linux/tools/lib/rbtree.c
<<
>>
Prefs
   1/*
   2  Red Black Trees
   3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
   4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
   5  (C) 2012  Michel Lespinasse <walken@google.com>
   6
   7  This program is free software; you can redistribute it and/or modify
   8  it under the terms of the GNU General Public License as published by
   9  the Free Software Foundation; either version 2 of the License, or
  10  (at your option) any later version.
  11
  12  This program is distributed in the hope that it will be useful,
  13  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15  GNU General Public License for more details.
  16
  17  You should have received a copy of the GNU General Public License
  18  along with this program; if not, write to the Free Software
  19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20
  21  linux/lib/rbtree.c
  22*/
  23
  24#include <linux/rbtree_augmented.h>
  25
  26/*
  27 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
  28 *
  29 *  1) A node is either red or black
  30 *  2) The root is black
  31 *  3) All leaves (NULL) are black
  32 *  4) Both children of every red node are black
  33 *  5) Every simple path from root to leaves contains the same number
  34 *     of black nodes.
  35 *
  36 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
  37 *  consecutive red nodes in a path and every red node is therefore followed by
  38 *  a black. So if B is the number of black nodes on every simple path (as per
  39 *  5), then the longest possible path due to 4 is 2B.
  40 *
  41 *  We shall indicate color with case, where black nodes are uppercase and red
  42 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
  43 *  parentheses and have some accompanying text comment.
  44 */
  45
  46static inline void rb_set_black(struct rb_node *rb)
  47{
  48        rb->__rb_parent_color |= RB_BLACK;
  49}
  50
  51static inline struct rb_node *rb_red_parent(struct rb_node *red)
  52{
  53        return (struct rb_node *)red->__rb_parent_color;
  54}
  55
  56/*
  57 * Helper function for rotations:
  58 * - old's parent and color get assigned to new
  59 * - old gets assigned new as a parent and 'color' as a color.
  60 */
  61static inline void
  62__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
  63                        struct rb_root *root, int color)
  64{
  65        struct rb_node *parent = rb_parent(old);
  66        new->__rb_parent_color = old->__rb_parent_color;
  67        rb_set_parent_color(old, new, color);
  68        __rb_change_child(old, new, parent, root);
  69}
  70
  71static __always_inline void
  72__rb_insert(struct rb_node *node, struct rb_root *root,
  73            void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
  74{
  75        struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
  76
  77        while (true) {
  78                /*
  79                 * Loop invariant: node is red
  80                 *
  81                 * If there is a black parent, we are done.
  82                 * Otherwise, take some corrective action as we don't
  83                 * want a red root or two consecutive red nodes.
  84                 */
  85                if (!parent) {
  86                        rb_set_parent_color(node, NULL, RB_BLACK);
  87                        break;
  88                } else if (rb_is_black(parent))
  89                        break;
  90
  91                gparent = rb_red_parent(parent);
  92
  93                tmp = gparent->rb_right;
  94                if (parent != tmp) {    /* parent == gparent->rb_left */
  95                        if (tmp && rb_is_red(tmp)) {
  96                                /*
  97                                 * Case 1 - color flips
  98                                 *
  99                                 *       G            g
 100                                 *      / \          / \
 101                                 *     p   u  -->   P   U
 102                                 *    /            /
 103                                 *   n            n
 104                                 *
 105                                 * However, since g's parent might be red, and
 106                                 * 4) does not allow this, we need to recurse
 107                                 * at g.
 108                                 */
 109                                rb_set_parent_color(tmp, gparent, RB_BLACK);
 110                                rb_set_parent_color(parent, gparent, RB_BLACK);
 111                                node = gparent;
 112                                parent = rb_parent(node);
 113                                rb_set_parent_color(node, parent, RB_RED);
 114                                continue;
 115                        }
 116
 117                        tmp = parent->rb_right;
 118                        if (node == tmp) {
 119                                /*
 120                                 * Case 2 - left rotate at parent
 121                                 *
 122                                 *      G             G
 123                                 *     / \           / \
 124                                 *    p   U  -->    n   U
 125                                 *     \           /
 126                                 *      n         p
 127                                 *
 128                                 * This still leaves us in violation of 4), the
 129                                 * continuation into Case 3 will fix that.
 130                                 */
 131                                parent->rb_right = tmp = node->rb_left;
 132                                node->rb_left = parent;
 133                                if (tmp)
 134                                        rb_set_parent_color(tmp, parent,
 135                                                            RB_BLACK);
 136                                rb_set_parent_color(parent, node, RB_RED);
 137                                augment_rotate(parent, node);
 138                                parent = node;
 139                                tmp = node->rb_right;
 140                        }
 141
 142                        /*
 143                         * Case 3 - right rotate at gparent
 144                         *
 145                         *        G           P
 146                         *       / \         / \
 147                         *      p   U  -->  n   g
 148                         *     /                 \
 149                         *    n                   U
 150                         */
 151                        gparent->rb_left = tmp;  /* == parent->rb_right */
 152                        parent->rb_right = gparent;
 153                        if (tmp)
 154                                rb_set_parent_color(tmp, gparent, RB_BLACK);
 155                        __rb_rotate_set_parents(gparent, parent, root, RB_RED);
 156                        augment_rotate(gparent, parent);
 157                        break;
 158                } else {
 159                        tmp = gparent->rb_left;
 160                        if (tmp && rb_is_red(tmp)) {
 161                                /* Case 1 - color flips */
 162                                rb_set_parent_color(tmp, gparent, RB_BLACK);
 163                                rb_set_parent_color(parent, gparent, RB_BLACK);
 164                                node = gparent;
 165                                parent = rb_parent(node);
 166                                rb_set_parent_color(node, parent, RB_RED);
 167                                continue;
 168                        }
 169
 170                        tmp = parent->rb_left;
 171                        if (node == tmp) {
 172                                /* Case 2 - right rotate at parent */
 173                                parent->rb_left = tmp = node->rb_right;
 174                                node->rb_right = parent;
 175                                if (tmp)
 176                                        rb_set_parent_color(tmp, parent,
 177                                                            RB_BLACK);
 178                                rb_set_parent_color(parent, node, RB_RED);
 179                                augment_rotate(parent, node);
 180                                parent = node;
 181                                tmp = node->rb_left;
 182                        }
 183
 184                        /* Case 3 - left rotate at gparent */
 185                        gparent->rb_right = tmp;  /* == parent->rb_left */
 186                        parent->rb_left = gparent;
 187                        if (tmp)
 188                                rb_set_parent_color(tmp, gparent, RB_BLACK);
 189                        __rb_rotate_set_parents(gparent, parent, root, RB_RED);
 190                        augment_rotate(gparent, parent);
 191                        break;
 192                }
 193        }
 194}
 195
 196/*
 197 * Inline version for rb_erase() use - we want to be able to inline
 198 * and eliminate the dummy_rotate callback there
 199 */
 200static __always_inline void
 201____rb_erase_color(struct rb_node *parent, struct rb_root *root,
 202        void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 203{
 204        struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
 205
 206        while (true) {
 207                /*
 208                 * Loop invariants:
 209                 * - node is black (or NULL on first iteration)
 210                 * - node is not the root (parent is not NULL)
 211                 * - All leaf paths going through parent and node have a
 212                 *   black node count that is 1 lower than other leaf paths.
 213                 */
 214                sibling = parent->rb_right;
 215                if (node != sibling) {  /* node == parent->rb_left */
 216                        if (rb_is_red(sibling)) {
 217                                /*
 218                                 * Case 1 - left rotate at parent
 219                                 *
 220                                 *     P               S
 221                                 *    / \             / \
 222                                 *   N   s    -->    p   Sr
 223                                 *      / \         / \
 224                                 *     Sl  Sr      N   Sl
 225                                 */
 226                                parent->rb_right = tmp1 = sibling->rb_left;
 227                                sibling->rb_left = parent;
 228                                rb_set_parent_color(tmp1, parent, RB_BLACK);
 229                                __rb_rotate_set_parents(parent, sibling, root,
 230                                                        RB_RED);
 231                                augment_rotate(parent, sibling);
 232                                sibling = tmp1;
 233                        }
 234                        tmp1 = sibling->rb_right;
 235                        if (!tmp1 || rb_is_black(tmp1)) {
 236                                tmp2 = sibling->rb_left;
 237                                if (!tmp2 || rb_is_black(tmp2)) {
 238                                        /*
 239                                         * Case 2 - sibling color flip
 240                                         * (p could be either color here)
 241                                         *
 242                                         *    (p)           (p)
 243                                         *    / \           / \
 244                                         *   N   S    -->  N   s
 245                                         *      / \           / \
 246                                         *     Sl  Sr        Sl  Sr
 247                                         *
 248                                         * This leaves us violating 5) which
 249                                         * can be fixed by flipping p to black
 250                                         * if it was red, or by recursing at p.
 251                                         * p is red when coming from Case 1.
 252                                         */
 253                                        rb_set_parent_color(sibling, parent,
 254                                                            RB_RED);
 255                                        if (rb_is_red(parent))
 256                                                rb_set_black(parent);
 257                                        else {
 258                                                node = parent;
 259                                                parent = rb_parent(node);
 260                                                if (parent)
 261                                                        continue;
 262                                        }
 263                                        break;
 264                                }
 265                                /*
 266                                 * Case 3 - right rotate at sibling
 267                                 * (p could be either color here)
 268                                 *
 269                                 *   (p)           (p)
 270                                 *   / \           / \
 271                                 *  N   S    -->  N   Sl
 272                                 *     / \             \
 273                                 *    sl  Sr            s
 274                                 *                       \
 275                                 *                        Sr
 276                                 */
 277                                sibling->rb_left = tmp1 = tmp2->rb_right;
 278                                tmp2->rb_right = sibling;
 279                                parent->rb_right = tmp2;
 280                                if (tmp1)
 281                                        rb_set_parent_color(tmp1, sibling,
 282                                                            RB_BLACK);
 283                                augment_rotate(sibling, tmp2);
 284                                tmp1 = sibling;
 285                                sibling = tmp2;
 286                        }
 287                        /*
 288                         * Case 4 - left rotate at parent + color flips
 289                         * (p and sl could be either color here.
 290                         *  After rotation, p becomes black, s acquires
 291                         *  p's color, and sl keeps its color)
 292                         *
 293                         *      (p)             (s)
 294                         *      / \             / \
 295                         *     N   S     -->   P   Sr
 296                         *        / \         / \
 297                         *      (sl) sr      N  (sl)
 298                         */
 299                        parent->rb_right = tmp2 = sibling->rb_left;
 300                        sibling->rb_left = parent;
 301                        rb_set_parent_color(tmp1, sibling, RB_BLACK);
 302                        if (tmp2)
 303                                rb_set_parent(tmp2, parent);
 304                        __rb_rotate_set_parents(parent, sibling, root,
 305                                                RB_BLACK);
 306                        augment_rotate(parent, sibling);
 307                        break;
 308                } else {
 309                        sibling = parent->rb_left;
 310                        if (rb_is_red(sibling)) {
 311                                /* Case 1 - right rotate at parent */
 312                                parent->rb_left = tmp1 = sibling->rb_right;
 313                                sibling->rb_right = parent;
 314                                rb_set_parent_color(tmp1, parent, RB_BLACK);
 315                                __rb_rotate_set_parents(parent, sibling, root,
 316                                                        RB_RED);
 317                                augment_rotate(parent, sibling);
 318                                sibling = tmp1;
 319                        }
 320                        tmp1 = sibling->rb_left;
 321                        if (!tmp1 || rb_is_black(tmp1)) {
 322                                tmp2 = sibling->rb_right;
 323                                if (!tmp2 || rb_is_black(tmp2)) {
 324                                        /* Case 2 - sibling color flip */
 325                                        rb_set_parent_color(sibling, parent,
 326                                                            RB_RED);
 327                                        if (rb_is_red(parent))
 328                                                rb_set_black(parent);
 329                                        else {
 330                                                node = parent;
 331                                                parent = rb_parent(node);
 332                                                if (parent)
 333                                                        continue;
 334                                        }
 335                                        break;
 336                                }
 337                                /* Case 3 - right rotate at sibling */
 338                                sibling->rb_right = tmp1 = tmp2->rb_left;
 339                                tmp2->rb_left = sibling;
 340                                parent->rb_left = tmp2;
 341                                if (tmp1)
 342                                        rb_set_parent_color(tmp1, sibling,
 343                                                            RB_BLACK);
 344                                augment_rotate(sibling, tmp2);
 345                                tmp1 = sibling;
 346                                sibling = tmp2;
 347                        }
 348                        /* Case 4 - left rotate at parent + color flips */
 349                        parent->rb_left = tmp2 = sibling->rb_right;
 350                        sibling->rb_right = parent;
 351                        rb_set_parent_color(tmp1, sibling, RB_BLACK);
 352                        if (tmp2)
 353                                rb_set_parent(tmp2, parent);
 354                        __rb_rotate_set_parents(parent, sibling, root,
 355                                                RB_BLACK);
 356                        augment_rotate(parent, sibling);
 357                        break;
 358                }
 359        }
 360}
 361
 362/* Non-inline version for rb_erase_augmented() use */
 363void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
 364        void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 365{
 366        ____rb_erase_color(parent, root, augment_rotate);
 367}
 368
 369/*
 370 * Non-augmented rbtree manipulation functions.
 371 *
 372 * We use dummy augmented callbacks here, and have the compiler optimize them
 373 * out of the rb_insert_color() and rb_erase() function definitions.
 374 */
 375
 376static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
 377static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
 378static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
 379
 380static const struct rb_augment_callbacks dummy_callbacks = {
 381        dummy_propagate, dummy_copy, dummy_rotate
 382};
 383
 384void rb_insert_color(struct rb_node *node, struct rb_root *root)
 385{
 386        __rb_insert(node, root, dummy_rotate);
 387}
 388
 389void rb_erase(struct rb_node *node, struct rb_root *root)
 390{
 391        struct rb_node *rebalance;
 392        rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
 393        if (rebalance)
 394                ____rb_erase_color(rebalance, root, dummy_rotate);
 395}
 396
 397/*
 398 * Augmented rbtree manipulation functions.
 399 *
 400 * This instantiates the same __always_inline functions as in the non-augmented
 401 * case, but this time with user-defined callbacks.
 402 */
 403
 404void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
 405        void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 406{
 407        __rb_insert(node, root, augment_rotate);
 408}
 409
 410/*
 411 * This function returns the first node (in sort order) of the tree.
 412 */
 413struct rb_node *rb_first(const struct rb_root *root)
 414{
 415        struct rb_node  *n;
 416
 417        n = root->rb_node;
 418        if (!n)
 419                return NULL;
 420        while (n->rb_left)
 421                n = n->rb_left;
 422        return n;
 423}
 424
 425struct rb_node *rb_last(const struct rb_root *root)
 426{
 427        struct rb_node  *n;
 428
 429        n = root->rb_node;
 430        if (!n)
 431                return NULL;
 432        while (n->rb_right)
 433                n = n->rb_right;
 434        return n;
 435}
 436
 437struct rb_node *rb_next(const struct rb_node *node)
 438{
 439        struct rb_node *parent;
 440
 441        if (RB_EMPTY_NODE(node))
 442                return NULL;
 443
 444        /*
 445         * If we have a right-hand child, go down and then left as far
 446         * as we can.
 447         */
 448        if (node->rb_right) {
 449                node = node->rb_right;
 450                while (node->rb_left)
 451                        node=node->rb_left;
 452                return (struct rb_node *)node;
 453        }
 454
 455        /*
 456         * No right-hand children. Everything down and left is smaller than us,
 457         * so any 'next' node must be in the general direction of our parent.
 458         * Go up the tree; any time the ancestor is a right-hand child of its
 459         * parent, keep going up. First time it's a left-hand child of its
 460         * parent, said parent is our 'next' node.
 461         */
 462        while ((parent = rb_parent(node)) && node == parent->rb_right)
 463                node = parent;
 464
 465        return parent;
 466}
 467
 468struct rb_node *rb_prev(const struct rb_node *node)
 469{
 470        struct rb_node *parent;
 471
 472        if (RB_EMPTY_NODE(node))
 473                return NULL;
 474
 475        /*
 476         * If we have a left-hand child, go down and then right as far
 477         * as we can.
 478         */
 479        if (node->rb_left) {
 480                node = node->rb_left;
 481                while (node->rb_right)
 482                        node=node->rb_right;
 483                return (struct rb_node *)node;
 484        }
 485
 486        /*
 487         * No left-hand children. Go up till we find an ancestor which
 488         * is a right-hand child of its parent.
 489         */
 490        while ((parent = rb_parent(node)) && node == parent->rb_left)
 491                node = parent;
 492
 493        return parent;
 494}
 495
 496void rb_replace_node(struct rb_node *victim, struct rb_node *new,
 497                     struct rb_root *root)
 498{
 499        struct rb_node *parent = rb_parent(victim);
 500
 501        /* Set the surrounding nodes to point to the replacement */
 502        __rb_change_child(victim, new, parent, root);
 503        if (victim->rb_left)
 504                rb_set_parent(victim->rb_left, new);
 505        if (victim->rb_right)
 506                rb_set_parent(victim->rb_right, new);
 507
 508        /* Copy the pointers/colour from the victim to the replacement */
 509        *new = *victim;
 510}
 511
 512static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
 513{
 514        for (;;) {
 515                if (node->rb_left)
 516                        node = node->rb_left;
 517                else if (node->rb_right)
 518                        node = node->rb_right;
 519                else
 520                        return (struct rb_node *)node;
 521        }
 522}
 523
 524struct rb_node *rb_next_postorder(const struct rb_node *node)
 525{
 526        const struct rb_node *parent;
 527        if (!node)
 528                return NULL;
 529        parent = rb_parent(node);
 530
 531        /* If we're sitting on node, we've already seen our children */
 532        if (parent && node == parent->rb_left && parent->rb_right) {
 533                /* If we are the parent's left node, go to the parent's right
 534                 * node then all the way down to the left */
 535                return rb_left_deepest_node(parent->rb_right);
 536        } else
 537                /* Otherwise we are the parent's right node, and the parent
 538                 * should be next */
 539                return (struct rb_node *)parent;
 540}
 541
 542struct rb_node *rb_first_postorder(const struct rb_root *root)
 543{
 544        if (!root->rb_node)
 545                return NULL;
 546
 547        return rb_left_deepest_node(root->rb_node);
 548}
 549