linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7#include "../perf.h"
   8#include "../builtin.h"
   9#include "../util/util.h"
  10#include <subcmd/parse-options.h>
  11#include "../util/cloexec.h"
  12
  13#include "bench.h"
  14
  15#include <errno.h>
  16#include <sched.h>
  17#include <stdio.h>
  18#include <assert.h>
  19#include <malloc.h>
  20#include <signal.h>
  21#include <stdlib.h>
  22#include <string.h>
  23#include <unistd.h>
  24#include <pthread.h>
  25#include <sys/mman.h>
  26#include <sys/time.h>
  27#include <sys/resource.h>
  28#include <sys/wait.h>
  29#include <sys/prctl.h>
  30#include <sys/types.h>
  31
  32#include <numa.h>
  33#include <numaif.h>
  34
  35/*
  36 * Regular printout to the terminal, supressed if -q is specified:
  37 */
  38#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  39
  40/*
  41 * Debug printf:
  42 */
  43#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  44
  45struct thread_data {
  46        int                     curr_cpu;
  47        cpu_set_t               bind_cpumask;
  48        int                     bind_node;
  49        u8                      *process_data;
  50        int                     process_nr;
  51        int                     thread_nr;
  52        int                     task_nr;
  53        unsigned int            loops_done;
  54        u64                     val;
  55        u64                     runtime_ns;
  56        u64                     system_time_ns;
  57        u64                     user_time_ns;
  58        double                  speed_gbs;
  59        pthread_mutex_t         *process_lock;
  60};
  61
  62/* Parameters set by options: */
  63
  64struct params {
  65        /* Startup synchronization: */
  66        bool                    serialize_startup;
  67
  68        /* Task hierarchy: */
  69        int                     nr_proc;
  70        int                     nr_threads;
  71
  72        /* Working set sizes: */
  73        const char              *mb_global_str;
  74        const char              *mb_proc_str;
  75        const char              *mb_proc_locked_str;
  76        const char              *mb_thread_str;
  77
  78        double                  mb_global;
  79        double                  mb_proc;
  80        double                  mb_proc_locked;
  81        double                  mb_thread;
  82
  83        /* Access patterns to the working set: */
  84        bool                    data_reads;
  85        bool                    data_writes;
  86        bool                    data_backwards;
  87        bool                    data_zero_memset;
  88        bool                    data_rand_walk;
  89        u32                     nr_loops;
  90        u32                     nr_secs;
  91        u32                     sleep_usecs;
  92
  93        /* Working set initialization: */
  94        bool                    init_zero;
  95        bool                    init_random;
  96        bool                    init_cpu0;
  97
  98        /* Misc options: */
  99        int                     show_details;
 100        int                     run_all;
 101        int                     thp;
 102
 103        long                    bytes_global;
 104        long                    bytes_process;
 105        long                    bytes_process_locked;
 106        long                    bytes_thread;
 107
 108        int                     nr_tasks;
 109        bool                    show_quiet;
 110
 111        bool                    show_convergence;
 112        bool                    measure_convergence;
 113
 114        int                     perturb_secs;
 115        int                     nr_cpus;
 116        int                     nr_nodes;
 117
 118        /* Affinity options -C and -N: */
 119        char                    *cpu_list_str;
 120        char                    *node_list_str;
 121};
 122
 123
 124/* Global, read-writable area, accessible to all processes and threads: */
 125
 126struct global_info {
 127        u8                      *data;
 128
 129        pthread_mutex_t         startup_mutex;
 130        int                     nr_tasks_started;
 131
 132        pthread_mutex_t         startup_done_mutex;
 133
 134        pthread_mutex_t         start_work_mutex;
 135        int                     nr_tasks_working;
 136
 137        pthread_mutex_t         stop_work_mutex;
 138        u64                     bytes_done;
 139
 140        struct thread_data      *threads;
 141
 142        /* Convergence latency measurement: */
 143        bool                    all_converged;
 144        bool                    stop_work;
 145
 146        int                     print_once;
 147
 148        struct params           p;
 149};
 150
 151static struct global_info       *g = NULL;
 152
 153static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 154static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 155
 156struct params p0;
 157
 158static const struct option options[] = {
 159        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 160        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 161
 162        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 163        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 164        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 165        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 166
 167        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 168        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 169        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 170
 171        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
 172        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 173        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 174        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 175        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 176
 177
 178        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 179        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 180        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 181        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 182
 183        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 184        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 185        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 186        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 187        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 188        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 189        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 190
 191        /* Special option string parsing callbacks: */
 192        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 193                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 194                        parse_cpus_opt),
 195        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 196                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 197                        parse_nodes_opt),
 198        OPT_END()
 199};
 200
 201static const char * const bench_numa_usage[] = {
 202        "perf bench numa <options>",
 203        NULL
 204};
 205
 206static const char * const numa_usage[] = {
 207        "perf bench numa mem [<options>]",
 208        NULL
 209};
 210
 211static cpu_set_t bind_to_cpu(int target_cpu)
 212{
 213        cpu_set_t orig_mask, mask;
 214        int ret;
 215
 216        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 217        BUG_ON(ret);
 218
 219        CPU_ZERO(&mask);
 220
 221        if (target_cpu == -1) {
 222                int cpu;
 223
 224                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 225                        CPU_SET(cpu, &mask);
 226        } else {
 227                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 228                CPU_SET(target_cpu, &mask);
 229        }
 230
 231        ret = sched_setaffinity(0, sizeof(mask), &mask);
 232        BUG_ON(ret);
 233
 234        return orig_mask;
 235}
 236
 237static cpu_set_t bind_to_node(int target_node)
 238{
 239        int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 240        cpu_set_t orig_mask, mask;
 241        int cpu;
 242        int ret;
 243
 244        BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 245        BUG_ON(!cpus_per_node);
 246
 247        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 248        BUG_ON(ret);
 249
 250        CPU_ZERO(&mask);
 251
 252        if (target_node == -1) {
 253                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 254                        CPU_SET(cpu, &mask);
 255        } else {
 256                int cpu_start = (target_node + 0) * cpus_per_node;
 257                int cpu_stop  = (target_node + 1) * cpus_per_node;
 258
 259                BUG_ON(cpu_stop > g->p.nr_cpus);
 260
 261                for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 262                        CPU_SET(cpu, &mask);
 263        }
 264
 265        ret = sched_setaffinity(0, sizeof(mask), &mask);
 266        BUG_ON(ret);
 267
 268        return orig_mask;
 269}
 270
 271static void bind_to_cpumask(cpu_set_t mask)
 272{
 273        int ret;
 274
 275        ret = sched_setaffinity(0, sizeof(mask), &mask);
 276        BUG_ON(ret);
 277}
 278
 279static void mempol_restore(void)
 280{
 281        int ret;
 282
 283        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 284
 285        BUG_ON(ret);
 286}
 287
 288static void bind_to_memnode(int node)
 289{
 290        unsigned long nodemask;
 291        int ret;
 292
 293        if (node == -1)
 294                return;
 295
 296        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 297        nodemask = 1L << node;
 298
 299        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 300        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 301
 302        BUG_ON(ret);
 303}
 304
 305#define HPSIZE (2*1024*1024)
 306
 307#define set_taskname(fmt...)                            \
 308do {                                                    \
 309        char name[20];                                  \
 310                                                        \
 311        snprintf(name, 20, fmt);                        \
 312        prctl(PR_SET_NAME, name);                       \
 313} while (0)
 314
 315static u8 *alloc_data(ssize_t bytes0, int map_flags,
 316                      int init_zero, int init_cpu0, int thp, int init_random)
 317{
 318        cpu_set_t orig_mask;
 319        ssize_t bytes;
 320        u8 *buf;
 321        int ret;
 322
 323        if (!bytes0)
 324                return NULL;
 325
 326        /* Allocate and initialize all memory on CPU#0: */
 327        if (init_cpu0) {
 328                orig_mask = bind_to_node(0);
 329                bind_to_memnode(0);
 330        }
 331
 332        bytes = bytes0 + HPSIZE;
 333
 334        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 335        BUG_ON(buf == (void *)-1);
 336
 337        if (map_flags == MAP_PRIVATE) {
 338                if (thp > 0) {
 339                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 340                        if (ret && !g->print_once) {
 341                                g->print_once = 1;
 342                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 343                        }
 344                }
 345                if (thp < 0) {
 346                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 347                        if (ret && !g->print_once) {
 348                                g->print_once = 1;
 349                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 350                        }
 351                }
 352        }
 353
 354        if (init_zero) {
 355                bzero(buf, bytes);
 356        } else {
 357                /* Initialize random contents, different in each word: */
 358                if (init_random) {
 359                        u64 *wbuf = (void *)buf;
 360                        long off = rand();
 361                        long i;
 362
 363                        for (i = 0; i < bytes/8; i++)
 364                                wbuf[i] = i + off;
 365                }
 366        }
 367
 368        /* Align to 2MB boundary: */
 369        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 370
 371        /* Restore affinity: */
 372        if (init_cpu0) {
 373                bind_to_cpumask(orig_mask);
 374                mempol_restore();
 375        }
 376
 377        return buf;
 378}
 379
 380static void free_data(void *data, ssize_t bytes)
 381{
 382        int ret;
 383
 384        if (!data)
 385                return;
 386
 387        ret = munmap(data, bytes);
 388        BUG_ON(ret);
 389}
 390
 391/*
 392 * Create a shared memory buffer that can be shared between processes, zeroed:
 393 */
 394static void * zalloc_shared_data(ssize_t bytes)
 395{
 396        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 397}
 398
 399/*
 400 * Create a shared memory buffer that can be shared between processes:
 401 */
 402static void * setup_shared_data(ssize_t bytes)
 403{
 404        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 405}
 406
 407/*
 408 * Allocate process-local memory - this will either be shared between
 409 * threads of this process, or only be accessed by this thread:
 410 */
 411static void * setup_private_data(ssize_t bytes)
 412{
 413        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 414}
 415
 416/*
 417 * Return a process-shared (global) mutex:
 418 */
 419static void init_global_mutex(pthread_mutex_t *mutex)
 420{
 421        pthread_mutexattr_t attr;
 422
 423        pthread_mutexattr_init(&attr);
 424        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 425        pthread_mutex_init(mutex, &attr);
 426}
 427
 428static int parse_cpu_list(const char *arg)
 429{
 430        p0.cpu_list_str = strdup(arg);
 431
 432        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 433
 434        return 0;
 435}
 436
 437static int parse_setup_cpu_list(void)
 438{
 439        struct thread_data *td;
 440        char *str0, *str;
 441        int t;
 442
 443        if (!g->p.cpu_list_str)
 444                return 0;
 445
 446        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 447
 448        str0 = str = strdup(g->p.cpu_list_str);
 449        t = 0;
 450
 451        BUG_ON(!str);
 452
 453        tprintf("# binding tasks to CPUs:\n");
 454        tprintf("#  ");
 455
 456        while (true) {
 457                int bind_cpu, bind_cpu_0, bind_cpu_1;
 458                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 459                int bind_len;
 460                int step;
 461                int mul;
 462
 463                tok = strsep(&str, ",");
 464                if (!tok)
 465                        break;
 466
 467                tok_end = strstr(tok, "-");
 468
 469                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 470                if (!tok_end) {
 471                        /* Single CPU specified: */
 472                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 473                } else {
 474                        /* CPU range specified (for example: "5-11"): */
 475                        bind_cpu_0 = atol(tok);
 476                        bind_cpu_1 = atol(tok_end + 1);
 477                }
 478
 479                step = 1;
 480                tok_step = strstr(tok, "#");
 481                if (tok_step) {
 482                        step = atol(tok_step + 1);
 483                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 484                }
 485
 486                /*
 487                 * Mask length.
 488                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 489                 * where the _4 means the next 4 CPUs are allowed.
 490                 */
 491                bind_len = 1;
 492                tok_len = strstr(tok, "_");
 493                if (tok_len) {
 494                        bind_len = atol(tok_len + 1);
 495                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 496                }
 497
 498                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 499                mul = 1;
 500                tok_mul = strstr(tok, "x");
 501                if (tok_mul) {
 502                        mul = atol(tok_mul + 1);
 503                        BUG_ON(mul <= 0);
 504                }
 505
 506                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 507
 508                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 509                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 510                        return -1;
 511                }
 512
 513                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 514                BUG_ON(bind_cpu_0 > bind_cpu_1);
 515
 516                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 517                        int i;
 518
 519                        for (i = 0; i < mul; i++) {
 520                                int cpu;
 521
 522                                if (t >= g->p.nr_tasks) {
 523                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 524                                        goto out;
 525                                }
 526                                td = g->threads + t;
 527
 528                                if (t)
 529                                        tprintf(",");
 530                                if (bind_len > 1) {
 531                                        tprintf("%2d/%d", bind_cpu, bind_len);
 532                                } else {
 533                                        tprintf("%2d", bind_cpu);
 534                                }
 535
 536                                CPU_ZERO(&td->bind_cpumask);
 537                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 538                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 539                                        CPU_SET(cpu, &td->bind_cpumask);
 540                                }
 541                                t++;
 542                        }
 543                }
 544        }
 545out:
 546
 547        tprintf("\n");
 548
 549        if (t < g->p.nr_tasks)
 550                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 551
 552        free(str0);
 553        return 0;
 554}
 555
 556static int parse_cpus_opt(const struct option *opt __maybe_unused,
 557                          const char *arg, int unset __maybe_unused)
 558{
 559        if (!arg)
 560                return -1;
 561
 562        return parse_cpu_list(arg);
 563}
 564
 565static int parse_node_list(const char *arg)
 566{
 567        p0.node_list_str = strdup(arg);
 568
 569        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 570
 571        return 0;
 572}
 573
 574static int parse_setup_node_list(void)
 575{
 576        struct thread_data *td;
 577        char *str0, *str;
 578        int t;
 579
 580        if (!g->p.node_list_str)
 581                return 0;
 582
 583        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 584
 585        str0 = str = strdup(g->p.node_list_str);
 586        t = 0;
 587
 588        BUG_ON(!str);
 589
 590        tprintf("# binding tasks to NODEs:\n");
 591        tprintf("# ");
 592
 593        while (true) {
 594                int bind_node, bind_node_0, bind_node_1;
 595                char *tok, *tok_end, *tok_step, *tok_mul;
 596                int step;
 597                int mul;
 598
 599                tok = strsep(&str, ",");
 600                if (!tok)
 601                        break;
 602
 603                tok_end = strstr(tok, "-");
 604
 605                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 606                if (!tok_end) {
 607                        /* Single NODE specified: */
 608                        bind_node_0 = bind_node_1 = atol(tok);
 609                } else {
 610                        /* NODE range specified (for example: "5-11"): */
 611                        bind_node_0 = atol(tok);
 612                        bind_node_1 = atol(tok_end + 1);
 613                }
 614
 615                step = 1;
 616                tok_step = strstr(tok, "#");
 617                if (tok_step) {
 618                        step = atol(tok_step + 1);
 619                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 620                }
 621
 622                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 623                mul = 1;
 624                tok_mul = strstr(tok, "x");
 625                if (tok_mul) {
 626                        mul = atol(tok_mul + 1);
 627                        BUG_ON(mul <= 0);
 628                }
 629
 630                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 631
 632                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 633                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 634                        return -1;
 635                }
 636
 637                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 638                BUG_ON(bind_node_0 > bind_node_1);
 639
 640                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 641                        int i;
 642
 643                        for (i = 0; i < mul; i++) {
 644                                if (t >= g->p.nr_tasks) {
 645                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 646                                        goto out;
 647                                }
 648                                td = g->threads + t;
 649
 650                                if (!t)
 651                                        tprintf(" %2d", bind_node);
 652                                else
 653                                        tprintf(",%2d", bind_node);
 654
 655                                td->bind_node = bind_node;
 656                                t++;
 657                        }
 658                }
 659        }
 660out:
 661
 662        tprintf("\n");
 663
 664        if (t < g->p.nr_tasks)
 665                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 666
 667        free(str0);
 668        return 0;
 669}
 670
 671static int parse_nodes_opt(const struct option *opt __maybe_unused,
 672                          const char *arg, int unset __maybe_unused)
 673{
 674        if (!arg)
 675                return -1;
 676
 677        return parse_node_list(arg);
 678
 679        return 0;
 680}
 681
 682#define BIT(x) (1ul << x)
 683
 684static inline uint32_t lfsr_32(uint32_t lfsr)
 685{
 686        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 687        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 688}
 689
 690/*
 691 * Make sure there's real data dependency to RAM (when read
 692 * accesses are enabled), so the compiler, the CPU and the
 693 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 694 * accesses:
 695 */
 696static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 697{
 698        if (g->p.data_reads)
 699                val += *data;
 700        if (g->p.data_writes)
 701                *data = val + 1;
 702        return val;
 703}
 704
 705/*
 706 * The worker process does two types of work, a forwards going
 707 * loop and a backwards going loop.
 708 *
 709 * We do this so that on multiprocessor systems we do not create
 710 * a 'train' of processing, with highly synchronized processes,
 711 * skewing the whole benchmark.
 712 */
 713static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 714{
 715        long words = bytes/sizeof(u64);
 716        u64 *data = (void *)__data;
 717        long chunk_0, chunk_1;
 718        u64 *d0, *d, *d1;
 719        long off;
 720        long i;
 721
 722        BUG_ON(!data && words);
 723        BUG_ON(data && !words);
 724
 725        if (!data)
 726                return val;
 727
 728        /* Very simple memset() work variant: */
 729        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 730                bzero(data, bytes);
 731                return val;
 732        }
 733
 734        /* Spread out by PID/TID nr and by loop nr: */
 735        chunk_0 = words/nr_max;
 736        chunk_1 = words/g->p.nr_loops;
 737        off = nr*chunk_0 + loop*chunk_1;
 738
 739        while (off >= words)
 740                off -= words;
 741
 742        if (g->p.data_rand_walk) {
 743                u32 lfsr = nr + loop + val;
 744                int j;
 745
 746                for (i = 0; i < words/1024; i++) {
 747                        long start, end;
 748
 749                        lfsr = lfsr_32(lfsr);
 750
 751                        start = lfsr % words;
 752                        end = min(start + 1024, words-1);
 753
 754                        if (g->p.data_zero_memset) {
 755                                bzero(data + start, (end-start) * sizeof(u64));
 756                        } else {
 757                                for (j = start; j < end; j++)
 758                                        val = access_data(data + j, val);
 759                        }
 760                }
 761        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 762
 763                d0 = data + off;
 764                d  = data + off + 1;
 765                d1 = data + words;
 766
 767                /* Process data forwards: */
 768                for (;;) {
 769                        if (unlikely(d >= d1))
 770                                d = data;
 771                        if (unlikely(d == d0))
 772                                break;
 773
 774                        val = access_data(d, val);
 775
 776                        d++;
 777                }
 778        } else {
 779                /* Process data backwards: */
 780
 781                d0 = data + off;
 782                d  = data + off - 1;
 783                d1 = data + words;
 784
 785                /* Process data forwards: */
 786                for (;;) {
 787                        if (unlikely(d < data))
 788                                d = data + words-1;
 789                        if (unlikely(d == d0))
 790                                break;
 791
 792                        val = access_data(d, val);
 793
 794                        d--;
 795                }
 796        }
 797
 798        return val;
 799}
 800
 801static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 802{
 803        unsigned int cpu;
 804
 805        cpu = sched_getcpu();
 806
 807        g->threads[task_nr].curr_cpu = cpu;
 808        prctl(0, bytes_worked);
 809}
 810
 811#define MAX_NR_NODES    64
 812
 813/*
 814 * Count the number of nodes a process's threads
 815 * are spread out on.
 816 *
 817 * A count of 1 means that the process is compressed
 818 * to a single node. A count of g->p.nr_nodes means it's
 819 * spread out on the whole system.
 820 */
 821static int count_process_nodes(int process_nr)
 822{
 823        char node_present[MAX_NR_NODES] = { 0, };
 824        int nodes;
 825        int n, t;
 826
 827        for (t = 0; t < g->p.nr_threads; t++) {
 828                struct thread_data *td;
 829                int task_nr;
 830                int node;
 831
 832                task_nr = process_nr*g->p.nr_threads + t;
 833                td = g->threads + task_nr;
 834
 835                node = numa_node_of_cpu(td->curr_cpu);
 836                if (node < 0) /* curr_cpu was likely still -1 */
 837                        return 0;
 838
 839                node_present[node] = 1;
 840        }
 841
 842        nodes = 0;
 843
 844        for (n = 0; n < MAX_NR_NODES; n++)
 845                nodes += node_present[n];
 846
 847        return nodes;
 848}
 849
 850/*
 851 * Count the number of distinct process-threads a node contains.
 852 *
 853 * A count of 1 means that the node contains only a single
 854 * process. If all nodes on the system contain at most one
 855 * process then we are well-converged.
 856 */
 857static int count_node_processes(int node)
 858{
 859        int processes = 0;
 860        int t, p;
 861
 862        for (p = 0; p < g->p.nr_proc; p++) {
 863                for (t = 0; t < g->p.nr_threads; t++) {
 864                        struct thread_data *td;
 865                        int task_nr;
 866                        int n;
 867
 868                        task_nr = p*g->p.nr_threads + t;
 869                        td = g->threads + task_nr;
 870
 871                        n = numa_node_of_cpu(td->curr_cpu);
 872                        if (n == node) {
 873                                processes++;
 874                                break;
 875                        }
 876                }
 877        }
 878
 879        return processes;
 880}
 881
 882static void calc_convergence_compression(int *strong)
 883{
 884        unsigned int nodes_min, nodes_max;
 885        int p;
 886
 887        nodes_min = -1;
 888        nodes_max =  0;
 889
 890        for (p = 0; p < g->p.nr_proc; p++) {
 891                unsigned int nodes = count_process_nodes(p);
 892
 893                if (!nodes) {
 894                        *strong = 0;
 895                        return;
 896                }
 897
 898                nodes_min = min(nodes, nodes_min);
 899                nodes_max = max(nodes, nodes_max);
 900        }
 901
 902        /* Strong convergence: all threads compress on a single node: */
 903        if (nodes_min == 1 && nodes_max == 1) {
 904                *strong = 1;
 905        } else {
 906                *strong = 0;
 907                tprintf(" {%d-%d}", nodes_min, nodes_max);
 908        }
 909}
 910
 911static void calc_convergence(double runtime_ns_max, double *convergence)
 912{
 913        unsigned int loops_done_min, loops_done_max;
 914        int process_groups;
 915        int nodes[MAX_NR_NODES];
 916        int distance;
 917        int nr_min;
 918        int nr_max;
 919        int strong;
 920        int sum;
 921        int nr;
 922        int node;
 923        int cpu;
 924        int t;
 925
 926        if (!g->p.show_convergence && !g->p.measure_convergence)
 927                return;
 928
 929        for (node = 0; node < g->p.nr_nodes; node++)
 930                nodes[node] = 0;
 931
 932        loops_done_min = -1;
 933        loops_done_max = 0;
 934
 935        for (t = 0; t < g->p.nr_tasks; t++) {
 936                struct thread_data *td = g->threads + t;
 937                unsigned int loops_done;
 938
 939                cpu = td->curr_cpu;
 940
 941                /* Not all threads have written it yet: */
 942                if (cpu < 0)
 943                        continue;
 944
 945                node = numa_node_of_cpu(cpu);
 946
 947                nodes[node]++;
 948
 949                loops_done = td->loops_done;
 950                loops_done_min = min(loops_done, loops_done_min);
 951                loops_done_max = max(loops_done, loops_done_max);
 952        }
 953
 954        nr_max = 0;
 955        nr_min = g->p.nr_tasks;
 956        sum = 0;
 957
 958        for (node = 0; node < g->p.nr_nodes; node++) {
 959                nr = nodes[node];
 960                nr_min = min(nr, nr_min);
 961                nr_max = max(nr, nr_max);
 962                sum += nr;
 963        }
 964        BUG_ON(nr_min > nr_max);
 965
 966        BUG_ON(sum > g->p.nr_tasks);
 967
 968        if (0 && (sum < g->p.nr_tasks))
 969                return;
 970
 971        /*
 972         * Count the number of distinct process groups present
 973         * on nodes - when we are converged this will decrease
 974         * to g->p.nr_proc:
 975         */
 976        process_groups = 0;
 977
 978        for (node = 0; node < g->p.nr_nodes; node++) {
 979                int processes = count_node_processes(node);
 980
 981                nr = nodes[node];
 982                tprintf(" %2d/%-2d", nr, processes);
 983
 984                process_groups += processes;
 985        }
 986
 987        distance = nr_max - nr_min;
 988
 989        tprintf(" [%2d/%-2d]", distance, process_groups);
 990
 991        tprintf(" l:%3d-%-3d (%3d)",
 992                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 993
 994        if (loops_done_min && loops_done_max) {
 995                double skew = 1.0 - (double)loops_done_min/loops_done_max;
 996
 997                tprintf(" [%4.1f%%]", skew * 100.0);
 998        }
 999
1000        calc_convergence_compression(&strong);
1001
1002        if (strong && process_groups == g->p.nr_proc) {
1003                if (!*convergence) {
1004                        *convergence = runtime_ns_max;
1005                        tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1006                        if (g->p.measure_convergence) {
1007                                g->all_converged = true;
1008                                g->stop_work = true;
1009                        }
1010                }
1011        } else {
1012                if (*convergence) {
1013                        tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1014                        *convergence = 0;
1015                }
1016                tprintf("\n");
1017        }
1018}
1019
1020static void show_summary(double runtime_ns_max, int l, double *convergence)
1021{
1022        tprintf("\r #  %5.1f%%  [%.1f mins]",
1023                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1024
1025        calc_convergence(runtime_ns_max, convergence);
1026
1027        if (g->p.show_details >= 0)
1028                fflush(stdout);
1029}
1030
1031static void *worker_thread(void *__tdata)
1032{
1033        struct thread_data *td = __tdata;
1034        struct timeval start0, start, stop, diff;
1035        int process_nr = td->process_nr;
1036        int thread_nr = td->thread_nr;
1037        unsigned long last_perturbance;
1038        int task_nr = td->task_nr;
1039        int details = g->p.show_details;
1040        int first_task, last_task;
1041        double convergence = 0;
1042        u64 val = td->val;
1043        double runtime_ns_max;
1044        u8 *global_data;
1045        u8 *process_data;
1046        u8 *thread_data;
1047        u64 bytes_done;
1048        long work_done;
1049        u32 l;
1050        struct rusage rusage;
1051
1052        bind_to_cpumask(td->bind_cpumask);
1053        bind_to_memnode(td->bind_node);
1054
1055        set_taskname("thread %d/%d", process_nr, thread_nr);
1056
1057        global_data = g->data;
1058        process_data = td->process_data;
1059        thread_data = setup_private_data(g->p.bytes_thread);
1060
1061        bytes_done = 0;
1062
1063        last_task = 0;
1064        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1065                last_task = 1;
1066
1067        first_task = 0;
1068        if (process_nr == 0 && thread_nr == 0)
1069                first_task = 1;
1070
1071        if (details >= 2) {
1072                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1073                        process_nr, thread_nr, global_data, process_data, thread_data);
1074        }
1075
1076        if (g->p.serialize_startup) {
1077                pthread_mutex_lock(&g->startup_mutex);
1078                g->nr_tasks_started++;
1079                pthread_mutex_unlock(&g->startup_mutex);
1080
1081                /* Here we will wait for the main process to start us all at once: */
1082                pthread_mutex_lock(&g->start_work_mutex);
1083                g->nr_tasks_working++;
1084
1085                /* Last one wake the main process: */
1086                if (g->nr_tasks_working == g->p.nr_tasks)
1087                        pthread_mutex_unlock(&g->startup_done_mutex);
1088
1089                pthread_mutex_unlock(&g->start_work_mutex);
1090        }
1091
1092        gettimeofday(&start0, NULL);
1093
1094        start = stop = start0;
1095        last_perturbance = start.tv_sec;
1096
1097        for (l = 0; l < g->p.nr_loops; l++) {
1098                start = stop;
1099
1100                if (g->stop_work)
1101                        break;
1102
1103                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1104                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1105                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1106
1107                if (g->p.sleep_usecs) {
1108                        pthread_mutex_lock(td->process_lock);
1109                        usleep(g->p.sleep_usecs);
1110                        pthread_mutex_unlock(td->process_lock);
1111                }
1112                /*
1113                 * Amount of work to be done under a process-global lock:
1114                 */
1115                if (g->p.bytes_process_locked) {
1116                        pthread_mutex_lock(td->process_lock);
1117                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1118                        pthread_mutex_unlock(td->process_lock);
1119                }
1120
1121                work_done = g->p.bytes_global + g->p.bytes_process +
1122                            g->p.bytes_process_locked + g->p.bytes_thread;
1123
1124                update_curr_cpu(task_nr, work_done);
1125                bytes_done += work_done;
1126
1127                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1128                        continue;
1129
1130                td->loops_done = l;
1131
1132                gettimeofday(&stop, NULL);
1133
1134                /* Check whether our max runtime timed out: */
1135                if (g->p.nr_secs) {
1136                        timersub(&stop, &start0, &diff);
1137                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1138                                g->stop_work = true;
1139                                break;
1140                        }
1141                }
1142
1143                /* Update the summary at most once per second: */
1144                if (start.tv_sec == stop.tv_sec)
1145                        continue;
1146
1147                /*
1148                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1149                 * by migrating to CPU#0:
1150                 */
1151                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1152                        cpu_set_t orig_mask;
1153                        int target_cpu;
1154                        int this_cpu;
1155
1156                        last_perturbance = stop.tv_sec;
1157
1158                        /*
1159                         * Depending on where we are running, move into
1160                         * the other half of the system, to create some
1161                         * real disturbance:
1162                         */
1163                        this_cpu = g->threads[task_nr].curr_cpu;
1164                        if (this_cpu < g->p.nr_cpus/2)
1165                                target_cpu = g->p.nr_cpus-1;
1166                        else
1167                                target_cpu = 0;
1168
1169                        orig_mask = bind_to_cpu(target_cpu);
1170
1171                        /* Here we are running on the target CPU already */
1172                        if (details >= 1)
1173                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1174
1175                        bind_to_cpumask(orig_mask);
1176                }
1177
1178                if (details >= 3) {
1179                        timersub(&stop, &start, &diff);
1180                        runtime_ns_max = diff.tv_sec * 1000000000;
1181                        runtime_ns_max += diff.tv_usec * 1000;
1182
1183                        if (details >= 0) {
1184                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1185                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1186                        }
1187                        fflush(stdout);
1188                }
1189                if (!last_task)
1190                        continue;
1191
1192                timersub(&stop, &start0, &diff);
1193                runtime_ns_max = diff.tv_sec * 1000000000ULL;
1194                runtime_ns_max += diff.tv_usec * 1000ULL;
1195
1196                show_summary(runtime_ns_max, l, &convergence);
1197        }
1198
1199        gettimeofday(&stop, NULL);
1200        timersub(&stop, &start0, &diff);
1201        td->runtime_ns = diff.tv_sec * 1000000000ULL;
1202        td->runtime_ns += diff.tv_usec * 1000ULL;
1203        td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1204
1205        getrusage(RUSAGE_THREAD, &rusage);
1206        td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1207        td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1208        td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1209        td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1210
1211        free_data(thread_data, g->p.bytes_thread);
1212
1213        pthread_mutex_lock(&g->stop_work_mutex);
1214        g->bytes_done += bytes_done;
1215        pthread_mutex_unlock(&g->stop_work_mutex);
1216
1217        return NULL;
1218}
1219
1220/*
1221 * A worker process starts a couple of threads:
1222 */
1223static void worker_process(int process_nr)
1224{
1225        pthread_mutex_t process_lock;
1226        struct thread_data *td;
1227        pthread_t *pthreads;
1228        u8 *process_data;
1229        int task_nr;
1230        int ret;
1231        int t;
1232
1233        pthread_mutex_init(&process_lock, NULL);
1234        set_taskname("process %d", process_nr);
1235
1236        /*
1237         * Pick up the memory policy and the CPU binding of our first thread,
1238         * so that we initialize memory accordingly:
1239         */
1240        task_nr = process_nr*g->p.nr_threads;
1241        td = g->threads + task_nr;
1242
1243        bind_to_memnode(td->bind_node);
1244        bind_to_cpumask(td->bind_cpumask);
1245
1246        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1247        process_data = setup_private_data(g->p.bytes_process);
1248
1249        if (g->p.show_details >= 3) {
1250                printf(" # process %2d global mem: %p, process mem: %p\n",
1251                        process_nr, g->data, process_data);
1252        }
1253
1254        for (t = 0; t < g->p.nr_threads; t++) {
1255                task_nr = process_nr*g->p.nr_threads + t;
1256                td = g->threads + task_nr;
1257
1258                td->process_data = process_data;
1259                td->process_nr   = process_nr;
1260                td->thread_nr    = t;
1261                td->task_nr      = task_nr;
1262                td->val          = rand();
1263                td->curr_cpu     = -1;
1264                td->process_lock = &process_lock;
1265
1266                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1267                BUG_ON(ret);
1268        }
1269
1270        for (t = 0; t < g->p.nr_threads; t++) {
1271                ret = pthread_join(pthreads[t], NULL);
1272                BUG_ON(ret);
1273        }
1274
1275        free_data(process_data, g->p.bytes_process);
1276        free(pthreads);
1277}
1278
1279static void print_summary(void)
1280{
1281        if (g->p.show_details < 0)
1282                return;
1283
1284        printf("\n ###\n");
1285        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1286                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1287        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1288                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1289        printf(" #      %5dx %5ldMB process shared mem operations\n",
1290                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1291        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1292                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1293
1294        printf(" ###\n");
1295
1296        printf("\n ###\n"); fflush(stdout);
1297}
1298
1299static void init_thread_data(void)
1300{
1301        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302        int t;
1303
1304        g->threads = zalloc_shared_data(size);
1305
1306        for (t = 0; t < g->p.nr_tasks; t++) {
1307                struct thread_data *td = g->threads + t;
1308                int cpu;
1309
1310                /* Allow all nodes by default: */
1311                td->bind_node = -1;
1312
1313                /* Allow all CPUs by default: */
1314                CPU_ZERO(&td->bind_cpumask);
1315                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1316                        CPU_SET(cpu, &td->bind_cpumask);
1317        }
1318}
1319
1320static void deinit_thread_data(void)
1321{
1322        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1323
1324        free_data(g->threads, size);
1325}
1326
1327static int init(void)
1328{
1329        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1330
1331        /* Copy over options: */
1332        g->p = p0;
1333
1334        g->p.nr_cpus = numa_num_configured_cpus();
1335
1336        g->p.nr_nodes = numa_max_node() + 1;
1337
1338        /* char array in count_process_nodes(): */
1339        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1340
1341        if (g->p.show_quiet && !g->p.show_details)
1342                g->p.show_details = -1;
1343
1344        /* Some memory should be specified: */
1345        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1346                return -1;
1347
1348        if (g->p.mb_global_str) {
1349                g->p.mb_global = atof(g->p.mb_global_str);
1350                BUG_ON(g->p.mb_global < 0);
1351        }
1352
1353        if (g->p.mb_proc_str) {
1354                g->p.mb_proc = atof(g->p.mb_proc_str);
1355                BUG_ON(g->p.mb_proc < 0);
1356        }
1357
1358        if (g->p.mb_proc_locked_str) {
1359                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1360                BUG_ON(g->p.mb_proc_locked < 0);
1361                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1362        }
1363
1364        if (g->p.mb_thread_str) {
1365                g->p.mb_thread = atof(g->p.mb_thread_str);
1366                BUG_ON(g->p.mb_thread < 0);
1367        }
1368
1369        BUG_ON(g->p.nr_threads <= 0);
1370        BUG_ON(g->p.nr_proc <= 0);
1371
1372        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1373
1374        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1375        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1376        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1377        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1378
1379        g->data = setup_shared_data(g->p.bytes_global);
1380
1381        /* Startup serialization: */
1382        init_global_mutex(&g->start_work_mutex);
1383        init_global_mutex(&g->startup_mutex);
1384        init_global_mutex(&g->startup_done_mutex);
1385        init_global_mutex(&g->stop_work_mutex);
1386
1387        init_thread_data();
1388
1389        tprintf("#\n");
1390        if (parse_setup_cpu_list() || parse_setup_node_list())
1391                return -1;
1392        tprintf("#\n");
1393
1394        print_summary();
1395
1396        return 0;
1397}
1398
1399static void deinit(void)
1400{
1401        free_data(g->data, g->p.bytes_global);
1402        g->data = NULL;
1403
1404        deinit_thread_data();
1405
1406        free_data(g, sizeof(*g));
1407        g = NULL;
1408}
1409
1410/*
1411 * Print a short or long result, depending on the verbosity setting:
1412 */
1413static void print_res(const char *name, double val,
1414                      const char *txt_unit, const char *txt_short, const char *txt_long)
1415{
1416        if (!name)
1417                name = "main,";
1418
1419        if (!g->p.show_quiet)
1420                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1421        else
1422                printf(" %14.3f %s\n", val, txt_long);
1423}
1424
1425static int __bench_numa(const char *name)
1426{
1427        struct timeval start, stop, diff;
1428        u64 runtime_ns_min, runtime_ns_sum;
1429        pid_t *pids, pid, wpid;
1430        double delta_runtime;
1431        double runtime_avg;
1432        double runtime_sec_max;
1433        double runtime_sec_min;
1434        int wait_stat;
1435        double bytes;
1436        int i, t, p;
1437
1438        if (init())
1439                return -1;
1440
1441        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1442        pid = -1;
1443
1444        /* All threads try to acquire it, this way we can wait for them to start up: */
1445        pthread_mutex_lock(&g->start_work_mutex);
1446
1447        if (g->p.serialize_startup) {
1448                tprintf(" #\n");
1449                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1450        }
1451
1452        gettimeofday(&start, NULL);
1453
1454        for (i = 0; i < g->p.nr_proc; i++) {
1455                pid = fork();
1456                dprintf(" # process %2d: PID %d\n", i, pid);
1457
1458                BUG_ON(pid < 0);
1459                if (!pid) {
1460                        /* Child process: */
1461                        worker_process(i);
1462
1463                        exit(0);
1464                }
1465                pids[i] = pid;
1466
1467        }
1468        /* Wait for all the threads to start up: */
1469        while (g->nr_tasks_started != g->p.nr_tasks)
1470                usleep(1000);
1471
1472        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1473
1474        if (g->p.serialize_startup) {
1475                double startup_sec;
1476
1477                pthread_mutex_lock(&g->startup_done_mutex);
1478
1479                /* This will start all threads: */
1480                pthread_mutex_unlock(&g->start_work_mutex);
1481
1482                /* This mutex is locked - the last started thread will wake us: */
1483                pthread_mutex_lock(&g->startup_done_mutex);
1484
1485                gettimeofday(&stop, NULL);
1486
1487                timersub(&stop, &start, &diff);
1488
1489                startup_sec = diff.tv_sec * 1000000000.0;
1490                startup_sec += diff.tv_usec * 1000.0;
1491                startup_sec /= 1e9;
1492
1493                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1494                tprintf(" #\n");
1495
1496                start = stop;
1497                pthread_mutex_unlock(&g->startup_done_mutex);
1498        } else {
1499                gettimeofday(&start, NULL);
1500        }
1501
1502        /* Parent process: */
1503
1504
1505        for (i = 0; i < g->p.nr_proc; i++) {
1506                wpid = waitpid(pids[i], &wait_stat, 0);
1507                BUG_ON(wpid < 0);
1508                BUG_ON(!WIFEXITED(wait_stat));
1509
1510        }
1511
1512        runtime_ns_sum = 0;
1513        runtime_ns_min = -1LL;
1514
1515        for (t = 0; t < g->p.nr_tasks; t++) {
1516                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1517
1518                runtime_ns_sum += thread_runtime_ns;
1519                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1520        }
1521
1522        gettimeofday(&stop, NULL);
1523        timersub(&stop, &start, &diff);
1524
1525        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1526
1527        tprintf("\n ###\n");
1528        tprintf("\n");
1529
1530        runtime_sec_max = diff.tv_sec * 1000000000.0;
1531        runtime_sec_max += diff.tv_usec * 1000.0;
1532        runtime_sec_max /= 1e9;
1533
1534        runtime_sec_min = runtime_ns_min/1e9;
1535
1536        bytes = g->bytes_done;
1537        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1538
1539        if (g->p.measure_convergence) {
1540                print_res(name, runtime_sec_max,
1541                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1542        }
1543
1544        print_res(name, runtime_sec_max,
1545                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1546
1547        print_res(name, runtime_sec_min,
1548                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1549
1550        print_res(name, runtime_avg,
1551                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1552
1553        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1554        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1555                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1556
1557        print_res(name, bytes / g->p.nr_tasks / 1e9,
1558                "GB,", "data/thread",           "GB data processed, per thread");
1559
1560        print_res(name, bytes / 1e9,
1561                "GB,", "data-total",            "GB data processed, total");
1562
1563        print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1564                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1565
1566        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1567                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1568
1569        print_res(name, bytes / runtime_sec_max / 1e9,
1570                "GB/sec,", "total-speed",       "GB/sec total speed");
1571
1572        if (g->p.show_details >= 2) {
1573                char tname[32];
1574                struct thread_data *td;
1575                for (p = 0; p < g->p.nr_proc; p++) {
1576                        for (t = 0; t < g->p.nr_threads; t++) {
1577                                memset(tname, 0, 32);
1578                                td = g->threads + p*g->p.nr_threads + t;
1579                                snprintf(tname, 32, "process%d:thread%d", p, t);
1580                                print_res(tname, td->speed_gbs,
1581                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1582                                print_res(tname, td->system_time_ns / 1e9,
1583                                        "secs", "thread-system-time", "system CPU time/thread");
1584                                print_res(tname, td->user_time_ns / 1e9,
1585                                        "secs", "thread-user-time", "user CPU time/thread");
1586                        }
1587                }
1588        }
1589
1590        free(pids);
1591
1592        deinit();
1593
1594        return 0;
1595}
1596
1597#define MAX_ARGS 50
1598
1599static int command_size(const char **argv)
1600{
1601        int size = 0;
1602
1603        while (*argv) {
1604                size++;
1605                argv++;
1606        }
1607
1608        BUG_ON(size >= MAX_ARGS);
1609
1610        return size;
1611}
1612
1613static void init_params(struct params *p, const char *name, int argc, const char **argv)
1614{
1615        int i;
1616
1617        printf("\n # Running %s \"perf bench numa", name);
1618
1619        for (i = 0; i < argc; i++)
1620                printf(" %s", argv[i]);
1621
1622        printf("\"\n");
1623
1624        memset(p, 0, sizeof(*p));
1625
1626        /* Initialize nonzero defaults: */
1627
1628        p->serialize_startup            = 1;
1629        p->data_reads                   = true;
1630        p->data_writes                  = true;
1631        p->data_backwards               = true;
1632        p->data_rand_walk               = true;
1633        p->nr_loops                     = -1;
1634        p->init_random                  = true;
1635        p->mb_global_str                = "1";
1636        p->nr_proc                      = 1;
1637        p->nr_threads                   = 1;
1638        p->nr_secs                      = 5;
1639        p->run_all                      = argc == 1;
1640}
1641
1642static int run_bench_numa(const char *name, const char **argv)
1643{
1644        int argc = command_size(argv);
1645
1646        init_params(&p0, name, argc, argv);
1647        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1648        if (argc)
1649                goto err;
1650
1651        if (__bench_numa(name))
1652                goto err;
1653
1654        return 0;
1655
1656err:
1657        return -1;
1658}
1659
1660#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1661#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1662
1663#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1664#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1665
1666#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1667#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1668
1669/*
1670 * The built-in test-suite executed by "perf bench numa -a".
1671 *
1672 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1673 */
1674static const char *tests[][MAX_ARGS] = {
1675   /* Basic single-stream NUMA bandwidth measurements: */
1676   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1677                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1678   { "RAM-bw-local-NOTHP,",
1679                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1680                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1681   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1682                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1683
1684   /* 2-stream NUMA bandwidth measurements: */
1685   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1686                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1687   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1688                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1689
1690   /* Cross-stream NUMA bandwidth measurement: */
1691   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1692                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1693
1694   /* Convergence latency measurements: */
1695   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1696   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1697   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1698   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1699   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1700   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1701   { " 4x4-convergence-NOTHP,",
1702                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1703   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1704   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1705   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1706   { " 8x4-convergence-NOTHP,",
1707                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1708   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1709   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1710   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1711   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1712   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1713
1714   /* Various NUMA process/thread layout bandwidth measurements: */
1715   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1716   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1717   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1718   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1719   { " 8x1-bw-process-NOTHP,",
1720                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1721   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1722
1723   { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1724   { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1725   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1726   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1727
1728   { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1729   { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1730   { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1731   { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1732   { " 4x8-bw-thread-NOTHP,",
1733                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1734   { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1735   { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1736
1737   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1738   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1739
1740   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1741   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1742   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1743   { "numa01-bw-thread-NOTHP,",
1744                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1745};
1746
1747static int bench_all(void)
1748{
1749        int nr = ARRAY_SIZE(tests);
1750        int ret;
1751        int i;
1752
1753        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1754        BUG_ON(ret < 0);
1755
1756        for (i = 0; i < nr; i++) {
1757                run_bench_numa(tests[i][0], tests[i] + 1);
1758        }
1759
1760        printf("\n");
1761
1762        return 0;
1763}
1764
1765int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1766{
1767        init_params(&p0, "main,", argc, argv);
1768        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1769        if (argc)
1770                goto err;
1771
1772        if (p0.run_all)
1773                return bench_all();
1774
1775        if (__bench_numa(NULL))
1776                goto err;
1777
1778        return 0;
1779
1780err:
1781        usage_with_options(numa_usage, options);
1782        return -1;
1783}
1784