423        int rc = 0;
1424
1425        /* An empty security context is never valid. */
1426        if (!scontext_len)
1427                return -EINVAL;
1428
1429        if (!ss_initialized) {
1430                int i;
1431
1432                for (i = 1; i < SECINITSID_NUM; i++) {
1433                        if (!strcmp(initial_sid_to_string[i], scontext)) {
1434                                *sid = i;
1435                                return 0;
1436                        }
1437                }
1438                *sid = SECINITSID_KERNEL;
1439                return 0;
1440        }
1441        *sid = SECSID_NULL;
1442
1443        /* Copy the string so that we can modify the copy as we parse it. */
1444        scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445        if (!scontext2)
1446                return -ENOMEM;
1447        memcpy(scontext2, scontext, scontext_len);
1448        scontext2[scontext_len] = 0;
1449
1450        if (force) {
1451                /* Save another copy for storing in uninterpreted form */
1452                rc = -ENOMEM;
1453                str = kstrdup(scontext2, gfp_flags);
1454                if (!str)
1455                        goto out;
1456        }
1457
1458        read_lock(&policy_rwlock);
1459        rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460                                      scontext_len, &context, def_sid);
1461        if (rc == -EINVAL && force) {
1462                context.str = str;
1463                context.len = scontext_len;
1464                str = NULL;
1465        } else if (rc)
1466                goto out_unlock;
1467        rc = sidtab_context_to_sid(&sidtab, &context, sid);
1468        context_destroy(&context);
1469out_unlock:
1470        read_unlock(&policy_rwlock);
1471out:
1472        kfree(scontext2);
1473        kfree(str);
1474        return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1490                            gfp_t gfp)
1491{
1492        return security_context_to_sid_core(scontext, scontext_len,
1493                                            sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1497{
1498        return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1520                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522        return security_context_to_sid_core(scontext, scontext_len,
1523                                            sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1527                                  u32 *sid)
1528{
1529        return security_context_to_sid_core(scontext, scontext_len,
1530                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534        struct context *scontext,
1535        struct context *tcontext,
1536        u16 tclass,
1537        struct context *newcontext)
1538{
1539        char *s = NULL, *t = NULL, *n = NULL;
1540        u32 slen, tlen, nlen;
1541
1542        if (context_struct_to_string(scontext, &s, &slen))
1543                goto out;
1544        if (context_struct_to_string(tcontext, &t, &tlen))
1545                goto out;
1546        if (context_struct_to_string(newcontext, &n, &nlen))
1547                goto out;
1548        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549                  "op=security_compute_sid invalid_context=%s"
1550                  " scontext=%s"
1551                  " tcontext=%s"
1552                  " tclass=%s",
1553                  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1554out:
1555        kfree(s);
1556        kfree(t);
1557        kfree(n);
1558        if (!selinux_enforcing)
1559                return 0;
1560        return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
1564                                  u32 stype, u32 ttype, u16 tclass,
1565                                  const char *objname)
1566{
1567        struct filename_trans ft;
1568        struct filename_trans_datum *otype;
1569
1570        /*
1571         * Most filename trans rules are going to live in specific directories
1572         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573         * if the ttype does not contain any rules.
1574         */
1575        if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576                return;
1577
1578        ft.stype = stype;
1579        ft.ttype = ttype;
1580        ft.tclass = tclass;
1581        ft.name = objname;
1582
1583        otype = hashtab_search(p->filename_trans, &ft);
1584        if (otype)
1585                newcontext->type = otype->otype;
1586}
1587
1588static int security_compute_sid(u32 ssid,
1589                                u32 tsid,
1590                                u16 orig_tclass,
1591                                u32 specified,
1592                                const char *objname,
1593                                u32 *out_sid,
1594                                bool kern)
1595{
1596        struct class_datum *cladatum = NULL;
1597        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598        struct role_trans *roletr = NULL;
1599        struct avtab_key avkey;
1600        struct avtab_datum *avdatum;
1601        struct avtab_node *node;
1602        u16 tclass;
1603        int rc = 0;
1604        bool sock;
1605
1606        if (!ss_initialized) {
1607                switch (orig_tclass) {
1608                case SECCLASS_PROCESS: /* kernel value */
1609                        *out_sid = ssid;
1610                        break;
1611                default:
1612                        *out_sid = tsid;
1613                        break;
1614                }
1615                goto out;
1616        }
1617
1618        context_init(&newcontext);
1619
1620        read_lock(&policy_rwlock);
1621
1622        if (kern) {
1623                tclass = unmap_class(orig_tclass);
1624                sock = security_is_socket_class(orig_tclass);
1625        } else {
1626                tclass = orig_tclass;
1627                sock = security_is_socket_class(map_class(tclass));
1628        }
1629
1630        scontext = sidtab_search(&sidtab, ssid);
1631        if (!scontext) {
1632                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1633                       __func__, ssid);
1634                rc = -EINVAL;
1635                goto out_unlock;
1636        }
1637        tcontext = sidtab_search(&sidtab, tsid);
1638        if (!tcontext) {
1639                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640                       __func__, tsid);
1641                rc = -EINVAL;
1642                goto out_unlock;
1643        }
1644
1645        if (tclass && tclass <= policydb.p_classes.nprim)
1646                cladatum = policydb.class_val_to_struct[tclass - 1];
1647
1648        /* Set the user identity. */
1649        switch (specified) {
1650        case AVTAB_TRANSITION:
1651        case AVTAB_CHANGE:
1652                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653                        newcontext.user = tcontext->user;
1654                } else {
1655                        /* notice this gets both DEFAULT_SOURCE and unset */
1656                        /* Use the process user identity. */
1657                        newcontext.user = scontext->user;
1658                }
1659                break;
1660        case AVTAB_MEMBER:
1661                /* Use the related object owner. */
1662                newcontext.user = tcontext->user;
1663                break;
1664        }
1665
1666        /* Set the role to default values. */
1667        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668                newcontext.role = scontext->role;
1669        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670                newcontext.role = tcontext->role;
1671        } else {
1672                if ((tclass == policydb.process_class) || (sock == true))
1673                        newcontext.role = scontext->role;
1674                else
1675                        newcontext.role = OBJECT_R_VAL;
1676        }
1677
1678        /* Set the type to default values. */
1679        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680                newcontext.type = scontext->type;
1681        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682                newcontext.type = tcontext->type;
1683        } else {
1684                if ((tclass == policydb.process_class) || (sock == true)) {
1685                        /* Use the type of process. */
1686                        newcontext.type = scontext->type;
1687                } else {
1688                        /* Use the type of the related object. */
1689                        newcontext.type = tcontext->type;
1690                }
1691        }
1692
1693        /* Look for a type transition/member/change rule. */
1694        avkey.source_type = scontext->type;
1695        avkey.target_type = tcontext->type;
1696        avkey.target_class = tclass;
1697        avkey.specified = specified;
1698        avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700        /* If no permanent rule, also check for enabled conditional rules */
1701        if (!avdatum) {
1702                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703                for (; node; node = avtab_search_node_next(node, specified)) {
1704                        if (node->key.specified & AVTAB_ENABLED) {
1705                                avdatum = &node->datum;
1706                                break;
1707                        }
1708                }
1709        }
1710
1711        if (avdatum) {
1712                /* Use the type from the type transition/member/change rule. */
1713                newcontext.type = avdatum->u.data;
1714        }
1715
1716        /* if we have a objname this is a file trans check so check those rules */
1717        if (objname)
1718                filename_compute_type(&policydb, &newcontext, scontext->type,
1719                                      tcontext->type, tclass, objname);
1720
1721        /* Check for class-specific changes. */
1722        if (specified & AVTAB_TRANSITION) {
1723                /* Look for a role transition rule. */
1724                for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725                        if ((roletr->role == scontext->role) &&
1726                            (roletr->type == tcontext->type) &&
1727                            (roletr->tclass == tclass)) {
1728                                /* Use the role transition rule. */
1729                                newcontext.role = roletr->new_role;
1730                                break;
1731                        }
1732                }
1733        }
1734
1735        /* Set the MLS attributes.
1736           This is done last because it may allocate memory. */
1737        rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738                             &newcontext, sock);
1739        if (rc)
1740                goto out_unlock;
1741
1742        /* Check the validity of the context. */
1743        if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744                rc = compute_sid_handle_invalid_context(scontext,
1745                                                        tcontext,
1746                                                        tclass,
1747                                                        &newcontext);
1748                if (rc)
1749                        goto out_unlock;
1750        }
1751        /* Obtain the sid for the context. */
1752        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1753out_unlock:
1754        read_unlock(&policy_rwlock);
1755        context_destroy(&newcontext);
1756out:
1757        return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1774                            const struct qstr *qstr, u32 *out_sid)
1775{
1776        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1777                                    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1781                                 const char *objname, u32 *out_sid)
1782{
1783        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1784                                    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
1801                        u32 tsid,
1802                        u16 tclass,
1803                        u32 *out_sid)
1804{
1805        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1806                                    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
1823                        u32 tsid,
1824                        u16 tclass,
1825                        u32 *out_sid)
1826{
1827        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1828                                    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833                     struct context *context,
1834                     void *arg)
1835{
1836        struct sidtab *s = arg;
1837
1838        if (sid > SECINITSID_NUM)
1839                return sidtab_insert(s, sid, context);
1840        else
1841                return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
1846        char *s;
1847        u32 len;
1848
1849        if (selinux_enforcing)
1850                return -EINVAL;
1851
1852        if (!context_struct_to_string(context, &s, &len)) {
1853                printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1854                kfree(s);
1855        }
1856        return 0;
1857}
1858
1859struct convert_context_args {
1860        struct policydb *oldp;
1861        struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
1870 */
1871static int convert_context(u32 key,
1872                           struct context *c,
1873                           void *p)
1874{
1875        struct convert_context_args *args;
1876        struct context oldc;
1877        struct ocontext *oc;
1878        struct mls_range *range;
1879        struct role_datum *role;
1880        struct type_datum *typdatum;
1881        struct user_datum *usrdatum;
1882        char *s;
1883        u32 len;
1884        int rc = 0;
1885
1886        if (key <= SECINITSID_NUM)
1887                goto out;
1888
1889        args = p;
1890
1891        if (c->str) {
1892                struct context ctx;
1893
1894                rc = -ENOMEM;
1895                s = kstrdup(c->str, GFP_KERNEL);
1896                if (!s)
1897                        goto out;
1898
1899                rc = string_to_context_struct(args->newp, NULL, s,
1900                                              c->len, &ctx, SECSID_NULL);
1901                kfree(s);
1902                if (!rc) {
1903                        printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904                               c->str);
1905                        /* Replace string with mapped representation. */
1906                        kfree(c->str);
1907                        memcpy(c, &ctx, sizeof(*c));
1908                        goto out;
1909                } else if (rc == -EINVAL) {
1910                        /* Retain string representation for later mapping. */
1911                        rc = 0;
1912                        goto out;
1913                } else {
1914                        /* Other error condition, e.g. ENOMEM. */
1915                        printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916                               c->str, -rc);
1917                        goto out;
1918                }
1919        }
1920
1921        rc = context_cpy(&oldc, c);
1922        if (rc)
1923                goto out;
1924
1925        /* Convert the user. */
1926        rc = -EINVAL;
1927        usrdatum = hashtab_search(args->newp->p_users.table,
1928                                  sym_name(args->oldp, SYM_USERS, c->user - 1));
1929        if (!usrdatum)
1930                goto bad;
1931        c->user = usrdatum->value;
1932
1933        /* Convert the role. */
1934        rc = -EINVAL;
1935        role = hashtab_search(args->newp->p_roles.table,
1936                              sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937        if (!role)
1938                goto bad;
1939        c->role = role->value;
1940
1941        /* Convert the type. */
1942        rc = -EINVAL;
1943        typdatum = hashtab_search(args->newp->p_types.table,
1944                                  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1945        if (!typdatum)
1946                goto bad;
1947        c->type = typdatum->value;
1948
1949        /* Convert the MLS fields if dealing with MLS policies */
1950        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951                rc = mls_convert_context(args->oldp, args->newp, c);
1952                if (rc)
1953                        goto bad;
1954        } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955                /*
1956                 * Switching between MLS and non-MLS policy:
1957                 * free any storage used by the MLS fields in the
1958                 * context for all existing entries in the sidtab.
1959                 */
1960                mls_context_destroy(c);
1961        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962                /*
1963                 * Switching between non-MLS and MLS policy:
1964                 * ensure that the MLS fields of the context for all
1965                 * existing entries in the sidtab are filled in with a
1966                 * suitable default value, likely taken from one of the
1967                 * initial SIDs.
1968                 */
1969                oc = args->newp->ocontexts[OCON_ISID];
1970                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971                        oc = oc->next;
1972                rc = -EINVAL;
1973                if (!oc) {
1974                        printk(KERN_ERR "SELinux:  unable to look up"
1975                                " the initial SIDs list\n");
1976                        goto bad;
1977                }
1978                range = &oc->context[0].range;
1979                rc = mls_range_set(c, range);
1980                if (rc)
1981                        goto bad;
1982        }
1983
1984        /* Check the validity of the new context. */
1985        if (!policydb_context_isvalid(args->newp, c)) {
1986                rc = convert_context_handle_invalid_context(&oldc);
1987                if (rc)
1988                        goto bad;
1989        }
1990
1991        context_destroy(&oldc);
1992
1993        rc = 0;
1994out:
1995        return rc;
1996bad:
1997        /* Map old representation to string and save it. */
1998        rc = context_struct_to_string(&oldc, &s, &len);
1999        if (rc)
2000                return rc;
2001        context_destroy(&oldc);
2002        context_destroy(c);
2003        c->str = s;
2004        c->len = len;
2005        printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006               c->str);
2007        rc = 0;
2008        goto out;
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014                                                  POLICYDB_CAPABILITY_NETPEER);
2015        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016                                                  POLICYDB_CAPABILITY_OPENPERM);
2017        selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018                                                  POLICYDB_CAPABILITY_ALWAYSNETWORK);
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
2034{
2035        struct policydb *oldpolicydb, *newpolicydb;
2036        struct sidtab oldsidtab, newsidtab;
2037        struct selinux_mapping *oldmap, *map = NULL;
2038        struct convert_context_args args;
2039        u32 seqno;
2040        u16 map_size;
2041        int rc = 0;
2042        struct policy_file file = { data, len }, *fp = &file;
2043
2044        oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045        if (!oldpolicydb) {
2046                rc = -ENOMEM;
2047                goto out;
2048        }
2049        newpolicydb = oldpolicydb + 1;
2050
2051        if (!ss_initialized) {
2052                avtab_cache_init();
2053                rc = policydb_read(&policydb, fp);
2054                if (rc) {
2055                        avtab_cache_destroy();
2056                        goto out;
2057                }
2058
2059                policydb.len = len;
2060                rc = selinux_set_mapping(&policydb, secclass_map,
2061                                         &current_mapping,
2062                                         &current_mapping_size);
2063                if (rc) {
2064                        policydb_destroy(&policydb);
2065                        avtab_cache_destroy();
2066                        goto out;
2067                }
2068
2069                rc = policydb_load_isids(&policydb, &sidtab);
2070                if (rc) {
2071                        policydb_destroy(&policydb);
2072                        avtab_cache_destroy();
2073                        goto out;
2074                }
2075
2076                security_load_policycaps();
2077                ss_initialized = 1;
2078                seqno = ++latest_granting;
2079                selinux_complete_init();
2080                avc_ss_reset(seqno);
2081                selnl_notify_policyload(seqno);
2082                selinux_status_update_policyload(seqno);
2083                selinux_netlbl_cache_invalidate();
2084                selinux_xfrm_notify_policyload();
2085                goto out;
2086        }
2087
2088#if 0
2089        sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092        rc = policydb_read(newpolicydb, fp);
2093        if (rc)
2094                goto out;
2095
2096        newpolicydb->len = len;
2097        /* If switching between different policy types, log MLS status */
2098        if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099                printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100        else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101                printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103        rc = policydb_load_isids(newpolicydb, &newsidtab);
2104        if (rc) {
2105                printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106                policydb_destroy(newpolicydb);
2107                goto out;
2108        }
2109
2110        rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111        if (rc)
2112                goto err;
2113
2114        rc = security_preserve_bools(newpolicydb);
2115        if (rc) {
2116                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117                goto err;
2118        }
2119
2120        /* Clone the SID table. */
2121        sidtab_shutdown(&sidtab);
2122
2123        rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124        if (rc)
2125                goto err;
2126
2127        /*
2128         * Convert the internal representations of contexts
2129         * in the new SID table.
2130         */
2131        args.oldp = &policydb;
2132        args.newp = newpolicydb;
2133        rc = sidtab_map(&newsidtab, convert_context, &args);
2134        if (rc) {
2135                printk(KERN_ERR "SELinux:  unable to convert the internal"
2136                        " representation of contexts in the new SID"
2137                        " table\n");
2138                goto err;
2139        }
2140
2141        /* Save the old policydb and SID table to free later. */
2142        memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143        sidtab_set(&oldsidtab, &sidtab);
2144
2145        /* Install the new policydb and SID table. */
2146        write_lock_irq(&policy_rwlock);
2147        memcpy(&policydb, newpolicydb, sizeof(policydb));
2148        sidtab_set(&sidtab, &newsidtab);
2149        security_load_policycaps();
2150        oldmap = current_mapping;
2151        current_mapping = map;
2152        current_mapping_size = map_size;
2153        seqno = ++latest_granting;
2154        write_unlock_irq(&policy_rwlock);
2155
2156        /* Free the old policydb and SID table. */
2157        policydb_destroy(oldpolicydb);
2158        sidtab_destroy(&oldsidtab);
2159        kfree(oldmap);
2160
2161        avc_ss_reset(seqno);
2162        selnl_notify_policyload(seqno);
2163        selinux_status_update_policyload(seqno);
2164        selinux_netlbl_cache_invalidate();
2165        selinux_xfrm_notify_policyload();
2166
2167        rc = 0;
2168        goto out;
2169
2170err:
2171        kfree(map);
2172        sidtab_destroy(&newsidtab);
2173        policydb_destroy(newpolicydb);
2174
2175out:
2176        kfree(oldpolicydb);
2177        return rc;
2178}
2179
2180size_t security_policydb_len(void)
2181{
2182        size_t len;
2183
2184        read_lock(&policy_rwlock);
2185        len = policydb.len;
2186        read_unlock(&policy_rwlock);
2187
2188        return len;
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2198{
2199        struct ocontext *c;
2200        int rc = 0;
2201
2202        read_lock(&policy_rwlock);
2203
2204        c = policydb.ocontexts[OCON_PORT];
2205        while (c) {
2206                if (c->u.port.protocol == protocol &&
2207                    c->u.port.low_port <= port &&
2208                    c->u.port.high_port >= port)
2209                        break;
2210                c = c->next;
2211        }
2212
2213        if (c) {
2214                if (!c->sid[0]) {
2215                        rc = sidtab_context_to_sid(&sidtab,
2216                                                   &c->context[0],
2217                                                   &c->sid[0]);
2218                        if (rc)
2219                                goto out;
2220                }
2221                *out_sid = c->sid[0];
2222        } else {
2223                *out_sid = SECINITSID_PORT;
2224        }
2225
2226out:
2227        read_unlock(&policy_rwlock);
2228        return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
2237{
2238        int rc = 0;
2239        struct ocontext *c;
2240
2241        read_lock(&policy_rwlock);
2242
2243        c = policydb.ocontexts[OCON_NETIF];
2244        while (c) {
2245                if (strcmp(name, c->u.name) == 0)
2246                        break;
2247                c = c->next;
2248        }
2249
2250        if (c) {
2251                if (!c->sid[0] || !c->sid[1]) {
2252                        rc = sidtab_context_to_sid(&sidtab,
2253                                                  &c->context[0],
2254                                                  &c->sid[0]);
2255                        if (rc)
2256                                goto out;
2257                        rc = sidtab_context_to_sid(&sidtab,
2258                                                   &c->context[1],
2259                                                   &c->sid[1]);
2260                        if (rc)
2261                                goto out;
2262                }
2263                *if_sid = c->sid[0];
2264        } else
2265                *if_sid = SECINITSID_NETIF;
2266
2267out:
2268        read_unlock(&policy_rwlock);
2269        return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274        int i, fail = 0;
2275
2276        for (i = 0; i < 4; i++)
2277                if (addr[i] != (input[i] & mask[i])) {
2278                        fail = 1;
2279                        break;
2280                }
2281
2282        return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
2293                      void *addrp,
2294                      u32 addrlen,
2295                      u32 *out_sid)
2296{
2297        int rc;
2298        struct ocontext *c;
2299
2300        read_lock(&policy_rwlock);
2301
2302        switch (domain) {
2303        case AF_INET: {
2304                u32 addr;
2305
2306                rc = -EINVAL;
2307                if (addrlen != sizeof(u32))
2308                        goto out;
2309
2310                addr = *((u32 *)addrp);
2311
2312                c = policydb.ocontexts[OCON_NODE];
2313                while (c) {
2314                        if (c->u.node.addr == (addr & c->u.node.mask))
2315                                break;
2316                        c = c->next;
2317                }
2318                break;
2319        }
2320
2321        case AF_INET6:
2322                rc = -EINVAL;
2323                if (addrlen != sizeof(u64) * 2)
2324                        goto out;
2325                c = policydb.ocontexts[OCON_NODE6];
2326                while (c) {
2327                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328                                                c->u.node6.mask))
2329                                break;
2330                        c = c->next;
2331                }
2332                break;
2333
2334        default:
2335                rc = 0;
2336                *out_sid = SECINITSID_NODE;
2337                goto out;
2338        }
2339
2340        if (c) {
2341                if (!c->sid[0]) {
2342                        rc = sidtab_context_to_sid(&sidtab,
2343                                                   &c->context[0],
2344                                                   &c->sid[0]);
2345                        if (rc)
2346                                goto out;
2347                }
2348                *out_sid = c->sid[0];
2349        } else {
2350                *out_sid = SECINITSID_NODE;
2351        }
2352
2353        rc = 0;
2354out:
2355        read_unlock(&policy_rwlock);
2356        return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
2376                           char *username,
2377                           u32 **sids,
2378                           u32 *nel)
2379{
2380        struct context *fromcon, usercon;
2381        u32 *mysids = NULL, *mysids2, sid;
2382        u32 mynel = 0, maxnel = SIDS_NEL;
2383        struct user_datum *user;
2384        struct role_datum *role;
2385        struct ebitmap_node *rnode, *tnode;
2386        int rc = 0, i, j;
2387
2388        *sids = NULL;
2389        *nel = 0;
2390
2391        if (!ss_initialized)
2392                goto out;
2393
2394        read_lock(&policy_rwlock);
2395
2396        context_init(&usercon);
2397
2398        rc = -EINVAL;
2399        fromcon = sidtab_search(&sidtab, fromsid);
2400        if (!fromcon)
2401                goto out_unlock;
2402
2403        rc = -EINVAL;
2404        user = hashtab_search(policydb.p_users.table, username);
2405        if (!user)
2406                goto out_unlock;
2407
2408        usercon.user = user->value;
2409
2410        rc = -ENOMEM;
2411        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412        if (!mysids)
2413                goto out_unlock;
2414
2415        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416                role = policydb.role_val_to_struct[i];
2417                usercon.role = i + 1;
2418                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419                        usercon.type = j + 1;
2420
2421                        if (mls_setup_user_range(fromcon, user, &usercon))
2422                                continue;
2423
2424                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2425                        if (rc)
2426                                goto out_unlock;
2427                        if (mynel < maxnel) {
2428                                mysids[mynel++] = sid;
2429                        } else {
2430                                rc = -ENOMEM;
2431                                maxnel += SIDS_NEL;
2432                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433                                if (!mysids2)
2434                                        goto out_unlock;
2435                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436                                kfree(mysids);
2437                                mysids = mysids2;
2438                                mysids[mynel++] = sid;
2439                        }
2440                }
2441        }
2442        rc = 0;
2443out_unlock:
2444        read_unlock(&policy_rwlock);
2445        if (rc || !mynel) {
2446                kfree(mysids);
2447                goto out;
2448        }
2449
2450        rc = -ENOMEM;
2451        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452        if (!mysids2) {
2453                kfree(mysids);
2454                goto out;
2455        }
2456        for (i = 0, j = 0; i < mynel; i++) {
2457                struct av_decision dummy_avd;
2458                rc = avc_has_perm_noaudit(fromsid, mysids[i],
2459                                          SECCLASS_PROCESS, /* kernel value */
2460                                          PROCESS__TRANSITION, AVC_STRICT,
2461                                          &dummy_avd);
2462                if (!rc)
2463                        mysids2[j++] = mysids[i];
2464                cond_resched();
2465        }
2466        rc = 0;
2467        kfree(mysids);
2468        *sids = mysids2;
2469        *nel = j;
2470out:
2471        return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
2488                                       char *path,
2489                                       u16 orig_sclass,
2490                                       u32 *sid)
2491{
2492        int len;
2493        u16 sclass;
2494        struct genfs *genfs;
2495        struct ocontext *c;
2496        int rc, cmp = 0;
2497
2498        while (path[0] == '/' && path[1] == '/')
2499                path++;
2500
2501        sclass = unmap_class(orig_sclass);
2502        *sid = SECINITSID_UNLABELED;
2503
2504        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505                cmp = strcmp(fstype, genfs->fstype);
2506                if (cmp <= 0)
2507                        break;
2508        }
2509
2510        rc = -ENOENT;
2511        if (!genfs || cmp)
2512                goto out;
2513
2514        for (c = genfs->head; c; c = c->next) {
2515                len = strlen(c->u.name);
2516                if ((!c->v.sclass || sclass == c->v.sclass) &&
2517                    (strncmp(c->u.name, path, len) == 0))
2518                        break;
2519        }
2520
2521        rc = -ENOENT;
2522        if (!c)
2523                goto out;
2524
2525        if (!c->sid[0]) {
2526                rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527                if (rc)
2528                        goto out;
2529        }
2530
2531        *sid = c->sid[0];
2532        rc = 0;
2533out:
2534        return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
2548                       char *path,
2549                       u16 orig_sclass,
2550                       u32 *sid)
2551{
2552        int retval;
2553
2554        read_lock(&policy_rwlock);
2555        retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556        read_unlock(&policy_rwlock);
2557        return retval;
2558}
2559
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
2566        int rc = 0;
2567        struct ocontext *c;
2568        struct superblock_security_struct *sbsec = sb->s_security;
2569        const char *fstype = sb->s_type->name;
2570
2571        read_lock(&policy_rwlock);
2572
2573        c = policydb.ocontexts[OCON_FSUSE];
2574        while (c) {
2575                if (strcmp(fstype, c->u.name) == 0)
2576                        break;
2577                c = c->next;
2578        }
2579
2580        if (c) {
2581                sbsec->behavior = c->v.behavior;
2582                if (!c->sid[0]) {
2583                        rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584                                                   &c->sid[0]);
2585                        if (rc)
2586                                goto out;
2587                }
2588                sbsec->sid = c->sid[0];
2589        } else {
2590                rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591                                          &sbsec->sid);
2592                if (rc) {
2593                        sbsec->behavior = SECURITY_FS_USE_NONE;
2594                        rc = 0;
2595                } else {
2596                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2597                }
2598        }
2599
2600out:
2601        read_unlock(&policy_rwlock);
2602        return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
2606{
2607        int i, rc;
2608
2609        read_lock(&policy_rwlock);
2610        *names = NULL;
2611        *values = NULL;
2612
2613        rc = 0;
2614        *len = policydb.p_bools.nprim;
2615        if (!*len)
2616                goto out;
2617
2618        rc = -ENOMEM;
2619        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620        if (!*names)
2621                goto err;
2622
2623        rc = -ENOMEM;
2624        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625        if (!*values)
2626                goto err;
2627
2628        for (i = 0; i < *len; i++) {
2629                (*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631                rc = -ENOMEM;
2632                (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2633                if (!(*names)[i])
2634                        goto err;
2635        }
2636        rc = 0;
2637out:
2638        read_unlock(&policy_rwlock);
2639        return rc;
2640err:
2641        if (*names) {
2642                for (i = 0; i < *len; i++)
2643                        kfree((*names)[i]);
2644        }
2645        kfree(*values);
2646        goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652        int i, rc;
2653        int lenp, seqno = 0;
2654        struct cond_node *cur;
2655
2656        write_lock_irq(&policy_rwlock);
2657
2658        rc = -EFAULT;
2659        lenp = policydb.p_bools.nprim;
2660        if (len != lenp)
2661                goto out;
2662
2663        for (i = 0; i < len; i++) {
2664                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665                        audit_log(current->audit_context, GFP_ATOMIC,
2666                                AUDIT_MAC_CONFIG_CHANGE,
2667                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2668                                sym_name(&policydb, SYM_BOOLS, i),
2669                                !!values[i],
2670                                policydb.bool_val_to_struct[i]->state,
2671                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672                                audit_get_sessionid(current));
2673                }
2674                if (values[i])
2675                        policydb.bool_val_to_struct[i]->state = 1;
2676                else
2677                        policydb.bool_val_to_struct[i]->state = 0;
2678        }
2679
2680        for (cur = policydb.cond_list; cur; cur = cur->next) {
2681                rc = evaluate_cond_node(&policydb, cur);
2682                if (rc)
2683                        goto out;
2684        }
2685
2686        seqno = ++latest_granting;
2687        rc = 0;
2688out:
2689        write_unlock_irq(&policy_rwlock);
2690        if (!rc) {
2691                avc_ss_reset(seqno);
2692                selnl_notify_policyload(seqno);
2693                selinux_status_update_policyload(seqno);
2694                selinux_xfrm_notify_policyload();
2695        }
2696        return rc;
2697}
2698
2699int security_get_bool_value(int bool)
2700{
2701        int rc;
2702        int len;
2703
2704        read_lock(&policy_rwlock);
2705
2706        rc = -EFAULT;
2707        len = policydb.p_bools.nprim;
2708        if (bool >= len)
2709                goto out;
2710
2711        rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713        read_unlock(&policy_rwlock);
2714        return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
2718{
2719        int rc, nbools = 0, *bvalues = NULL, i;
2720        char **bnames = NULL;
2721        struct cond_bool_datum *booldatum;
2722        struct cond_node *cur;
2723
2724        rc = security_get_bools(&nbools, &bnames, &bvalues);
2725        if (rc)
2726                goto out;
2727        for (i = 0; i < nbools; i++) {
2728                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2729                if (booldatum)
2730                        booldatum->state = bvalues[i];
2731        }
2732        for (cur = p->cond_list; cur; cur = cur->next) {
2733                rc = evaluate_cond_node(p, cur);
2734                if (rc)
2735                        goto out;
2736        }
2737
2738out:
2739        if (bnames) {
2740                for (i = 0; i < nbools; i++)
2741                        kfree(bnames[i]);
2742        }
2743        kfree(bnames);
2744        kfree(bvalues);
2745        return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2753{
2754        struct context *context1;
2755        struct context *context2;
2756        struct context newcon;
2757        char *s;
2758        u32 len;
2759        int rc;
2760
2761        rc = 0;
2762        if (!ss_initialized || !policydb.mls_enabled) {
2763                *new_sid = sid;
2764                goto out;
2765        }
2766
2767        context_init(&newcon);
2768
2769        read_lock(&policy_rwlock);
2770
2771        rc = -EINVAL;
2772        context1 = sidtab_search(&sidtab, sid);
2773        if (!context1) {
2774                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775                        __func__, sid);
2776                goto out_unlock;
2777        }
2778
2779        rc = -EINVAL;
2780        context2 = sidtab_search(&sidtab, mls_sid);
2781        if (!context2) {
2782                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783                        __func__, mls_sid);
2784                goto out_unlock;
2785        }
2786
2787        newcon.user = context1->user;
2788        newcon.role = context1->role;
2789        newcon.type = context1->type;
2790        rc = mls_context_cpy(&newcon, context2);
2791        if (rc)
2792                goto out_unlock;
2793
2794        /* Check the validity of the new context. */
2795        if (!policydb_context_isvalid(&policydb, &newcon)) {
2796                rc = convert_context_handle_invalid_context(&newcon);
2797                if (rc) {
2798                        if (!context_struct_to_string(&newcon, &s, &len)) {
2799                                audit_log(current->audit_context,
2800                                          GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801                                          "op=security_sid_mls_copy "
2802                                          "invalid_context=%s", s);
2803                                kfree(s);
2804                        }
2805                        goto out_unlock;
2806                }
2807        }
2808
2809        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2810out_unlock:
2811        read_unlock(&policy_rwlock);
2812        context_destroy(&newcon);
2813out:
2814        return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2838                                 u32 xfrm_sid,
2839                                 u32 *peer_sid)
2840{
2841        int rc;
2842        struct context *nlbl_ctx;
2843        struct context *xfrm_ctx;
2844
2845        *peer_sid = SECSID_NULL;
2846
2847        /* handle the common (which also happens to be the set of easy) cases
2848         * right away, these two if statements catch everything involving a
2849         * single or absent peer SID/label */
2850        if (xfrm_sid == SECSID_NULL) {
2851                *peer_sid = nlbl_sid;
2852                return 0;
2853        }
2854        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856         * is present */
2857        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858                *peer_sid = xfrm_sid;
2859                return 0;
2860        }
2861
2862        /* we don't need to check ss_initialized here since the only way both
2863         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864         * security server was initialized and ss_initialized was true */
2865        if (!policydb.mls_enabled)
2866                return 0;
2867
2868        read_lock(&policy_rwlock);
2869
2870        rc = -EINVAL;
2871        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872        if (!nlbl_ctx) {
2873                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874                       __func__, nlbl_sid);
2875                goto out;
2876        }
2877        rc = -EINVAL;
2878        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879        if (!xfrm_ctx) {
2880                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881                       __func__, xfrm_sid);
2882                goto out;
2883        }
2884        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885        if (rc)
2886                goto out;
2887
2888        /* at present NetLabel SIDs/labels really only carry MLS
2889         * information so if the MLS portion of the NetLabel SID
2890         * matches the MLS portion of the labeled XFRM SID/label
2891         * then pass along the XFRM SID as it is the most
2892         * expressive */
2893        *peer_sid = xfrm_sid;
2894out:
2895        read_unlock(&policy_rwlock);
2896        return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901        struct class_datum *datum = d;
2902        char *name = k, **classes = args;
2903        int value = datum->value - 1;
2904
2905        classes[value] = kstrdup(name, GFP_ATOMIC);
2906        if (!classes[value])
2907                return -ENOMEM;
2908
2909        return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
2913{
2914        int rc;
2915
2916        read_lock(&policy_rwlock);
2917
2918        rc = -ENOMEM;
2919        *nclasses = policydb.p_classes.nprim;
2920        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921        if (!*classes)
2922                goto out;
2923
2924        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925                        *classes);
2926        if (rc) {
2927                int i;
2928                for (i = 0; i < *nclasses; i++)
2929                        kfree((*classes)[i]);
2930                kfree(*classes);
2931        }
2932
2933out:
2934        read_unlock(&policy_rwlock);
2935        return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940        struct perm_datum *datum = d;
2941        char *name = k, **perms = args;
2942        int value = datum->value - 1;
2943
2944        perms[value] = kstrdup(name, GFP_ATOMIC);
2945        if (!perms[value])
2946                return -ENOMEM;
2947
2948        return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
2952{
2953        int rc, i;
2954        struct class_datum *match;
2955
2956        read_lock(&policy_rwlock);
2957
2958        rc = -EINVAL;
2959        match = hashtab_search(policydb.p_classes.table, class);
2960        if (!match) {
2961                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962                        __func__, class);
2963                goto out;
2964        }
2965
2966        rc = -ENOMEM;
2967        *nperms = match->permissions.nprim;
2968        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969        if (!*perms)
2970                goto out;
2971
2972        if (match->comdatum) {
2973                rc = hashtab_map(match->comdatum->permissions.table,
2974                                get_permissions_callback, *perms);
2975                if (rc)
2976                        goto err;
2977        }
2978
2979        rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980                        *perms);
2981        if (rc)
2982                goto err;
2983
2984out:
2985        read_unlock(&policy_rwlock);
2986        return rc;
2987
2988err:
2989        read_unlock(&policy_rwlock);
2990        for (i = 0; i < *nperms; i++)
2991                kfree((*perms)[i]);
2992        kfree(*perms);
2993        return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998        return policydb.reject_unknown;
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003        return policydb.allow_unknown;
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
3017{
3018        int rc;
3019
3020        read_lock(&policy_rwlock);
3021        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022        read_unlock(&policy_rwlock);
3023
3024        return rc;
3025}
3026
3027struct selinux_audit_rule {
3028        u32 au_seqno;
3029        struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034        struct selinux_audit_rule *rule = vrule;
3035
3036        if (rule) {
3037                context_destroy(&rule->au_ctxt);
3038                kfree(rule);
3039        }
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
3044        struct selinux_audit_rule *tmprule;
3045        struct role_datum *roledatum;
3046        struct type_datum *typedatum;
3047        struct user_datum *userdatum;
3048        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049        int rc = 0;
3050
3051        *rule = NULL;
3052
3053        if (!ss_initialized)
3054                return -EOPNOTSUPP;
3055
3056        switch (field) {
3057        case AUDIT_SUBJ_USER:
3058        case AUDIT_SUBJ_ROLE:
3059        case AUDIT_SUBJ_TYPE:
3060        case AUDIT_OBJ_USER:
3061        case AUDIT_OBJ_ROLE:
3062        case AUDIT_OBJ_TYPE:
3063                /* only 'equals' and 'not equals' fit user, role, and type */
3064                if (op != Audit_equal && op != Audit_not_equal)
3065                        return -EINVAL;
3066                break;
3067        case AUDIT_SUBJ_SEN:
3068        case AUDIT_SUBJ_CLR:
3069        case AUDIT_OBJ_LEV_LOW:
3070        case AUDIT_OBJ_LEV_HIGH:
3071                /* we do not allow a range, indicated by the presence of '-' */
3072                if (strchr(rulestr, '-'))
3073                        return -EINVAL;
3074                break;
3075        default:
3076                /* only the above fields are valid */
3077                return -EINVAL;
3078        }
3079
3080        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081        if (!tmprule)
3082                return -ENOMEM;
3083
3084        context_init(&tmprule->au_ctxt);
3085
3086        read_lock(&policy_rwlock);
3087
3088        tmprule->au_seqno = latest_granting;
3089
3090        switch (field) {
3091        case AUDIT_SUBJ_USER:
3092        case AUDIT_OBJ_USER:
3093                rc = -EINVAL;
3094                userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095                if (!userdatum)
3096                        goto out;
3097                tmprule->au_ctxt.user = userdatum->value;
3098                break;
3099        case AUDIT_SUBJ_ROLE:
3100        case AUDIT_OBJ_ROLE:
3101                rc = -EINVAL;
3102                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103                if (!roledatum)
3104                        goto out;
3105                tmprule->au_ctxt.role = roledatum->value;
3106                break;
3107        case AUDIT_SUBJ_TYPE:
3108        case AUDIT_OBJ_TYPE:
3109                rc = -EINVAL;
3110                typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111                if (!typedatum)
3112                        goto out;
3113                tmprule->au_ctxt.type = typedatum->value;
3114                break;
3115        case AUDIT_SUBJ_SEN:
3116        case AUDIT_SUBJ_CLR:
3117        case AUDIT_OBJ_LEV_LOW:
3118        case AUDIT_OBJ_LEV_HIGH:
3119                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3120                if (rc)
3121                        goto out;
3122                break;
3123        }
3124        rc = 0;
3125out:
3126        read_unlock(&policy_rwlock);
3127
3128        if (rc) {
3129                selinux_audit_rule_free(tmprule);
3130                tmprule = NULL;
3131        }
3132
3133        *rule = tmprule;
3134
3135        return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141        int i;
3142
3143        for (i = 0; i < rule->field_count; i++) {
3144                struct audit_field *f = &rule->fields[i];
3145                switch (f->type) {
3146                case AUDIT_SUBJ_USER:
3147                case AUDIT_SUBJ_ROLE:
3148                case AUDIT_SUBJ_TYPE:
3149                case AUDIT_SUBJ_SEN:
3150                case AUDIT_SUBJ_CLR:
3151                case AUDIT_OBJ_USER:
3152                case AUDIT_OBJ_ROLE:
3153                case AUDIT_OBJ_TYPE:
3154                case AUDIT_OBJ_LEV_LOW:
3155                case AUDIT_OBJ_LEV_HIGH:
3156                        return 1;
3157                }
3158        }
3159
3160        return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164                             struct audit_context *actx)
3165{
3166        struct context *ctxt;
3167        struct mls_level *level;
3168        struct selinux_audit_rule *rule = vrule;
3169        int match = 0;
3170
3171        if (unlikely(!rule)) {
3172                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173                return -ENOENT;
3174        }
3175
3176        read_lock(&policy_rwlock);
3177
3178        if (rule->au_seqno < latest_granting) {
3179                match = -ESTALE;
3180                goto out;
3181        }
3182
3183        ctxt = sidtab_search(&sidtab, sid);
3184        if (unlikely(!ctxt)) {
3185                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186                          sid);
3187                match = -ENOENT;
3188                goto out;
3189        }
3190
3191        /* a field/op pair that is not caught here will simply fall through
3192           without a match */
3193        switch (field) {
3194        case AUDIT_SUBJ_USER:
3195        case AUDIT_OBJ_USER:
3196                switch (op) {
3197                case Audit_equal:
3198                        match = (ctxt->user == rule->au_ctxt.user);
3199                        break;
3200                case Audit_not_equal:
3201                        match = (ctxt->user != rule->au_ctxt.user);
3202                        break;
3203                }
3204                break;
3205        case AUDIT_SUBJ_ROLE:
3206        case AUDIT_OBJ_ROLE:
3207                switch (op) {
3208                case Audit_equal:
3209                        match = (ctxt->role == rule->au_ctxt.role);
3210                        break;
3211                case Audit_not_equal:
3212                        match = (ctxt->role != rule->au_ctxt.role);
3213                        break;
3214                }
3215                break;
3216        case AUDIT_SUBJ_TYPE:
3217        case AUDIT_OBJ_TYPE:
3218                switch (op) {
3219                case Audit_equal:
3220                        match = (ctxt->type == rule->au_ctxt.type);
3221                        break;
3222                case Audit_not_equal:
3223                        match = (ctxt->type != rule->au_ctxt.type);
3224                        break;
3225                }
3226                break;
3227        case AUDIT_SUBJ_SEN:
3228        case AUDIT_SUBJ_CLR:
3229        case AUDIT_OBJ_LEV_LOW:
3230        case AUDIT_OBJ_LEV_HIGH:
3231                level = ((field == AUDIT_SUBJ_SEN ||
3232                          field == AUDIT_OBJ_LEV_LOW) ?
3233                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3234                switch (op) {
3235                case Audit_equal:
3236                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237                                             level);
3238                        break;
3239                case Audit_not_equal:
3240                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241                                              level);
3242                        break;
3243                case Audit_lt:
3244                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245                                               level) &&
3246                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247                                               level));
3248                        break;
3249                case Audit_le:
3250                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251                                              level);
3252                        break;
3253                case Audit_gt:
3254                        match = (mls_level_dom(level,
3255                                              &rule->au_ctxt.range.level[0]) &&
3256                                 !mls_level_eq(level,
3257                                               &rule->au_ctxt.range.level[0]));
3258                        break;
3259                case Audit_ge:
3260                        match = mls_level_dom(level,
3261                                              &rule->au_ctxt.range.level[0]);
3262                        break;
3263                }
3264        }
3265
3266out:
3267        read_unlock(&policy_rwlock);
3268        return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275        int err = 0;
3276
3277        if (event == AVC_CALLBACK_RESET && aurule_callback)
3278                err = aurule_callback();
3279        return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284        int err;
3285
3286        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287        if (err)
3288                panic("avc_add_callback() failed, error %d\n", err);
3289
3290        return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307                                      u32 sid)
3308{
3309        u32 *sid_cache;
3310
3311        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312        if (sid_cache == NULL)
3313                return;
3314        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315        if (secattr->cache == NULL) {
3316                kfree(sid_cache);
3317                return;
3318        }
3319
3320        *sid_cache = sid;
3321        secattr->cache->free = kfree;
3322        secattr->cache->data = sid_cache;
3323        secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3342                                   u32 *sid)
3343{
3344        int rc;
3345        struct context *ctx;
3346        struct context ctx_new;
3347
3348        if (!ss_initialized) {
3349                *sid = SECSID_NULL;
3350                return 0;
3351        }
3352
3353        read_lock(&policy_rwlock);
3354
3355        if (secattr->flags & NETLBL_SECATTR_CACHE)
3356                *sid = *(u32 *)secattr->cache->data;
3357        else if (secattr->flags & NETLBL_SECATTR_SECID)
3358                *sid = secattr->attr.secid;
3359        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360                rc = -EIDRM;
3361                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362                if (ctx == NULL)
3363                        goto out;
3364
3365                context_init(&ctx_new);
3366                ctx_new.user = ctx->user;
3367                ctx_new.role = ctx->role;
3368                ctx_new.type = ctx->type;
3369                mls_import_netlbl_lvl(&ctx_new, secattr);
3370                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371                        rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372                        if (rc)
3373                                goto out;
3374                }
3375                rc = -EIDRM;
3376                if (!mls_context_isvalid(&policydb, &ctx_new))
3377                        goto out_free;
3378
3379                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3380                if (rc)
3381                        goto out_free;
3382
3383                security_netlbl_cache_add(secattr, *sid);
3384
3385                ebitmap_destroy(&ctx_new.range.level[0].cat);
3386        } else
3387                *sid = SECSID_NULL;
3388
3389        read_unlock(&policy_rwlock);
3390        return 0;
3391out_free:
3392        ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394        read_unlock(&policy_rwlock);
3395        return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3409{
3410        int rc;
3411        struct context *ctx;
3412
3413        if (!ss_initialized)
3414                return 0;
3415
3416        read_lock(&policy_rwlock);
3417
3418        rc = -ENOENT;
3419        ctx = sidtab_search(&sidtab, sid);
3420        if (ctx == NULL)
3421                goto out;
3422
3423        rc = -ENOMEM;
3424        secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425                                  GFP_ATOMIC);
3426        if (secattr->domain == NULL)
3427                goto out;
3428
3429        secattr->attr.secid = sid;
3430        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431        mls_export_netlbl_lvl(ctx, secattr);
3432        rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434        read_unlock(&policy_rwlock);
3435        return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
3446{
3447        int rc;
3448        struct policy_file fp;
3449
3450        if (!ss_initialized)
3451                return -EINVAL;
3452
3453        *len = security_policydb_len();
3454
3455        *data = vmalloc_user(*len);
3456        if (!*data)
3457                return -ENOMEM;
3458
3459        fp.data = *data;
3460        fp.len = *len;
3461
3462        read_lock(&policy_rwlock);
3463        rc = policydb_write(&policydb, &fp);
3464        read_unlock(&policy_rwlock);
3465
3466        if (rc)
3467                return rc;
3468
3469        *len = (unsigned long)fp.data - (unsigned long)*data;
3470        return 0;
3471
3472}
3473