linux/sound/firewire/digi00x/amdtp-dot.c
<<
>>
Prefs
   1/*
   2 * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
   3 *
   4 * Copyright (c) 2014-2015 Takashi Sakamoto
   5 * Copyright (C) 2012 Robin Gareus <robin@gareus.org>
   6 * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
   7 *
   8 * Licensed under the terms of the GNU General Public License, version 2.
   9 */
  10
  11#include <sound/pcm.h>
  12#include "digi00x.h"
  13
  14#define CIP_FMT_AM              0x10
  15
  16/* 'Clock-based rate control mode' is just supported. */
  17#define AMDTP_FDF_AM824         0x00
  18
  19/*
  20 * Nominally 3125 bytes/second, but the MIDI port's clock might be
  21 * 1% too slow, and the bus clock 100 ppm too fast.
  22 */
  23#define MIDI_BYTES_PER_SECOND   3093
  24
  25/*
  26 * Several devices look only at the first eight data blocks.
  27 * In any case, this is more than enough for the MIDI data rate.
  28 */
  29#define MAX_MIDI_RX_BLOCKS      8
  30
  31/*
  32 * The double-oh-three algorithm was discovered by Robin Gareus and Damien
  33 * Zammit in 2012, with reverse-engineering for Digi 003 Rack.
  34 */
  35struct dot_state {
  36        u8 carry;
  37        u8 idx;
  38        unsigned int off;
  39};
  40
  41struct amdtp_dot {
  42        unsigned int pcm_channels;
  43        struct dot_state state;
  44
  45        unsigned int midi_ports;
  46        /* 2 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) */
  47        struct snd_rawmidi_substream *midi[2];
  48        int midi_fifo_used[2];
  49        int midi_fifo_limit;
  50
  51        void (*transfer_samples)(struct amdtp_stream *s,
  52                                 struct snd_pcm_substream *pcm,
  53                                 __be32 *buffer, unsigned int frames);
  54};
  55
  56/*
  57 * double-oh-three look up table
  58 *
  59 * @param idx index byte (audio-sample data) 0x00..0xff
  60 * @param off channel offset shift
  61 * @return salt to XOR with given data
  62 */
  63#define BYTE_PER_SAMPLE (4)
  64#define MAGIC_DOT_BYTE (2)
  65#define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
  66static u8 dot_scrt(const u8 idx, const unsigned int off)
  67{
  68        /*
  69         * the length of the added pattern only depends on the lower nibble
  70         * of the last non-zero data
  71         */
  72        static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
  73                                   12, 10, 8, 6, 4, 2, 0};
  74
  75        /*
  76         * the lower nibble of the salt. Interleaved sequence.
  77         * this is walked backwards according to len[]
  78         */
  79        static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
  80                                   0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
  81
  82        /* circular list for the salt's hi nibble. */
  83        static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
  84                                   0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
  85
  86        /*
  87         * start offset for upper nibble mapping.
  88         * note: 9 is /special/. In the case where the high nibble == 0x9,
  89         * hir[] is not used and - coincidentally - the salt's hi nibble is
  90         * 0x09 regardless of the offset.
  91         */
  92        static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
  93                                   3, 0x00, 14, 13, 8, 9, 10, 2};
  94
  95        const u8 ln = idx & 0xf;
  96        const u8 hn = (idx >> 4) & 0xf;
  97        const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
  98
  99        if (len[ln] < off)
 100                return 0x00;
 101
 102        return ((nib[14 + off - len[ln]]) | (hr << 4));
 103}
 104
 105static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
 106{
 107        u8 * const data = (u8 *) buffer;
 108
 109        if (data[MAGIC_DOT_BYTE] != 0x00) {
 110                state->off = 0;
 111                state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
 112        }
 113        data[MAGIC_DOT_BYTE] ^= state->carry;
 114        state->carry = dot_scrt(state->idx, ++(state->off));
 115}
 116
 117int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
 118                             unsigned int pcm_channels)
 119{
 120        struct amdtp_dot *p = s->protocol;
 121        int err;
 122
 123        if (amdtp_stream_running(s))
 124                return -EBUSY;
 125
 126        /*
 127         * A first data channel is for MIDI conformant data channel, the rest is
 128         * Multi Bit Linear Audio data channel.
 129         */
 130        err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
 131        if (err < 0)
 132                return err;
 133
 134        s->fdf = AMDTP_FDF_AM824 | s->sfc;
 135
 136        p->pcm_channels = pcm_channels;
 137
 138        if (s->direction == AMDTP_IN_STREAM)
 139                p->midi_ports = DOT_MIDI_IN_PORTS;
 140        else
 141                p->midi_ports = DOT_MIDI_OUT_PORTS;
 142
 143        /*
 144         * We do not know the actual MIDI FIFO size of most devices.  Just
 145         * assume two bytes, i.e., one byte can be received over the bus while
 146         * the previous one is transmitted over MIDI.
 147         * (The value here is adjusted for midi_ratelimit_per_packet().)
 148         */
 149        p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
 150
 151        return 0;
 152}
 153
 154static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
 155                          __be32 *buffer, unsigned int frames)
 156{
 157        struct amdtp_dot *p = s->protocol;
 158        struct snd_pcm_runtime *runtime = pcm->runtime;
 159        unsigned int channels, remaining_frames, i, c;
 160        const u32 *src;
 161
 162        channels = p->pcm_channels;
 163        src = (void *)runtime->dma_area +
 164                        frames_to_bytes(runtime, s->pcm_buffer_pointer);
 165        remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
 166
 167        buffer++;
 168        for (i = 0; i < frames; ++i) {
 169                for (c = 0; c < channels; ++c) {
 170                        buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
 171                        dot_encode_step(&p->state, &buffer[c]);
 172                        src++;
 173                }
 174                buffer += s->data_block_quadlets;
 175                if (--remaining_frames == 0)
 176                        src = (void *)runtime->dma_area;
 177        }
 178}
 179
 180static void write_pcm_s16(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
 181                          __be32 *buffer, unsigned int frames)
 182{
 183        struct amdtp_dot *p = s->protocol;
 184        struct snd_pcm_runtime *runtime = pcm->runtime;
 185        unsigned int channels, remaining_frames, i, c;
 186        const u16 *src;
 187
 188        channels = p->pcm_channels;
 189        src = (void *)runtime->dma_area +
 190                        frames_to_bytes(runtime, s->pcm_buffer_pointer);
 191        remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
 192
 193        buffer++;
 194        for (i = 0; i < frames; ++i) {
 195                for (c = 0; c < channels; ++c) {
 196                        buffer[c] = cpu_to_be32((*src << 8) | 0x40000000);
 197                        dot_encode_step(&p->state, &buffer[c]);
 198                        src++;
 199                }
 200                buffer += s->data_block_quadlets;
 201                if (--remaining_frames == 0)
 202                        src = (void *)runtime->dma_area;
 203        }
 204}
 205
 206static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
 207                         __be32 *buffer, unsigned int frames)
 208{
 209        struct amdtp_dot *p = s->protocol;
 210        struct snd_pcm_runtime *runtime = pcm->runtime;
 211        unsigned int channels, remaining_frames, i, c;
 212        u32 *dst;
 213
 214        channels = p->pcm_channels;
 215        dst  = (void *)runtime->dma_area +
 216                        frames_to_bytes(runtime, s->pcm_buffer_pointer);
 217        remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
 218
 219        buffer++;
 220        for (i = 0; i < frames; ++i) {
 221                for (c = 0; c < channels; ++c) {
 222                        *dst = be32_to_cpu(buffer[c]) << 8;
 223                        dst++;
 224                }
 225                buffer += s->data_block_quadlets;
 226                if (--remaining_frames == 0)
 227                        dst = (void *)runtime->dma_area;
 228        }
 229}
 230
 231static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
 232                              unsigned int data_blocks)
 233{
 234        struct amdtp_dot *p = s->protocol;
 235        unsigned int channels, i, c;
 236
 237        channels = p->pcm_channels;
 238
 239        buffer++;
 240        for (i = 0; i < data_blocks; ++i) {
 241                for (c = 0; c < channels; ++c)
 242                        buffer[c] = cpu_to_be32(0x40000000);
 243                buffer += s->data_block_quadlets;
 244        }
 245}
 246
 247static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
 248{
 249        struct amdtp_dot *p = s->protocol;
 250        int used;
 251
 252        used = p->midi_fifo_used[port];
 253        if (used == 0)
 254                return true;
 255
 256        used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
 257        used = max(used, 0);
 258        p->midi_fifo_used[port] = used;
 259
 260        return used < p->midi_fifo_limit;
 261}
 262
 263static inline void midi_use_bytes(struct amdtp_stream *s,
 264                                  unsigned int port, unsigned int count)
 265{
 266        struct amdtp_dot *p = s->protocol;
 267
 268        p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
 269}
 270
 271static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
 272                                unsigned int data_blocks)
 273{
 274        struct amdtp_dot *p = s->protocol;
 275        unsigned int f, port;
 276        int len;
 277        u8 *b;
 278
 279        for (f = 0; f < data_blocks; f++) {
 280                port = (s->data_block_counter + f) % 8;
 281                b = (u8 *)&buffer[0];
 282
 283                len = 0;
 284                if (port < p->midi_ports &&
 285                    midi_ratelimit_per_packet(s, port) &&
 286                    p->midi[port] != NULL)
 287                        len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
 288
 289                if (len > 0) {
 290                        b[3] = (0x10 << port) | len;
 291                        midi_use_bytes(s, port, len);
 292                } else {
 293                        b[1] = 0;
 294                        b[2] = 0;
 295                        b[3] = 0;
 296                }
 297                b[0] = 0x80;
 298
 299                buffer += s->data_block_quadlets;
 300        }
 301}
 302
 303static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
 304                               unsigned int data_blocks)
 305{
 306        struct amdtp_dot *p = s->protocol;
 307        unsigned int f, port, len;
 308        u8 *b;
 309
 310        for (f = 0; f < data_blocks; f++) {
 311                b = (u8 *)&buffer[0];
 312                port = b[3] >> 4;
 313                len = b[3] & 0x0f;
 314
 315                if (port < p->midi_ports && p->midi[port] && len > 0)
 316                        snd_rawmidi_receive(p->midi[port], b + 1, len);
 317
 318                buffer += s->data_block_quadlets;
 319        }
 320}
 321
 322int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
 323                                     struct snd_pcm_runtime *runtime)
 324{
 325        int err;
 326
 327        /* This protocol delivers 24 bit data in 32bit data channel. */
 328        err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
 329        if (err < 0)
 330                return err;
 331
 332        return amdtp_stream_add_pcm_hw_constraints(s, runtime);
 333}
 334
 335void amdtp_dot_set_pcm_format(struct amdtp_stream *s, snd_pcm_format_t format)
 336{
 337        struct amdtp_dot *p = s->protocol;
 338
 339        if (WARN_ON(amdtp_stream_pcm_running(s)))
 340                return;
 341
 342        switch (format) {
 343        default:
 344                WARN_ON(1);
 345                /* fall through */
 346        case SNDRV_PCM_FORMAT_S16:
 347                if (s->direction == AMDTP_OUT_STREAM) {
 348                        p->transfer_samples = write_pcm_s16;
 349                        break;
 350                }
 351                WARN_ON(1);
 352                /* fall through */
 353        case SNDRV_PCM_FORMAT_S32:
 354                if (s->direction == AMDTP_OUT_STREAM)
 355                        p->transfer_samples = write_pcm_s32;
 356                else
 357                        p->transfer_samples = read_pcm_s32;
 358                break;
 359        }
 360}
 361
 362void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
 363                          struct snd_rawmidi_substream *midi)
 364{
 365        struct amdtp_dot *p = s->protocol;
 366
 367        if (port < p->midi_ports)
 368                ACCESS_ONCE(p->midi[port]) = midi;
 369}
 370
 371static unsigned int process_tx_data_blocks(struct amdtp_stream *s,
 372                                           __be32 *buffer,
 373                                           unsigned int data_blocks,
 374                                           unsigned int *syt)
 375{
 376        struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
 377        struct snd_pcm_substream *pcm;
 378        unsigned int pcm_frames;
 379
 380        pcm = ACCESS_ONCE(s->pcm);
 381        if (pcm) {
 382                p->transfer_samples(s, pcm, buffer, data_blocks);
 383                pcm_frames = data_blocks;
 384        } else {
 385                pcm_frames = 0;
 386        }
 387
 388        read_midi_messages(s, buffer, data_blocks);
 389
 390        return pcm_frames;
 391}
 392
 393static unsigned int process_rx_data_blocks(struct amdtp_stream *s,
 394                                           __be32 *buffer,
 395                                           unsigned int data_blocks,
 396                                           unsigned int *syt)
 397{
 398        struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
 399        struct snd_pcm_substream *pcm;
 400        unsigned int pcm_frames;
 401
 402        pcm = ACCESS_ONCE(s->pcm);
 403        if (pcm) {
 404                p->transfer_samples(s, pcm, buffer, data_blocks);
 405                pcm_frames = data_blocks;
 406        } else {
 407                write_pcm_silence(s, buffer, data_blocks);
 408                pcm_frames = 0;
 409        }
 410
 411        write_midi_messages(s, buffer, data_blocks);
 412
 413        return pcm_frames;
 414}
 415
 416int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
 417                 enum amdtp_stream_direction dir)
 418{
 419        amdtp_stream_process_data_blocks_t process_data_blocks;
 420        enum cip_flags flags;
 421
 422        /* Use different mode between incoming/outgoing. */
 423        if (dir == AMDTP_IN_STREAM) {
 424                flags = CIP_NONBLOCKING | CIP_SKIP_INIT_DBC_CHECK;
 425                process_data_blocks = process_tx_data_blocks;
 426        } else {
 427                flags = CIP_BLOCKING;
 428                process_data_blocks = process_rx_data_blocks;
 429        }
 430
 431        return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
 432                                 process_data_blocks, sizeof(struct amdtp_dot));
 433}
 434
 435void amdtp_dot_reset(struct amdtp_stream *s)
 436{
 437        struct amdtp_dot *p = s->protocol;
 438
 439        p->state.carry = 0x00;
 440        p->state.idx = 0x00;
 441        p->state.off = 0;
 442}
 443